
Contents

03

07

Welcome Message **Conference Information Opening Remarks** Keynote Speech I:

Session I:

Session II:

Keynote Speech IV :

Session III :

Chinese Taipei's action plan against antimicrobial resistance World Veterinary Association's strategy on the prudent use of antimicrobials Strengthening surveillance and laboratory capacity to combat antimicrobial resistance (AMR) Policies to promote antimicrobial stewardship programs (ASP) Keynote Speech III : WHO strategies to fight antimicrobial resistance Antimicrobial Resistance Detection and Containment; a current US approach Infection control strategies to contain antimicrobial resistance (AMR)

Closing Remarks List of Participants

Welcome Message

Welcome Message

Welcome to the "APEC Conference on Strategies against the Evolving Threats from Antimicrobial Resistance (AMR): From Awareness to Concrete Action".

Antimicrobial resistance (AMR) has become a critical public health issue globally due to the overuse of antimicrobials and the spread of the resistant strains of bacteria in the environment. AMR threatens our ability to treat common infectious diseases, resulting in prolonged illness, disability, and death and poses a significant health, economic and social burden on the society. Considering the urgent need for APEC members to take appropriate actions against the growing antimicrobial resistance, Chinese Taipei proposed this project to provide APEC developing economies with a platform to share and discuss the preparedness efforts for effective management of AMR.

This conference will include the following activities: (1) interactive sessions that will focus on strengthening surveillance and laboratory capacity to combat AMR, policies to promote antimicrobial stewardship programs, and infection control strategies to contain AMR, (2) poster presentation that showcases the latest development in AMR diagnostics, treatment, and management and (3) site visit to Linkou Chang Gung Memorial Hospital

On behalf of the conference organizer, we hope you will find this conference stimulating, enjoyable and productive. We thank you for your participation and contributions to this event, and wish you a wonderful time in Taipei.

J. . rfm Chin

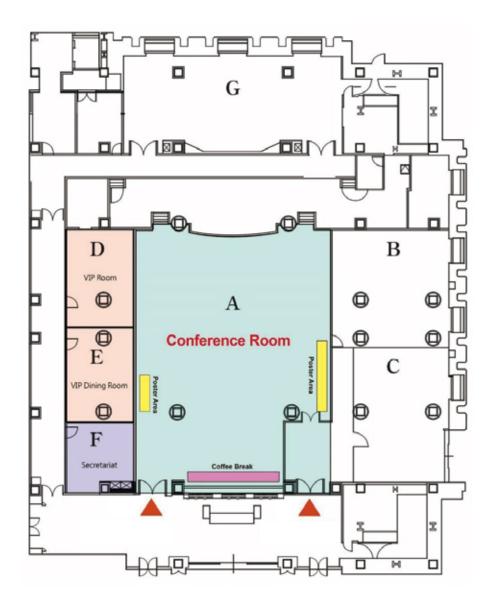
Jih-Haw Chou, D.D.S., M.P.H. Director-General Centers for Disease Control

Conference Information

Date

Sep. 20-21, 2018

Venue


1F, Cathay Financial Conference Hall (Taipei) No.9, Songren Rd., Xinyi Dist., Taipei City

Organizer

Centers for Disease Control

Floor Plans

1F, Cathay Financial Conference Hall (Taipei)

8

Program Agenda

Thursday, 20 September 2018		
Time	Subject	Moderator/ Speaker
08:20-08:50 (30 mins)	Registration	
08:50-09:00 (10 mins)	Opening Ceremony	
09:00-09:10 (10 mins)	Opening Remarks	 Dr. Shih-Chung Chen Minister, Ministry of Health and Welfare Dr. Chin-Cheng Huang Deputy Minister, Council of Agriculture
09:10-09:25 (15 mins)	Group Photo	
09:25-09:55 (30 mins)	Keynote Speech I Chinese Taipei's action plan against antimicrobial resistance	ModeratorDr. Tzou-Yien LinChair of the Board of Directors,National Health Research InstitutesSpeakerProf. Shan-Chwen ChangDean, College of Medicine, NationalTaiwan University
09:55-10:25 (30 mins)	Keynote Speech II World Veterinary Association's strategy on the prudent use of antimicrobials	ModeratorDr. Tai-Hwa ShihDeputy Director General, Bureau ofAnimal and Plant Health Inspectionand Quarantine (BAPHIQ)SpeakerDr. Shih- Ming Johnson ChiangPresident, World VeterinaryAssociation (WVA)
10:25-10:45 (20 mins)	Coffee Break	

Thursday, 20 September 2018		
Time	Subject Moderator/ Speaker	
Session I	Strengthening surveillance and laboratory capacity to combat antimicrobial resistance (AMR)	Moderator Prof. Feng-Yee Chang Professor, Tri-Service General Hospital, National Defense Medical Center Dr. Cheng-Hsun Chiu Professor, Department of Pediatrics, Chang Gung Memorial Hospital
10:45-11:10 (25 mins)	Fighting antimicrobial resistance with rapid, point-of-need diagnostic methods	Prof. Kazuhiro Tateda President, Japanese Association for Infectious Diseases
11:10-11:35 (25 mins)	Establish network for AMR surveillance in Asia Pacific region	Dr. Stephen Sheng-Fong Lin Regional Medical Therapeutic Area Lead, Anti-infective, Asia-Pacific, PEH, Pfizer Inc.
11:35-12:00 (25 mins)	Longitudinal multicenter surveillance on AMR	Dr. Tsai-Ling Yang Lauderdale Investigator, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes
12:00-12:30 (30 mins)	Panel Discussion	
13:00-14:00 (60 mins)	Luncheon Session: Strategies to Scale up Patient Access to Novel Antibiotics.	Hosted by LSIF
Session II	Policies to promote antimicrobial stewardship programs (ASP)	ModeratorDr. Yao-Shen ChenChief, Department of InternalMedicine ,Kaohsiung Veterans GeneralHospitalDr. Shu-Hui TsengDirector, Division of Infection Controland Biosafety, Centers for DiseaseControl
14:00-14:30 (30 mins)	Antimicrobial Stewardship Programme in Singapore	Prof. David Chien Boon Lye Associate Professor, Tan Tock Seng Hospital
14:30-15:00 (30 mins)	The Antibiotic Stewardship Programme in Malaysia	Prof. Victor Lim Pro Vice-Chancellor, International Medical University

Thursday, 20 September 2018			
Time	Subject	Moderator/ Speaker	
15:00-15:40 (40 mins)	Coffee Break & Poster Viewing	ffee Break & Poster Viewing	
15:40-16:10 (30 mins)	The Antibiotics Stewardship in Hong Kong	Prof. Wing Hong Seto Co-Director, WHO Collaborating Centre for Infectious Disease Epidemiology and Control, The University of Hong Kong	
16:10-16:40 (30 mins)	Healthcare-associated Infections in Intensive Care Units in Asia: Recent Trends Based on Healthcare- associated Infections Surveillance Network over an 8-year period	Prof. Yee-Chun Chen Professor, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine	
16:40-17:10 (30 mins)	Panel Discussion		
18:00-20:00 (120 mins)	Welcome Reception (Invited Only)		

Friday, 21 September 2018		
Time	Subject	Moderator/ Speaker
08:30-09:00 (30 mins)	Registration	
09:00-09:30 (30 mins)	Keynote Speech III WHO strategies to fight antimicrobial resistance	ModeratorProf. Shan-Chwen ChangDean, College of Medicine, NationalTaiwan UniversitySpeakerProf. Didier PittetChief Medical Officer,University Hospitals of Geneva
09:30-10:00 (30 mins)	Keynote Speech IVModeratorAntimicrobial Resistance Detection and Containment ; a current US approachDeputy Director-General, C for Disease ControlSpeaker Dr. Michael Bell Deputy Director, Division of Healthcare Quality Promoti Centers for Disease Control	
10:00-10:15 (15 mins)	Coffee Break	
Session III	Infection control strategies to contain antimicrobial resistance (AMR)	Moderator Prof. Yin-Ching Chuang Professor, Chi Mei Medical Center Prof. David Chien Boon Lye Associate Professor, Tan Tock Seng Hospital
10:15-10:40 (25 mins)	Ten years improvement in infection control practice and antimicrobial optimization in the 29 private university hospitals in Japan	Prof. Satoshi Hori Professor, Department of Infection Control Science, Juntendo University
10:40-11:05 (25 mins)	Strategies to prevent and control AMR infection in Hong Kong	Ms. Patricia Ching Principal Nurse, WHO Collaborating Center For Epidemiology, School Of Public Health, University Of Hong Kong

Friday, 21 September 2018			
Time	Subject Moderator/ Speaker		
11:05-11:30 (25 mins)	Carrot or stick? Building capacity in ASP and infection control through quality accreditation	Prof. Marilyn Cruickshank Professor of Nursing Research, University of Technology Sydney	
11:30-12:00 (30 mins)	Panel Discussion		
12:00-12:10 (10 mins)	Closing Remarks Director General, Centers for Disease Control		
12:10-13:10 (60 mins)	Lunch Break		
13:10-14:00 (50 mins)	Transport to Linkou Chang Gung Memorial Hospital		
Session IV	Site Visit to Linkou Chang Gung Memorial Hospital (Invited Only)	ModeratorProf. Wen-Jin CherngSuperintendent, Linkou Chang GungMemorial HospitalSpeakerDr. Cheng-Hsun ChiuProfessor, Department of Pediatrics,Chang Gung Memorial HospitalDr. Chun-Wen ChengMedical doctor, Division ofInfectious Diseases, Linkou ChangGung Memorial Hospital	

Scan this QR code for the most updated version of the agenda and presentation information.

Opening Remarks

Dr. Shih-Chung Chen

Minister, Ministry of Health and Welfare

Dr. Chin-Cheng Huang

Deputy Minister, Council of Agriculture

APEC Conference on Strategies Against the Evolving Threats from Antimicrobial Resistance

Dr. Shih-Chung Chen Position: Minister Department/organization: Ministry of Health and Welfare Economy: Chinese Taipei

Education Background

• 1971-1977 D.D.S, School of Dentistry, Taipei Medical College

Professional Career

•	1987-1990	Director, Taipei City Dentists Association
•	1991-1993	Executive director, Taipei City Dentists Association
•	1993-1995	President, Taipei City Dentists Association
•	1995-1996	Commissioner, medical review committee, Taipei
		City Health Department
•	1995-1999	President, Taiwan Dental Association
•	1993-1998, 1999-2000	Commissioner, Dentist Advisory Committee, DOH
•	1999-2005	Executive director, chief executive officer ,Taiwan
		Dental Association
•	1996-1999, 2005-2006	Commissioner, National Health Insurance
		Supervisory Committee, DOH
•	1996-2008	Commissioner, National Health Insurance Medical
		Expenditure Negotiation Committee, DOH
•	1999-2005, 2009-2017	Consultant, Taipei City Dentists Association
•	1996-2008	Commissioner, National Health Insurance
		Medical Expenditure Negotiation Committee, DOH
•	1999-2005, 2009-2017	Consultant, Taipei City Dentists Association
•	1999-2005, 2009-2017	Consultant, Taiwan Dental Association
•	2004-2017	Director, Taipei Medical University
•	2016-2017	National Policy Advisor to the President
•	2017-	Minister of Health and Welfare

APEC Conference on Strategies Against the Evolving Threats from Antimicrobial Resistance

Dr. Chin-Cheng Huang

Position: Deputy Minister Department/organization: Council of Agriculture Economy: Chinese Taipei

Education Background

•	1993-1997	Ph. D. University of Wisconsin-Madison, USA
•	1990-1993	M. S. University of Wisconsin-Madison, USA
•	1974-1979	D. V. M. National Chung-Hsing University

Professional Career

•	2012-2016	Director General, Agricultural Biotechnology Park, Council
		of Agriculture
•	2012	Counselor, Council of Agriculture
•	2009-2012	Director General, Animal Health Research Institute,
		Council of Agriculture
•	2005-2009	Chief of Biologics Division, A.H.R.I, Council of Agriculture
•	2001	Assistant Professor, National Chung-Hsing University.
•	1998	Postdoctor, Academia Sinica.

Keynote Speech I Chinese Taipei's Action Plan against Antimicrobial Resistance

Moderator

Prof. Tzou-Yien Lin

Chair of the Board of Directors, National Health Research Institutes

Speaker

Prof. Shan-Chwen Chang

Dean, College of Medicine, National Taiwan University

APEC Conference on Strategies Against the Evolving Threats from Antimicrobial Resistance

Prof. Shan-Chwen Chang Position: Dean Department/organization: College of Medicine, National Taiwan University Economy: Chinese Taipei

Education Background

•	1974-1981	Ph.D., Graduate Institute of Clinical Medicine,
		National Taiwan University

Professional Career

•	1990 - 1992	Lecturer of Internal Medicine, National Taiwan
		University
•	1992 - 2000	Associate Professor of Internal Medicine, National
		Taiwan University
•	1996 – 1999	Chief, Division of Infection, Immunology and
		Rheumatology, Department of Internal Medicine,
		National Taiwan University Hospital
•	1999 - 2009, 2011-2013	Chief, Division of Infectious Diseases, National
		Taiwan University Hospital
•	2006 – 2009	Researcher (joint appointment), Division of Clinical
		Research, National Health Research Institute
•	2007 - 2008	Vice-director, Department of Internal Medicine,
		National Taiwan University Hospital
•	2008(May-Sept.)	Director, Department of Internal Medicine,
		National Taiwan University Hospital
•	2008 - 2009, 2011-2013	Associate Dean, College of Medicine, National
		Taiwan University
•	2008 - 2009, 2011-2013	Vice-superintendent, National Taiwan University
		Hospital
•	2009 – 2010	Deputy Minister of Health

Speech Abstract

Chinese Taipei's Action Plan Against Antimicrobial Resistance

Antimicrobial resistance(AMR) is one of the most complex public health threats worldwide; it threatens our ability to treat patients with infectious diseases, resulting in prolonged illness, disability, and death that pose a significant health, economic and social burden on the society. Facing this increasing threat, world leaders in the G7, G20 and the UN General Assembly have declared AMR a global crisis. In 2015, the WHO launched a Global Action Plan on AMR. The action plan underscores the need for an effective One Health approach involving coordination among numerous international sectors and actors, including human and veterinary medicine, agriculture, finance, environment, and well-informed consumers. As the world enters the ambitious new era of sustainable development, world leaders have also adopted universal health coverage (UHC) as a key target under the sustainable development goals. And AMR poses a big challenge to achieving UHC.

In this presentation, the current threats of AMR globally and some critical international action initiatives will be mentioned briefly. Then, Chinese Taipei's framework and strategies to combat AMR will be introduced, which includes establishing surveillance mechanisms, raising awareness and improving knowledge of AMR, and promoting cross-sector cooperation. Finally, the presentation will be concluded with our commitments to addressing AMR.

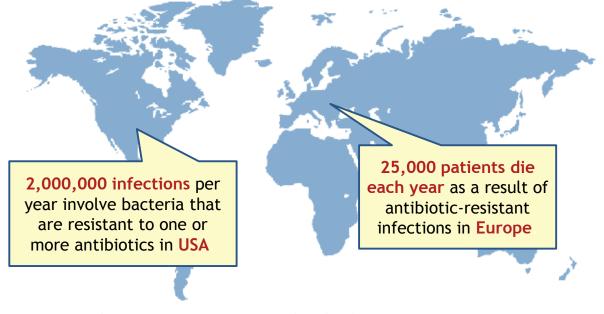
Chinese Taipei's action plan against antimicrobial resistance

Shan-Chwen Chang, MD, PhD

Dean, College of Medicine National Taiwan University 20 September 2018

Outline

- ≻Global AMR Threat: Today and Future
- Global Action Initiatives
- Chinese Taipei's Framework and Strategies to Combat AMR

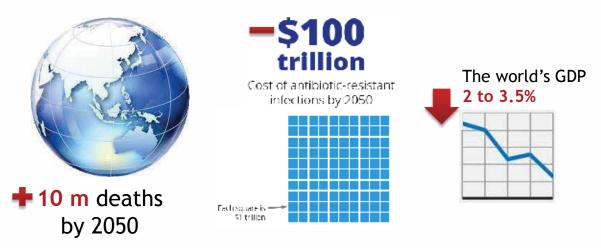

25

Prospect: Integrate AMR and UHC

Current Global AMR Threat

Drug-resistant infections cause around 700,000 deaths globally.

http://www.myrolematters.com/amr-infographics.html


Future Global AMR Threat

If the current trend is not altered and no action is taken to counter these threats...

Health and Economic Impact

@ @ 7 m (1)

EDA (H

26

Jim O'Neill. (2016) Tackling Drug-Resistant Infections Globally: Final Report and Recommendations

AMR: A Threat to Successful Achievement of the SDGs Targets

AMR strikes hardest on the poor: Treatment of resistant infections is more expensive.

2 ZERO HUNGER

Untreatable infections in animals threaten sustainable food production.

Antimicrobials are a fundamental component in all health systems.

۵

8 DECENT WORK AN ECONOMIC GROW

> It's crucial to balance access, innovation, and conservation of antimicrobials to contain AMR.

Cost of AMR is predicted to be

Antibiotic residues from

US\$100 trillion by 2050.

contaminate waters.

hospitals, pharmaceutical

companies, and farms can

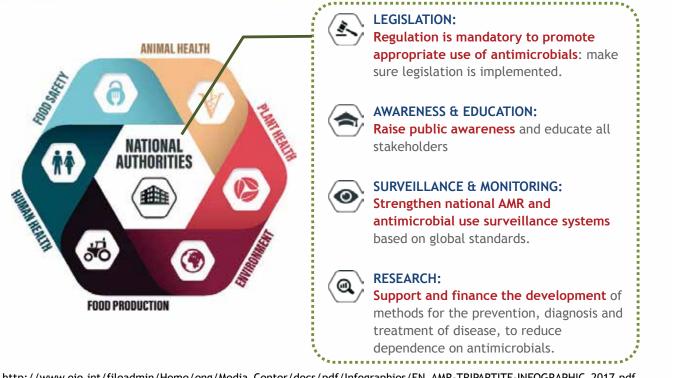
All of the above require multi-stakeholder partnerships and a global response. No single country, sector or organization can address this issue alone.

Jasovský et al. Ups J Med Sci. 2016 Aug; 121(3): 159-164.

Global Action Initiatives - United Nations

27

- Global leaders met at the United Nations General Assembly in New York in September 2016 to commit to fighting AMR together.
- This is only the fourth time in UN history that a health topic is discussed at the General Assembly.


World leaders pledged to...
 ✓ Strengthen regulations

- Improve knowledge and awareness
- Promote best practices

 Foster innovative approaches

Global Action Initiatives - FAO-OIE-WHO Collaboration

http://www.oie.int/fileadmin/Home/eng/Media_Center/docs/pdf/Infographies/EN_AMR-TRIPARTITE-INFOGRAPHIC_2017.pdf

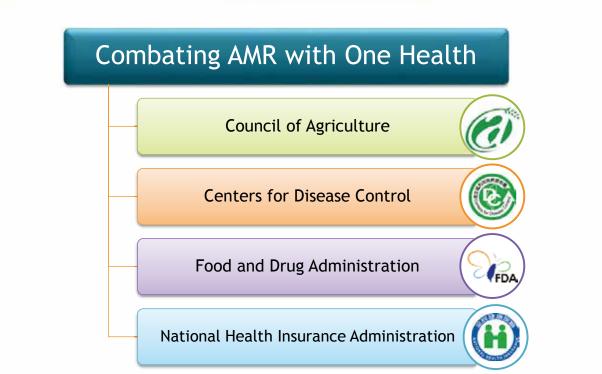
Global Action Initiatives- GHSA

Prevent

Detect

Respond

28


- 1. Antimicrobial Resistance
- 2. Zoonotic Disease
- 3. Biosafety and Biosecurity
- 4. Immunization
- 5. National Laboratory System
- 6. Real-Time Surveillance
- 7. Reporting
- 8. Workforce Development
- 9. Emergency Operations Centers
- 10. Linking Public Health with Law and Multisectoral Rapid Response
- 11. Medical Countermeasures and Personnel Deployment

AMR action package is the first of all 11 action packages.

GHSA emphasizes "partnership", "political commitment", "cross-sectoral coordination", and "international **cooperation**" to strengthen both the global capacity and nations' capacity to prevent, detect, and respond to infectious diseases threats.

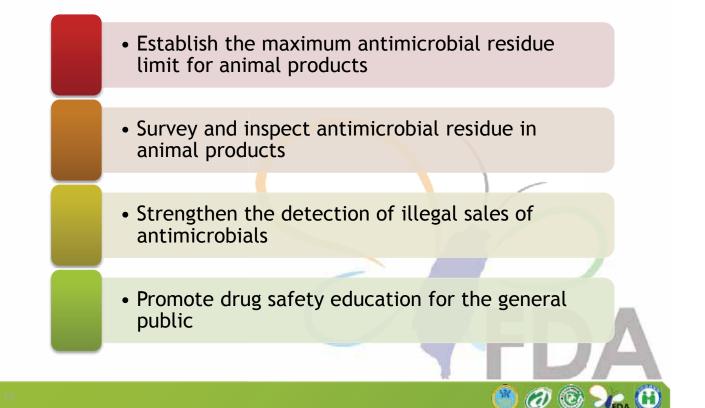
Chinese Taipei's Framework to Combat AMR

🎱 🕢 🔞 🚬 🔂

🎒 🙆 🛞 况 🥵

COA's Strategies to Combat AMR

Survey and monitor AMR in livestock


Survey and monitor veterinary medicines used in livestock

Review and minimize the number of antimicrobials for veterinary use

29

Govern veterinary medicine sales and promote appropriate use of antimicrobials in livestock

FDA's Strategies to Combat AMR

NHI's Strategies to Combat AMR

Establish the reimbursement regulations and restrictions for antimicrobials

Review and audit claims for reimbursement of antimicrobials

6160

(1) (2)

Survey and monitor indicators for antimicrobial use

Establish incentives for hospitals with good ASP performance

30

CDC's Framework to Combat AMR

National Level (CDC)	 Formulate AMR policies and strategies Establish a national advisory committee Promote cross-sectoral cooperation Designate qualified and dedicated staffs Provide appropriate funds
Local Level (Health Departments)	 Promote AMR related programs and policies Evaluate ASP performance of healthcare facilities within their respective jurisdiction
Community Level	 Professional associations and societies: Join task force in promoting AMR strategies Healthcare facilities: Comply with related laws and AMR prevention and control regulations General public: Raise awareness through education

13

Establish multi-channel surveillance mechanisms on drug-resistant organisms

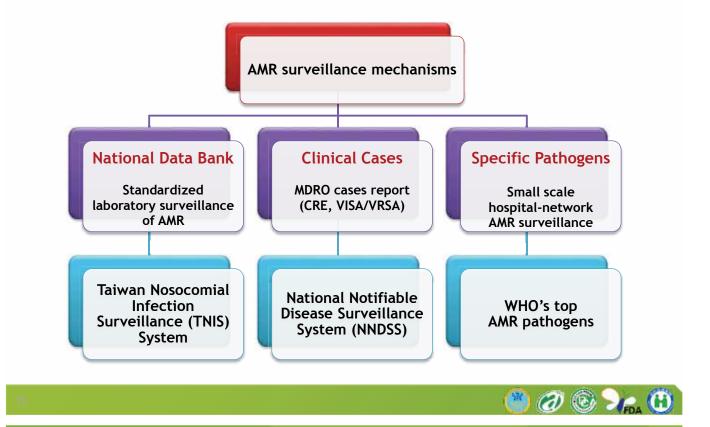
🎱 🕖 🛞 🖓 🛞

-ontrol

(a) (a) (b) 🖓 👘

Ensure the appropriate use of antibiotics through AMR-related hospital audits

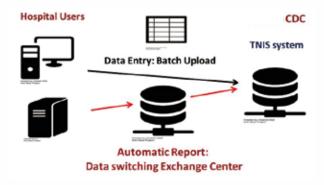
Improve awareness and knowledge of AMR through effective communication, education and training


31

1

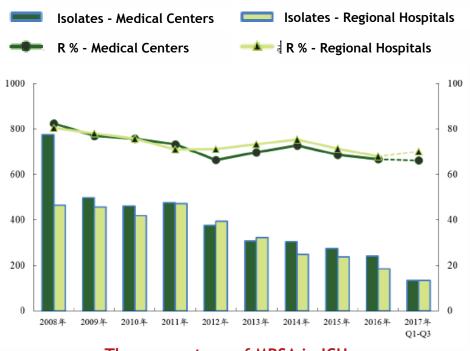
Promote cross-sectoral cooperation on containing AMR

XYS.


Multi-channel surveillance mechanisms

AMR surveillance through TNIS

32


 Hospitals report individual lab test data of clinical isolates to Antimicrobial Usage and Resistance (AUR) Module within the TNIS system.

Surveillance pathogens	
Escherichia spp.	Enterococcus spp.
Klebsiella spp.	Acinetobacter baumannii
Enterobacter spp.	Acinetobacter calcoaceticus
Proteus spp.	Acinetobacter calcoaceticus- Acinetobacter baumannii complex
Salmonella spp.	Pseudomonas aeruginosa
Shigella spp.	Staphylococcus aureus
Citrobacter spp.	Streptococcus pneumoniae
Morganella spp.	Neisseria gonorrhoeae
Providencia spp.	Clostridium difficile
Serratia spp.	Helicobacter pylori
Yersinia spp.	

National AMR reports

The percentage of MRSA in ICUs

AMR-related Hospital Audits

Assessment Standards

33

- 3.1 Leadership and responsibilities in Antimicrobial Stewardship program
- 3.2 Mechanism for surveillance and management of antibiotic use
- 3.3 Measures for surveillance, diagnosis, and isolation of resistant microbes

A total of 224 hospitals were evaluated in 2017.

Sec.

AMR Awareness and Education (1)

For General Public

Chinese Taipei CDC has initiated "World Antibiotic Awareness Week" and encouraged general public to respond by signing the pledge online.

抗生素抗藥	4誓言我宣誓合理使用抗生素
用抗生素可能已经	與扶冀性的「越近经黨」整定,這利會使行來是你的家人,在下決尋要使 扶放、世界美生這個已時抗主要扶養性很為靜重公共考生的威脅,而你可 使用抗主要,來及變現就!
我宣誓,,	l declare,
Only us certifie	生ま方之其主義・空英電気会報義・ e antibiotics when prescribed by a d health professional and follow advice to complete the medication.
	手部衛士習慣以拒免所國事種。
2. 養成長気	字記者主旨書以抱免宗営事賃。 : the spread of pathogens by regularly
2 #daa Prevent washing	字記者主旨書以抱免宗営事賃。 : the spread of pathogens by regularly
 2 種成長者 Prevent washing 	字部者主旨者以他免疫営事項。 the spread of pathogens by regularly g hands.
 2. 豐成長約 Prevent washing 3. 設施設約 	学部者主旨者以祖免会営事項。 the spread of pathogens by regularly hands. 本人及例友告望使用抗生業。 Encourage my family and friends to use
 2. 豐成長約 Prevent washing 3. 設施設約 宣誓日期。 	学習者主旨者以他免疫営権等。 the spread of pathogens by regularly hands. 本人及別友会強使用抗主業。 Encourage my family and friends to use antibiotics appropriately.
 2 餐成長部 Prevent washing 3 形動気部 宣誓日期・ 1 2 201 	学事業主当者以後免疫営事業 the spread of pathogens by regularly hands. 本人及別な合理使用抗主素 Encourage my family and friends to use antibiotics appropriately.

AMR Awareness and Education (2)

34

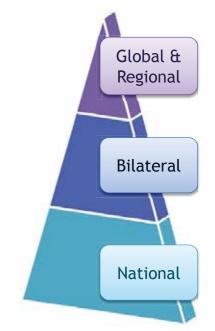
For Healthcare Workers

Guidebooks on CDC website

E-learning courses on CDC website

Identification, treatment & infection control of common infections

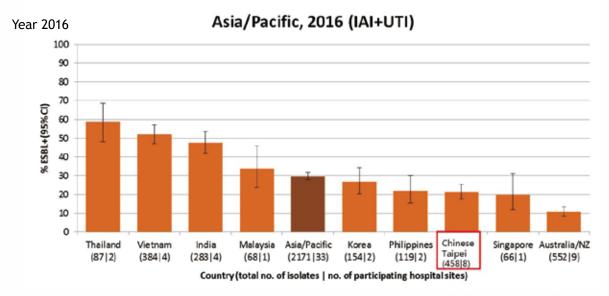
Rational use of antibiotics


Healthcare workers' respective roles and responsibilities in ASP

Infection control of MDROs

Laboratory diagnosis of infections

Cross-sectoral Cooperation



- Host 2018 APEC AMR conference to communicate with APEC economies on AMR prevention, detection, and response strategies
- Collaborate with U.S. CDC to implement active surveillance and isolation for the control of MRSA in our Hospitals
- Communicate with National Institute of Infectious Diseases in Japan on drug-resistant infections related issues
- Establish communication channels, spanning human, animal, and food safety sectors, to discuss the AMR prevention and control strategies

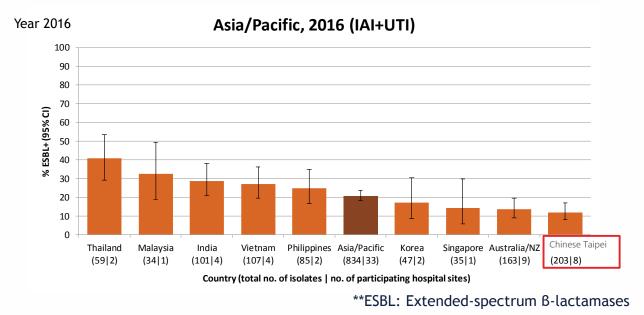
21

AMR International Comparison(1)

Rate of ESBL production amongst isolates of E. *coli* causing urinary tract infections (UTIs) and Intra-abdominal infection (IAI)

35

Data from Study for Monitoring Antimicrobial Resistance Trends (SMART)


🎒 🥔 🛞 🖓 🚯

22

^{**}ESBL: Extended-spectrum β-lactamases

AMR International Comparison(2)

Rate of ESBL production amongst isolates of *K*. *pneumoniae* causing urinary tract infections (UTIs) and Intra-abdominal infection (IAI)

Data from Study for Monitoring Antimicrobial Resistance Trends (SMART)

International Comparison of Antimicrobial Consumption

Overall amount of antibiotics prescribed in primary care

36

Using WHO Joint external evaluation tool: International Health Regulations (2005)

	IN CASE IN SUCCESS AND FAMILY PROPERTY.	Element	l	ndicator		Score	
	JOINT EXTERNAL		P.3.1- Antimicrobial resistance (AMR) detection		5		
ACTUAL ACTION FOR CORP.		Antimicrobial Resistance	P.3.2- Surveillance of infections caused by AMR pathogens		5		
			P.3.3- Healthcare-associated infection (HCAI) prevention and control programs		4		
	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		P.3.4- Antimicrobial stewardship activities		4		
Score	No Capacity 1	Limited Capacity 2	Developed Capacity 3	Demonstrated Capacity 4		Sustainable Capacity 5	
25 🥙 🥭 🎯 🎾 🔞							

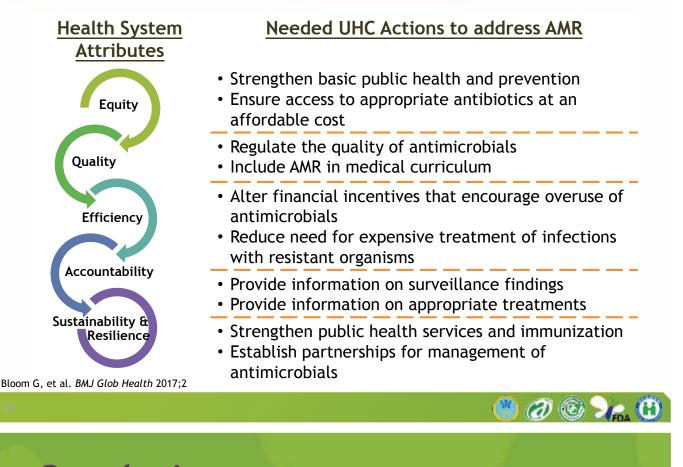
AMR: A Big Challenge on the Path to UHC

Makes 1st and 2nd line antimicrobials ineffective, thus impacting drugs' efficacy and access.

Heavily diverts scarce medical resources, impacting affordability of health systems.

Very expensive to treat, causing affordability issues and financial risks for patients.

Complicates treatments and impacts quality and effectiveness of services.


Making progress towards UHC and delaying the emergence and spread of AMR are interconnected.

http://siapsprogram.org/wp-content/uploads/2016/05/AMR-UHC_USAID-SIAPS_EPN-Forum-2016_Germany_Mohan-Joshi_19May2016.pdf

37

Prospect: Integrate AMR and UHC

Conclusion

- > To combat AMR, Chinese Taipei commit to promoting strategies aligned with WHO.
- To achieve the goal of UHC, Chinese Taipei's actions need to be taken into account regionally and globally.
- Chinese Taipei will continue to fight against AMR and strengthen health security together with the world.

38

Keynote Speech II

World Veterinary Association's Strategy on The Prudent Use Of Antimicrobials

Moderator

Dr. Tai-Hwa Shih

Deputy Director General, Bureau of Animal and Plant Health Inspection and Quarantine (BAPHIQ)

Speaker

Dr. Shih- Ming Johnson Chiang President, World Veterinary Association (WVA)

Dr. Tai-Hwa Shih

Position: Deputy Director General Department/organization: Bureau of Animal and Plant Health Inspection and Quarantine (BAPHIQ) Economy: Chinese Taipei

Educational Background

Master

Professional Career

- Director of Hsinchu Branch, BAPHIQ
- Deputy Director General, BAPHIQ

Dr. Shih- Ming Johnson Chiang Position: President Department/organization: World Veterinary Association (WVA) Economy: Chinese Taipei

Educational Background

- MS, DVM, Veterinary College of National Taiwan University
- EMBA, Management College of National Taiwan University

Professional Career

- President, Taipei Veterinary Medical Association
- President, Taiwan Veterinary Medical Association
- President, Federation of Asian Veterinary Associations (FAVA)
- Vice President, World Veterinary Association (WVA)
- President Elect, WVA
- President, WVA

Speech Abstract

World Veterinary AssOciation's Strategy on The Prudent Use of Antimicrobials

Introduction WVA

World Veterinary Association (WVA) was formed in 1963. Dr. John Gamgee convened the first International Veterinary Congress in Hamburg, Germany with 103 veterinarians from 10 counties. Nowadays, WVA represents over 500,00 veterinarians through its 95 member associations across six continents.

Our mission is:

"to assure and promote animal health, animal welfare and public health globally, through developing and advancing veterinary medicine, profession as wells as public and private veterinary services."

WVA has 5 strategic priorities: Animal Welfare, Pharmaceutical Stewardship, Veterinary Education, Zoonotic diseases, and Organizational growth and Partnerships. To achieve our mission, WVA collaborates with various international Organizations in the global scales, such as WHO, OIE, WSAVA...etc. Together, WVA is committed to the One-Health concept that to recognize the interconnection between people, animals, plants and their shared environment and aim to achieve optimal health outcomes. Antimicrobial resistance (AMR) is a critical issue in One-health.

• WVA's strategy on the prudent use of antimicrobials

AMR is the ability of a microbe to resist the effects of medication previously used to treat them. AMR occurs naturally in our world, but if no standard usage rules, it will cost enormous problems.

As veterinary professions, WVA's AMR-strategy and initiatives are to have access to a broad range of safe and effective antimicrobials; and to use these medicines in a responsible way with a minimum impact on the development of AMR in animal and human health care. By doing so, WVA are working on disease prevention and establish protocols of pharmaceutical stewardship and global basic principles of antimicrobial use.

In many years, WVA has concerned for AMR issue. In 2015, WVA selected Pharmaceutical Stewardship as one of its key strategic goal. Participating in many international AMR platforms and panels, WVA took several initiatives to raise awareness about the risk for AMR. In 2014 & 2017, WVA held Global Summit meetings together with WHO, FAO and OIE on AMR issue. Again, in 2015 and 2016, WVA/WMA held 1st and 2nd Global One Health conference in Spain and Japan. Also, in 2016 of UN General Assembly on Antimicrobial Resistance and in 2017 of World Veterinary Congress, WVA continuously raised the awareness.

In order to minimis the damage of AMR, WVA develops the Global Basic Principles of Antimicrobial Use, standard codes of using antimicrobial. WVA's main task is to:

- Promote continuing education in the responsible use and disposal of medicines with emphasis on factors involved in decreasing antimicrobial resistance.
- Supports research into further understanding of antimicrobial resistance and the development of new vaccines and medicines to prevent disease and more effectively treat disease.
- Advocate for the availability and access to good quality medicines for veterinarians worldwide

Antimicrobial resistance is a true One-Health issue and defiantly requires a One Health approach thinking. As one of the members of our world, WVA strives to work together with all health professions; and to have access to a broad range of safe and effective antimicrobials, used in a responsible way.

World Veterinary Association

Since 1863

Representing the Global veterinary Profession

WORLD VETERINARY ASSOCIATION

Asia-Pacific Economic Cooperation

APEC Conference On Strategies Against The Evolving Threats From Antimicrobial Resistance

Chinese Taipei, September 20-21, 2018

47

World Veterinary Association's Strategy on the Prudent Use of Antimicrobials

Dr. Shih Ming, Johnson, CHIANG President, World Veterinary Association

WORLD VETERINARY ASSOCIATION

- Introduction WVA
- WVA's strategy on the prudent use of antimicrobials
- Conclusions and Recommendations

48



- Introduction WVA
- WVA's strategy on the prudent use of antimicrobials
- Conclusions and Recommendations

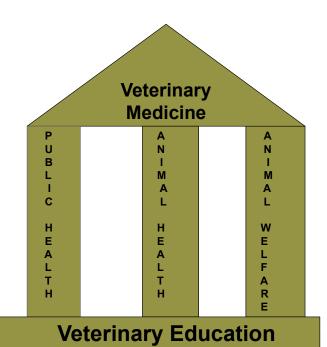
WVA's History

In 1863, Dr John Gamgee convened the first International Veterinary Congress in Hamburg, Germany with 103 veterinarians from 10 countries.

Today

The WVA represents over 500,000 veterinarians through its 95 member associations across six continents:

Veterinary Medical Associations (local, national and regional).


International Associations of Veterinarians working in different areas of veterinary medicine.

Observers – other interested stakeholder associations whether or not they have veterinarians as members (no vote or nominating rights)

WVA Mission

To assure and promote **animal health** and **welfare** and **public health globally**, through developing and advancing veterinary medicine, the veterinary profession as well as public and private veterinary services.

www.worldvet.org

WORLD VETERINARY ASSOCIATION

WVA 5 Strategic Priorities

World Health

Organization

🧆 Animal Welfare

Marmaceutical Stewardship

Weterinary Education

Zoonotic Diseases

Mail And Partnerships

1. Zoonotic disease	.10
Pharma Stewardship	••••• 7.
Animal welfare	:8
Educ. of vets abound the world	10
Org./financial WVA stability (incl. Intl. Partierships)	V

WVA believes in working in partnership.

WVA signed a Memorandum of Understanding and collaborates with relevant **global partners** on various veterinary issues

- Food and Agriculture Organisation of the UN (FAO)
- Global Alliance on Rabies Control (GARC)
- International Dairy Federation (**IDF**)
- World Animal Health Organization (OIE)
- World Health Organisation (WHO)
- World Farmers Organization (WFO)
- World Medical Association (WMA)
- World Small Animal Veterinary Association (**WSAVA**)
- World Animal Protection (WAP)
- International Committee on Military Medicine (ICMM)

WVA is committed to the One-Health concept

The **One-Health concept** recognizes that the health of **people** and the health of **animals** and the **environment** are strongly interlinked.

Through a <u>**One-Health approach**</u> veterinarians, physicians, ecologists, and many others work together to learn about how health threats spread among people, animals, and the environment and how to control such threats.

WORLD VETERINARY ASSOCIATION

WVA is committed to the One-Health concept

<u>One-Health initiatives:</u> collaborative, multisectoral, and transdisciplinary approach, recognizing the interconnection between people, animals, plants, and their shared environment and aiming to achieve optimal health outcomes.

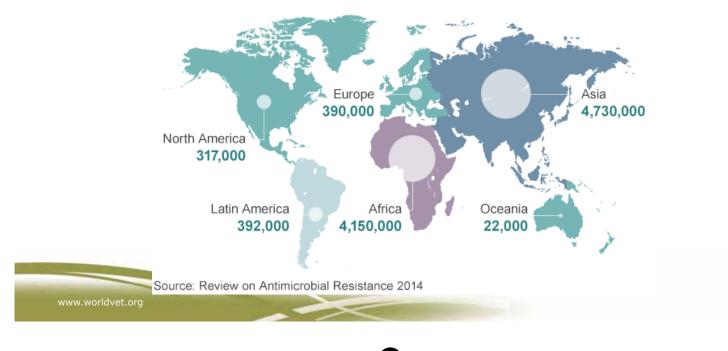
Antimicrobial Resistance is a clear One-Health issue.

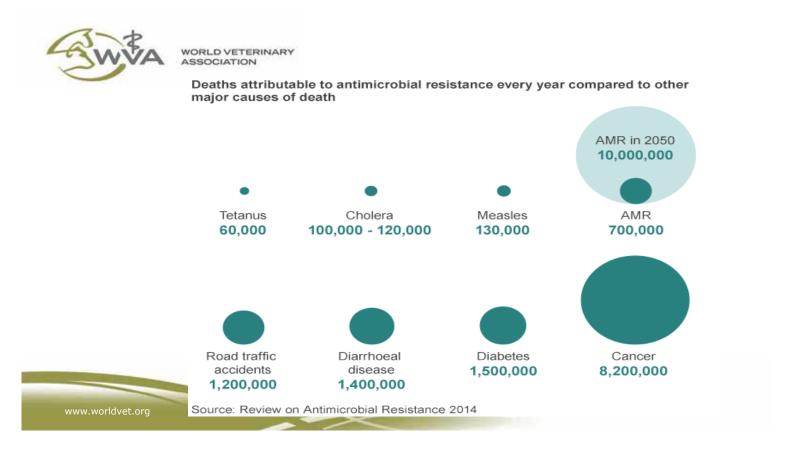
The One-Health approach is critical in addressing AMR

- Introduction WVA
- <u>WVA's strategy on the prudent use of</u> antimicrobials
- Conclusions and Recommendations

53

AMR Definition


- The WHO defines antimicrobial resistance as a microorganism's resistance to an antimicrobial drug that was once able to treat an infection by that microorganism.
- The ability of a microbe to resist the effects of medication previously used to treat them.



www.worldvet.org

WORLD VETERINARY ASSOCIATION

Deaths attributable to antimicrobial resistance every year by 2050

WVA AMR-Strategy and Initiatives

WVA strives for the veterinary profession:

- To have access to a broad range of safe and effective antimicrobials
- To use these medicines in a responsible way with a minimum impact on the development of AMR in animal and human health care.
 - Disease prevention!
 - Pharmaceutical Stewardship! (a WVA key strategy topic)
 - Global Basic Principles of Antimicrobial Use

WVA AMR-Strategy and Initiatives

- Since many years WVA is active against AMR
- In 2015, WVA selected Pharmaceutical Stewardship as one of its key strategic goals
- Participation in many international AMR platforms and panels

www.worldvet.org

WVA AMR-Strategy and Initiatives

- WVA also took several initiatives to raise awareness about the risk for AMR
 - 2014 & 2017Global summit on AMR (with WHO, FAO and OIE)
 - 2015 WVA/WMA 1st Global One Health conference in Madrid, Spain
 - 2016 WVA/WMA 2nd Global One Health Conference in Fukuoka, Japan

56

- 2016: UN General Assembly on Antimicrobial Resistance
- 2017: World Veterinary Congress
 - ~Global Summit on Antimicrobial Resistance
 - ~ Vet Vision 2050

www.worldvet.org

WVA AMR-Strategy and Initiatives

WVA celebrates World Veterinary Day with different themes:

- •2010: One World, One Health
- •2012: Antimicrobial resistance
- •2016: Continuous One Health Education
- •2017: AMR: from awareness to Action

WVA also developed the Global Basic Principles of Antimicrobial Use (see next slides)

Global Basic Principles of Antimicrobial Use

- Sick or infected animals should be under the care of a veterinarian, who is responsible for assessing animal health, making a diagnosis, and recommending an effective care program.
- Therapeutic antimicrobials are licensed or registered for the purposes of disease treatment, control, and prevention

www.worldvet.org

www.worldvet.org

Global Basic Principles of Antimicrobial Use

- Codes of good veterinary practice, quality assurance programs, herd health control and surveillance programs, and education programs should promote the responsible and prudent use of antimicrobials.
- Antimicrobials that are important in human medicine should only be used in animals under veterinary care with a valid veterinarian-client-patient relationship.

Global Basic Principles of Antimicrobial Use

- The availability of antimicrobials should be based on risk:benefit analysis that considers the importance of the antimicrobial to both veterinary and human medicine.
- Whenever possible, microbiologic diagnosis, including culture and antibacterial sensitivity testing, should be used to make treatment decisions.

Global Basic Principles of Antimicrobial Use

- Therapeutic antimicrobials should be used for as long as needed but for the shortest duration necessary, and at the appropriate dosage.
- Regional updates of bacterial susceptibility and resistance in human and animal populations should be monitored and made available to practising veterinarians and public health professionals.

Global Basic Principles of Antimicrobial Use

- Records should be kept when antimicrobials are administered.
- Effective alternative and complementary medicine and practices are needed as an important part of good husbandry practices to minimize or avoid antimicrobial use

WVA Promotes

 Promote continuing education in the responsible use and disposal of medicines with emphasis on factors involved in decreasing antimicrobial resistance.

WVA Supports

 Support research into further understanding of antimicrobial resistance and the development of new vaccines and medicines to prevent disease and more effectively treat disease.

61

WVA Advocates

Advocate for the availability and access to good quality medicines for veterinarians worldwide

- Introduction WVA
- WVA's strategy on the prudent use of antimicrobials
- Conclusions and Recommendations

- Solution Antimicrobial resistance is a true One-Health issue.
- Fighting Antimicrobial Resistance requires an One Health approach.

WVA strives to work together with all health professions.

WVA strives to have access to a broad range of safe and effective antimicrobials and to use these in a responsible way.

63

WORLD VETERINARY ASSOCIATION

Session I Strengthening Surveillance and Laboratory Capacity to Combat Antimicrobial Resistance (AMR)

Moderators

Prof. Feng-Yee Chang

Professor, Division of Infectious Diseases, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center

Dr. Cheng-Hsun Chiu

Professor, Department of Pediatrics, Chang Gung Memorial Hospital

Prof. Feng-Yee Chang

Position: Professor Department/organization: Division of Infectious Diseases, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center Economy: Chinese Taipei

Education Backgroud

- M.D., PhD. National Defense Medical Center, Taipei.
- Fellow, Infectious Disease, University of Pittsburgh, the US.

Professional Career

- Attending physician and Professor, Tri-Service General Hospital, National Defense Medical Center
- Director General, CDC
- President, Infection Control Society of Taiwan

Publication

- L. Kristopher Siu, Yu-Kuo Tsai, Jung-Chung Lin, Te-Li Chen, Chang-Phone Fung, Feng-Yee Chang*:Development of a Colloidal Gold-Based Immunochromatographic Strip for Rapid Detection of Klebsiella pneumoniae Serotypes K1 and K2. J Clin Microbiol 2016; 54 (12):3018–3021. doi:10.1128/JCM.01608-16.
- Angela Song-En Huang, Wan-Chin Chen, Wan-Ting Huang, Shih-Tse Huang, Yi Chun Lo, Sung-His Wei, Hung-Wei Kuo, Pei-Chun Chan, Min-Nan Hung, Yu-Lun Liu, Jung-Jung Mu, Jyh-Yuan Yang, Ding-Ping Liu, Jih-Haw Chou, Jen-Hsiang Chuang*, Feng-Yee Chang*: Public Health Responses to Reemergence of Animal Rabies, Taiwan, July16–December 28, 2013. PLOS ONE| DOI:10.1371/journal.pone.0132160 July10,2015.
- Shu-Hui Tseng, Yu-Fen Ke, Feng-Yee Chang*: National action plan to combat antimicrobial resistance in Taiwan. Journal of microbiology, immunology, and infection 04/2014.
- Yu-Kuo Tsai, Ci-Hong Liou, Jung-Chung Lin, Ling Ma, Chang-Phone Fung, Feng-Yee Chang*, L Kristopher Siu*: A Suitable Streptomycin-Resistant Mutant for Constructing Unmarked In-Frame Gene Deletions Using rpsL as a Counter-Selection Marker. PLoS ONE 09/2014; 9(9):e109258. DOI:10.1371/journal.pone.0109258 ·
- Ho-Sheng Wu, Ji-Rong Yang, Ming-Tsan Liu, Chin-Hui Yang, Ming-Chu Cheng, Feng-Yee Chang*: Influenza A(H5N2) Virus Antibodies in Humans after Contact with Infected Poultry, Taiwan, 2012. Emerging Infectious Diseases 2014; 20(5):857-860.

Prof. Cheng-Hsun Chiu Position: Professor Department/organization: Department of Pediatrics, Chang Gung Memorial Hospital Economy: Chinese Taipei

Education Background

•	1989	M.D., Chung Shan Medical and Dental College				
•	1997	Ph.D., Graduate Institute of Clinical Medicine, Chang Gung University College of Medicine (Supervisor: Prof. Jonathan T. Ou)				
•	1997-1999	Postdoctoral Fellow, Division of Infectious and Immunological Diseases, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada				

Professional Career

- 1993- Attending Physician, Department of Pediatrics, Chang Gung Memorial Hospital
 2005 Professor Department of Pediatrics, Chang Gung Memorial
- 2005- Professor, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University

Publication

- Wu PW, Huang CC, Chao WC, Sun CC, Chiu CH (corresponding author), Lee TJ. Impact of influenza vaccine on childhood otitis media in Taiwan: a populationbased study. PLoS One 2018; 13:e0190507.
- Chia JH, Wu TS, Wu TL, Chen CL, Chuang CH, Su LH, Chang HJ, Lu CC, Kuo AJ, Lai CH, Chiu CH (corresponding author). Clostridium innocuum is a vancomycinresistant pathogen that may cause antibiotic-associated diarrhea. Clin Microbiol Infect 2018 Feb 17 [Epub ahead of print].
- Janapatla RP, Chen CL, Hsu MH, Liao WT, Chiu CH (corresponding author). Immunization with pneumococcal neuraminidases NanA, NanB and NanC to generate neutralizing antibodies and to increase survival in mice. J Med Microbiol 2018 March 20 [Epub ahead of print].
- Son S, Thamlikitkul V, Chokephaibulkit K, Perera J, Jayatilleke K, Hsueh PR, Lu CY, Balaji V, Moriuchi H, Nakashima Y, Lu M, Yang Y, Tao K, Kim SH, Song JH, Kim S, Kim MJ, Heininger U, Chiu CH (corresponding author), Kim YJ. Clin Microbiol Infect 2018 April 22 [Epub ahead of print].
- Chen HH, Hsu MH, Wu TL, Li HC, Janapatla RP, Su LH, Chiu CH (corresponding author). Non-typeable Streptococcus pneumoniae infection in a medical center in Taiwan after wide use of pneumococcal conjugate vaccine. J Microbiol Immunol Infect 2018 May 14 [Epub ahead of print].

Session I Strengthening Surveillance and Laboratory Capacity to Combat Antimicrobial Resistance (AMR)

Speakers

Prof. Kazuhiro Tateda

President, Japanese Association for Infectious Diseases

Dr. Stephen Sheng-Fong Lin

Regional Medical Therapeutic Area Lead, Anti-infective, Asia-Pacific, PEH, Pfizer Inc.

Dr. Tsai-Ling Yang Lauderdale

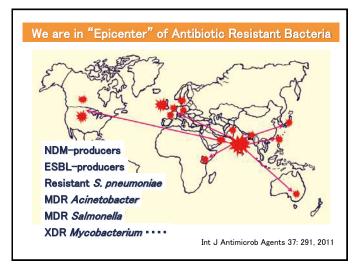
Investigator, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes

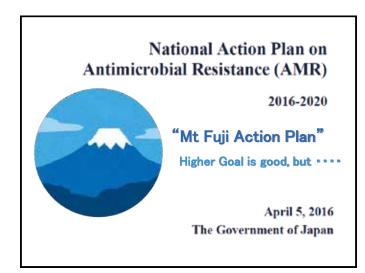
Prof. Kazuhiro Tateda Position: President Department/organization: Japanese Association for Infectious Diseases Economy: Japan

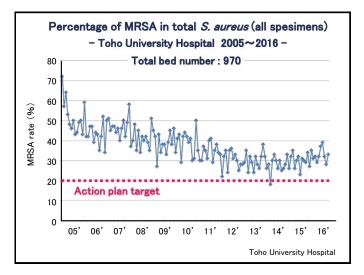
Professional Career

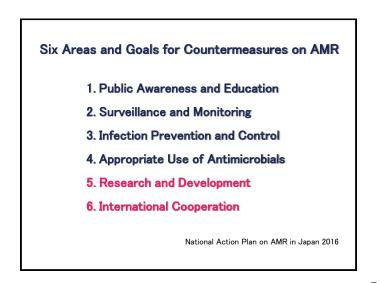
•	1985-1986-	Resident in Internal Medicine, Nagasaki University School
		of Medicine
•	1986-1990	Doctor course, Nagasaki University School of Medicine
•	1990-1995	Assistant professor (1990-1995), Department of
		Microbiology, Toho University
•	1995-2011	Associate professor, Department of Microbiology, Toho
		University
•	1999-2001	Visiting professor, Department of respiratory and critical
		care medicine, University of Michigan Medical School, MI
•	2011-	Professor and Chairman, Department of Microbiology and
		Infectious Diseases, Toho University
•	2017-	President, Japanese Association of Infectious Diseases
•	2018-	President, Japanese Society of Clinical Microbiology

Speech Abstract

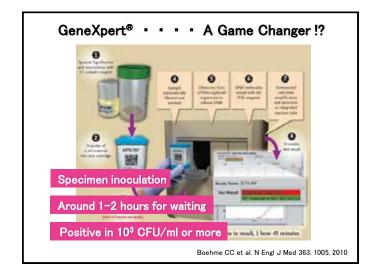

Fighting Antimicrobial Resistance with Rapid, Point-of-Need Diagnostic Methods

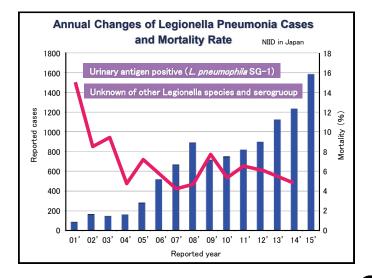

Appearance and spreading of antibiotic resistance (AMR) in bacteria are becoming a world-wide problem. Particularly, community-acquired AMR, such as CA-MRSA and ESBL producers, is in a spot light. Infection control in additon to appropriate antibiotic uses may be a key factor for prevention of AMR issues. Prompt results in microbiological testing, ideally within 30 min (before prescription of antibiotic), are necessay for wise decision making, antibiotic use or not-use. In this point of view, ordinary PCR techniques are not sufficient, and probably more quick methods are required in recent AMR era. Several diagnostic companies are developing new instruments and technologies to make diagnosis of several infectious diseases. Especially, etiological diagnosis of sepsis and meningitis are hot topics, because suffered individuals are in risk of severe damage and/or death. One of the examples of quick diagnostic methods is an immune-chromatography targeting a variety of pathogenic antigens, such as polysaccharide and ribosomal proteins. Another is nucleic acid amplification-dependent chromatographic approaches. By using these methods, several infectious diseases will be made diagnosis within 30 min. In this presentation, recent progress of novel and unique diagnostic technologies will be reviewed. Further, advantages of these techniques, how we can use these methods for our patients, will be discussed with audiences.

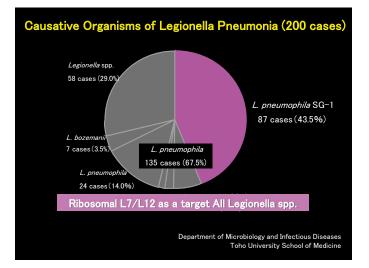

Asia-Pacific Economic Cooperation 20 September, 2018 Taipei

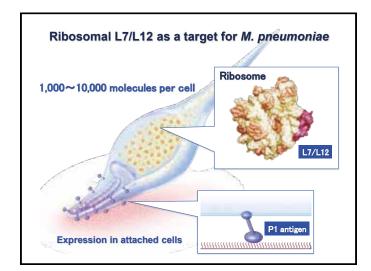

Fighting Antimicrobial Resistance with Rapid, Point-of-Need Diagnostic Methods

> Kazuhiro Tateda, MD, PhD Department of Microbiology and Infectious Diseases Toho University School of Medicine, Tokyo, Japan

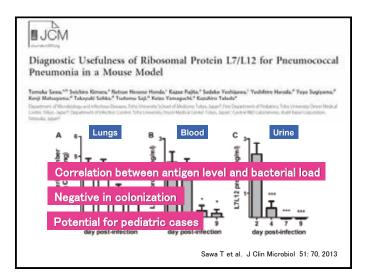


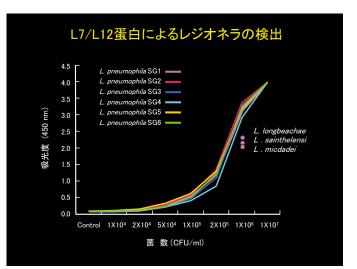


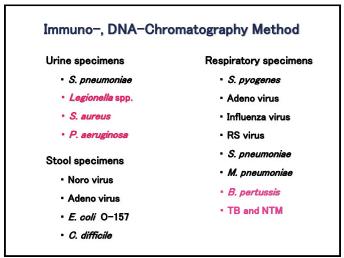


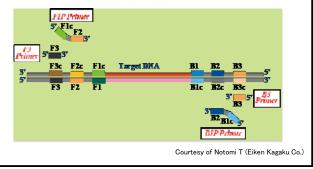

Ideal Diagnostic Methods in AMR era

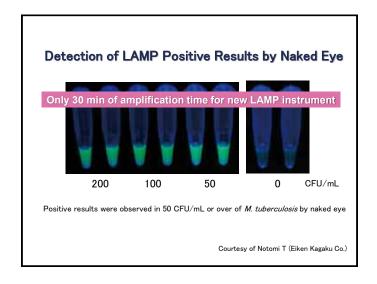
- "Within 30 min" (Before ABX treatment)
- ID for species and AST
- Correlation to severity and/or pathogen load
- Differentiation between Infection and Contamination
- Cost, Cost, Cost, Cost ---

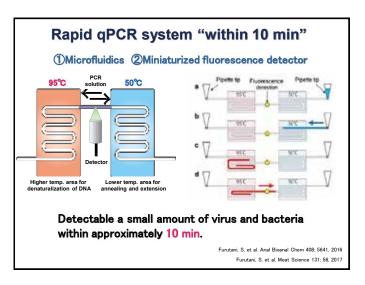

Improvement for survival

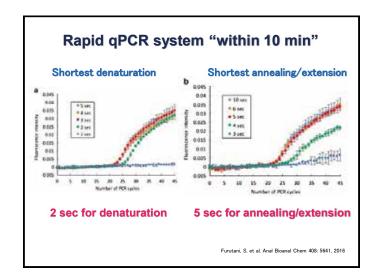


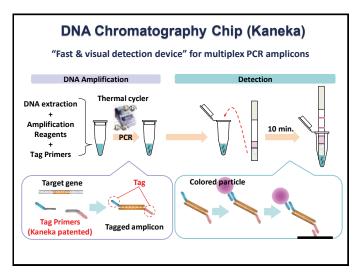


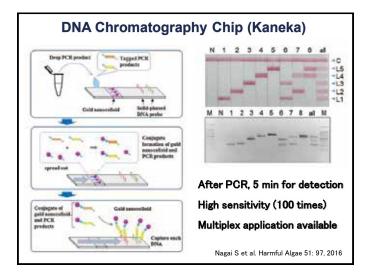


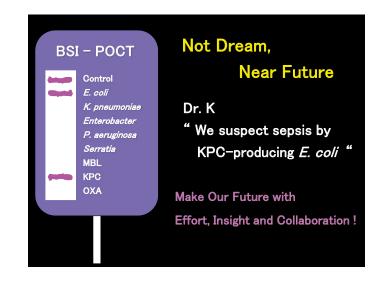





LAMP Method Loop-mediated isothermal amplification


- 4 primers for 6 specific sequences
- Isothermal amplification under lead replacement reaction (65°C)
- 10⁹~10¹⁰ amplification in 15~60 min





New Diagnostic Methods in "AMR era"

- 1. Diagnostic Methods
 - "within 30 min" to Guide Antibiotic Use
 - Bacteria or Virus
 - AMR Mechanisms and Antibiotic Choice
- 2. Development of Novel Antimicrobials
 - Narrow, but Potent (Pathogen-directed Therapy)
 - Anti-Virulence or Anti-Resistance Therapy
 - Immuno-Modulatory Therapy

APEC Conference on Strategies Against the Evolving Threats from Antimicrobial Resistance

Dr. Stephen Sheng-Fong Lin

Position: Regional Medical Therapeutic Area Lead Department/ organization: Anti-infective, Asia-Pacific, PEH, Pfizer Inc. Economy: Chinese Taipei

Educational Backgroud

LLM, Postgraduate Law School, Suchou University, Medical Doctor, Medical School, National Taiwan University Dilpoma, Trainee of Taiwan Infectious Disease Training Program

Professional Career

•	1996-1997	Attending physician, Infectious Division, Internal Medicine
		Department, National Taiwan University Hospital
•	1998-2000	Attending physician, Sun-Yat Sen Cancer Center Hosptial
•	2000-2004	Director of Infectious Disease Department, Far East
		Memorial Hosptial
٠	2004-2006	Product Physician, Pfizer Inc.
•	2006-2007	Associate Medical Affairs Director, Pfizer Inc.
•	2007-2009	Country Medical Director, Pfizer Inc.
•	2009-	Senior Regional Medical Director, Anti-infective, APAC
		Region, Pfizer Inc.

Publications

- Update of contemporary antimicrobial resistance rates across China: reference testing results for 12 medical centers. Diagnostic Microbiology and Infectious Disease 2013: 258–266
- Regional Resistance Surveillance Program Results for 12 Asia-Pacific Nations (2011), Antimicrobial Agents and Chemotherapy, 2013, 57(11): 5721–5726
- Echinocandins for management of invasive candidiasis in patients with liver disease and liver transplantation. Infection and Drug Resistance 2018:11 805–819
- Antimicrobial stewardship for acute-care hospitals: An Asian perspective. Infection Control & Hospital Epidemiology (2018), (In press)5.

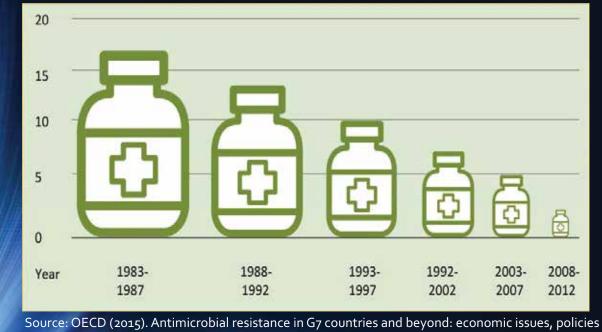
Speech Abstract

Establish Network for AMR Surveillance in Asia Pacific Region

Antimicrobial agents were recognized the most important innovation to address the critical challenges of human morbidity and mortality when penicillin was discovered and manufactured in the era of World War II. However, more consumption of antimicrobial agents would trigger the emergence of challenges from microbial organisms' resistance. Less innovation of new antimicrobial agents with dry pipeline was another critical situation when we moved into the 21st century. Although there seems to be revitalized trend of antimicrobial agents development, the battle between human and microorganism would be an endless story. To ensure human can sustain the advantageous strength in this confrontation, several strategies and actions plans should be adopted and surveillance is one of the most important strategic pillars.

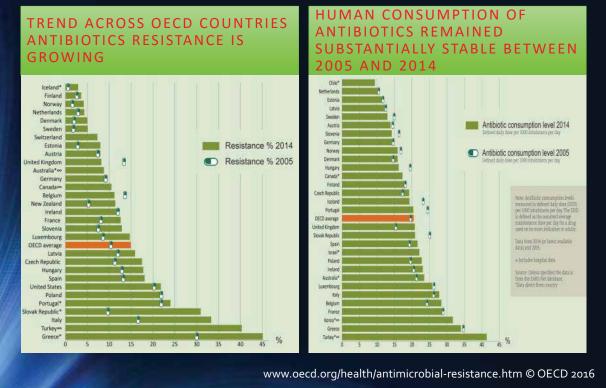
Surveillance is the system to help human to identify the emergence of antimicrobial resistance and its possible mechanism, guide the appropriate treatment of infections, and create the trend of innovative antimicrobial agent development. There will be review of readiness variation of effective surveillance system among APAC countries in this presentation. Furthermore, we will also go through several international surveillance programs sponsored by government institutes, academia body, and industries. In this review, we would also learn some lessons about the caveats in development of international surveillance system and trigger the insights of cross boundary collaborations to address the critical needs.

Establish network for AMR surveillance in Asia Pacific region

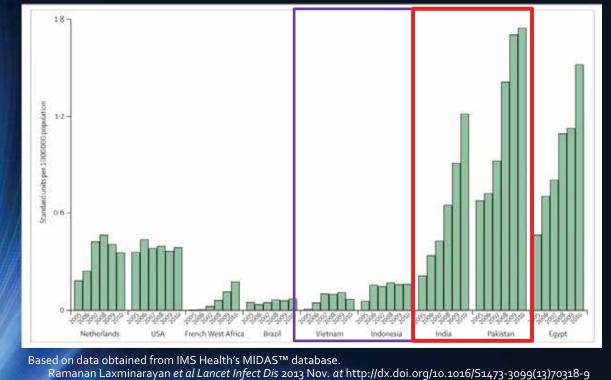

STEPHEN S. F. LIN, MD, LLM

APAC REGIONAL MEDICAL THERAPEUTIC AREA LEAD, ANTI-INFECTIVES, *PFIZER INC*.

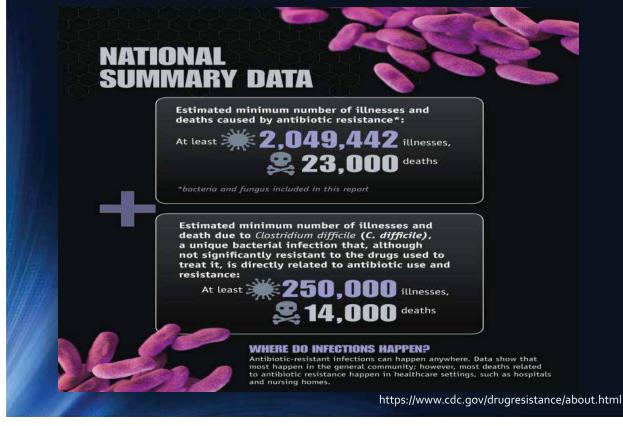
It would be an endless story

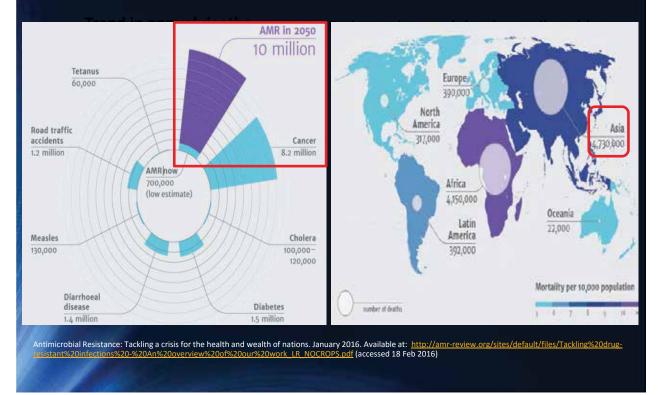

ANTIBIOTIC INTRODUCED	penicillin	tetracycline	erythromycin	methicillin		gentamicin	vancomycin		imipenem and ceftazidime	levofloxacin		tinezoita daptomycin	ceftaroline	
ANTIBIOTIC	1943	1950	CC61	1960		1967			1985	1996	0000	2003	2010	
RESISTANCE	1940		1050	1962	1965	1968		1979	1987	1996	1998	2001	2009	2011
ANTIBIOTIC RESISTANCE INDENTIFIED	penicIllin-R Staphylococcus		totracucijna. R. Chinadha	methicillin-R Staphylococcus	penicillin-R pneumococcus	erythromycin-R Streptococcus		gentamicin-R Enterococcus	ceftazidime-R Enterobacteriaceae vancomycin-R Enterococcus	levofloxacin-R pneumococcus	imipenem-R Enterobacteriaceae	ADR AUBPICIONSIS linezolid-R Staphylococcus vancomycin-R Staphylococcus PDR-Acinetobacter and Pseudomonas	ceftriaxone-R Neisseria gonorrhoeae PDR-Enterobacteriaceae	ceftaroline-R Staphylococcus

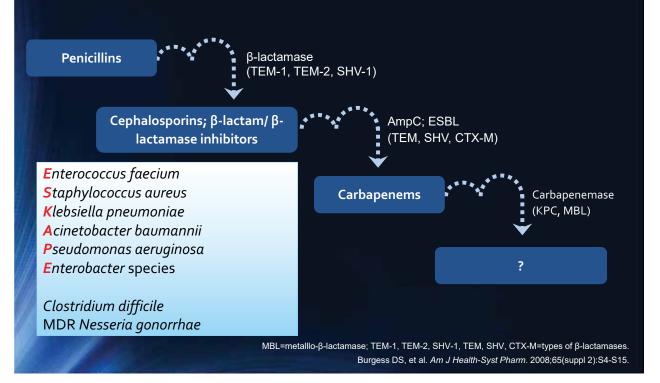
Number of new antimicrobials approved by the United States Food and Drug Administration since 1983



and options for action.


Antimicrobial resistance is a growing challenges across countries


Trends in retail sales of carbapenem antibiotics for Gram-negative bacteria in different countries


Impact of AMR to human community

Increasing Antibiotic Resistance Has the Largest Impact in Emerging Markets

Development of Antibiotics in Response to Resistance Due to β -Lactamases

Mortality rate associated with resistant and MDR ESKAPE bacteria.

Authors	Hospital Wards	Bacteria	Mortality rate	P-value	References	
Al Jarousha et al. (2009)	Neonatal ICU	MDR-A. baumannii (15/40)	37.5%	0.001	[54]	
A baroasha or an (2000)	Heendaariee	Susceptible A. baumannii (12/100)	12%	0.001	[04]	
Anunnatsiri et al. (2011)	ICU	MDR-A. baumannii (22/24)		0.001	[41]	
And matamental. (2011)	100	Susceptible A. baumannii (12/25)	91.7% 48%		[]	
Amer et al. (2015)	Emergency	CR-MBLP-P. aeruginosa (14/32)	48% 43,8% 0.2		[64]	
, and or all (2010)	ICU /Pediatric ICU	CR-MBLN-P. aeruginosa (2/8)	25%	0.2	[04]	
Furtado et al. (2009)	ICU	Imipenem-resistant P. aeruginosa (31/63)	49%	0.02	[31]	
Turtado et al. (2003)	.00	Imipenem-susceptible <i>P. aeruginosa</i> (61/182)	33%	0.02	1011	
Marra et al. (2006)	ICU	ESBL-producing K. pneumoniae (18/56)	32.14%	0.042	[46]	
Maria et al. (2000)	100	Non-ESBL K. pneumoniae (8/52)	15.38%	0.042	[40]	
Moreira et al. (2008)	ICU	ORSA (11/29)	37.9%	0.41	[47]	
Moreira et al. (2008)	100	OSSA (8/32)	25%	0.41	[477]	
Serefhanoglu et al. (2009)	ICU	MDR-ESBL-producing- <i>E. coli</i> and <i>K. pneumoniae</i> (7/30)	23.3%	0.606	[32]	
Seremanogia et al. (2003)	100	Non-MDR-ESBL-producing-E. coli and K. pneumoniae (12/64)	18.8%	0.000	[52]	
Tuon et al. (2012)	ICU	Carbapenem-resistant P. aeruginosa (13/29)	54.2%	0.043	[22]	
(2012)	100	Carbapenem-susceptible <i>P. aeruginosa</i> (26/48)	44.8%	0.045	[ee]	
Chen et al. (2012)	ICU	MRSA (25/75)	33%	0.01	[48]	
Cherreral. (2012)	100	MSSA (8/43)	18.6%	0.01	[40]	
Fu et al. (2015)	ICU	XDR A. baumannii (31/39)	79.5%	0.1	[49]	
Fueral. (2015)	100	Non-XDR A. baumannii (38/86)	44.2%	0.1	[49]	
Jia et al. (2015)	ICU	Linezolid non-susceptible Enterococci (3/44)	6.8%	0.521	[50]	
514 6t al. (2015)	100	Linezolid-susceptible Enterococci (2/44)	4.5%		[30]	
		Un-infected Control patients (3/176)	1.7%			
Yao et al. (2015)	ICU	MRSA (12/57)	21%	0.002	[35]	
Fao et al. (2013)	100	MSSA (9/116)	8%	0.002	[33]	
Gomez Rueda et al. (2014)	ICU	Carbapenem resistant K. pneumoniae (31/61)	50.8%	0.042	[36]	
Gomez Rueda et al. (2014)	100	Carbapenem-susceptible K. pneumoniae (20/61)	32.7%	0.042	[30]	
		Un-infected control patients (25/122)	20.4%			
Kumar et al. (2014)	ICU	Carbapenem-resistant A. baumannii (9/33)	27.3%	0.074	[37]	
Rumar et al. (2014)	100	Carbapenem-susceptible A. baumannii (3/32)	9.4%	0.074	[37]	
Nazer et al. (2015)	ICU	MDR-A. baumannii (118/161)	73.3%	0.015	[53]	
Nazer et al. (2015)	100	Non-MDR-A. baumannii (116/161)	61.2%	0.015	[55]	
Deris et al. (2011)	ICU	Imipenem-resistant - A. baumannii (6/15)	42.9%	0.201	[39]	
Dens et al. (2011)	100	Imipenem-susceptible A. baumannii (9/41)	24.3%	0.201	[38]	
Inchai et al. (2015)	ICU	MDR-A. baumannii (10/72)	13.9%	0.001	[44]	
menarerai. (2013)	100	XDR- A. baumannii (10/72) XDR- A. baumannii (88/220)	40%	0.001	[-+-+]	
		PDR-A. baumannii (7/12)	58.3%			
Jamulitrat et al. (2009)	ICU	Imipenem-resistant-A. baumannii (35/67)	52.2%	0.001	[59]	
Samantal et al. (2009)	100	Imipenem-resistant-A. baumannii (35/67) Imipenem-susceptible A. baumannii (26/131)	19.9%%	0.001	[33]	
Thatrimontrichai et al. (2016)	ICU	Carbapenem-resistant A. baumannii (26/131)	19.9%%	0.01	[19]	
macimonaret al. (2016)	100	Carbapenem-susceptible A. baumannii (10/63)	7.7%	0.01	[10]	
		Un-infected control patients (0/25)	0%			
Topeli et al. (2000)	ICU	MRSA (15/46)	32.6%	0.02	[21]	
10peiret al. (2000)	100	MSSA (15/46) MSSA (7/55)	12.7%	0.02	[< 1]	
L		MOON (7700)	12.770			

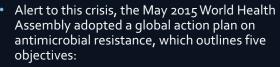
Foster the development of new innovative antimicrobial agents

		Year initiated	Benefits	Data required	Antibacterial examples and approval year	Notes -
	Accelerated Approval Pathway	1992	 FDA approval based on surrogate end point, offering shorter development time Clinical trials must be conducted post- approval to confirm clinical benefit 	 Not specified, however must show advantage over existing therapies and effect on surrogate end point likely to predict clinical efficacy Sponsor must discuss this pathway possibility with FDA during development 	Quinupristin/ dalfopristin 1999 Bedaquiline 2012	 Inception due to AUS epidemic and need for zidovudine (AZT) on market Majority of drugs approved by this pathway include oncological agents
U.S. Department of Health & Human Services Image: Department of Health & Human	Fast Track Designation	1997	 More frequent writ- ten communication 	 Preliminary nonclinical, mechanistic, or clinical data O'n note, typis EDA approval Can be requested upon IND submission; FDA has 60 days to respond 	Ceftaroline 2010 Fidaxomicin 2011 Bedaquiline 2012 Dalbaxancin ^a 2014 Oritavancin ^a 2014 Oritavancin ^a 2014 Ceftolozane/ tazobactany ^a 2014 Ceftolozane/ 2014 Ceftolozane/ 2014 Ceftolozane/ 2014 Ceftolozane/ 2014 Ceftolozane/ 2014 Ceftolozane/ 2014 Ceftolozane/ 2014 Ceftolozane/ 2014 Ceftolozane/	 Addresses broad range of diseases, including but not limited to HIV/ADS, Alzheimer's, cancer, epilepily. GAN Act of 2012 enables QIDP designated drug candidates to receive Fast Track Designation
GAIN Act and Qualified Infectious Disease Product Program (QIDP)	Priority Review	1992	 Shortens review of NDA from 10 months to 6 months 	 Data contained in NDA submission Must show significant improvement in safety or effectiveness of the treat- ment, prevention, or diagnosis of a verticus condition 	 Fidaxomicin 2011 Bedaquiline 2012 Dalbaxancin^a 2014 Oritavancin^a 2014 Oritavancin^a 2014 Cettolozane/ tazobactam^a 2014 Cettazidinne/ avibactam^a 	 GAIN Act of 2012 enables QIDP designated drug candidates to have Priority Review.
	Breakthrough Therapy Designation	2012		 Preliminary clinical data Must show substantial improvement on clinically gainfant end point(s) over available therapies 	None	 Largely oncology and orphan diseases Several new agents for Hepatitis C Infection have received this designation Microbiome therapeutic (SER-10) Microbiome for recurrent Closifidium difficult infection and monoclonal antibody for Stophylococcus ourcus infections have received status (pipeline agents)

Antibiotic Drug Details, Development Milestones, and ESKAPE Status: FDA-Approved Antibiotics, 2010-2015

			1.55	- NUTRICK					
Drug	IND Filed	NDA Filed	Approval Date	Current Manufacturer	Drug Class (Year of Discovery)	Method of Administration	Novel Mechanism of Action	Indications	In Vitro Activity Against ESKAPE Pathogens?
Ceftaroline	December 2004	December 2009	29 October 2010	Actavis	Cephalosporin (1928)	Intravenous	No	ABSSSI; CABP	Yes
Fidaxomicin	August 2003	November 2010	27 May 2011	Cubist Pharmaceuticals (subsidiary of Merck)	Macrolide (1948) Is	Oral	No	CDAD and prevention of recurrences	No*
Bedaquiline	November 2006	June 2012	28 December 2012	Janssen Research and Development (Johnson & Johnson)	Diarylquinoline (1997)	Oral	Yes	Pulmonary tuberculosis caused by multidrug- resistant tuberculosis	Not
Dalbavancin	July 2000	September 2013	23 May 2014	Actavis	Lipoglycopeptide (1953)	Intravenous	No	ABSSSI	No
Tedizolid	November 2007; August 2009	October 2013	20 June 2014	Cubist Pharmaceuticals (subsidiary of Merck)	Oxazolidinone	Oral; intravenous	No	ABSSSI	No
Oritavancin	August 1996	December 2013	6 August 2014	11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	Glycopeptide (1953)	Intravenous	No	ABSSSI	No
Ceftolozane- tazobactam	July 2009	April 2014	19 December 2014	Cubist Pharmaceuticals (subsidiary of Merck)	Cephalosporin ls (1928) + β-lactamase inhibitor	Intravenous	No	CIAI; CUTI	Yes
Ceftazidime- avibactam	January 2008	June 2014	25 February 2015	AstraZeneca/ Actavis	Cephalosporin (1928) + β-lactamase inhibitor	Intravenous	No	CIAI; CUTI	Yes

ABSSSI = acute bacterial skin and skin-structure infection; CABP = community-acquired bacterial pneumonia; CDAD = *Clostridium difficile*-associ-ated diarrhea; CIAI = complicated intra-abdominal infection; CUTI = complicated urinary tract infection; ESKAPE = *Enterococcus faecium, Staphy*-lococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species; IND = investigational new


drug; NDA = new drug application. * *Clostridium difficile* is a Centers for Disease Control and Prevention urgent-threat pathogen. † Multidrug-resistant tuberculosis is a global health priority.

Ann Intern Med. 2016;165:363-372. doi:10.7326/M16-0291

Global action plan on antimicrobial resistance from WHO

88

GLOBAL ACTION PLAN ON ANTIMICROBIAL

- to improve awareness and understanding of antimicrobial resistance through effective communication, education and training;
- to strengthen the knowledge and evidence base through surveillance and research;
- to reduce the incidence of infection through effective sanitation, hygiene and infection prevention measures;
- to optimize the use of antimicrobial medicines in human and animal health; and
- to develop the economic case for sustainable investment that takes account of the needs of all countries and to increase investment in **new** medicines, diagnostic tools, vaccines and other

http://www.who.int/antimicrobial-resistance/publications/global-action-plan/en/

Four Core Actions to Fight Resistance

US CDC

PREVENTING INFECTIONS.

PREVENTING THE SPREAD OF RESISTANCE Avoiding infections in the first place reduces the amount of antibiotics that have to be used and reduces the likelihood that resistance will develop during therapy. There are many ways that drug-resistant infections can be prevented: immunization, safe food preparation, handwashing, and using antibiotics as directed and only when necessary. In addition, preventing infections also prevents the spread of resistant hacteria.

TRACKING

IMPROVING ANTIBIOTIC PRESCRIBING/STEWARDSHIP

Perhaps the single most important action needed to greatly slow down the development and spread of antibiotic-resistant infection is to change the way antibiotics are used. Up to half of antibiotic use in humans and much of antibiotic use in animals is unnecessa use in humans and much of antibiotic use in animals is unnecessary and inappropriate and makes everyone less safe. Stopping even some of the inappropriate and unnecessary use of antibiotics in people and animals would help greatly in slowing down the spread of resistant bacteria. This commitment to always use antibiotics appropriately and safely—only when they are needed to treat disease, and to choose the right antibiotics and to administer then in the right way in every case—is known as antibiotic stewardship.

DEVELOPING NEW DRUGS AND DIAGNOSTIC TESTS

Because antibiotic resistance occurs as part of a natural process in which bacteria evolve, it can be slowed but not stopped. Therefore we will always need new antibiotics to keep up with resistant. bacteria as well as new diagnostic tests to track the development of resistance.

CDC gathers data on antibiotic-resistant infections, causes of infections and whether there are particular reasons (risk factors) that caused some people to get a resistant infection. With that information, experts can develop specific strategies to prevent those infections and prevent the resistant bacteria from spreading.

https://www.cdc.gov/drugresistance/about.html

The key objective of AMR surveillance system

- To providing early warning of emerging problems
 - monitoring changing patterns of resistance,
 - targeting and evaluating prevention and control measures
- Assisting researchers in developing new drugs
- Providing good patient care
 - Development of clinical guidance of empirical treatment of infectious diseases
- Improve understanding of the relationship between drug use and resistance, identify and anticipate gaps in availability of existing drugs, and help identify preventive interventions.

https://www.cdc.gov/drugresistance/actionplan/surveillance1.html Lancet Infect Dis 2018: 18 e99-e106

The key directives of impact by well established surveillance system

- Therapy guidelines *
- Antibiotic formulary *
- Antibiotic stewardship programmes *
- Public health interventions
- Infection control policies
- Antimicrobial development.

*The elementary and starting goals of surveillance program

Lancet Infect Dis 2018: 18:e99-106

The key merits of well functioned AMR surveillance system to address the objectives

- Accurate
- Reliable
- Flexible access
- Timely updated

Difference of various surveillance program

Isolate based

- Data on resistance patterns within the bacterial population
 - Percentage of resistance to a variety of antimicrobial agents
 - Clinical driven and impacted by clinical behavior
 - Potentially biased with under- or over -estimated of AMR challenges

Sample based*

- Data of both basic insight into patterns and the extent of AMR in the tested populations
 - Incidence of stratified tested population
 - allows detecting the most frequent type of resistant infections within that population and it allows stratification to identify AMR patterns and strategic foci

2018 GLASS report * Preferred program by GLASS

Difference of various surveillance program (cont'd)

Passive surveillance	Active surveillance	Sentinel surveillance*	
data from voluntary reporting without stimulating report by reminder or controlled protocol.	Driven by protocol with active monitoring of reporters' performance and data quality (protoocl-driven)	data collection from selected , either randomly or intentionally, a small group of health workers with protocol guidance	
requested of each health worker is minimal	specific feedback to improve their performance	Sentinel reporters should be trained	
few incentives for reporters	stimulus to reports in the form of individual feedback or other incentives	Incentives for reporters	
data would be incomplete	more complete data collection	more detailed data on cases of illness	
least costly	substantially more time and resources needed	requires more time and resources	

* may be the best type of surveillance if more intensive investigation of individual case is needed

http://conflict.lshtm.ac.uk/page_o2.htm

Snapshot of AMR surveillance system across APAC countries (I)

Country	Surveillance program	accessibility	Key natures
Japan	JANIS https://janis.mhlw.go.jp /english/about/index.ht ml	Website access of the annual report (since 2013)	Passive surveillance 1000+ sites send the report to repository monthly
Korea	KONSAR since 1997	Publication of specific analysis report	Passive surveillance
Philippines	http://arsp.com.ph/ (25 years)	Annual report since 2014 to 2017	24 sentinel sites to send results to central lab with WHONET
Thailand	NARST since 1998 http://narst.dmsc.moph .go.th/	Website access of annual report and AMR data	Passive surveillance guided with well structured manual
1			

Snapshot of AMR surveillance system across APAC countries (II)

Country	Surveillance program	Accessibility	Key natures
Hong Kong	CHP https://www.chp.gov.hk/ en/statistics/data/10/641 /697/3345.html	Website access of the annual report of antimicrobial susceptibility data of targeted pathogens (since 2014))	Passive surveillance
Australia	AURA https://www.safetyandq uality.gov.au/antimicrob ial-use-and-resistance- in-australia/about-aura/	Website access of the annual report of since 2011 (updated to 2017)	Passive surveillance

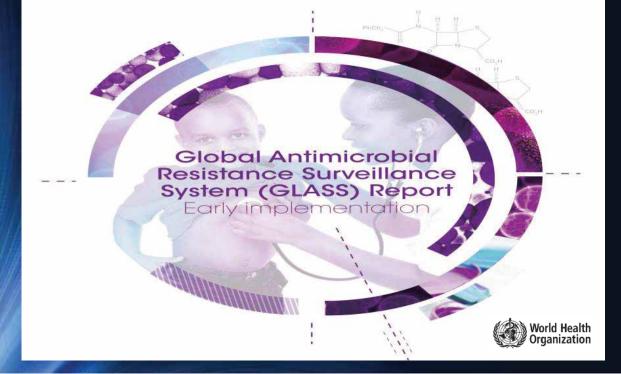
Snapshot of AMR surveillance system across APAC countries (III)

Country	Surveillance program	Accessibility	Key nature						
Indonesia		Assessment Tool for Laboratory and Antimicrobial Resistance (ATLASS) kicked off in Oct. 2017							
Malaysia	NSAR since 2002 http://www.imr.gov.my/en/co mponent/content/article/75- english-content/national- collabration/1469-nsar- main.html	Website access of the annual report of since 2002	Passive surveillance						
Singapore*	Driven by NAT in 2011, NARCC in 2014, and National Strategic Action Plan on Antimicrobial Resistance in 2015	Publications	Passive surveillance among public hospitals						
	al Antimicrobial Taskforce ; NARCC: Natior llance for antimicrobial resistance and anti								

Snapshot of AMR surveillance system across APAC countries (IV)

food and environment.

Country	Surveillance program	Accessibility	Key nature
Vietnam	National Action Plan to Combat Antimicrobial Resistance since 2017#	NA yet	sentinel surveillance system involving 16 laboratories and six model hospitals.
India	NCDC	Access report at website	10 Network laboratories to initiate antimicrobial resistance surveillance on four common bacterial pathogens*
	ICMR - ICMR's surveillance network at http://14.139.60.53/iamrsn/	Accessible report at website since 2014 and published articles	Isolates driven


US CDC collaborates with WHO-Vietnam, Oxford Clinical Research Unit, American Society for Microbiology, Association of Public Health Laboratories, and PATH to directly support implementation of Vietnam's <u>National Action</u> <u>Plan to Combat Antimicrobial Resistance</u>

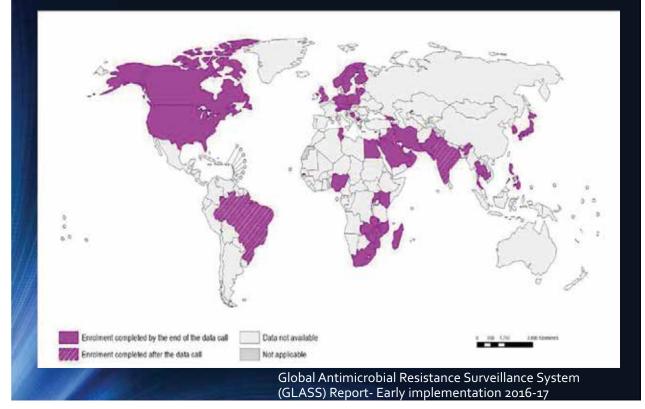
* Klebsiella, Escherichia coli, Staphylococcus aureus, and Enterococcus species

GLASS Report- Early implementation 2016-17 Great variation of the status of country implementation of surveillance system

- Bangladesh, Bhutan, India, Indonesia, Maldives, and Myanmar are at the early stage of surveillance set up, and surveillance guidelines have been developed but not fully implemented. AMR surveillance data exist but are not centralized, with limited analysis and representativeness.
- Three countries (Nepal, Sri Lanka, and Thailand) possess standardized national AMR surveillance data. However, surveillance development is at an early stage and the scope of antibiotics under surveillance is limited
- 11 countries, including Australia, Cambodia, China, Fiji, Japan, Malaysia, Mongolia, New Zealand, Philippines, Republic of Korea and Viet Nam have already developed their National Action Plans, with Viet Nam currently undertaking its first review of its plan

The GLASS objectives

- Foster national surveillance systems and harmonise global standards;
- Estimate the extent of AMR globally by monitoring selected indicators;
- Collect surveillance data needed to inform and estimate AMR burden;
- Routinely analyse and report global data on AMR;
- Detect emerging resistance and its international spread;
- Assess the impact of interventions.


Global Antimicrobial Resistance Surveillance System (GLASS) Report- Early implementation 2016-17

GLASS

- GLASS is a system that enables standardised global reporting of official national AMR data. It collaborates with **existing regional and national AMR surveillance networks** to produce timely and comprehensive data.
- GLASS relies upon countries to conduct their own national surveillance. GLASS promotes the use of globally agreed and standardised methods for compiling data both locally and nationally, and the gathering of information on selected AMR indicators in a harmonised way across and within countries.

Global Antimicrobial Resistance Surveillance System (GLASS) Report- Early implementation 2016-17

GLASS Enrolment map in 2017

Asian Network for Surveillance of Resistant Pathogens(ANSORP)

- ANSORP is the first and only international study group for the surveillance of AMR in the Asian region and over the past 18 years
- It is a very unique model worldwide, given that it was **voluntarily organised by physicians**, specifically focuses on AMR and infectious diseases
 - 14 hospitals from 11 Asian countries in 1996
 - 120 hospitals in 14 countries or areas in 2014
- A series of international studies 20 publications found at PubMed

96

- Streptococcus pneumoniae
- MRSA
- MDR GNB (metallo β lactamase producers)
- VRE

APFID_Intl_Innovation_149_Research_Media

SENTRY Antimicrobial Surveillance Program

Establishment by JMI Laboratory in 1997

- Monitors worldwide pathogens and the changes in resistance patterns over time through centralized testing and utilizing reference susceptibility methods
- Sites submitting organisms through a prevalence based approach across a number of different types of infections, including bloodstream, skin and soft tissue, respiratory, urinary tract, pathogens from patients hospitalized with pneumonia, intra-abdominal and invasive fungal infections.
- New compounds and other agents can easily be integrated into the SENTRY platform by establishing agreements at the beginning of the calendar year and transferring the client compound and request to be incorporated into the panel production process.
- There are over 200 sites worldwide that participate annually.
- 2019 publications, including 497 full articles searched at PubMed and other posters and abstracts

https://www.jmilabs.com/sentry-surveillance-program/ sentry-mvp.jmilabs.com

Study for Monitoring Antimicrobial Resistance Trends (SMART)

- SMART monitors the in vitro susceptibility of clinical bacterial isolates to antimicrobials in intra-abdominal and urinary tract infections worldwide since 2002 and 2009, respectively.
- The program is sponsored by Merck & Co., *Inc.*, Started in 2002 and 198 countries are involved
- Isolates based surveillance:
 - Each site need to collect up to 100 consecutive aerobic and facultative gram-negative bacilli from patients with intra-abdominal infections and Record the duration of hospitalization (<48 hours or ≥8 hours) at time of isolate recovery
- A total of 21,584 clinical bacterial isolates were collected in 2011.
 - 13,356 were intra-abdominal infection isolates
 - 7,989 were urinary tract infection isolates
- 39 published articles and 56 congress posters were developed up to 2012
- Data is accessible at website (<u>http://www.globalsmartsite.com/smart/index.aspx</u>) by registered visitors

http://partnerships.ifpma.org/partnership/study-for-monitoringantimicrobial-resistance-trends-smart

Antimicrobial Testing Leadership and Surveillance (ATLAS)

• ATLAS includes a fully-searchable database initially built since 2004 with data from the TEST (Tigecycline Evaluation Surveillance Trial) surveillance program, but now also encompassing data from the AWARE (Assessing Worldwide Antimicrobial Resistance Evaluation) and INFORM (International Network for Optimal Resistance Monitoring) programs.

Isolates based surveillance

- Each site will collect, identify, store, and ship fresh clinical Gram-positive and -negative aerobic isolates from documented cIAI, cUTI, cSSSI, LRTI and blood sources with information of sources (ICU, wards, etc.). All isolates will be sent to International Health Management Associates, Inc. (IHMA's) central laboratory, in Schaumburg, Illinois where the isolates will be further evaluated (phenotyping and genotyping) and stored. Only isolates considered to be the potential causative agent of the patient's infection should be included in this study.
- The registered user is able to analyze the data from either or both programs, and produce reports in tabular and graphical formats by visiting the website at https://atlas-surveillance.com
- The ATLAS database will be regularly updated (every 6 to 8 months).

Antimicrobial Testing Leadership and Surveillance (ATLAS)

	TEST	INFORM/AWARE	Combined
Total Number of Isolates	415,388	218,432	631,680
Total Number of Countries Contributing Data	70	40	73*
Total Number of Sites Contributing Data	689	234	780*
Total Number of Pathogens	196	146	287
Total Number of Antimicrobials	21	40	44
Years Contributing Data	2004-2017	2012-2017	2004-2017

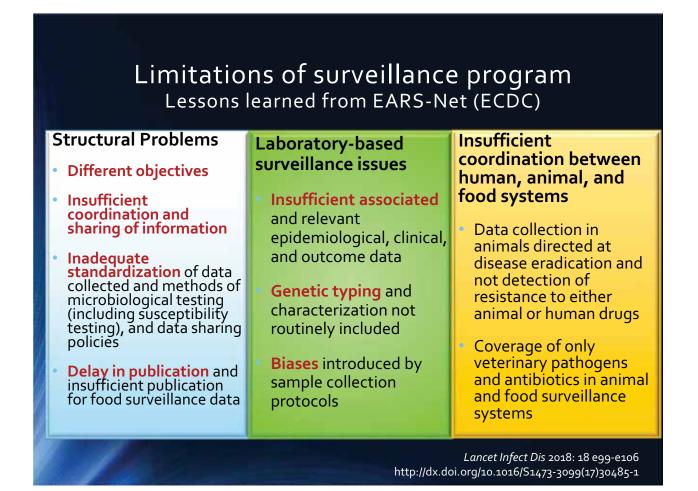
* There are duplicates of countries and sites between TEST and INFORM/AWARE

650 posters and 63 full articles were developed up to 2017

	ifferenco illance p		g the int	ernation	nal
	GLASS	ANSORP	SENTRY	SMART	ATLAS
Sponsor	WHO	Academia (APFID)	JMI Lab	Merck &Co. Inc.	Pfizer Inc.
Nature	Passive	Passive	Passive	Passive	Passive
Surveillance types	Variable	Isolates based	Protocol driven	Protocol driven	Protocol driven
Specific diseases focus	none	Project driven	Variable per client's needs	cIAI cUTI	cIAI , cUTI, cSSSI, LRTI, BSI
Accessibility	Annual report	publications	Publications	Website and publications	Website and publications
Validation process	absent	absent	Central laboratory validation	Central laboratory validation	Central laboratory validation
Timely update	Annual	variable	Annual report	Annual report	Every 6-8 months

cIAI: complicated intra-abdominal infections, cUTI: complicated urinary tract infection, cSSSI: complicated skin and skin structure infection, LRTI: lower respiratory tract infection, BSI: blood stream infection

Value of international surveillance programs


- Provide reliable global in vitro susceptibility data
- Identify changes in the resistance rates of global, regional and local pathogens
- Recognize the emergence of new resistance mechanisms
- Detect trends in multidrug resistance by analysing data longitudinally over time

Features of 42 European national and regional surveillance systems on antimicrobial resistance included in review

Despite the efforts of European Centre for Disease Control and Prevention (ECDC) and other organizations, wide heterogeneity in procedures and indicators still exists.

Characteristic	Variable	n (%)	
Source of data	Laboratory only	33 (78.5)	
	Laboratory and patients' charts	8 (19.0)	
	Unknown/not reported	1 (2.3)	
Duplicates policy	Duplicates excluded	25 (59.5)	
Case definition	Isolates from clinical samples	22 (52.3)	
	Infections	10 (23.8)	
	Unknown/not reported	10 (23.8)	
Indicators	Proportion of resistant isolates ^a	27 (64.2)	
	Cumulative incidence ^a	11 (26.1)	
	Incidence density ^a	12 (28.5)	
	Unknown/not reported	8 (19.0)	
Pathogens specified	Streptococcus pneumoniae	32 (76.1)	
	Staphylococcus aureus	41 (97.6)	
	Enterococcus spp.	31 (73.8)	
	Escherichia coli	38 (90.4)	
	Klebsiella pneumoniae	36 (85.7)	
	Pseudomonas aeruginosa	34 (80.9)	
	Acinetobacter baumannii	35 (83.3)	
	Clostridium difficile	22 (52.3)	
^a Not mutually exclusive			

M. Núnez-Núnez et al. Clinical Microbiology and Infection 24 (2018) 105 - 109

The key utility of different surveillance programs

Hospital based

Country wide

- Therapy guidelines
- Antibiotic formulary
- Antibiotic stewardship
 programmes
- Public health interventions
- Infection control policies
- Identify emergence of resistant bugs with warning system
- Antimicrobial development.

Necessity of surveillance program across levels: Hospital based, country wide, international (region or global)

The key elements of collaborative surveillance programs

- Standardized methodology of susceptibility tests
- Common objectives with key foci
- Unified protocol of isolates collections
- Timely updated data accessibility to guide the treatment and antimicrobial stewardship
- Generation of clinical impact
 - Enhancement the benefits and minimize for patients
 - Changes of clinicians' behavior
 - Impact on appropriate uses of antimicrobial agents in agricultures and veterinary industry

It is critical to have collaboration among all stakeholders

Government Academia Clinical institutes Pharmaceuticals Industries

Dr. Tsai-Ling Yang Lauderdale Position: Investigator Department/organization: National Institute of Infectious

Diseases and Vaccinology, National Health Research Institutes Economy: Chinese Taipei

Educational Background

- Ph.D. Graduate School of Medicine, Juntendo University, Tokyo, Japan. Doctor of Medical Science.
- M.S. State University of New York (SUNY) Upstate Medical University, Syracuse, NY. Medical Technology specializing in Microbiology.
- B.S. SUNY Upstate Medical University, Syracuse, NY. Medical Technology.

Professional Career

- 2014- Investigator. National Institute of Infectious Diseases and Vaccinology (NIIDV), National Health Research Institutes (NHRI).
- 2006-2014 Associate Investigator. NIIDV, NHRI.
- 2001-2006 Assistant Investigator. NIIDV (formerly Division of Infectious Diseases/ Division of Clinical Research), NHRI.

Publications

- Kuo SC, Huang WC, Huang TW, Wang HY, Lai JF, Chen TL, Lauderdale TL. Molecular epidemiology of emerging blaOXA-23-like and blaOXA-24-likecarrying Acinetobacter baumannii in Taiwan. Antimicrob Agents Chemother. 2018;62:pii: e01215-17.
- Wu CJ, Lai JF, Huang IW, Hsieh LY, Wang HY, Shiau YR, Lauderdale TL. Multiclonal emergence of levofloxacin-resistant group B Streptococcus, J Antimicrob Chemother. 2017;72:3263-71.
- Wang JT, Huang IW, Chang SC, Tan MC, Lai JF, Chen PY, Lauderdale TL. Increasing resistance to fusidic acid among clinical isolates of MRSA. J Antimicrob Chemother. 2017;72:616-618.
- Chen YT, Lai YC, Tan MC, Hsieh LY, Wang JT, Shiau YR, Wang HY, Lin AC, Lai JF, Huang IW, Lauderdale TL. Prevalence and characteristics of pks genotoxin gene cluster-positive clinical Klebsiella pneumoniae isolates in Chinese Taipei. Sci Rep. 2017;7:43120.
- Kuo SC, Huang WC, Wang HY, Shaiu YR, Cheng MF, Lauderdale TL. Colistinresistance gene mcr-1 in E. coli isolates from human and retailed meats, Chinese Taipei. J Antimicrob Chemother 2016;71:2327-9.

Speech Abstract

Longitudinal Multicenter Surveillance on AMR

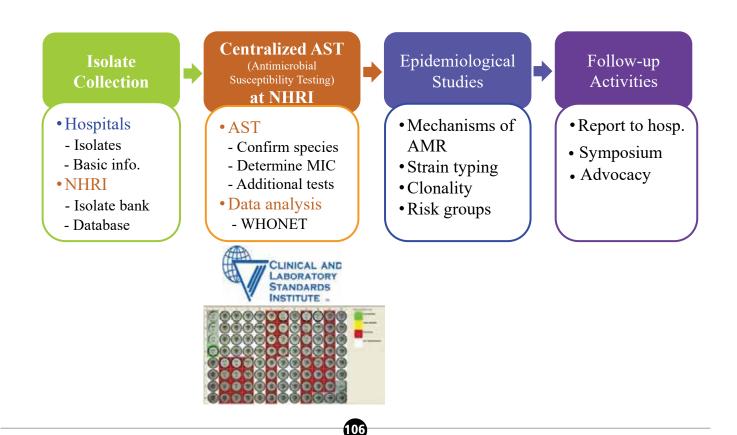
Antimicrobial resistance (AMR) is a global public health threat. Longitudinal multicenter surveillance plays an important role in the control of AMR by helping to define the extent of the problem, detect emerging resistance, and identify specific problems that exist locally. These data can be used to advocate for intervention measures and then assess the impact of intervention. In 1998 NHRI implemented a multicenter AMR surveillance program, called TSAR, to monitor antibiotic resistance of clinical bacterial isolates recovered from inpatients and outpatients. Report of high rates of resistance to first-line agents found in TSAR I (1998) lead to a government policy to restrict antibiotic use for outpatients with acute upper respiratory infections. Ten rounds of TSAR have been completed to date and TSAR has expanded to include not only phenotypic surveillance but also genotypic studies on selected AMR species. Since 2002, TSAR isolates have been collected from the same 25-28 medical centers and regional hospitals located in the 4 regions following similar collection protocols. TSAR data showed that, following the 2001 policy to restrict antibiotic use, significant decrease in erythromycin resistance occurred in Group A Streptococcus. However, multidrug-resistance is prevalent in many other species of isolates from hospital inpatients as well as those from outpatients. In addition, significant increase in resistance to broad-spectrum agents have occurred, including extended-spectrum ßlactam resistance in E. coli from outpatients, carbapenem resistance in Acinetobacter baumannii and Klebsiella pneumoniae, vancomycin resistance in Enterococcus faecium and MRSA prevalence remains high albeit stable. Plasmid-mediated colistin resistance, mcr-1, has also been detected. Emergence and increase of fluoroquinolone (FQ) resistance in both Gram-positive and Gram-negative organisms have also been observed, which lead to investigations on FQ consumption and usage. These findings will be discussed at this presentation.

2018 APEC CONFERENCE ON STRATEGIES AGAINST THE EVOLVING THREATS FROM ANTIMICROBIAL RESISTANCE

Longitudinal Multicenter Surveillance on AMR

Tsai-Ling Yang Lauderdale (楊采菱) National Institute of Infectious Diseases and Vaccinology (NIIDV) National Health Research Institutes (NHRI)

Why?


> Antimicrobial resistance (AMR) is a global public health threat

Determining the scope of the problem is essential for formulating and monitoring an effective response to AMR" from WHO Antimicrobial Resistance: global report on surveillance 2014

- In 1998, Dr. Monto Ho established the "Microbial Infections Reference Laboratory (MIRL)" to carry out the mission of "Research and control of antimicrobial resistance"
- > Aims of MIRL: Surveillance, Research, Service, and Advocacy
- To attain the first aim, Dr. Ho also instituted the Taiwan Surveillance of Antimicrobial Resistance (TSAR) program in 1998
- Objective of TSAR: Systematically document, store, and track pathogenic microbes and their antimicrobial susceptibilities
- Targets of TSAR study: Bacterial isolates recovered from clinical samples of inpatients and outpatients by hospitals

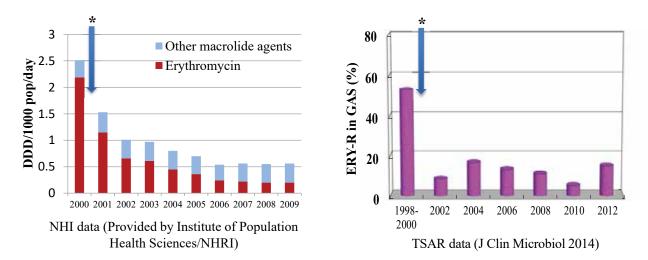
First MIRL Symposium, July 1999

- Report of excessive resistance to "first-line antibiotics" (TSAR I data)
 National Health Insurance Administration issued a policy to restrict antibiotic use for acute upper respiratory tract infections (URI) effective Feb 2001
- Antimicrobial consumption for URI decreased by 55.8% from 2000 to 2001 (Ho M, Hsiung CA et al., Int J Antimicrob Agents. 2004)

TSAR Progress

107

TSAR	Collection time	No. of Hospitals	No. of isolates	
I.	Oct-Dec 1998	44	~6000	
П	Mar-May 2000	21	~3200	
ш	Jul-Sep 2002	26	~6000	
IV	Jul-Sep 2004	26	~6500	
V	Jul-Sep 2006	25	~6300	
VI	Jul-Sep 2008	26	~7300	
VII	Jul-Sep 2010	26	~7400	
VШ	Jul-Sep 2012	27	~8000	
IX	Jul-Scp 2014	26	~7600	
X	Jul-Sep 2016	25	~7600	
XI	Jul-Sep 2018	25	Ongoing	


TSAR III – XI: Similar isolate collection protocol & participating hospitals

Impact of Restriction on Antibiotic Use

- Erythromycin use in outpatients decreased by nearly 50% between 2000 and 2001 (*), from 2.19 to 1.15 DDD/1000 pop/day.
- Resistance to erythromycin in Group A Streptococcus (GAS) was >50% in 1998-2000, but has remained at around 20% since 2002.

WHO priority pathogens list for R&D of new antibiotics

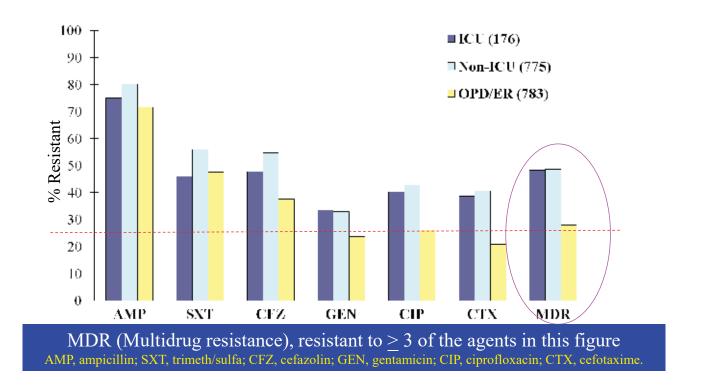
Priority 1: CRITICAL

- Acinetobacter baumannii, carbapenem-resistant
- · Pseudomonas aeruginosa, carbapenem-resistant
- Enterobacteriaceae, carbapenem-resistant, ESBL-producing

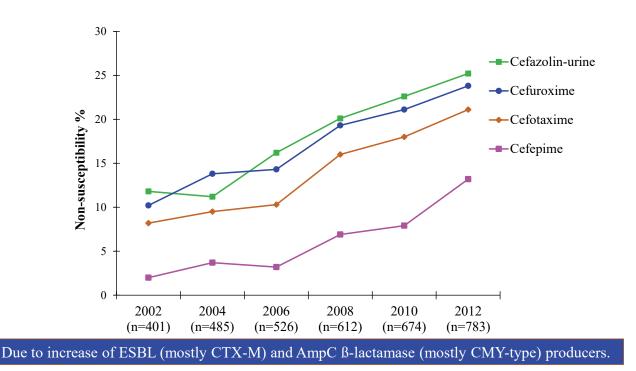
Priority 2: HIGH

- Enterococcus faecium, vancomycin-resistant
- Staphylococcus aureus, methicillin-resistant, vancomycin-intermediate and resistant
- · Helicobacter pylori, clarithromycin-resistant
- · Campylobacter spp., fluoroquinolone-resistant
- · Salmonellae, fluoroquinolone-resistant
- · Neisseria gonorrhoeae, cephalosporin-resistant, fluoroquinolone-resistant

Priority 3: MEDIUM


- Streptococcus pneumoniae, penicillin-non-susceptible
- Haemophilus influenzae, ampicillin-resistant
- Shigella spp., fluoroquinolone-resistant

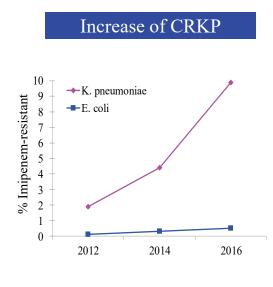
 $\label{eq:http://www.who.int/news-room/detail/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed$


Data to be presented

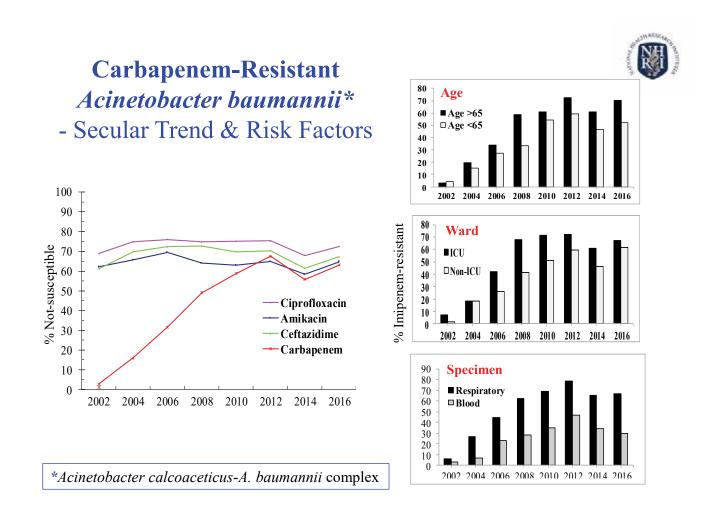
- Highlighted pathogens Plus
- *mcr-1* in human and retail meat *E. coli*Fluoroquinolone (FQ)-resistant GN
- and GP pathogens & FQ consumption

MDR is Prevalent in Hospitals & Community TSAR VIII (2012) E. coli data

Increased Extended-Spectrum ß-Lactam Resistance in *E. coli* from Outpatients



Modified from Wang JT et al., PLoS One 2015


109

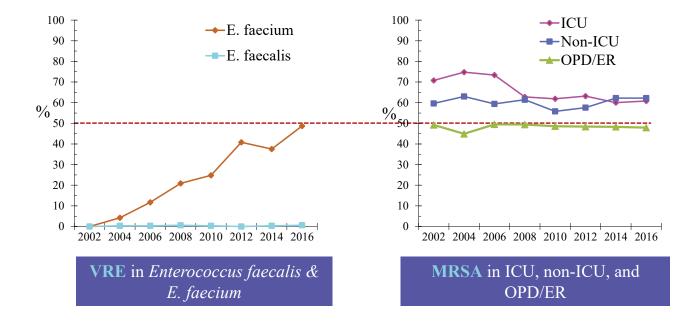
Carbapenem-Resistant *Klebsiella pneumoniae* (CRKP)

mcr-1 in *E. coli* isolates from Humans & Retail Meat

- Colistin (& polymyxin B):
 Old agents from the 1960s shelved for decades because of toxicities.
 - Increase of XDR GN bacteria in recent years lead to their renewed use.
- mcr-1: The first plasmid-mediated colistin resistance gene, was reported from China in late 2015.

mcr-1 prevalence

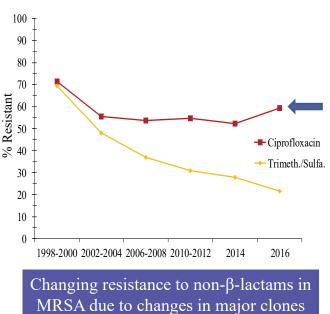
- TSAR: 0.1%, 0.1%, and 0.6% of 2010, 2012, & 2014 collection, respectively.
- Retail meat: 1.1%, 6.6%, and 8.7% of 2012, 2013, & 2015 isolates, respectively.


mcr-1 positive *E. coli* from Humans & Retail Meat

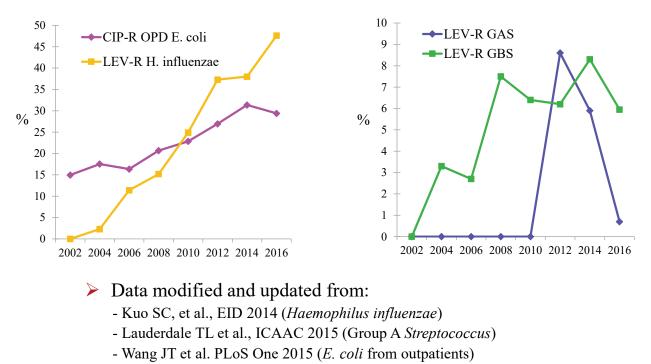
		753 754 756	2914 2014 2014	N 11 5	3CU 09D Nos-0CU	Unne Blood Antikes	784 764 117	NT Neg CTX-MGr (0.0.0		Marker				er			
	I I I MA MILLIN	N00+	2013	5	114	Chidres	11.2	CTX-MOt 1	- 63		Ma	14 1	r 16		Marker			
		100	2014	- 21	OPD D4	Outer.	117	CTS MOV 1	- 53			14 1			Σ	3	17 1	8 5
		123	2012	- 2	Non ICU	United	117	ST	30		1.00	-				1		10 A 10 A
	11.11.11.11.11.11.11.1.1	TEL	2014	- 2	OPD	Usua	131	NT	100			1.000	-		- 1	23.4	-	1 C
	I II III III III III III III III III I	Tes	2014	- 2	Non-DCU	Absons	167	CTX-MOL1	D.			1	-					
	a an a batter bet at	MIL	2015	- 61	TM	Chicken	182	UIN-Mile 1									-	1
1 K	Transformer and the second second second	111	2010	8	Non-JCU	Spatian	159	NT	ND							1		
		MIT	2013	. 6	TM	Chicken.	58	CIN-Mile 1.	0			1000				181		
		3400	2915	. 6	\$38	47biders	428	CTN-MORT	£.	97.0kb-	-							
		3407	2013	72	154	Chiden	428	CTX-MOn.1	C.	002202020		1000				81		
		170	2012	C	Non-0032	Usine	573	Neg	- C	48.5kb-	-	11	-					
		3000	2012	. 5	- 155	Beef	101	NT						291.0kb				
		M06	2013	N.	TM	Chicken	1196	CTX-M fr. 1	- 10	23.1kb-		100		242.5kb 194.0kb		-		
		M29	2911		234	Post	1112 SLV	CTX MOV#	- 9			AE	3 C	2.94.080		221	C	0.0
	CASE AND A CONTRACT OF A CONTR	MIL	2013	- 35	TM	Pedi	744	CTX-MOr.#	- F.		1.00	141				E.	E	G F
		112	2014	16	Noie DCU	'Usine	345	CIX-M9r 1	- 81		1.1			48.5kb	200	81	10	
	the second second	110	201+		Non-DCU	Abapma	648	Neg	- 6.						122	81		11
		MIL	2015	- 5	IM	Chiden	100	CIN-M46 1	- 71							811		
		3413	2013	- 31	TM	Chicken	24	CTX-M 0r 1				1.0				51		
		M15	2015	- 21	EM	Chickes	38	CTN-M-0r 1 CTN-M-0r 1	- 21		-	-				-		
		2010	2013	- 31	554	Chiden	10	CIN-Mut.1 CIN-Mds.1	- 2									
		1000	2013	- Q	TM	Chicken.		CTX-MOR 1	-2									
	a in tets mett	714	2011	- 20	OPD	Unior	14	CIN Mds 1	ND.			D 1		• 1 (۳1	c		
		MIL	-2015	- 2	TM	Chilm	NEW	Neg	100			Pla	asmi	id prof	ile	s fr	on	1
		T14	2014	- 2	Non-DCU	Bicot	744	CTN MOL 1	- 21					-				
		MIL		0	5M	Oide	607	Net	50				sl n	ucleas	e a	ssa	V	
		110-		- N	Non-OCU	History	+17	CEN-MOV 1	ND								2	

Kuo SC et al., J Antimicrob Chemother 2016

VRE and MRSA Prevalence

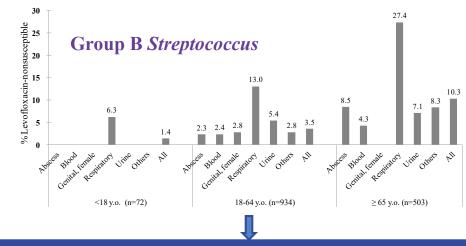


Changing MRSA Resistance

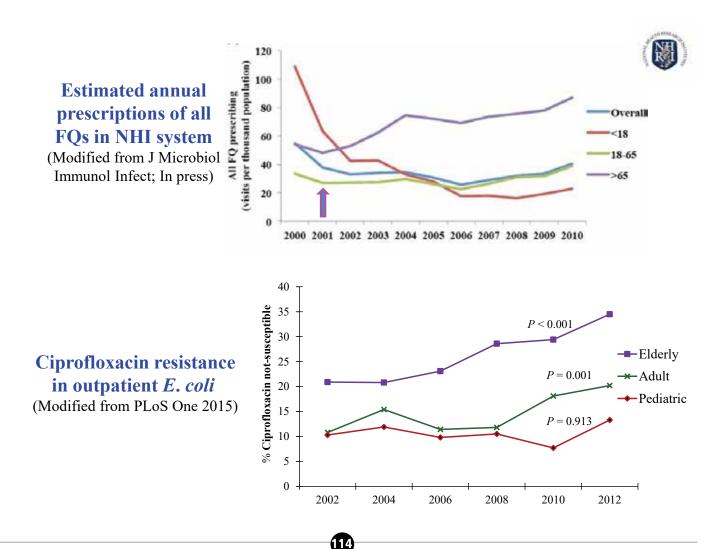

Non-β-lactams	/0100	sistant X combined)
	MRSA	MSSA
Ciprofloxacin	56.5	4.2
Clindamycin	73.6	11.4
Erythromycin	86.3	20.8
Gentamicin	57.6	14.5
Tetracycline	49.7	34.2
Trimeth./Sulfa (SXT)	27.3	1.0
Vancomycin	0.1 (I)	0

Emergence and Increase of Fluoroquinolone (FQ) Resistance

Secular Trend of Fluoroquinolone Resistance CIP (ciprofloxacin), LEV (Levofloxacin)


113

- Wu CJ et al., JAC 2017 (Group B Streptococcus)



Factors Associated with FQ-R Organisms (2002 -2012 data)

II indu anza a	N (%) leve	ofloxacin	p a	OR ^b	95%CI ^b	/ b
H. influenzae	Susceptible	Resistant	P"	OK ⁵	95%CI	P^{o}
Total	1280 (87.5)	182 (12.5)				
Patient age > 65 y	591 (80.8)	140 (19.2)	<0.001	3.601	2.435-5.325	<0.001
Resp. tract specimen	1123 (86.5)	175 (13.5)	<0.001			NS
Regional hospital	766 (85.0)	135 (15.0)	<0.001	2.054	1.379-3.059	<0.001

Investigation of FQ use in National Health Insurance (NHI) database

Closing Remarks

- Longitudinal multicenter AMR (phenotypic and genotypic) surveillance plays an important role in AMR control by helping to
 - Monitor AMR trends in different patient groups
 - Identify risk groups associated with AMR organisms
 - Detect emerging resistance
 - Pinpoint specific AMR problems that exist locally
 - Increase understanding of changing epidemiology
 - Provide data for intervention measure & advocacy decisions
 - Measure the impact of intervention measures
- However, AMR control requires a multifaceted approach, one of which is better understanding of antibiotic consumption and usage from human and non-human sectors

Acknowledgements

> TSAR Hospitals

- Microbial Infections Reference Laboratory (MIRL) Steering Committee
 - Dr. Shan-Chwen Chang (Chair); Dr. Feng-Yee Chang
 - Dr. Ying-Ching Chuang; Dr. Chang-Phong Fung; Dr. Yao-Shen Chen

> TSAR Studies:

- Dr. Jann-Tay Wang (Enterococci, OPD E. coli)
- Dr. Shu-Chen Kuo (Acinetobacter, H. influenzae, mcr-1)
- Dr. Chi-Jung Wu (Gr. B Streptococcus)

Antibiotic Consumption Studies:

- Dr. Chao A. Hsiung
- Dr. Yee-Chun Chen
- Dr. Shu-Chen Kuo

APEC Conference on Strategies Against the Evolving Threats from Antimicrobial Resistance

Thank You for Your Attention

Session II Policies to Promote Antimicrobial Stewardship Programs (ASP)

Moderators

Dr. Yao-Shen Chen

Chief, Department of Internal Medicine, Kaohsiung Veterans General Hospital

Dr. Shu-Hui Tseng

Director, Division of Infection Control and Biosafety, Centers for Disease Control

APEC Conference on Strategies Against the Evolving Threats from Antimicrobial Resistance

Dr. Yao-Shen Chen

Position: Chief Department/organization: Department of Internal Medicine, Kaohsiung Veterans General Hospital Economy: Chinese Taipei

Educational Background

•	1979-1986	Bachelor Degree, Medical College, National Yang-Ming
		University

• 2010-2012 Master Degree, Graduate of Healthcare Administration, Kaohsiung Medical Universit

Professional Career

- 1993- Attending physician, Kaohsiung Veterans General Hospital
- 2006-2013 Chief, Div. of Infectious Diseases, KVGH
- 2013- Chief, Department of Internal Medicine
- 2013- Associate Professor, Department of Medicine, National Yang-Ming University

Publications

- Hsueh PT, Lin HH, Wang HH, Liu CL, Ni WF, Liu JK, Chang HH, Sun DS, Chen YS, Chen YL. Immune imbalance of global gene expression, and cytokine, chemokine and selectin levels in the brains of offspring with social deficits via maternal immune activation. Genes Brain Behav 2018 Epub 2018/04/16.
- Chen YS, Chen BC, Chang JT, Huang TS, Chang TH. Human parechovirus infection in children in Taiwan: a retrospective, single-hospital study. Jpn J Infect Dis 2018 Epub 2018/05/02
- Wu KS, Chen YS, Lin HS, Hsieh EL, Chen JK, Tsai HC, Chen YH, Lin CY, Hung CT, Sy CL, Tseng YT, Lee SS. A nationwide covert observation study using a novel method for hand hygiene compliance in health care. Am J Infect Control 2017;45(3):230-244.
- Chen PS, Chen YS, Lin HH, Liu PJ, Ni WF, Hsueh PT, Liang SH, Chen C, Chen YL. Airborne Transmission of Melioidosis to Humans from Environmental Aerosols Contaminated with B. Pseudomallei. PLoS Negl Trop Dis 2015;9(6):e0003834.
- Chen YS, Lin HH, Hsueh PT, Ni WF, Liu PJ, Chen PS, Chang HH, Sun DS, Chen YL. Involvement of L-selectin expression in Burkholderia pseudomallei-infected monocytes invading the brain during murine melioidosis. Virulence 2017;8(6):751-766.

APEC Conference on Strategies Against the Evolving Threats from Antimicrobial Resistance

Dr. Shu-Hui Tseng Position: Director Department/organization: Division of Infection Control and Biosafety, Centers for Disease Control Economy: Chinese Taipei

Educational Background

- Doctor Program in the Graduate Institute of Clinical Medical Science, Chang Gung University (PhD)
- Clinical Medical Science, National Taiwan University (Msc)
- National Yang-Ming Medical University (MD)

Professional Career

- Director, infection control and biosafety, CDC
- Deputy Director, Fifth Division, CDC
- Acting Director, Fifth Division, CDC
- Branch Director, South Branch, CDC
- Section Chief, Immunization Section, CDC
- Director, Tao-Yuan City Health Center
- Attending Physician, Tao-Yuan Veteran General Hospital

Publications

- Chih-Cheng Lai, Chun-Ming Lee, Hsiu-Tzy Chiang, Ching-Tzu Hung, Ying-Chun Chen, Li-Hsiang Su, Zhi-Yuan Shi, Jein-Wei Liu, Chang-Pan Liu, Min-Chi Lu, Yin-Ching Chuang, Wen-Chien Ko, Shu-Hui Tseng, Yen-Hsu Chen, Po-Ren Hsueh. Implementation of a national bundle care program to reduce catheter-associated urinary tract infection in high-risk units of hospitals in Taiwan. Journal of Microbiology Immunology and Infection. vol. 50, no. 4: 464-470, 2017.
- Chun-Ming Lee, Chih-Cheng Lai, Hsiu-Tzy Chiang, Min-Chi Lu, Ling-Fang Wang, Tsai-Ling Tsai, Mei-Yu Kang, Yi-Ni Jan, Yi-Ting Lo, Wen-Chien Ko, Shu-Hui Tseng, Po-Ren Hsueh. Presence of multidrug-resistant organisms in the residents and environments of long-term care facilities in Taiwan. Journal of Microbiology Immunology and infection. vol. 50, no. 2: 133-144, 2017.
- Shih-Min Hsu, Li-Jung Chien, Shu-Hui Tseng, Steve H. S. Kuo. A No-Notice Drill of Hospital Preparedness in Responding to Ebola Virus Disease in Taiwan. Health Security. vol. 13, no. 5: 339-344, 2015.
- Shu-Hui Tseng, Yu-Fen Ke, Feng-Yee Chang. National action plan to combat antimicrobial resistance in Taiwan. Journal of Microbiology Immunology amd Infection. vol. 47, no. 3:167-170, 2014
- Shu-Hui Tseng, Li-Jung Chien, Feng-Yee Chang. National action plan to eliminate central line-associated bloodstream infections in Taiwan. Journal of Microbiology Immunology and Infection. vol. 47, no. 4:265-267, 2014.

Session II Policies to Promote Antimicrobial Stewardship Programs (ASP)

Speakers Prof. David Chien Boon Lye Associate Professor, Tan Tock Seng Hospital

Prof. Victor Lim

Pro Vice-Chancellor, International Medical University

Prof. Wing Hong Seto

Co-Director, WHO Collaborating Centre for Infectious Disease Epidemiology and Control, The University of Hong Kong

Prof. Yee-Chun Chen

Professor, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine

APEC Conference on Strategies Against the Evolving Threats from Antimicrobial Resistance

Prof. David Chien Boon Lye Position: Associate Professor

Department/organization: Tan Tock Seng Hospital Economy: Singapore

Educational Background

•	1996	MBBS, University of Melbourne, Australia
•	2004	Fellow of Royal Australasian College Physicians
•	2009	Fellow, Academy of Medicine, Singapore,
•	2016	Fellow, Royal College of Physicians, Edinburgh

Professional Career

•	2011-2015	Chair, Chapter of Infectious Diseases, College of Physicians,
		Singapore
•	2012-2014	Treasurer, College of Physicians, Singapore
٠	2014-	Vice President, College of Physicians, Singapore
٠	2015-	President, Society for Infectious Diseases (Singapore)
•	2016-	Bursar, Academy of Medicine, Singapore
•	2016-	Board member, College of Clinician Scientists, Academy of
		Medicine, Singapore

Publications

- A Versporten, P Zarb, I Caniaux, M-F Gros, N Drapier, M Miller, V Jarlier, D Nathwani, H Goossens, on behalf of the Global-PPS network. First web-based Global Point Prevalence Survey of Antimicrobial Consumption and Resistance (GLOBAL-PPS) in 53 Countries: results on hospitalized adults. Lancet Global Health 2018, in press.
- HL Htun, TW Yeo, CC Tam, J Pang, YS Leo, DC Lye. Metformin use and severe dengue in diabetic adults. Scientific Reports 2018, in press.
- K Saeed, S Esposito, I Gould, T Ascione, M Bassetti, E Bonnet, E Bouza, M Chan, JS Davis, G De Simone, M Dryden, T Gottlieb, K Hijazi, DC Lye, P Pagliano, C Petridou, E Righi, J Segreti, S Unal, AN Yalcin. Hot topics in necrotising skin and soft tissue infections. Int J Antimicrob Agents 2018, in press.

Speech Abstract

Antimicrobial Stewardship Programme in Singapore

Antimicrobial resistance has emerged as a major public health problem with significant economic cost and impact on human health. The potential burden on human health is greatest in Africa and Asia. Many countries are responding the global call for action by World Health Organisation, and putting in place national action plans. In Singapore, a One Health Coordination Committee oversees a One Health Antimicrobial Resistance Workgroup in developing a national action plan. Already in place is national infection control programme which emphasises enhanced hand hygiene and active surveillance of MRSA with resultant decrease in MRSA incidence. Antimicrobial stewardship is funded in all public hospitals, led by infectious disease physicians and pharmacists. A combination of regularly updated hospital antibiotic guidelines, prospective review and feedback on targeted broad-spectrum antibiotics, computerised decision support and bi-annual national reporting with feedback to hospital administration has produced some sustained results but also new emerging issues. The ongoing One Health Antimicrobial Resistance national action plan aims to broaden the scope beyond hospitals, by engaging the public and multi-sectoral stakeholders via education, surveillance and risk assessment, research, prevention of infections and optimising antibiotic use.

Antimicrobial stewardship programme in Singapore

David Lye FRACP, FAMS, FRCP

Senior consultant, Tan Tock Seng Hospital Associate professor, Yong Loo Lin School of Medicine, National University of Singapore Associate professor, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore

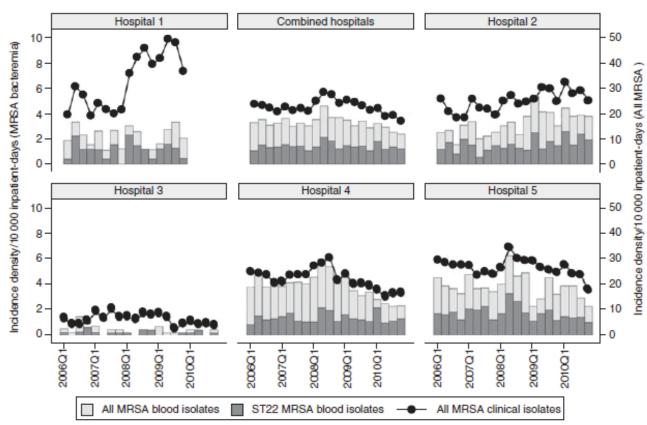
IIDE Institute of Infectious Diseases and Epidemiology

Outline

- Burden of antimicrobial resistance in Singapore
- National strategic action plan on antimicrobial resistance

127

 Antimicrobial stewardship in Singapore hospitals


ST22 and ST239 MRSA duopoly in Singaporean hospitals: 2006–2010

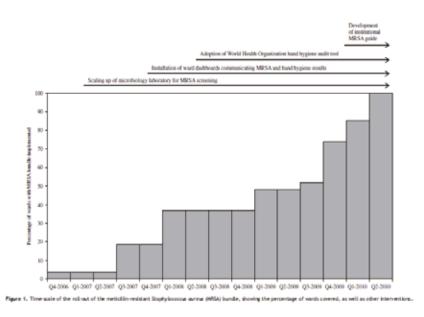
institute of Infectious Diseases and Epidemiology

J. TEO¹, T. Y. TAN², P. Y. HON³, W. LEE¹, T. H. KOH⁴, P. KRISHNAN⁵, L. Y. HSU^{3*} AND the Network for Antimicrobial Resistance Surveillance (Singapore)

Epidemiol. Infect. (2013), 141, 153-157.

Rising trend in 2, decreasing in 2

Sustained meticillin-resistant *Staphylococcus aureus* control in a hyper-endemic tertiary acute care hospital with infrastructure challenges in Singapore

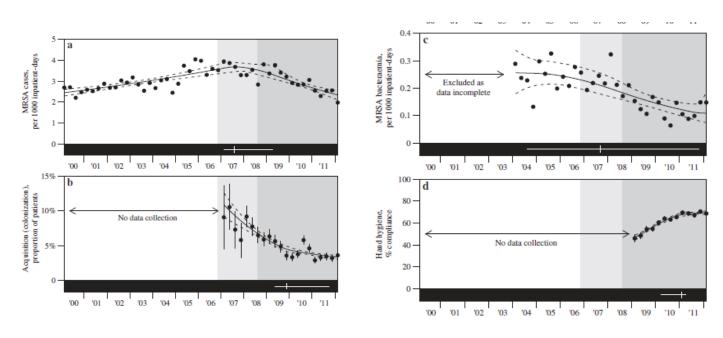


Institute of Infectious Diseases and Epidemiology

D. Fisher^{a,b,c,*}, P.A. Tambyah^{a,b}, R.T.P. Lin^{b,c,d}, R. Jureen^{b,c,d}, A.R. Cook^{e,f,g}, A. Lim^{b,h}, B. Ong^{a,b}, M. Balm^{c,d}, T.M. Ng^c, L.Y. Hsu^{a,b,e}

Journal of Hospital Infection 85 (2013) 141-148

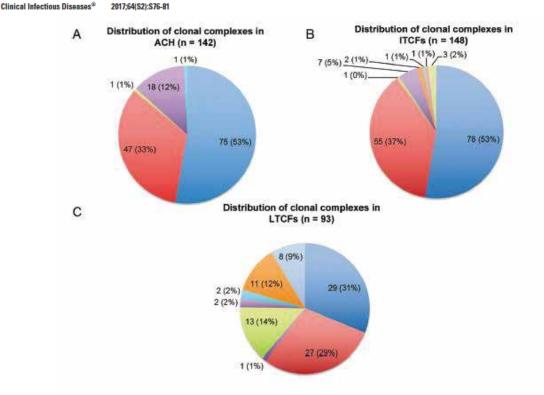
- Active MRSA surveillance, NAG, chromogenic agar
- Hand hygiene
- Isolation and cohorting
- Education and feedback



Sustained meticillin-resistant *Staphylococcus aureus* control in a hyper-endemic tertiary acute care hospital with infrastructure challenges in Singapore

D. Fisher^{a,b,c,*}, P.A. Tambyah^{a,b}, R.T.P. Lin^{b,c,d}, R. Jureen^{b,c,d}, A.R. Cook^{e,f,g}, A. Lim^{b,h}, B. Ong^{a,b}, M. Balm^{c,d}, T.M. Ng^c, L.Y. Hsu^{a,b,e}

Journal of Hospital Infection 85 (2013) 141-148

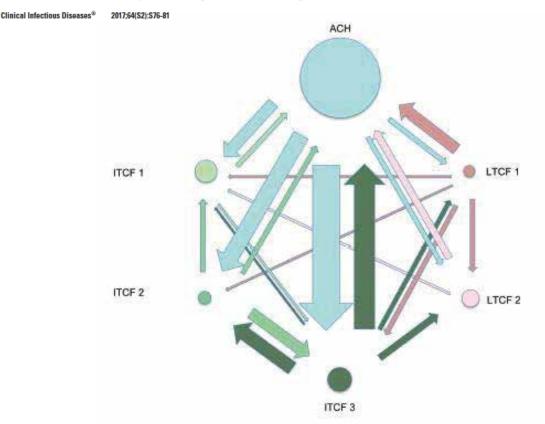


All temporal trends significant reduction

MRSA Transmission Dynamics Among Interconnected Acute, Intermediate-Term, and Long-Term Healthcare Facilities in Singapore

IIDE Institute of Infectious Diseases and Epidemiology

Angela Chow,^{1,5} Vanessa W Lim,¹ Ateeb Khan,⁹ Kerry Pettigrew,⁹ David C. B. Lye,^{2,6} Kala Kanagasabai,⁷ Kelvin Phua,⁸ Prabha Krishnan,³ Brenda Ang,^{2,6} Kalisvar Marimuthu,^{2,6} Pei-Yun Hon,³ Jocelyn Koh,⁸ Ian Leong,⁴ Julian Parkhill,¹⁰ Li-Yang Hsu,^{2,5} and Matthew T. G. Holden⁹


MRSA Transmission Dynamics Among Interconnected Acute, Intermediate-Term, and Long-Term Healthcare Facilities in Singapore

IIDE Institute of Infectious Diseases and Epidemiology

IIDE

Institute of Infectious Diseases and Epidemiology

Angela Chow,^{1,5} Vanessa W Lim,¹ Ateeb Khan,⁹ Kerry Pettigrew,⁹ David C. B. Lye,^{2,6} Kala Kanagasabai,⁷ Kelvin Phua,⁸ Prabha Krishnan,³ Brenda Ang,^{2,6} Kalisvar Marimuthu,^{2,6} Pei-Yun Hon,³ Jocelyn Koh,⁸ Ian Leong,⁴ Julian Parkhill,¹⁰ Li-Yang Hsu,^{2,5} and Matthew T. G. Holden⁹

Vancomycin-resistant Enterococci in Singaporean Hospitals: 5-year results of a Multi-centre Surveillance Programme

Yiying <u>Cai</u>,¹ Bic (Phorm), Joey PJ <u>Chan</u>,² FRCPuth, Dale Andrew <u>Fisher</u>,³ FRACP, Li Yang <u>Hsn</u>,³ MPH, Tse Hsien <u>Koh</u>,⁴ FRCPuth, Prabha <u>Krishnan</u>,⁵ FRCPuth, Andrea LH <u>Kwa</u>,¹ PhormD, Thean Yen <u>Tan</u>,⁶ MRCPuth, Nancy WS <u>Tee</u>,⁷ FRCPut

Ann Acad Med Singapore 2012;41:77-81

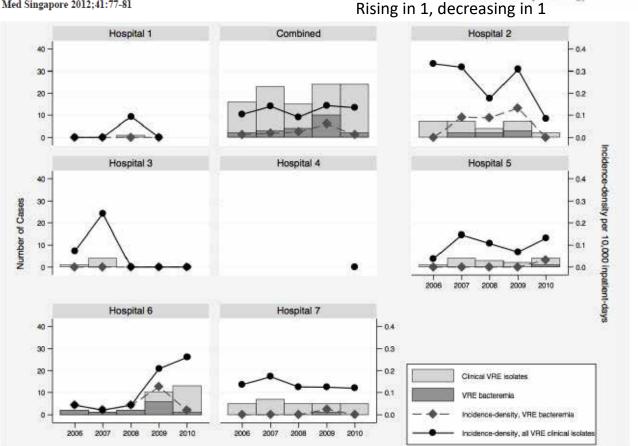


Fig. 1. Incidence-density and number of vancomycin-resistant enterococci isolates from clinical and blood cultures, by hospital, 2006-2010.

Control of a hospital-wide vancomycin-resistant *Enterococci* outbreak

IIIDE Institute of Infectious Diseases and Epidemiology

Asok Kurup, MRCP,^a M. P. Chlebicki, ABIM,^b M. L. Ling, FRCPA,^a T. H. Koh, FRCPA,^c K. Y. Tan, RN,^a L. C. Lee, RN.^a and K. B. M. Howe, RN^a

Am J Infect Control 2008;36:206-11

(1) formation of a VRE task force, (2) hospital-wide screening, (3) isolation of carriers, (4) physical segregation of contacts, (5) surveillance of high-risk groups, (6) increased cleaning, (7) electronic tagging of VRE status, and (8) education and audits. This is a

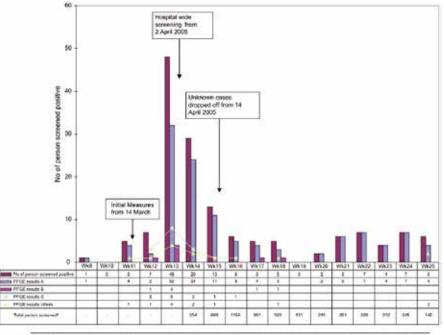


Fig. 2. Time series showing distribution of positive cases with PFGE clone types interposed. "Data for total persons screened available only after hospital-wide screening was started at week 14.

Surveillance and Correlation of Antibiotic Prescription and Resistance of Gram-Negative Bacteria in Singaporean Hospitals^V[†]

Li-Yang Hsu,^{1*} Thean-Yen Tan,² Vincent H. Tam,^{1,3} Andrea Kwa,⁴ Dale Andrew Fisher,¹ Tse-Hsien Koh.⁵ and the Network for Antimicrobial Resistance Surveillance (Singapore)

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Mar. 2010, p. 1173-1178

IIDE Institute of Infectious Diseases and Epidemiology

TABLE 2. Incidence density and percentage of antimicrobialresistant Gram-negative bacteria in Singapore hospitals, 2006 to 2008

Organism(s), drug susceptibility, and isolate type	No. of resistant isolates	% Resistance	Median incidence density of resistant isolates/1,000 inpatient-days (range)
Escherichia coli			
Ceftriaxone		\frown	
All isolates	6,629	20.0	1.87 (1.61-2.17)
Blood isolates	854	21.7	0.24 (0.18-0.30)
Ciprofloxacin			
All isolates	12,081	38.7	3.37 (3.18-3.74)
Blood isolates	1,285	31.0	0.36 (0.31-0.40)
Klebsiella pneumoniae			
Ceftriaxone		\frown	
All isolates	6,321	32.3	1.76 (1.42-2.27)
Blood isolates	685	27.4	0.19 (0.15-0.24)
Ciprofloxacin			
All isolates	6,285	30.1	1.72 (1.32-2.39)
Blood isolates	610	24.0	0.16 (0.13-0.25)
Acinetobacter spp.,			
imipenem		\sim	
All isolates	2,000	46.2	0.56 (0.43-0.72)
Blood isolates	184	50.0	0.05 (0.03-0.08)
Pseudomonas aeruginosa,			
imipenem			
All isolates	1,139	7.5	0.32 (0.24-0.41)
Blood isolates	119	12.8	0.03 (0.02–0.07)

A prospective observational study of the prevalence and risk factors for colonization by antibiotic resistant bacteria in patients at admission to hospital in Singapore

IIIDE Institute of Infectious Diseases and Epidemiology

Barnaby E Young^{1*}, David C Lye^{1,2}, Prabha Krishnan³, Siew Pang Chan^{1,4} and Yee Sin Leo^{1,2} BM

BMC Infectious Diseases 2014, 14:298

Results: 1006 patients were screened. 124 (12.4%) were colonized by ESBL-E, 18 (1.8%) by MRSA while no VRE was detected. Antibiotic use within the past month was the only significant predictor for ESBL-E colonization in the regression model, with an adjusted odds ratio (AOR) of 2.58 (1.04 to 6.42). In participants recently prescribed antibiotics and hospitalized in the previous 3 months, 29.4% were colonized by ESBL-E. This represented 20.2% of the total ESBL-E burden, and ESBL-E was also detected in 6.3% of participants with no healthcare contact. Hospitalization and outpatient hospital visits predicted MRSA colonization in the univariate analysis. Neither was statistically significant in the logistic regression model, with AORs for MRSA colonization following hospitalization in the past 3 and 12 months of 3.81 [95% CI 0.84-17.28] and 3.48 [0.64-18.92] respectively.

Extended-Spectrum Beta-Lactamase-Producing *Enterobacteriaceae* in Retail Chicken Meat in Singapore

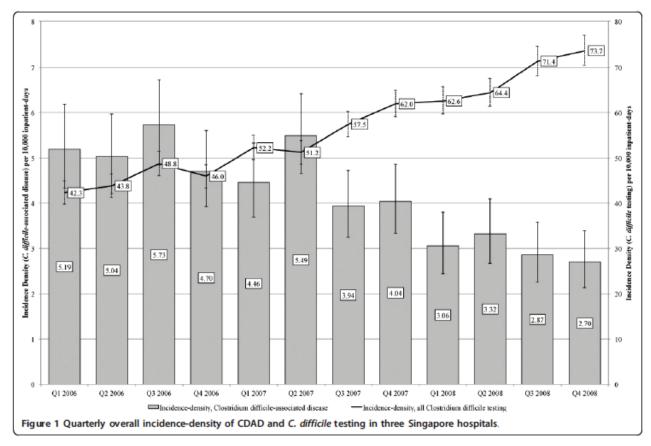
IIIDE Institute of Infectious Diseases and Epidemiology

Eugene JZ Lim^{*}, ¹, Si Xian <u>Ho^{*}</u>, ¹, Delphine YH <u>Cao</u>, ²BSc, Quek Choon Lau, ¹PHD, Tse Hsien <u>Koh</u>, ²PHD, Li Yang <u>Hsu</u>, ³⁴MPH

AAMS 2016;45:557

Country of Origin	Type of Chicken	Poultry Farming	Enterobacteriaceae (Number of Isolates)	CTX-M Group (Number of Isolates)
Malaysia	Black (ayam cemani†)	Conventional	Escherichia coli (2)	1 (2)
Malaysia	Ordinary	Conventional	E. coli (2)	1 (1)
				9(1)
Malaysia	Ordinary	Conventional	E. coli (2)	9 (2)
Malaysia	Ordinary	Conventional	E. coli (4)	9 (3)
				2 and 9 (1)
Malaysia	Ordinary (ayam kampong [‡])	Conventional	E. coli (2)	1 (1)
				9(1)
Malaysia (France)*	Yellow chicken	Conventional	E. coli (2)	1 (2)
Malaysia	Ordinary	Antibiotic-free (probiotic)	E. coli (3)	1 (3)
Malaysia	Ordinary	Antibiotic-free (probiotic)	E. coli (3)	2 and 9 (2)
				9 (1)
Malaysia	Ordinary	Antibiotic-free (probiotic)	E. coli (1)	1 (1)
			Proteus mirabilis (1)	9 (1)
			Klebsiella pneumoniae (2)	CTX-M negative
Malaysia	Ordinary	Antibiotic-free (probiotic)	E. coli (2)	1 (2)
			P. mirabilis (5)	9 (5)
			K. pneumoniae (2)	1 (2)
Brazil	Ordinary	Conventional	E. coli (5)	2 (2)
				8 (3)
Brazil	Ordinary	Conventional	E. coli (4)	2 (4)
France	Ordinary	Conventional	E. coli (4)	1 (4)
France	Yellow chicken	Conventional	E. coli (5)	1 (5)
France	Yellow chicken	Antibiotic-free	E. coli (5)	1 (5)

Table 1. Distribution of CTX-M Genes and Enterobacteriaceae Isolates from 15 Chicken Samples According to Type of Chicken and Country of Origin


Decline in *Clostridium difficile*-associated disease rates in Singapore public hospitals, 2006 to 2008

IIDE Institute of Infectious Diseases and Epidemiology

Li-Yang Hsu^{1*}, Thean Yen Tan², Tse Hsien Koh^{1,3}, Andrea L Kwa⁴, Prabha Krishnan⁵, Nancy W Tee⁶, Roland Jureen⁷

BMC Research Notes 2011, 4:77

Isolation of the first three cases of Clostridium difficile polymerase chain reaction ribotype 027 in Singapore

Singapore Med J 2011: 52(5) : 361

IIDE Institute of Infectious Diseases and Epidemiology

Lim P L, Ling M L, Lee H Y, Koh T H, Tan A L, Kuijper E J, Goh S S, Low B S, Ang L P, Harmanus C, Lin R T P, Krishnan P, James L, Lee C E

<u>Methods</u>: From September 2008 to December 2009, all non-duplicate toxin-positive stool samples from the three largest public hospitals in Singapore

were collected for culture and further analysis.

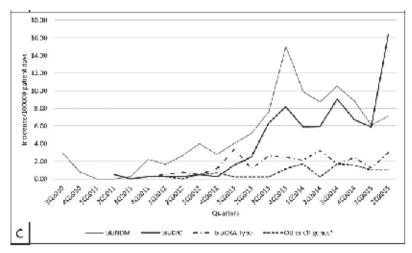
<u>Results</u>: Out of the 366 samples collected, 272 viable isolates were cultured. Of these, 240 tested toxin-positive and ten tested positive for the binary toxin gene; 35 different PCR ribotypes were found. Three isolates that tested positive for binary toxin contained the same PCR ribotyping pattern as the *C. difficile* 027 control strain. All three had the 18-bp deletion and single nucleotide tcdC deletion at position 117. Susceptibility testing was performed, demonstrating susceptibility to erythromycin and moxifloxacin.

Acquired carbapenemases in *Enterobactericeae* in Singapore, 1996–2012

Tse Hsien Koh*†, Delphine Cao†, Quek Yen Shan†, Anna Bacon§, Li-Yang Hsu* and Eng Eong Ooi‡

Pathology (October 2013) 45(6), pp. 600-603

Emergence 2010: NDM, KPC, OXA 48/181


 Table 1
 Characteristics of carbapenemase-producing Enterobacteriaceae

						М	IC (mg L	-1)				Plasmid	
Species	Isolate	Site	Year	Nationality	Carbapenemase	IMP	MEM	ETP	PFGE	ST	Inc	Size (kb)	Тур
K. pneumoniae	DB44384	Blood	1996	SIN	IMP-1	>32	>32	>32	dg	42	A/C	ca. 160	3
K. pneumoniae	DU32157	Urine	2011	SIN	IMP-1	4	4	16	KPN10	147	A/C	ca. 150	- 3
K. pneumoniae	DR37041	Resp	2010	SIN	IMP-1	>32	>32	>32	KPN4	885	A/C	ca. 160	3
C. freunau	DU10513	Urine	2012	SIN	IMP-1	4	8	16	nd	na	A/C	ca. 150	3
E. cloacae	DU31899	Urine	2011	SIN	IMP-1	1	1	4	ECL1	na	A/C	ca. 190	n
E. cloacae	DM9800	Wound	2011	SIN	IMP-1	2	4	>32	ECL2	na	nt	ca. 270	n
K. pneumoniae	DM23092	Wound	2004	BAN	IMP-1	3	3	16	KPN1	11	nt	nt	n
K. pneumoniae	DS6941	Stool	2010	SIN	IMP-4	>32	>32	>32	KPN6	568	nt	ca. 150	n
cioacae	DM 8861	CVP tip	2012	SIN	KPC-2	8	4	8	ECL7	na	Neg	ca. 50	- 2
E coli	DM6277	Wound	2012	SIN	KPC-2	2	2	8	ECO7	3054	Neg	ca. 50	- 1
K. pneumoniae	DR2160	Resp	2012	SIN	KPC-2	16	32	16	KPN14	841	Neg	ca. 50	1
K. pneumoniae	DU51131	Urine	2011	SIN	KPC-2	>32	8	>32	KPN12	11	Neg	ca. 50	1
K. pneumoniae	DB2244	Blood	2012	SIN	KPC-2	>32	>32	>32	KPN13	11	FIIK	ca. 100	n
K. pneumoniae	DU1301	Urine	2010	SIN	NDM-1	>32	>32	>32	KPN2	11	Neg	ca. 80	10
K. pneumoniae		Urine	2011	SIN	NDM-1	8	8	>32	KPN11	11	Neg	ca. 80	1
C. sedlakii	DM5680-1	Tissue	2012	SIN	NDM-1	32	32	32	nd	na	Neg	ca. 90	1
E cloacae	DM5887-3	Wound	2012	SIN	NDM-1	>32	>32	>32	ECL6	na	R	ca. 110	1.
K. pneumoniae	DU1883	Urine	2011	SIN	NDM-1	>32	>32	>32	KPN8	147	Neg	ca. 120	14
K. pneumoniae	DM3906	Abd fluid	2012	SIN	NDM-1	>32	>32	>32	KPN8-1	147	FIIK	ca. 160	n
E. COII	DS8293	Stool	2010	SIN	NDM-1	>32	>32	>32	ECO1	2083	FII	ca. 110	1.
E. coli	DU48916	Urine	2011	IND	NDM-1	>32	>32	>32	dg	405	A/C	ca. 150	10
E. cloacae	DB6217	Blood	2012	RIN	NDM-1	16	>32	>32	ECL5	na	A/C	ca. 150	10
E. cloacae	DM 16303	Wound	2011	SIN	NDM-1	>32	32	>32	ECL4	na	Neg	ca. 40	
K. pneumoniae	DU43320	Urine	2010	SIN	NDM-1	>32	8	>32	KPN5	273	Neg	ca. 40	
K. pneumoniae	DR2834	Resp	2011	MAL	NDM-1	>32	>32	>32	KPN9	273	Neg	ca. 40	
K. pneumoniae	DS1731	Stool	2011	SIN	NDM-1	>32	>32	>32	KPN9-1	273	Neg	ca. 40	
s. con	DS205	Stool	2011	BAN	NDM-1	>32	>32	>32	ECO2	648	Neg	ca. 40	
E. cloacae	DM15118	Wound	2011	VIE	NDM-1	>32	>32	>32	ECL3	na	Neg	ca. 60	1
E. coli	DS474	Stool	2011	SIN	NDM-1	>32	>32	>32	ECO3	101	FII	ca. 60	
E. coli	DS1878	Stool	2011	SIN	NDM-1	2	4	>32	ECO4	2451	A/C	ca. 370	n
K. pneumoniae	DS159	Stool	2011	RIN	NDM-1	>32	>32	>32	KPN8	nd	nd	nd	n
. pneumoniae	DU44951	Urine	2010	VIE	NDM-1	>32	>32	>32	KPN7	1	nt	ca. 40	n
coli .	DM20217	Abd fluid	2011	SIN	NDM-7	>32	>32	>32	ECO5	205	Neg	ca. 40	
K. pneumoniae	DU7433	Urine	2010	BAN	NDM-1	>32	>32	>32	KPN3	14	A/C	ca. 60	
K. pneumoniae	DR40294	Resp	2011	SIN	NDM-1	>32	>32	>32	KPN3-1	14	nt	ca. 280	n
K. pneumoniae	DX1083*	Resp	2011	BAN	0AA-181	>32	>32	>32	KPN3-1	14	nt	ca. 150	n
K. pneumoniae	DB53879	Blood	2011	BAN	OXA-181	32	>32	>32	KPN3-1	nd	nt	ca. 150	n
K. pneumoniae	DU54621	Urine	2011	BAN	OXA-181	>32	>32	>32	KPN3-1	nd	nt	ca. 150	n
K. pneumoniae	R16-09*	Resp	2012	SIN	OXA-181	>32	>32	>32	KPN3-1	nd	nt	ca. 150	n
E. coli	DB4758	Blood	2012	SIN	OXA-48	>32	32	>32	ECO6	2003	Neg	ca. 50	
K. pneumoniae	DU20470-1	Urine	2012	SIN	OXA-48	4	1	8	KPN15	29	Neg	ca. 50	

Clinical and Molecular Epidemiology of Carbapenem-Resistant Enterobacteriaceae Among Adult Inpatients in Singapore

Kalisvar Marimuthu,^{12,a} Indumathi Venkatachalam,^{3,a} Wei Xin Khong,^{1,a} Tse Hsien Koh,⁴ Benjamin Pei Zhi Cherng,² My Van La,⁵ Partha Pratim De,^{5,19} Prabha Unny Krishnan,^{3,5,19} Thean Yen Tan,² Raymond Fong Kok Choon,⁴ Surinder Kaur Pada,⁹ Choong Weng Lam,¹⁰ Say Tat Ooi,¹¹ Rama Narayana Deepak,¹² Nares Smitasin,¹³ Eng Lee Tan,¹⁴ Jia Jun Lee,¹ Asok Kurup,¹⁶ Barnaby Young,¹ Nancy Tee Wen Sim,¹⁶ Koh Cheng Thoon,^{2,17} Dale Fisher,^{2,13} Moi Lin Ling,¹⁸ Brenda Ang Sze Peng,¹¹³ Yik-Ying Teo,^{32,12,22,21} Li Yang Hsu,^{12,5} Raymond Tzer Pin Lin,^{5,26} Rick Twee-Hee Ong,²⁰ Jeanette Teo,^{36,6} and Oon Tek Ng^{1,13,5}, for the Carbapenemase-Producing Enterobacteriaceae in Singapore (CaPES) Study Group

Clinical Infectious Diseases® 2017;64(S2):S68–75

Comparative Analysis Between CPE and NCPE

In the multivariate analysis, significantly greater carbapenem exposure (OR: 3.23; 95% CI: 1.67–6.25) and hematological malignancies (OR: 2.85; 95% CI: 1.10–7.41) were associated with the NCPE group while chronic pulmonary disease was associated with the CPE group (OR: 0.35; 95% CI: 0.14–0.92) (Table 1). The average length of stay for all CRE patients was 38 days (IQR, 17–65), with 17.8% of CRE patients readmitted within 30 days of discharge. In-hospital and 30-days post-discharge mortality of CRE patients were 19.7% and 3.7%, respectively. There was no difference in length of stay, readmission, or mortality between CPE and NCPE.

IIDE Institute of Infectious Diseases and Epidemiology

Tracking inter-institutional spread of NDM and identification of a novel NDM-positive plasmid, pSg1-NDM, using next-generation sequencing approaches

 Wei Xin Khong¹†, Kalisvar Marimuthu¹²†, Jeanette Teo³, Yichen Ding⁴, Eryu Xia⁵, Jia Jun Lee¹, Rick Twee-Hee Ong⁶, Indumathi Venkatachalam³, Benjamin Cherng⁷, Surinder Kaur Pada⁸, Weng Lam Choong⁸, Nares Smitasin³,
 Say Tat Ooi⁹, Rama Narayana Deepak⁹, Asok Kurup¹⁰, Raymond Fong¹¹, My Van La¹², Thean Yen Tan¹¹, Tse Hsien Koh⁷, Raymond Tzer Pin Lin^{3,12}, Eng Lee Tan¹³, Prabha Unny Krishnan¹⁴, Siddharth Singh¹⁵, Johann D. Pitout^{16–18}, Yik-Ying Teo^{5,6,19–21}, Liang Yang⁴ and Oon Tek Ng^{1*} on behalf of the Carbapenemase-Producing Enterobacteriaceae in Singapore (CaPES) Study Group‡

01/09/2010 17/09/2010

08/09/2010 11/09/2010

21/09/2010 28/09/2010

13/10/2010 15/10/2010

13/10/2010 15/10/2010

15/09/2010 10/12/2010

21/09/2011 13/10/2011

08/12/2013 07/01/2014

22/10/2013 14/12/2013

02/01/2014 12/02/2014

DOD

15/10/2010

14/12/2010

20/01/2012

14/12/2013

07/04/2014

08/02/2014

13/02/2014

14/02/2014

07/03/2014

15/03/2014

23/03/2014

19/04/2014

27/02/2014

18/03/2014

23/03/2014

15/05/2014

23/06/2014

05/07/2014

05/07/2014

08/08/2014

28/09/2014

02/08/2014 03/08/2014

14/08/2014 30/08/2014

Sample site Hospital

В

B

B

В

R

В

В

В

В

С

С

C

А

А

А

А

Δ

C

С

С

А

С

C

C

D

D

А

urine

urine

urine

urine

urine

RS

bile

RS

RS

RS

WS

WS

RS

RS

RS

RS

RS

RS

WS

RS

WS

RS

RS

RS

urine

urine

urine

RS

RS

urine

urine

RS

RS

DOA

13/10/2010

17/10/2010

19/05/2011

22/10/2013

09/01/2014

06/01/2014

29/01/2014

30/01/2014

05/02/2014

29/01/2014

11/02/2014

11/02/2014

04/02/2014

28/02/2014

24/01/2014

04/05/2014

29/05/2014

02/06/2014

02/06/2014

20/06/2014

03/07/2014

Table 1. Clinical and microbiological characteristics of study isolates

Collection date

06/09/2010

09/09/2010

22/09/2010

14/10/2010

14/10/2010

14/10/2010

26/11/2010

03/12/2010

22/09/2011

19/10/2011

09/12/2013

10/12/2013

10/12/2013

14/01/2014

28/01/2014

03/02/2014

04/02/2014

05/02/2014

06/02/2014

07/02/2014

12/02/2014

13/02/2014

20/02/2014

11/03/2014

17/03/2014

04/05/2014

29/05/2014

07/06/2014

19/06/2014

23/07/2014

02/08/2014

14/08/2014

06/09/2014

Travel history

Australia

Australia

Australia

Malavsia

Thailand

Vietnam

Malaysia

Malaysia

Malaysia

_

_

_

_

_

Bangladesh, India

India, Malaysia

India

Sample ID

16

11

1

21^a

26

36

41

46

51

53

S9

S7^b

S2^b

S8

S10

KP2

KP1

S5

S6

S4

KP4

KP3

S3

S1

KP5

KP6

KP7

KP9

KP8^c

KP10

KP11

KP12

KP13

IIDE Institute of Infectious Diseases and Epidemiology

J Antimicrob Chemother 2016; 71: 3081-3089

pNDM-ECS01 Plasmid (coverage, %) Organism ST Thailand pNDM-ECS01 (100) Ec NA unknowr KΡ 437 pNDM-ECS01 (100) EC 410 pNDM MGR194 pNDM-ECS01 (100) KP 48 pNDM-ECS01 (100) KP 48 Chennai, India pNDM-ECS01 (100) EC 69 pNDM-ECS01 (100) EC 131 pNDM-ECS01 (100) EC 131 pNDM MGR194 (100) EC 205 pittNDM01 pNDM-ECS01 (100) EC 131 pNDM-ECS01 (100) KP 14 India \rightarrow Pittsburgh pNDM-ECS01 (100) KP 14 pNDM-ECS01 (100) FC 101 unknown KP 16 КР pSq1-NDM (100) 147 pHC105-NDM pSg1-NDM (100) ΚP 147 pNDM-ECS01 (100) KΡ 11 Spain pNDM-ECS01 (99) KΡ 34 pNDM-ECS01 (100) КР 34 pNDM-ECS01 (100) KΡ 34 pittNDM01 plasmid1 (94) KP 14 blaNDM-1 plasmid pHC105-NDM (100) KP 147 novel ST^d pNDM-ECS01 (99) EC plasmid2 pNDM-ECS01 (100) EC 69 pSg1-NDM (100) ΚP 147 Ohio unknown КР 147 pNDM-ECS01 (99) 399 КР pSg1-NDM (100) KΡ 147 pSg1-NDM (100) KÞ 147 pSq1-NDM blaNDM plasmid2 (100) KΡ 133 KΡ pNDM-ECS01 (100) 496 Novel pNDM-ECS01 (100) ΚP 496 pSg1-NDM (100) KΡ 147

市

IIDE Institute of Infectious Diseases and Epidemiology

National strategic action plan antimicrobial resistance

1 November 2017

https://www.moh.gov.sg/action-plan-AMR

Overview

- One health approach
 - Led by Ministry of Health
 - Agri-food and Veterinary Authority
 - National Environment Agency
 - Public Utilities Board
- Education, surveillance, research, prevention and control of infection, optimising antibiotic use
- International collaboration e.g. WHO GLASS, OIE, ASEAN Livestock, Global Water Research Coalition

Education

Current

- Public education on vaccination and social hygiene, not AMR
- WAAW activities in public hospitals and 2 public libraries
- Education for veterinarians and farmers
- Food safety and hygiene messages

Priorities for action

- Public education from 2018
- Collaborating with Ministry of Education on curriculum development
- Enhance postgraduate education to doctors, pharmacists and veterinarians
- Engage animal feed manufacturers and distributors of veterinary drugs

Knowledge, attitudes and practices towards antibiotic use in upper respiratory tract infections among patients seeking primary health care in Singapore

BMC Family Practice (2016) 17:148

Darius Shaw Teng Pan^{1†}, Joyce Huixin Huang^{1†}, Magdalene Hui Min Lee¹, Yue Yu¹, Mark I-Cheng Chen^{2,3*}, Ee Hui Goh², Lili Jiang², Joash Wen Chen Chong², Yee Sin Leo^{1,2,3,4}, Tau Hong Lee³, Chia Siong Wong³, Victor Weng Keong Loh⁵, Adrian Zhongxian Poh⁶, Tat Yean Tham^{1,5,6}, Wei Mon Wong^{5,2,8} and Fong Seng Lim^{1,5}

- 914 patients in 24 private primary care clinics:
 - 34% expected antibiotic for cough and cold, of which 40% would ask doctors for antibiotics, 10% would go to another doctor if they did not get antibiotic
- Knowledge level could be better:
 - 78% thought antibiotics were effective against viruses, and 65% felt antibiotics cured cough and cold faster
 - 12% kept antibiotic at home, 14% took left-over antibiotic, 7% gave antibiotic to family members

Surveillance

Current

- National Antimicrobial Resistance and Control Committee reports on MDRO and antibiotic usage in public hospitals
- Reference National Public Health
 Laboratory
- Antibiotic sales to farmers and veterinarians
- Antibiotic residues in food products and animal feed
- MRSA, ESBL E coli and MDR Salmonella testing in imported food
- Environmental testing for antibiotic levels, drug-resistant bacteria and AMR genes

Priorities for action

- Extend surveillance to private hospitals and community
- Harmonise laboratory methods
- Extend to all animal production sectors (poultry, ruminants, aquaculture)
- AMR testing in imported and retail food
- Systematic One Health surveillance report by 2019
- Risk assessment

137

Research

Current

- Human AMR research funded via National Research Foundation, NRMC, Communicable Disease Public Health Research Grant, Industry Alignment Fund
- Some research in AMR in imported and retail food, and environment

Priorities for action

- AMR is one of 3 infectious disease focus areas in Research, Innovation and Enterprise 2020 plan
 - National AMR research agenda with One Health focus
 - Inter-sectoral transmission pathways
 - Genomic surveillance of AMR
 - Sociobehavioural research
 - Socioeconomic impact
- Baseline AMR data in indicator bacteria in local poultry, dairy and fish farms
- Applied research in alternative to antibiotics: vaccines, animal management systems, husbandry practices

Prevention and control of infections

IIIDE Institute of Infectious Diseases and Epidemiology

Current

- National childhood and adult immunisation schedules
- National Infection Prevention
 Committee
- Biosecurity requirement and animal husbandry practice → licensing
- Animal vaccination
- Food hygiene
- Water and waste management

Priorities for action

- Enhance infection control for CPE
- Enhance adult vaccination
- ASEAN Sectoral Working Group for Livestock and Fisheries recommendations
- Improve animal management and promote animal vaccine use
- Pathogen surveillance in food and environment

Optimising antibiotic use

Current

- Antibiotics prescription only
- National ASP in public hospitals since 2011
- Antibiotics not used for growth promotion
- Nitrofurantoin, chloramphenicol and avoparcin banned in animal feed, and livestock and aquaculture farms
- Farmers allowed to give antibiotics

Priorities for action

- Extend ASP to private hospitals
- Guidelines for antibiotic use in primary care
- Veterinary drug registration and prescription of antibiotics in livestock and aquaculture
- Veterinary national antibiotic guideline and ASP

IIIDE Institute of Infectious Diseases and Epidemiology

Antimicrobial stewardship in Singapore

Reducing antimicrobial resistance through appropriate antibiotic usage in Singapore

IIIDE Institute of Infectious Diseases and Epidemiology

Hsu L Y, Kwa A L, Lye D C, Chlebicki M P, Tan T Y, Ling M L, Wong S Y, Goh L G

Singapore Med J 2008; 49 (10) : 749

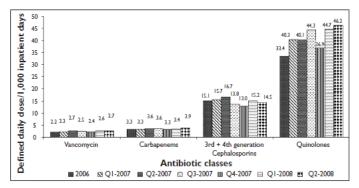
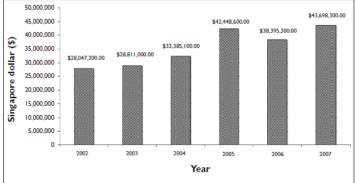
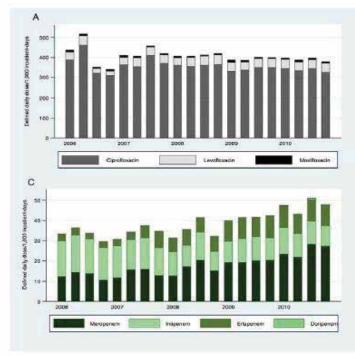



Fig. I Bar chart shows combined usage data of key antibiotic classes in local public hospitals according to defined daily dose per 1,000 patient-days.

Surveillance of Broad-Spectrum Antibiotic Prescription in Singaporean Hospitals: A 5-Year Longitudinal Study

Yi-Xin Liew¹, Prabha Krishnan², Chay-Leng Yeo³, Thean-Yen Tan⁴, Siok-Ying Lee⁵, Wan-Peng Lim⁶, Winnie Lee¹, Li-Yang Hsu⁷*, Network for Antimicrobial Resistance Surveillance (Singapore)

PLoS ONE December 2011 | Volume 6 | Issue 12 | e28751


Stable fluoroquinolone

Increasing carbapenems and gram positive agents Decreasing 3rd and 4th generation cephalosporins

IIDE

and Epidemiology

Institute of Infectious Diseases

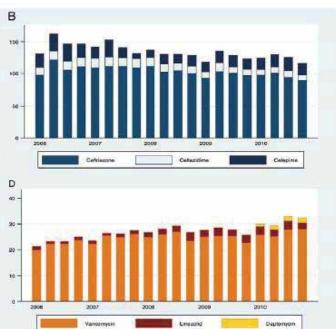


Figure 2. Prescription trends for individual antibiotics within major classes of broad-spectrum antibiotics in Singaporean hospitals, 2006–2010. (A) Fluoroquinolones. (B) Third and fourth generation cephalosporins. (C) Carbapenems. (D) Gram-positive agents.

ASP Singapore 2011

- Funding ASP in all public hospitals
- Pharmacists and ID doctors
- Formula for manpower calculation
- CDSS for ASP
- Practice guidelines for selected antibiotics, common infections and surgical prophylaxis

- Antibiotic usage, DDD/1000 patient-days
 - Augmentin, tazocin
 - Vancomycin, daptomycin, linezolid
 - Ceftriaxone, ceftazidime, cefepime
 - Ciprfloxacin, levofloxacin, moxifloxacin
 - Carbapenems
 - Triazoles, echinocandins, amphotericin

ASP Singapore 2011

- Formulary restriction
 - Echinocandins, new triazoles, liposomal amphotericin B, linezolid, daptomycin, tigecycline, doripenem
 - Topical mupirocin and fusidic acid
- Prospective audit on carbapenems, piperacillin-tazobactam and cefepime
 - Compliance with feedback

IIIDE Institute of Infectious Diseases and Epidemiology

- Safety indicators
 - Length of hospital stay
 - 30-day mortality
 - 30-day re-admission

ASP Singapore 2011

- 6 adult hospitals and 1 paediatric → multidisciplinary, hospital-wide approach
- Prospective review and feedback on carbapenems and piperacillin-tazobactam
- CDSS in place in all hospitals (ARUSC in 2, SCM in 5, EPIC in 1)
- ASP pharmacists \rightarrow ASP ID doctors

ASP manpower funding

	Table A2: Number of Bec	is to ASP Manpower Ratio	
	Tier 1 Hospitals - Tertiary care or hospitals with complex immunocompromised patients (SGH, NUH)	Tier 2 Hospitals – Intermediate RHs (KKH,TTSH,CGH)	Tier 3 Hospitals – General Patients (All others)
	Beds:FTE ratio	for ID Physician	
Without IT support	2,000:1	2,000:1	2,000:1
With IT support	2,000:1	2,000:1	2,000:1
	Beds:FTE ratio fo	r ASP pharmacists	
Without IT support	200:1	300:1	400:1
With IT support	300:1	400:1	500:1

Antimicrobial consumption and resistance in adult hospital inpatients in 53 countries: results of an internet-based global point prevalence survey

Lancet Glob Health 2018 Published Online April 19, 2018 http://dx.doi.org/10.1016/ S2214-109X(18)30186-4

IIDE Institute of Infectious Diseases and Epidemiology

Ann Versporten, Peter Zarb, Isabelle Caniaux, Marie-Françoise Gros, Nico Drapier, Mark Miller, Vincent Jarlier, Dilip Nathwani, Herman Goossens, on behalf of the Global-PPS network*

	Countries Hospital (n) (n)		pitals Medical wards		Surgical wards		Intensive-care units		Haematology oncology wards		Pneumologywards		Transplant (bone marrow or solid transplants)		Total	
			Admitted (n)	Anti- microbial use (%)	Admitted (n)	Anti- microbial use (%)	Admitted (n)	Anti- microbial use (%)	Admitted (n)	Antimicrobial use (%)	Admitted (n)	Anti- microbial use (%)	Admitted (n)	Anti- microbial use (%)	Admitted (n)	Antimicrobial use (%, country range)
Eastern Europe	2	8	778	11-6%	1381	33-2%	107	67-3%	11	9-1%	105	30-5%			2382	27-4% (23-7-27-8)
Northern Europe	5	36	4959	29-8%	2371	37-7%	370	55-9%	242	49-6%	101	53-5%	51	60-8%	8094	34-4% (29-0-37-8)
Southern Europe	13	53	6443	32-6%	5475	40-0%	1010	64.1%	646	33-6%	561	60-2%	52	76-9%	14187	39-0% (27-2-62-0)
Western Europe	5	118	17 483	23-4%	8851	28.0%	1467	56.0%	1048	43-1%	1111	49-7%	89	80-9%	30 0 49	28-1% (25-1-37-1)
Africa	5	12	619	49-9%	1101	49-0%	64	64.1%							1798	50-0% (27-8-74-7)
East and south Asia*	6	29	6644	33-0%	5663	34-2%	702	65-5%	847	54-0%	409	46-2%	146	86-3%	14411	37-2% (29-6-78-5)
West and central Asia	9	27	1873	42-0%	1249	44-7%	396	47-7%	156	48-1%	-				3677	43-8% (22-4-85-7)
Oceania	2	9	1781	29-8%	604	52-5%	76	69-7%	46	54.3%					2516	37-0% (33-3-38-5)
Latin America	4	19	1942	31-8%	1571	37-3%	468	55-1%	92	28-3%			41	65-9%	4122	36-8% (32-5-43-4)
North America	2	24	3605	32-4%	1136	44-2%	524	59-4%	202	55-4%	34	58-8	39	66-7%	5540	38-6% (30-9-44-8)

A version of this table containing numerical data for all percentages is in the appendix. Empty cells mean that no cases or too few cases (ie, fewer than 10 admitted or treated inpatients) were recorded (these cases are included in the totals). *Includes south, east, and southeast Asia.

Table 1: Antimicrobial use in adult hospital inpatients, by UN region, 2015

Antimicrobial consumption and resistance in adult hospital inpatients in 53 countries: results of an internet-based global point prevalence survey

Ann Versporten, Peter Zarb, Isabelle Caniaux, Marie-Françoise Gros, Nico Drapier, Mark Miller, Vincent Jarlier, Dilip Nathwani, Herman Goossens, on behalf of the Global-PPS network*

	Antimicrobial prescriptions	Antibiotic prescriptions	Targeted treatment*	Targeted treatment (resistant organisms)*	Reason recorded†	Stop or review date recorded†	Parenteral administration‡	Guidelines available§	Compliant to local guidelines¶	No guidelines available
Eastern Europe (n=653)	747	708	51 (7-8%)	42 (6.4%)	64-3%	50-5%	87-6%	79-8%	85.7%	19-2%
Northern Europe (n=2783)	3880	3536	396 (14-2%)	80 (2.9%)	81-4%	51-6%	62-2%	90-0%	83-4%	6.5%
Southern Europe (n=5534)	7674	6837	838 (15-1%)	292 (5-3%)	69-5%	29-1%	80-0%	60-5%	70-8%	29-6%
Western Europe (n=8458)	10612	9485	2204 (26-1%)	469 (5-5%)	80.5%	40-3%	64-0%	81.0%	78-7%	10.1%
Africa (n=899)	1502	1213	131 (14-6%)	25 (2-8%)	70-4%	36-6%	62.7%	49-5%	67-9%	26.7%
East and south Asia** (n=5363)	7607	6781	938 (17.5%)	287 (5.4%)	74-6%	43-5%	71.8%	76-4%	81.5%	21-4%
West and central Asia (n=1612)	2252	2084	236 (14-6%)	153 (9-5%)	72-8%	19-8%	85.2%	53-4%	66-3%	40-5%
Oceania (n=932)	1411	1226	218 (23-4%)	63 (6-8%)	85.1%	27-0%	60-5%	87-4%	73.2%	11-7%
Latin America (n=1518)	2403	2170	403 (26-5%)	231 (15-2%)	81.4%	40-3%	84-4%	76-5%	64-1%	19.9%
North America (n=2139)	3125	2752	511 (23.9%)	127 (5.9%)	84.9%	39-6%	73.1%	77-3%	85-8%	18.5%
Total (n=29 891)	41213	36792	5926 (19-8%)	1769 (5-9%)	76-9%	38-3%	71.4%	74-3%	77-4%	19.2%

Data are n or %. A version of this table containing numerical data for all percentages is in the appendix. *Patients receiving at least one antibiotic for systemic therapeutic use only (ie, health-care-associated or community-acquired infection). †Includes all antimicrobials; the total number of antimicrobial prescriptions was used to calculate percentages. ‡Patients who received at least one parenteral antibiotic for systemic use. SAntibiotic prescriptions for which guidelines were available to guide antibiotic choice (not route, dose, or duration), which was calculated as all antibiotic prescription for which a local guideline was available/all antibiotic prescription. IThe number of antibiotic prescriptions for which guidelines were available was used as the denominator to calculate percentages. || The total number of antibiotic prescriptions was used as the denominator to calculate percentages. **Includes south, east, and southeast Asia.

Table 4: Overview of antimicrobial and antibiotic quality indicators for adult inpatients by region, year 2015

Lancet Glob Health 2018

S2214-109X(18)30186-4

Published Online

April 19, 2018

IIDE

Institute of Infectious Diseases and Epidemiology

IIDE Broadspectrum cephalosporin Institute of Infectious Diseases and Epidemiology and beta-lactamase inhibitor usage

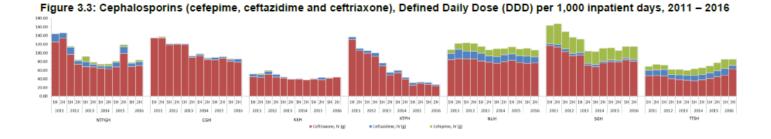
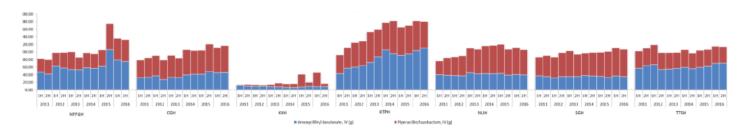



Figure 3.1: Amoxycillin/clavulanate and piperacillin/tazobactam, Defined Daily Dose (DDD) per 1,000 inpatient days, 2011 - 2016

Carbapenem and PO ciprofloxacin usage

Figure 3.6: Carbapenems, Defined Daily Dose (DDD) per 1,000 inpatient days, 2011 - 2016

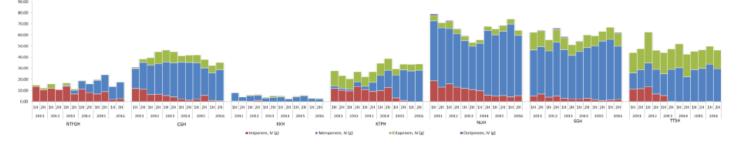
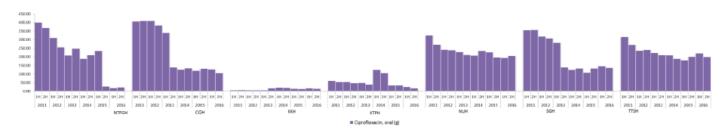
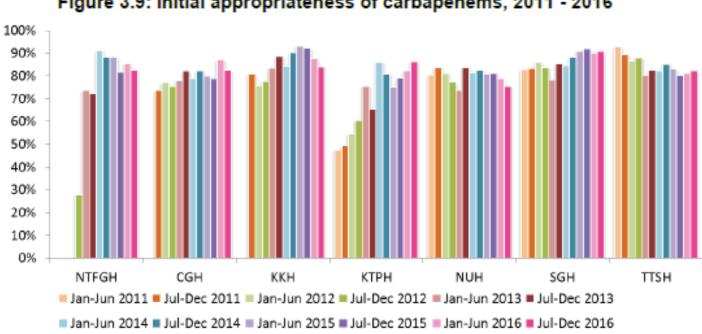
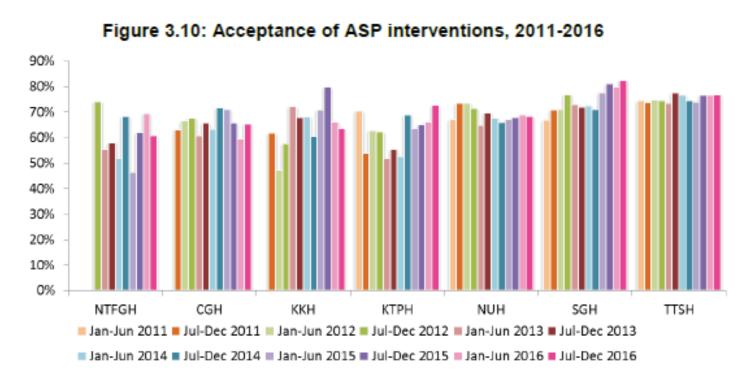



Figure 3.5: Fluoroquinolones (Oral Ciprofloxacin), Defined Daily Dose (DDD) per 1,000 inpatient days, 2011 – 2016 The sudden drops in use of oral ciprofloxacin in H2 2013 in SGH and CGH, and H1 2015 - H2 2016 in NTFGH, are due to the introduction of data collection IT software that do not account for outpatient use of ciprofloxacin.



IIDE

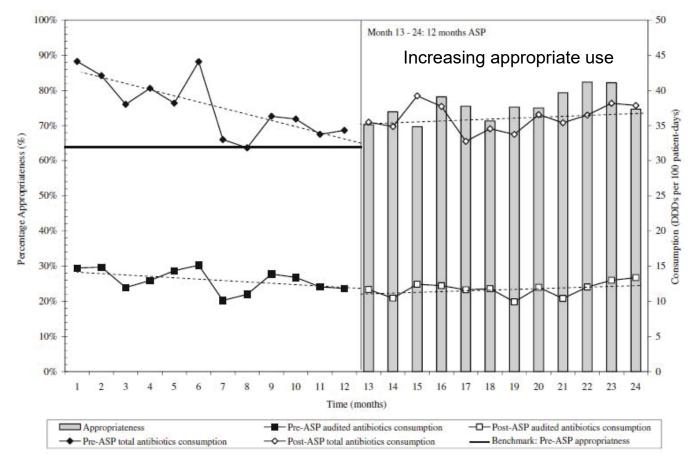
and Epidemiology


Institute of Infectious Diseases

National comparison

Figure 3.9: Initial appropriateness of carbapenems, 2011 - 2016

National comparison



The effect of a whole-system approach in an antimicrobial stewardship programme at the Singapore General Hospital

IIDE Institute of Infectious Diseases and Epidemiology

J. Teo · A. L. H. Kwa · J. Loh · M. P. Chlebicki · W. Lee Eur J Clin Microbiol Infect Dis (2012) 31:947–955

Impact of an antimicrobial stewardship programme on patient safety in Singapore General Hospital

Yi Xin Liew^{a,*}, Winnie Lee^a, Joan Chain Zhu Loh^b, Yiying Cai^a, Sarah Si Lin Tang^a, Cheryl Li Ling Lim^a, Jocelyn Teo^a, Rachel Wen Qin Ong^a, Andrea Lay-Hoon Kwa^{a,*}, Maciej Piotr Chlebicki^b

International Journal of Antimicrobial Agents 40 (2012) 55-60

and and

IIDE Institute of Infectious Diseases and Epidemiology

The set of intermedian as some set ded b	y the antimicrobial stewardship programme th	at mean have an impact on mouth idit	and mentality (M 742)
Types of infervention recommended i	ov the antimicropial stewardship programme tr	iar may nave an impact on morbidir	v and mortaury $(N = 743)$.

Intervention	Accepted [n (%)] ^a		Rejected [n (%)] ^a		P-value
	Total	Patients who died	Total	Patients who died	
De-escalation based on culture results	97 (16.8)	13(2.2)	27 (16.4)	5(3.0)	0.555
Discontinue antibiotic	270 (46.7)	32(5.5)	86 (52.1)	11(6.7)	0.851
Narrowing of empirical coverage	49 (8.5)	6(1.0)	38 (23.0)	1(0.6)	0.239
Intravenous-to-oral switch	162 (28.0)	4(0.6)	14 (8.5)	1(0.6)	0.346
Total	578/743 (77.8)	55 (9.5)	165/743 (22.2)	18(10.9)	0.557

No safety signals of concern for culture-guided de-escalation, stopping antibiotic, narrowing empiric coverage, and IV \rightarrow PO switch

Cost-effectiveness

institute of Infectious Diseases and Epidemiology

Liew YX, et al. IJAA 2015;46:594-5.

- Comparison between accepted and rejected groups offered ASP interventions
- Acceptance of ASP interventions associated with cost saving:
 - Antibiotic cost, SGD\$107
 - Shortened length of stay (6.4 days), SGD\$6683
 - Reduced re-admission, SGD\$8416

Safety and clinical outcomes of carbapenem de-escalation as part of an antimicrobial stewardship programme in an ESBL-endemic setting

IIDE Institute of Infectious Diseases and Epidemiology

Kaung Yuan Lew¹, Tat Ming Ng², Michelle Tan², Sock Hoon Tan², Ee Ling Lew², Li Min Ling³, Brenda Ang³, David Lye^{3,4} and Christine B. Teng^{1,2*}

J Antimicrob Chemother 2015; 70: 1219-1225

Table 2. Primary and secondary outcomes

Outcomes	De-escalated (n=204)	Not de-escalated (n=96)	Ρ	Absolute risk difference (95% CI)
Clinical success, n (%)	183 (89.7)	85 (88.5)	0.84	1.2 (-5.8 to 9.8)
Survival at discharge, n (%)	173 (84.8)	79 (82.3)	0.58	2.5 (-5.9 to 12.3)
30 day mortality from start of carbapenem, n (%)	25 (12.3)	14 (14.6)	0.58	-2.3 (-11.6 to 5.4)
30 day readmission due to infection, n (%)	15 (7.4)	8 (8.3)	0.81	-0.9 (-8.8 to 5.0)
Duration of carbapenem use (days), median (IQR)	6 (4-8)	8 (7-11)	< 0.001	-2 (-3 to -2)
Total duration of antimicrobial therapy (days), median (IQR)	9 (7-14)	9 (7-12)	0.70	0 (0)
Length of hospitalization from start of carbapenem use (days), median (IQR)	18 (9-35)	20 (9-40)	0.62	-2.0 (-6 to 3)
Adverse drug reaction ^a , n (%) antibiotic-associated diarrhoea rash neurotoxicity (altered mental status) number of patients with adverse drug reaction	9 (4.4) 1 (0.5) 1 (0.5) 11 (5.4)	12 (12.5) 1 (1.0) 0 12 (12.5)	0.015 0.54 >0.99 0.037	-8.1 (-16.4 to -1.7) -0.6 (-5.2 to 1.8) 0.5 (-3.4 to 2.7) -7.1 (-15.5 to -0.5)
Incidence of MDR organisms at 30 days, n (%) carbapenem-resistant A. <i>baumannii</i> other carbapenem-resistant Gram-negative bacteria ^b CDAD <i>Candida</i> sp. in sterile sites	4 (2.0) 6 (2.9) 2 (1.0) 1 (0.5)	7 (7.3) 1 (1.0) 4 (4.2) 0	0.042 0.44 0.081 >0.99	-5.3 (-12.4 to -0.6) 1.9 (-3.0 to 5.3) -3.2 (-9.3 to 0.4) 0.5 (-3.4 to 2.7)

Implementation hurdles of an interactive, integrated, point-of-care computerised decision support system for hospital antibiotic prescription

A.L. Chow^{a,b,1}, A. Ang^{c,1}, C.Z. Chow^a, T.M. Ng^d, C. Teng^{d,e}, L.M. Ling^f, B.S. Ang^{b,f}, D.C. Lye^{c,f,*}

IIDE Institute of Infectious Diseases and Epidemiology

International Journal of Antimicrobial Agents 47 (2016) 132-139

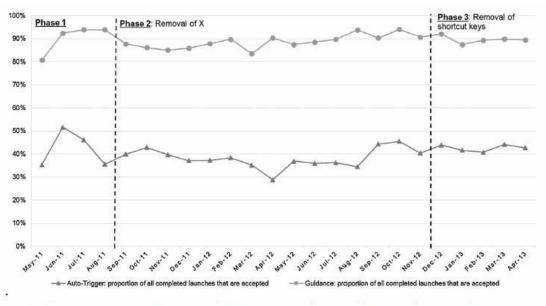
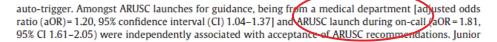



Fig. 4. Trend of proportion of accepted ARUSC recommendations per month. ARUSC, Antibiotic Resistance Utilisation and Surveillance-Control.

Mortality Benefits of Antibiotic Computerised Decision Support System: Modifying Effects of Age

Institute of Infectious Diseases and Epidemiology

Angela L. P. Chow^{1,2}, David C. Lye^{3,4} & Onyebuchi A. Arah^{2,5} SCIENTIFIC REPORTS | 5:17346

Antibiotic computerised decision support systems (CDSSs) are shown to improve antibiotic prescribing, but evidence of beneficial patient outcomes is limited. We conducted a prospective cohort study in a 1500-bed tertiary-care hospital in Singapore, to evaluate the effectiveness of the hospital's antibiotic CDSS on patients' clinical outcomes, and the modification of these effects by patient factors. To account for clustering, we used multilevel logistic regression models. One-quarter of 1886 eligible inpatients received CDSS-recommended antibiotics. Receipt of antibiotics according to CDSS's recommendations seemed to halve mortality risk of patients (OR 0.54, 95% CI 0.26–1.10, P = 0.09). Patients aged ≤ 65 years had greater mortality benefit (OR 0.45, 95% CI 0.20–1.00, P = 0.05) than patients that were older than 65 (OR 1.28, 95% CI 0.91–1.82, P = 0.16).

No effect was observed on incidence of *Clostridium difficile* (OR 1.02, 95% CI 0.34–3.01), and multidrug-resistant organism (OR 1.06, 95% CI 0.42–2.71) infections. No increase in infection-related readmission (OR 1.16, 95% CI 0.48–2.79) was found in survivors. Receipt of CDSS-recommended antibiotics reduced mortality risk in patients aged 65 years or younger and did not increase the risk in older patients. Physicians should be informed of the benefits to increase their acceptance of CDSS recommendations.

IIDE Institute of Infectious Diseases and Epidemiology

Thank you for your attention

David lye@ttsh.com.sg

Yong Loo Lin School of Medicine

APEC Conference on Strategies Against the Evolving Threats from Antimicrobial Resistance

Prof. Victor Lim Position: Pro Vice-Chancellor Department/organization: International Medical University Economy: Malaysia

Educational Background

- 1974 MBBS, the University of Malaya
- 1978 MSc, Medical Microbiology from the University of London
- 1981 passed the Royal College of Pathologists examinations (MRCPath)

Professional Career

- 2004-2008 President of the Western Pacific Society of Chemotherapy
- 2008-2011 Master of the Academy of Medicine of Malaysia
- 1999-2003 President of the Malaysian Society for Infectious Diseases and Chemotherapy

Publications

- Lim V Enhancing microbiology diagnostics in the Asia Pacific a perspective from Malaysia. Malaysian J Pathol 2014; 36 (Suppl A) : 11.
- McNeil HC, Lean S, Lim V, Clarke SC. The state of ESKAPE in Malaysia. International Journal of Antimicrobial Agents 2016; 48:578-9.
- Tricarico, Serena, McNeil, Hannah C., Cleary, David W., Head, Michael G., Lim, Victor, Kok Seng Yap, Ivan, Chun Wie, Chong, Siang Tan, Cheng, Norazmi, Mohd Nor, Ismail, Aziah, Seong Guan Cheah, Eddy, Faust, Saul N., Jefferies, Johanna MC, Roderick, Paul J., Moore, Michael, Yuen, Ho Ming, Newell, Marie-Louise, Mcgrath, Nuala, Webb, Jeremy, Doncaster, C. Patrick, Kraaijeveld, Alex R., Webb, Jeremy S. and Clarke, Stuart C. Pneumococcal conjugate vaccine implementation in middle-income countries. Pneumonia 2017; 9:6.
- Lim V. The role of behavioural science in antibiotic stewardship. International Journal of Antimicrobial Agents 2017; 50 (Suppl 1) : S71.
- Lim VKE. Changing behavior to improve antibiotic stewardship. International Journal of Antimicrobial Agents 2017; 50 (Suppl 2) : S16.

APEC Conference on Strategies Against the Evolving Threats from Antimicrobial Resistance

Speech Abstract

The Antibiotic Stewardship Programme in Malaysia

Malaysia is a developing economy in South East Asia with a population of 31 million. The per capita GDP is USD 28,900 in 2017 and its annual total expenditure on health is 4.5% of GDP.

In 2003 the Ministry of Health established a fairly well defined national strategy for the purpose of antibiotic stewardship. This is a multifaceted strategy and a governance structure was set up for its implementation. The National Infection and Antibiotic Control Committee is chaired by the Director General of Health and similar committees are also established at state and institutional levels.

A National Antibiotic Resistance Surveillance System was established earlier in 1990. In 2017 the 42 participating laboratories contributed data on more than 800,000 isolates. Biannual prevalence surveys of hospital associated infection are conducted in Ministry of Health hospitals while the Malaysian Registry for Intensive Care monitors the incidence of ventilator associated pneumonia (VAP) and central venous catheter associated blood stream infection (CVC-BSI). The monitoring of antibiotic utilization nationwide is undertaken annually through the National Medicines Use surveys. Monitoring of antibiotic utilisation in the Ministry of Health and selected private hospitals is focused on 4 major groups of compounds namely cephalosporins, carbapenems, quinolones and glycopeptides.

At the institutional level all government hospitals have antibiotic formularies and guidelines. However the effectiveness of antibiotic stewardship at an institution depends very much on the presence of "champions". In the private sector doctors can use any product so long as it is registered by the Drug Control Authority and consultants operate as independent contractors in private hospitals. Professional societies also issue practice guidelines from time to time but the effectiveness of these guidelines is questionable.

In 2017 Malaysia launched its 5-year Action Plan on Antimicrobial Resistance in response to WHO's Global Action Plan. The objectives are aligned to the Global Plan and under each Objective, the strategies, actions, implementation dates, target groups and units responsible are defined as are evaluation indices. The Plan will intensify current activities and establish new initiatives. Most importantly the health and agricultural ministries will work together in implementing the plan.

Other measures in antibiotic stewardship include the legislative control of prescription and sales of antibiotics for medicinal use as well as non-medicinal use and the regulation of marketing and promotional activities by pharmaceutical companies. Generally Malaysia seems to be on the right track but we still have some way to go to ensure the participation of all the major stakeholders.

The Antibiotic Stewardship Programme in Malaysia

Victor Lim International Medical University, Kuala Lumpur, Malaysia

Malaysia

- Developing economy in South East Asia
- Population : 31 million (2017)
- Per capita GDP : USD 28,900 (2017)
- Infant mortality rate : 6.7/1000 births (2016)
- Maternal mortality ratio : 29.1/100,000 live births


153

• Total expenditure on health : 4.5% of GDP

Establishment of a National Strategy

- In 2003 the Ministry of Health with the assistance of WHO prepared a national strategy for the containment of antimicrobial resistance
- Measures included
 - Infection And Antibiotic Control Committees (IACC) at hospital, state and national levels
 - Strengthening the antibiotic resistance surveillance system
 - Developing and implementing antibiotic guidelines for primary care practitioners
 - Improving access to and upgrading the quality of microbiological diagnostic facilities
 - Increasing public awareness of antibiotic resistance
 - Controlling and regulating the use of antibiotics in agriculture



National Committee

- Meets twice a year
- Chaired by the Director General of Health
- Attended by all state representatives and selected technical experts
- Reviews reports including
 - Antibiotic resistance surveillance
 - Nosocomial infection prevalence rates
 - Antibiotic utilisation rates
- Makes policies and recommendations based on the data collected

Resistance surveillance programme

- National Surveillance of Antibiotic Resistance
 - Established in 1990
 - 42 participating laboratories; over 800,000 isolates in 2017
 - Standard methodology : CLSI and standard antibiotic panels
 - WHO Net software
 - Quality assurance

National Surveillance for Antimicrobial Resistance 2018. http://www.imr.gov.my/en/component/content/article/75-english-content/nationalcollabration/1469-nsar-main.html

Figure 13: Trend of vancomycin resistance in *Enterococcus faecium* and *Enterococcus faecalis* from all clinical samples, 2013-2017.

National Surveillance for Antimicrobial Resistance 2018. http://www.imr.gov.my/en/component/content/article/75-english-content/nationalcollabration/1469-nsar-main.html

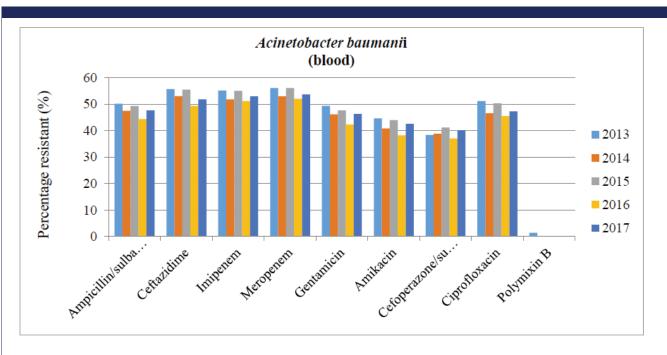


Figure 18: Antibiotic resistance trend for *Acinetobacter bauman*ii isolated from blood, 2013-2017.

National Surveillance for Antimicrobial Resistance 2018.

http://www.imr.gov.my/en/component/content/article/75-english-content/national-collabration/1469-nsar-main.html

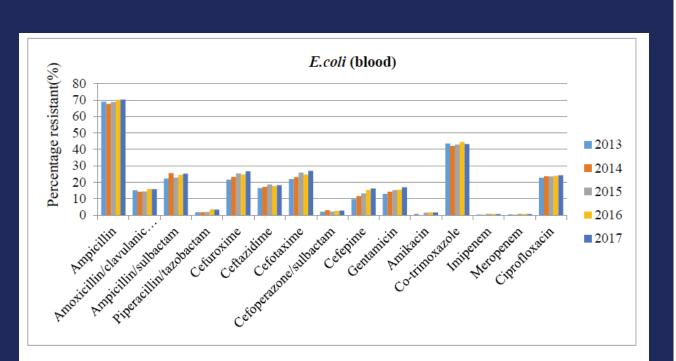


Figure 21: Antibiotic resistant trend for E. coli isolated from blood, 2013-2017.

National Surveillance for Antimicrobial Resistance 2018. http://www.imr.gov.my/en/component/content/article/75-english-content/nationalcollabration/1469-nsar-main.html

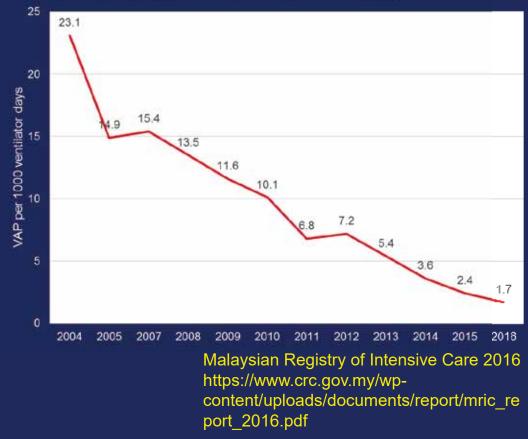
157)

Carbapenem-resistant Enterobacteriaceae

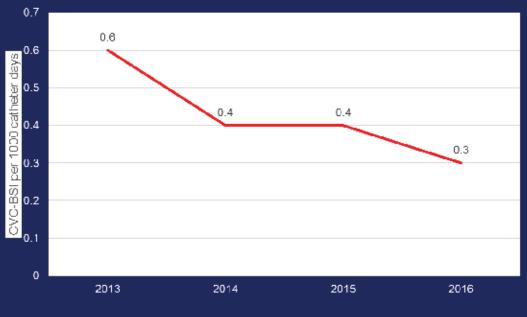
E. coli

Antibiotic	2013 (%	6R) 2014 (%	R) 2015 (%R) 2016 (%R)	2017 (%R)
	(no. test	ted) (no. teste	ed) (no. tested) (no. tested)	(no. tested)
Imipenem	0.2 (122	0.3 (1365	54) 0.4 (13360) 0.9 (10871)	0.6 (12289)
Meropenem	0.2 (118	338) 0.2 (1338	36) 0.5 (13167	0.8 (10645)	0.7 (12439)
Klebsiella					
Antibiotic	2013 (%R)	2014 (%R)	2015 (%R)	2016 (%R)	2017 (%R)
	(no. tested)	(no. tested)	(no. tested)	(no. tested)	(no. tested)
Imipenem	1.5 (24477)	1.3 (28787)	2.4 (31025)	2.3 (29339)	2.7 (30319)
Meropenem	1.7 (23303)	1.6 (27911)	2.8 (30253)	2.6 (28254)	2.9 (31151)

National Surveillance for Antimicrobial Resistance 2018. http://www.imr.gov.my/en/component/content/article/75-english-content/nationalcollabration/1469-nsar-main.html

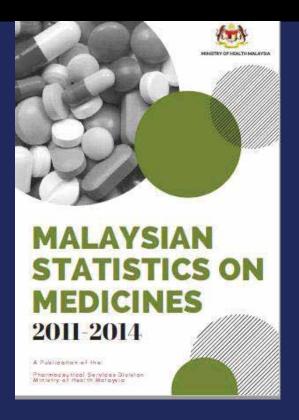

National Hospital Associated Infection Surveillance Programme

- Prevalence studies conducted twice a year
 - CDC definitions of infections
 - Universal surveillance on a defined day
 - Data collected, analysed and published by the Quality Division of the Ministry of Health
- Malaysian Registry for Intensive Care
 - ventilator-associated pneumonia
 - CVC BSI
 - 50 ICUs and 37,759 admissions in 2016



Medical Development Division, Ministry of Health of Malaysia, 2018

Ventilator-associated Pneumonia


CVC-BSI

Malaysian Registry of Intensive Care 2016 https://www.crc.gov.my/wpcontent/uploads/documents/report/mric_re port_2016.pdf

Antibiotic Utilisation Monitoring

160

- National drug utilization studies started in 2004 and conducted on an annual basis
- Data collected from both public and private sectors; primary to tertiary care facilities
- Uses the ATC classification system and unit of measurement expressed as daily defined doses according to WHO recommendations
- In 2014 the overall antibacterial (JO1) use : 10.87 DDD/1000 population/day

https://www.pharmacy.gov.my/v2/en/do cuments/malaysian-statisticsmedicines.html

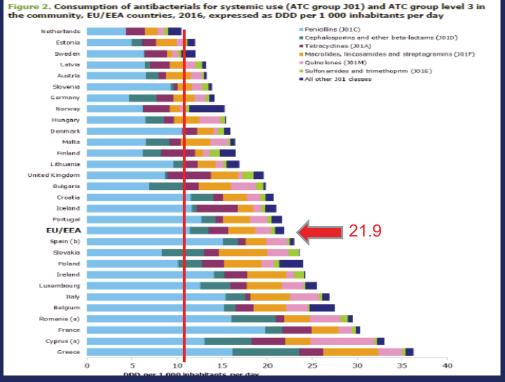

Use of anti-bacterials 2011-2014

Table 15.1: Use of antimicrobial agents, by therapeutic group from 2011 to 2014.						
ATC	Therepartie Crean	Sector	Utilisation (DDD/1,000 inhabitants/day)			
AIC	Therapeutic Group	Sector -	2011	2012	2013	2014
J01	Antibacterials for systemic use	Public Private Total	3.4935 6.0941 9.5876	3.6324 7.1103 10.7427	3.7084 7.1820 10.8904	3.8052 7.0650 10.8702

Significant increases in the use of

- Cefepime (164%)
- Piperacillin-tazobactam (66%)
- Carbapenems (30%)

Antibiotic Consumption (ATC Group J01) in Europe 2016

Antibiotic use monitoring in government hospitals


- Monitoring of antibiotic utilisation in MOH hospitals and 1 private chain of hospitals
- Ongoing activity for certain classes of antibacterials
 - Cephalosporins
 - Quinolones
 - Carbapenems
 - Glycopeptides
- Data expressed as DDD/100 admissions
- Submission of data to National Infection and Antibiotic Control Committee
- Identification of outliers and discussion of remedial measures

Formularies and guidelines

- Governmental sector
 - National antibiotic guidelines and national formulary

- All hospitals can modify these guidelines to suit their needs
- Private sector
 - Doctors can use any product so long as it is registered by the Drug Control Authority
 - Independent contractors in private hospitals
 - Out-of-pocket payment
- Professional society practice guidelines
- Effectiveness of guidelines questionable

MyAP-AMR 2017 - 2021

- Launched in 2017
- Joint programme by Ministries of Health and Agriculture
- In response to adoption of the Global Action of AMR by the World Health Assembly in 2015
- One Health approach

Framework

Key Priority Areas	Objectives
1. Public Awareness and Education	Improve awareness and understanding of AMR through effective communication, education and training
2. Surveillance and Research	Strengthen the knowledge and evidence base through surveillance and research
3. Infection Prevention and Control	Reduce the incidence of infection through effective sanitation, hygiene and infection prevention measures
4. Appropriate Use of Antimicrobials	Optimize the use of antimicrobial medicines in human and animal health

National Action Plan

Improve Awareness and Understanding of Antimicrobial Resistance through Effective Communication, Education and Training

Strategies

- Increase national awareness of AMR through public communication programmes in human and animal health.
- 1.2 Establish AMR as a core component of professional education, training and development for the human and animal health sectors.
- Include AMR in school extra-curricular activities in order to promote better understanding and awareness.
- 1.4 Provide the public media with accurate and relevant information on AMR.

- Under each objective
 - Strategies
 - Actions
 - Dates
 - Target groups
 - Responsible Units
 - Evaluation indices
 - Intensification of current activities as well as new initiatives
 - Working together

Conclusions

- Efforts in antibiotic stewardship has been on-going for nearly 3 decades
- There has been some successes but major challenges still remain
 - Largely a top-down approach
 - High prevalence of antimicrobial resistance
 - Limited participation outside the Ministry of Health

164

 Until recently little involvement of the agricultural sector

Prof. Wing Hong Seto

Position: Co-Director Department/organization: WHO Collaborating Centre for Infectious Disease Epidemiology and Control, The University of Hong Kong Economy: Hong Kong, China

Educational Background

- 1972 MB,BS
- 1981 MRCP (UK)
- 1981 MRCPI
- 1984 MRCpath
- 1992 FHKCPath Founding Fellow.
- 1994 FHKAM (Pathology) Founding Fellow.
- 1996 American Board Certified in Healthcare Quality [CPHQ]
- 1997 FRCPath

Professional Career

- Co-Director, WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, HKU, Hong Kong
- Clinical Professor (hon) School of Public Health, HKU
- Consultant Advisor (Hon), for Quality and Safety, HKU Shenzhen Hospital
- Consultant Microbiologist, Hong Kong Baptist Hospital, Hong Kong.

Publications

- Seto WH, Cowling BJ, Cheung CWY, Wong CYY, Ching PTY, Pittet D, Chen RCI: Impact of the first hand sanitizing relay world record on compliance with hand hygiene in a hospital. AJIC 2015 (American Journal of Infection Control, 2015, v. 43 n. 3, p. 295-297)
- Seto WH: Bundle approaches for the prevention of surgical site infections (SSI). International journal of antimicrobial agents [0924-8579] 2015 vol:45 pg:S39 -S39

- Nancy H. L. Leung, Jie Zhou, Daniel K. W. Chu, Han Yu, William G. Lindsley, Donald H. Beezhold, Hui-Ling Yen, Yuguo Li, Wing-Hong Seto, Joseph S. M. Peiris, Benjamin J. Cowling: Quantification of Influenza
- Virus RNA in Aerosols in Patient Rooms. 2016 Feb 5;11(2):e0148669. doi: 10.1371/journal.pone.0148669. eCollection 2016.
- Storr J, Twyman A, Zingg W, Damani N, Kilpatrick C, Reilly J, Price L, Egger M, Grayson ML, Kelley E, Allegranzi B; WHO Guidelines Development Group: Core components for effective infection prevention and control programmes: new WHO evidence-based recommendations. Antimicrob Resist Infect Control. 2017 Jan 10;6:6. doi: 10.1186/s13756-016-0149-9. eCollection 2017.
- Seto WH, Lee CF, Cowling BJ, Feng S, Aso H, Wu P, Fukuda K: The Impact Of Antibiotic Stewardship Programs In Asia: A Systematic Review And Metaanalysis. 4th International Conference on Prevention & Infection Control. 2017

Speech Abstract

Effective Antimicrobial Stewardship Program in Hong Kong

The WHO has stated that "antimicrobial resistance is clearly a global issue" ¹. Resistance to first-line drugs for most of the key pathogens causing infections disease ranges from zero to almost 100%. The WHO has identified antimicrobial use as the key driver of resistance. It is thus critically important to control antibiotics abuse which is the very essence of the Antibiotic Stewardship Program (ASP). It should also be appreciated that the ASP should be developed together with an effective Infection Control program and Surveillance activities¹. This is logical because Infection Control will prevent the spread of resistant bacteria and only with proper surveillance, can evaluation be made on the efficacy of implemented measures. These three are linked up like a "three legged stool."

In an effective ASP, multiple strategies should be incorporated. There is ample room for local innovations although two core strategies are recommended by the Infectious Disease Society of America². The first is prospective audit with intervention feedback. To be successful a guideline must first be promulgated and feedback should be given to any variance from the guideline. In Hong Kong, the feedback is given on the same day of the audit, a scheme known as Immediate Concurrent Feedback (ICF) with the effective reduction of >10% of the expensive antibiotics prescribed³. A summary of the various interventions used in Hong Kong will be provided which resulted in a savings of millions of dollars³. The program is carried out by Infection Control nurses with the more difficult cases reserved for physicians. Finally ASP should also be conducted in the outpatient setting. A summary of programs reported by the CDC and one conducted in Hong Kong will be briefly summarized.

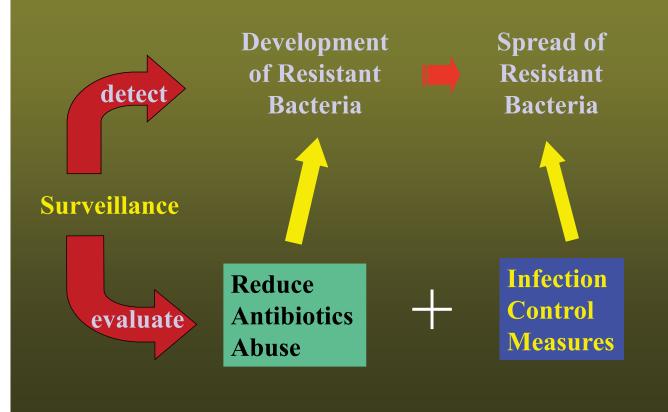
References:

- 1. WHO Global Strategy for Containment of Antimicrobial Resistance. WHO 2001.
- Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America 2007:44: 159-177

Cheng V, To K, Li L, Tang B, Chan J, Kwan S, Mak R, Tai J, Ching P, Ho P, Seto W: Antimicrobial stewardship program directed at broad-spectrum intravenous antibiotics prescription

í167

The Antibiotics Stewardship in Hong Kong


WHO Global Strategy for Containment of Antimicrobial Resistance "Antimicrobial resistance poses a global challenge"

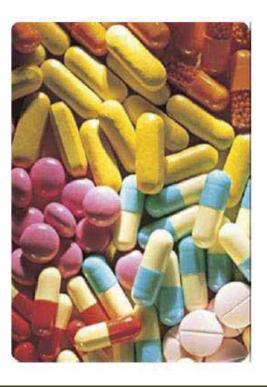
"likely to result in the absence of effective therapies for some pathogens within the next ten years"

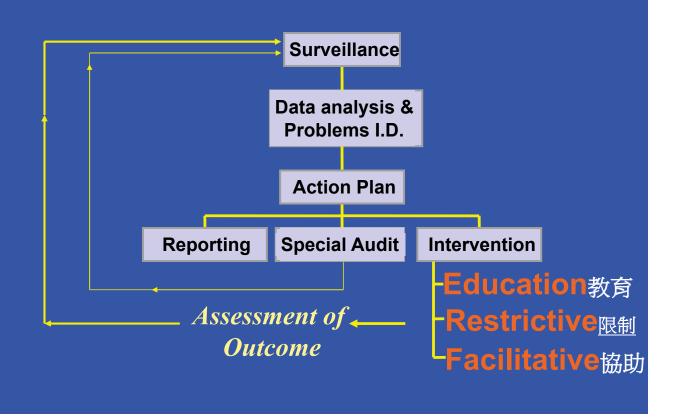
"Antimicrobial use is the key driver of resistance"

September 2001

Control of Antimicrobial Resistance

Antibiotic resistance – the three keys to control


- Infection Control
- Antibiotic stewardship
- Surveillance
 - Antibiotic-resistant bacteria
 - Antibiotic usage


Control of antibiotic resistance is like a three-legged stool – if you take away one of the legs – the whole thing falls over!

Antibiotic Stewardship - Definition

- The appropriate use of antibiotics and the limitation of unnecessary antibiotic administration/exposure
 - Optimising diagnosis
 - Selecting appropriate antibiotics
 - Optimal dosing

Antibiotics Utility Review Programme

Implementing antibiotics guidelines Education Intervention:

Lectures and Teaching Programme

•Written manuals, newsletters and susceptibility patterns

Education alone does not necessary work

•The failure of Physician Education as a Cost Containment Strategy.

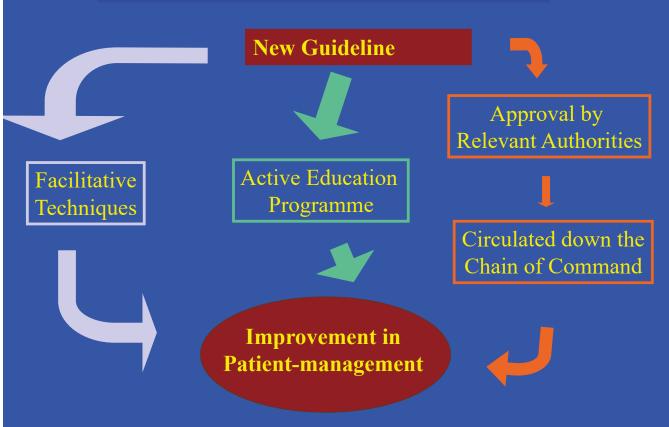
-Schroeder et al, JAMA

•The Short and Long Term Effects of a Handbook on Antimicrobial Prescribing Patterns of antimicrobial therapy.

-D'Eramo et al, Infection Control

Effect was only sustained for 3 months

Restrictive Intervention


- Formulary Restrictions
- Pharmacy justification
 Automatic stop policies
 Antibiotic order form
- Required Consultation and endorsement
- Therapeutic Interchange Programme
- Selective reporting of susceptibility tests
- Restriction of Interactions with Pharmaceutical Representatives

On restrictive policies:

"These strategies are probably the most <u>onerous</u> to prescribing physicians"

John & Fishman, CID'97;24:471

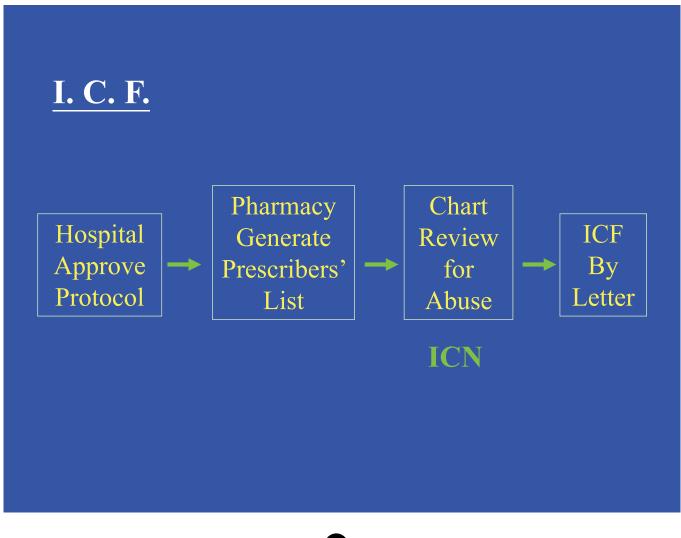
Implementation of a New Guideline

Facilitative Interventions

- 1. Feedback non-generic and non-formulary drugs (Feely et al BMJ 1990).
- 2. Retrospective audits with feedback (Am J Med '89;86:442).
- 3. Interaction & feedback by professional team (John et al CID '97;24:471).
- 4. Computerized decision support (Brent James, IMC).
- 5. Interactive workshop (Dwiprahasto, ICIUM 2004; O'Brien T, Cochrane Database of Systemic Reviews, Issue 4, 2002).
- 6. Use of opinion leaders (Everitt et al ICHE 1999, O'Brien T, Cochrane Database of Systemic Reviews, Issue 4, 2002).

173

7. Concurrent feedback (Anasari et al, JAC 2003:52:842)



Immediate - feedback occurs on day of audit

Concurrent - patient still in hospital

Feedback - specific for doctor & prescription

Help of an ICN & Pharmacy

Usage of Co-amoxiclav/Sultamicillin in QMH

"Of interest in the Seto Study, feedback could be produced relatively inexpensively by a part-time nurse"

Hemeryck et al, BJ Clin Pharmacol 97:43:449

Patient admitted to the hospital are usually started on IV antibiotics therapy, then switched to equivalent oral therapy after clinical improvement (usually within 72 hours).

Advantages of early IV-to-PO switch programs include reduced cost, early hospital discharge, less need for home IV therapy and virtual elimination of IV line infections

There is no difference in clinical outcome using equivalent IV or PO antibiotics

С

CUNHA, 2012 New York

Principles in Surgical Antibiotics Prophylaxis

1. Not for clean operations except :

Prosthesis Drastic outcomes if infected (eg.CNS) High risk (eg. age or prolonged duration)

2. Whenever possible use first generation cephalosporin

- 3. Avoid antibiotics that are used for treatment
- 4. Given on induction
- 6. Post-operative coverage are generally unwarranted

What about at induction?

WHO The panel recommends the administration of SAP within <u>120 minutes before incision</u>,

ASHP

Summary of Key Updates. These guidelines reflect substantial changes from the guidelines published in 1999.¹ Highlights of those changes are outlined here.

Preoperative-dose timing. The optimal time for administration of preoperative doses is within 60 minutes before surgical incision. This is a more-specific time frame than the previously recommended time, which was "at induction of anesthesia." Some agents, such as fluoroquinolones and vancomycin, require administration over one to two hours; therefore, the administration of these agents should begin within 120 minutes before surgical incision.

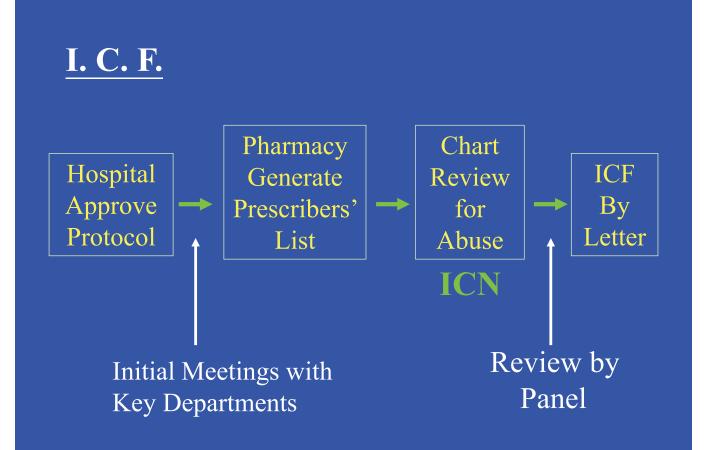
<u>Impact – HK guideline</u>

Timing: For many prophylactic antimicrobial agents, the administration of an initial dose should be given within 30 minutes before incision \cdots ... facilitated by having the anaesthesiologist administer the drug in the operating room <u>at</u> induction.

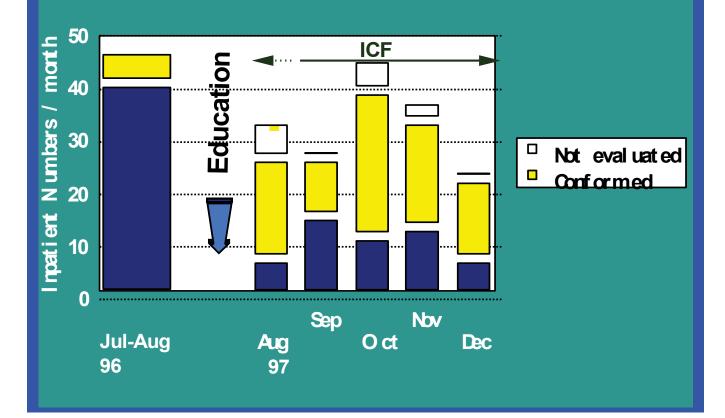
Result of education and ICF in the surgical unit

	>3 does post-op	use 3rd gen. <u>Cephalosporin</u>
July - Sept/92	65%	17%
	Education Prog	ramme
Oct - Dec/92	61%	26%
	Start ICF	
January/93	30%	30%
February	26%	21%
March	18%	16%
April	14%	6%
May	12%	4%

Prophylactic use of antibiotics in QMH. Estimation for 1991. Total patients on surgical prophylaxis: 6188 patients Assuming 40% usage is inappropriate: 2475 patients Estimated cost of inappropriate use: \$2.5 million. Estimated savings if appropriate use: <u>\$2.1 million.</u>


Guideline for Vancomycin usage

<u>YES</u>


- 1. Infections by β -lactam resistant gram+ve
- 2. Empirical Rx only for special patients at risk
- 3. β -lactam allergy with serious infections
- 4. AAC not responding to metronedazole
- 5. Surgical prophylaxis with prosthesis
- 6. Presumed pneumococcal meningitis

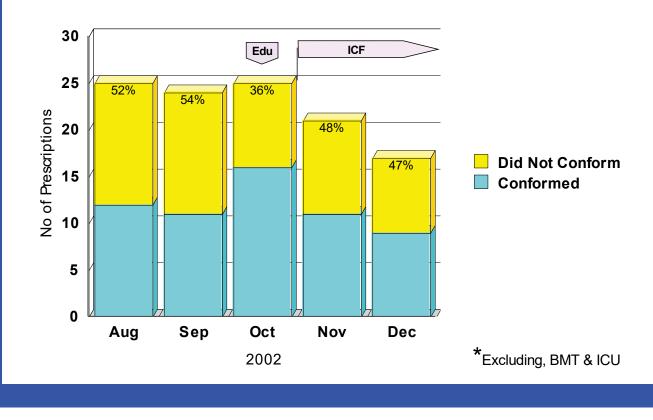
<u>No</u>

- 1. Most initial empirical Rx of neutropenic
- 2. 1 bld culture of CNS, Bacillus & Diptheroids
- 3. Rx of β -lactam sensitive organisms
- 4. Routine prophylaxis
- 5. Irrigation or topical application
- 6. Primary Rx of AAC

VANCOMYCIN OR TEICOPLANIN PRESCRIPTIONS Depts' of Medicine (ex BMT Centre) + Orthopaedics & Trauma

The Five Big Guns

Meropenam Imipenam Tazocin Cefepime Ceftzidime

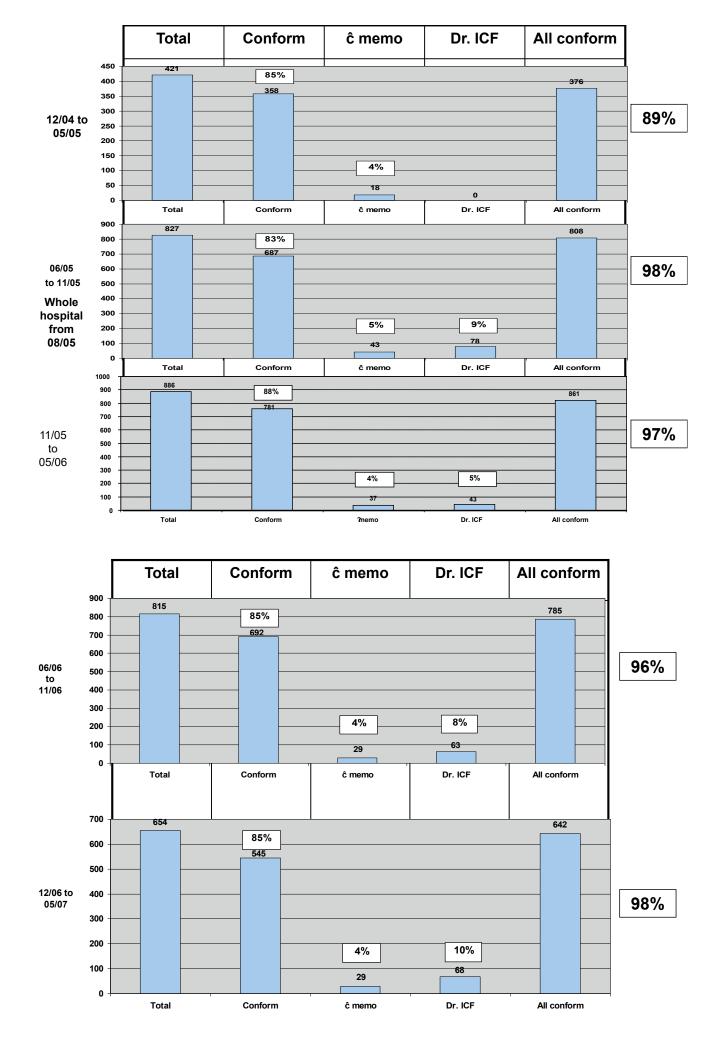

Later: + Sulfperazone

5 Situations in which "Big Guns" Antibiotic Prescribing is <u>NOT</u> ADVISABLE

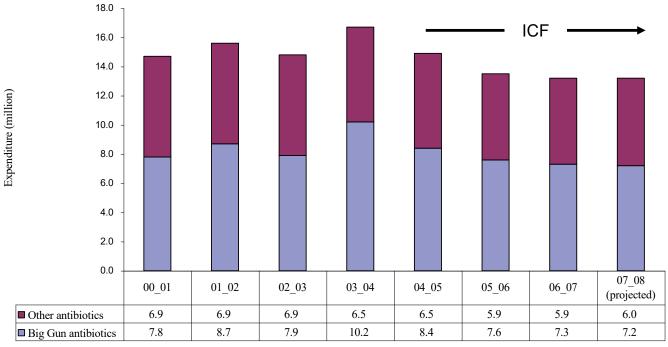
- No evidence of infection eg colonization
- For chemoprophylaxsis
- For infection by pathogen that is susceptible to "Lesser Guns"
- In combination with other β-lactam "Big Guns" antibiotics

- Empirical treatment of community acquired infections (in non-neutropenic patients) except:
- Organ transplant recipients on high level immunosuppression (ie prednisolone >30mg/day for 3 weeks or 10mg/day long term)
- Definite deterioration or persistent fever despite 72hr 1st line treatment
- Evidence of severe clinical sepsis (eg seriously ill CAP, haemodynamically unstable, meningitis, infective endocarditis)

Audit of IV "Gig Gun" Antibiotic Prescribing <u>Preliminary Results:</u> Dept of Med Wards* QM Hospital



"Big Gun" Prescribing in Dept of Medicine Wards & All Other Depts of QM Hospital **Dept of Med All Other Units** 30 ICF No ICF 25 36% 54% 57% Vo of Prescriptions 48% 20 Did Not 47% 53% Conform 15 Conformed 38% 45% 10 11% 5 0 Aug Sep Oct Nov Dec Aug Sep Oct Nov Dec 2002 2002


Physician ICF – after initial ICN review 1. Non-severe nosocomial infections eg. nosocomial

- pneumonia < 5 days in Hospital + no previous admission.
- 2. Treatment duration eg. Nosocomial pneumonia \geq 7 days (unless Ps A or non-fermenters)
- 3. Acute Pancreatitis dealing with Imipenem (benefits found: Slavin et al Ar Sug 2001:386:155; Bassi et al JHP Surg 2001:8:211; Ratschko et al Gasto Clin Nam 1999:28:641; Sharma et al Pancreas2001:22:28)
- 4. Antibiotics for neutropenia/solid organ transplant
- 5. CAPD peritonitis follow international protocol
- 6. PTBD percutaneous transhepatic biliary drainage
- 7. Evaluation of critical vital signs and severe CAI
- 8. Patients on DNR.

Eur J Clin Microbiol Infect Dis DOI 10.1007/s10096-009-0803-8

Antibiotic expenditure in QMH

■ Big Gun antibiotics ■ Other antibiotics

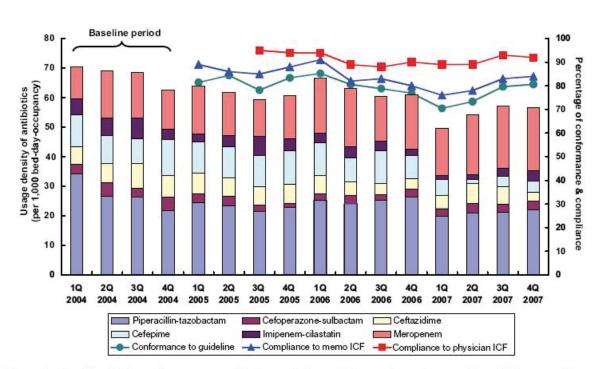


Fig. 1 Usage density of antibiotic, conformance to antibiotic prescription guideline, and compliance to the antibiotic stewardship program. Abbreviations: 1Q first quarter, 2Q second quarter, 3Q third quarter, 4Q fourth quarter, ICF immediate concurrent feedback

184

Eur J Clin Microbiol Infect Dis, 2009;28:1447

Data from Pharmacy, QMH

Just don't smile at the wrong time......

APEC Conference on Strategies Against the Evolving Threats from Antimicrobial Resistance

Prof. Yee-Chun Chen Position: Professor Department/organization: Department of Internal Medicine, National Taiwan University Hospital and College of Medicine Economy: Chinese Taipei

Educational Background

- M.D., Taipei Medical College (now Taipei Medical University)
- Residency (Internal Medicine), National Taiwan University Hospital
- Fellowship (Infectious diseases), National Taiwan University Hospital
- PhD, Prof. Lee FJ Scott's laboratory, Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine

Professional Career

- Attending physician, Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University Hospital
- Professor of Medicine, National Taiwan University College of Medicine
- Director of Center for Infection Control, National Taiwan University Hospital
- Chief, Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University Hospital
- Deputy Director/Acting Director, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes

Publications

- KUO SC, Shih SM, Hsieh LY, Yang LAUDERDALE TL, Chen YC*, Hsiung CA, Chang SC. Antibiotic Restriction Policy Paradoxically Increased Private Drug Consumptions Outside Taiwan's National Health Insurance. J Antimicrob Chemother 2017; 72:1544–1545. (*corresponding author)
- Lu PL, Liu WL, Lo HJ, Wang FD, Ko WC, Ho ML, Liu CE, Chen YH, Chen YC*, Chuang YC, Chang SC. Are We Ready for the Global Emergence of Multidrugresistant Candida auris in Taiwan? J Formos Med Assoc. 2017 Nov 6. pii: S0929-6646(17)30703-9. doi: 10.1016/j.jfma.2017.10.005
- Pan SC, Sheng WH, Tien KL, Chien KT, Chen YC*, Chang SC. Promoting a Hand Hygiene Program Using Social Media: An Observational Study. JMIR Public Health Surveillance 2016; 2:e5

- Cheng A, Sheng WH, Huang YC, Sun HY, Tsai YT, Chen ML, Liu YC, Chuang YC, Huang SC, Chang CI, Chang LY, Huang WC, Hsueh PR, Hung CC, Chen YC*, Chang SC. Prolonged Post-procedural Outbreak of Mycobacterium massiliense Infections Associated with Ultrasound Transmission Gel. Clin Microbiol Infect 2016; 22:382-383.
- Tseng YJ, Wu JH, Lin HC, Chen MY, Ping XO, Sun CC, Shang RJ, Sheng WH, Chen YC., Lai F, Chang SC. Development and Evaluation of a Web-Based, Hospital-Wide Healthcare-Associated Bloodstream Infection Surveillance and Classification System. J Med Internet Res Medical Informatics 2015;3:e31

Speech Abstract

Healthcare-associated Infections in Intensive Care Units in Asia: Recent Trends Based on Healthcare-associated Infections Surveillance Network over an 8-year period

Background: Data from surveillance of healthcare-associated infections (HAI) provides feedback for implementation of infection prevention and control (IPC) programs. To address the paucity of such data in Asia, we searched for national HAI surveillance and IPC programs in this region.

Methods: Data were analysed from open access national surveillance reports of Chinese Taipei, South Korea and Japan from 2008 to 2015. IPC programs implemented were identified.

Results: There was a 53.0% reduction in overall HAI over the 8-year period. This consisted of a decrease from 9.34 to 5.03 infections per 1,000 patientdays in Chinese Taipei,-from 7.56 to 2.76 in Korea, and from 4.41 to 2.74 in Japan (Poisson regression, all p < 0.05). Across the three countries, *Escherichia coli* and *Candida albicans* were the major causative pathogens for urinary tract infection. Staphylococcus aureus, Acinetobacter baumannii and Enterococcus faecium were common bloodstream pathogens. For pneumonia, S. aureus, A. baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae were the predominant pathogens, with considerable country differences. Although the number of participating ICUs has expanded, there was a 64.6% decrease in the number of isolates of methicillin-resistant S. aureus, a 38.4% decrease in carbapenem-resistant *P. aeruginosa* and a 49.2% decrease in carbapenem-resistant A. baumannii (CRAB) in Chinese Taipei (all p<0.05), and similarly in Korea with the exception of CRAB (30.5% and 50.4%) reduction, respectively, both p < 0.05).

Conclusion: We found a significant decrease of HAI across the three countries in association with sequential multifaceted interventions. Further regional collaboration could be forged to develop joint strategies to prevent HAI.

Healthcare-associated Infections in Intensive Care Units in Asia: Recent Trends Based on Healthcare-associated Infections Surveillance Network over an 8-year period

Yee-Chun Chen, M.D., PhD.

Center for Infection Control, National Taiwan University Hospital; Department of Medicine, National Taiwan University College of Medicine; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes

Healthcare-associated Infections in Asia

Rationale:

- Lack of HAI data at regional and national level in Asia
- Use data from surveillance to map regional HAI epidemiology
- Also provide framework for other countries

Healthcare-associated Infections in Asia Healthcare-associated Infections in Asia Healthcare-associated Infections in Asia Healthcare-associated Infections Healthcare-associated Infections

Healthcare-associated Infections in Asia

South Korea

Chinese Taipei

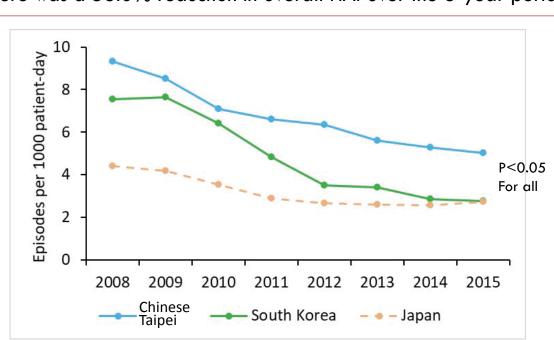
Taiwan Nosocomial

Since 2000

Infection Surveillance (TNIS)

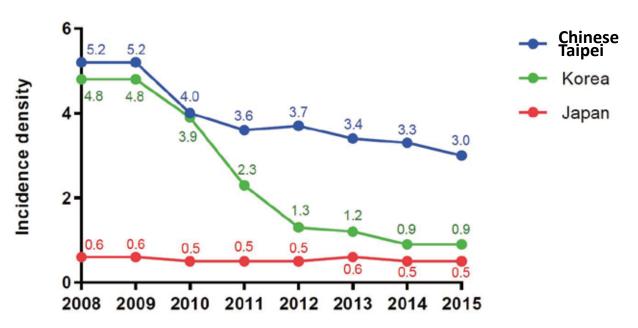
Korean National Healthcareassociated Infection Surveillance System (KONIS) Since 2006

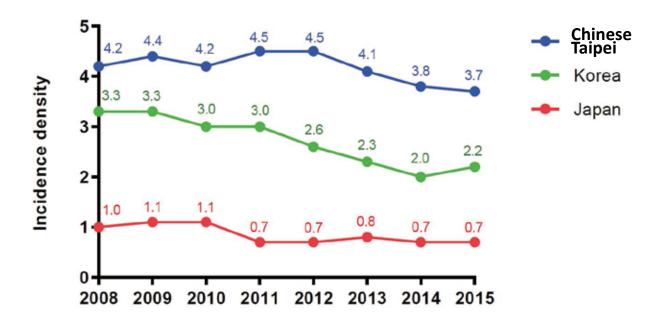
Japan


Japan Nosocomial Infection Surveillance (JANIS) Since 2001

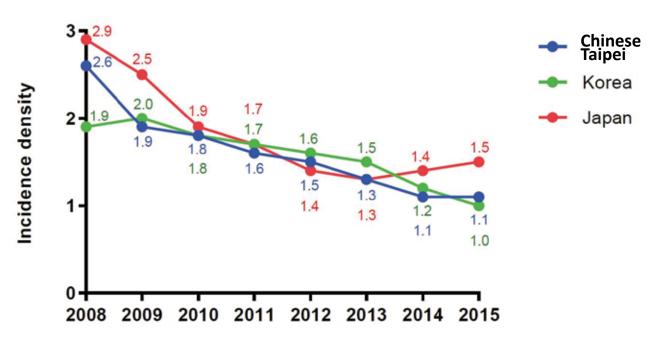
Methods:

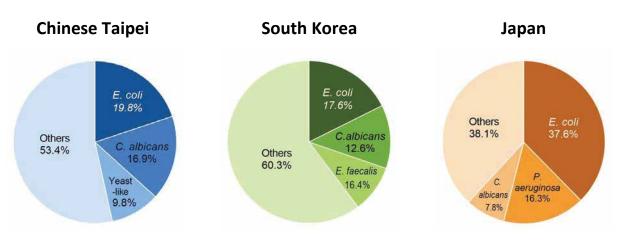
- Google search: "national nosocomial infection surveillance" or "national healthcare-associated infection surveillance" in combination with specific country names.
- Inclusion criteria:
 - English language,
 - open access data or PubMed publications,
 - annual data containing either point prevalence or yearly surveillance for 5 or more years.
- Infection prevention and control programs implemented were identified.


Surveillance of Chinese Taipei, South Korea, and Japan

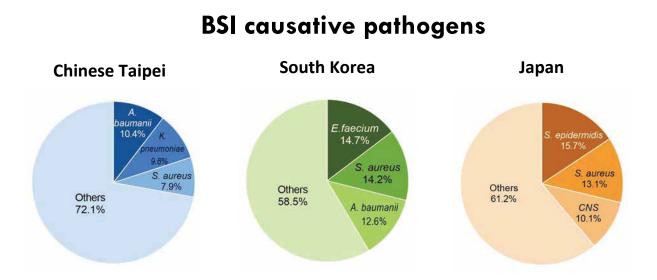


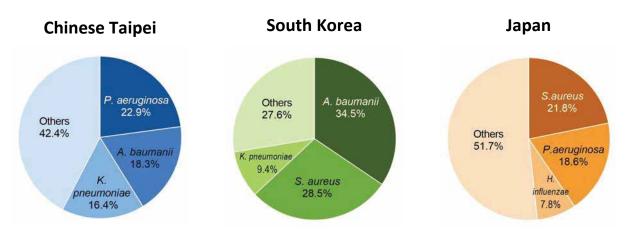
There was a 53.0% reduction in overall HAI over the 8-year period.


Catheter-associated urinary tract infection



Central line-associated bloodstream infections

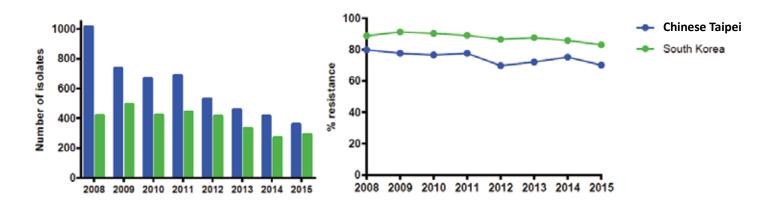

Ventilator-associated pneumonia

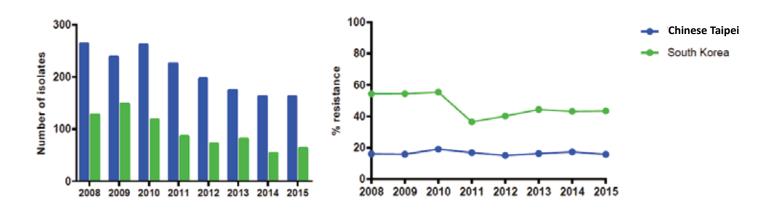

UTI causative pathogens

E. coli and C. albicans are common across all three countries

195

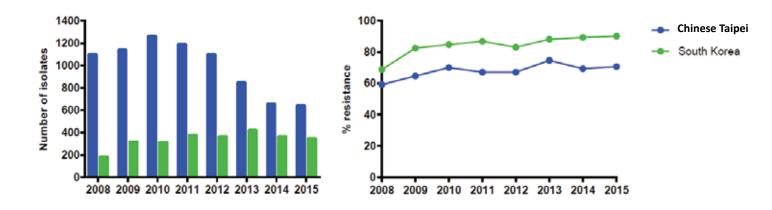
S. aureus is common across all three countries A. baumanii is important in Chinese Taipei and Korea

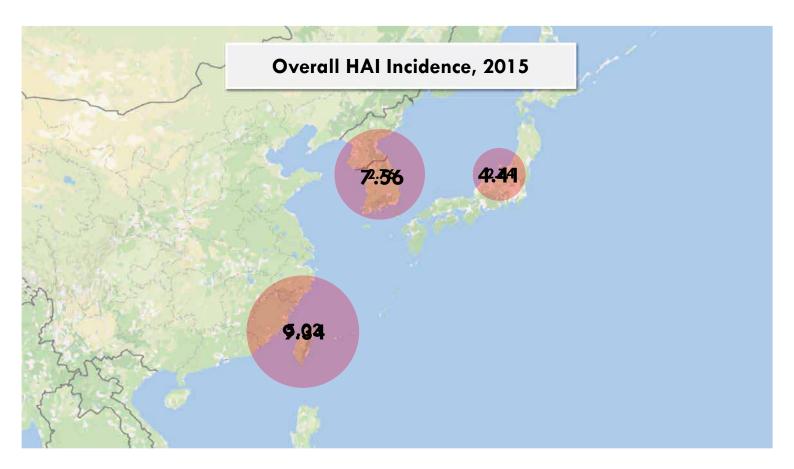



Pneumonia causative pathogens

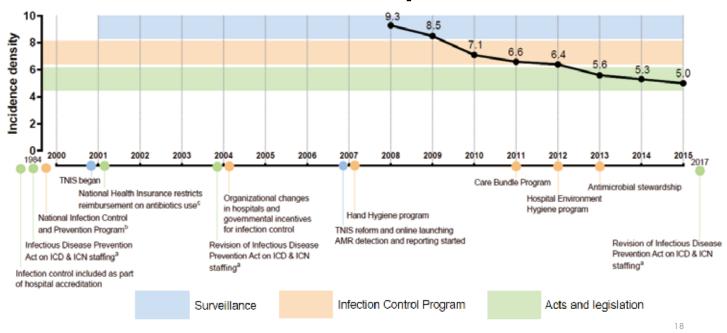
A. baumanii is important in Chinese Taipei and Korea

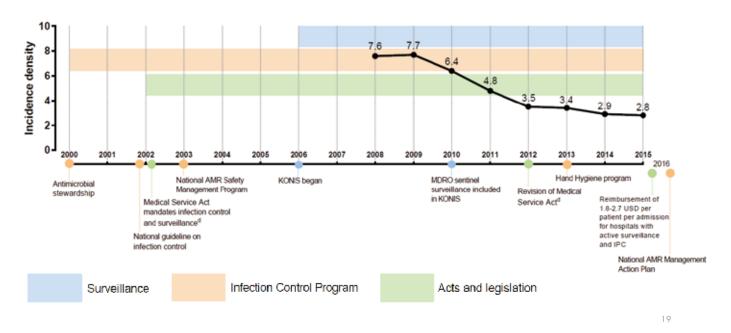
P. aeruginosa, K. pneumonia, S. aureus are important across the three countries

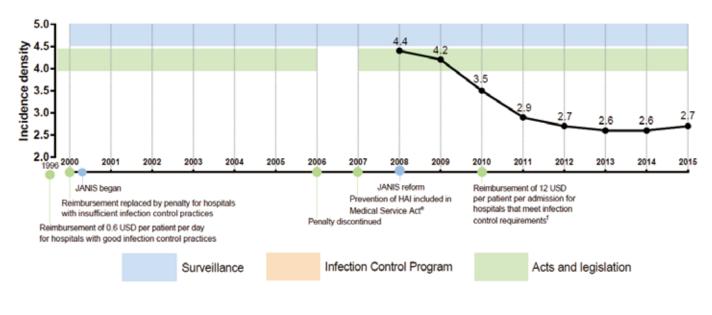


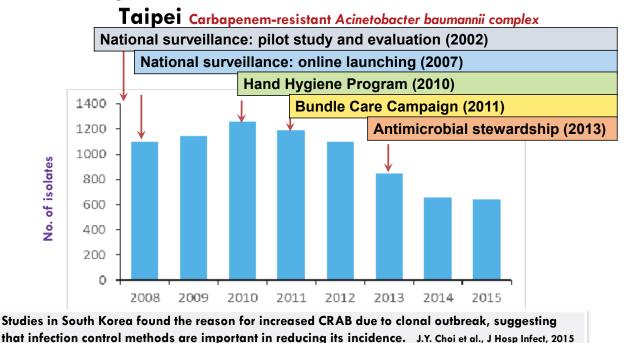


Carbapenem-resistant Pseudomonas aeruginosa


Carbapenem-resistant Acinetobacter baumannii complex


197


Chinese Taipei



Japan

Integrated surveillance and intervention, Chinese

Conclusion

- We found a significant decrease of HAI across the three countries in association with sequential multifaceted interventions.
- Further regional collaboration could be forged to develop joint strategies to prevent HAI.

Acknowledgements

Cho-Han Chiang₁, Sung-Ching Pan₂, Tyan-Shin Yang₁, Keisuke Matsuda₃, Hong Bin Kim_{4,5}, Young Hwa Choi₆, Satoshi Hori⁷, Wang-Huei Sheng^{1,2}, Feng-Yee Chang,⁸ Shan-Chwen Chang^{1,2}

¹College of Medicine, National Taiwan University

²Department of Internal Medicine, National Taiwan University Hospital ³Faculty of Medicine, Osaka University, Osaka, Japan

⁴Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea ⁵Division of Infectious Diseases, Seoul National University Bundang Hospital, Seongnam, Republic of Korea ⁶Department of Infectious Diseases, Ajou University School of Medicine, Suwon, Republic of Korea ⁷Department of Infection Control Science, Juntendo University Faculty of Medicine, Tokyo, Japan

⁸ Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center

CDC, : Ms. Lee-Jung Chien, Dr. Shu-Hui Tseng

Infection control personnel in Chinese Taipei, South Korea, and Japan who contributed to infection control

and the surveillance efforts

Keynote Speech III WHO Strategies to Fight Antimicrobial Resistance

Moderator

Prof. Shan-Chwen Chang Dean, College of Medicine, National Taiwan University

Speaker

Prof. Didier Pittet Chief Medical Officer, University hospitals of Geneva

APEC Conference on Strategies Against the Evolving Threats from Antimicrobial Resistance

Prof. Didier Pittet
Position: Chief Medical Officer
Department/organization: University hospitals of Geneva
Economy: Switzerland

Biography

Didier Pittet, MD, MS, born 20/03/1957, is Professor of Medicine, the Hospital Epidemiologist and Director of the Infection Control Programme and World Health Organization (WHO) Collaborating Centre on Patient Safety at the University of Geneva Hospitals and Faculty of Medicine, Geneva, Switzerland. He holds Honorary Professorships at Imperial College London, UK, Hong Kong Polytechnic University School of Health Science, and the First Medical School of the Fu, Shanghai, China. Professor Pittet is Lead Adviser of the first WHO Global Patient Safety Challenge "Clean Care is Safe Care" and the African Partnerships for Patient Safety, Patient Safety, WHO Headquarter.

Prof Pittet is the recipient of several national and international honours including a CBE (Commander of the British Empire) awarded by Her Majesty Queen Elisabeth II for services to the prevention of healthcare-associated infection in the UK (2007), the Society for Healthcare Epidemiology of America Lectureship for his contribution to infection control and healthcare epidemiology (2008) and the European Society of Clinical Microbiology and Infectious Diseases' Award for Excellence (2009). The book "Clean Hands Save Lives" by the French writer Thierry Crouzet (Editions L'Âge d'Homme, 2014), translated in 11 languages as of December 2014, describes Didier Pittet medical odyssey to promote hand hygiene and patient safety worldwide. D Pittet is co-author of more than 500 publications in peer-reviewed journals and 50 textbook chapters (H-index 66; total citations 15960 as of 25/1/2015). He serves on the editorial boards of several journals and is an editorial consultant of the Lancet. Professor Pittet current research interests include the epidemiology and prevention of healthcareassociated infections, methods for improving compliance with barrier precautions and hand hygiene practices, as well as innovative methods for improving the patient care and safety. He is also involved in research on the epidemiology of infectious diseases, and public and global health issues.

In 2004, Pittet was approached by the WHO World Alliance of Patient Safety to lead the First Global Patient Safety Challenge under the banner "Clean Care is Safer Care" (http://www.who.int/gpsc/en/). The mandate was to galvanise global commitment to tackle health-care associated infection, which had been identified as a significant area of risk for patients in all United Nations Member States. Pittet proposed that WHO Guidelines for Hand Hygiene in Health Care be developed under his leadership in consultation with a large group of international experts. The final version of the Guidelines (http://whqlibdoc.who.int/publications/2009) was published in 2009 together with a multimodal improvement strategy, based on the successful model developed in Geneva and published in The Lancet in 2000. Concepts from the social sciences led to the creation of a multimodal strategy based on education, performance monitoring and feedback, and culture change in addition to the key component: introduction of alcohol-based handrub at the point of care to replace handwashing at the sink ("system change"). As of December 2014, "Clean Care is Safer Care" has been endorsed by ministers of health in over 130 countries worldwide representing a coverage of more than 95% of the world population. Save Lives: Clean Your Hands is the Challenge's annual campaign, that include the 5 May designated by WHO "World Hand Hygiene Day, with almost 18,000 hospitals registered from more than 179 countries at the end of December 2014. Alcohol-based hand rub is promoted actively as the new standard of care, including in resource-poor countries. Universal system change has been made possible worldwide and is today considered as the new standard of patient care.

Over 20 years of experience with culture change at the University of Geneva Hospitals constitute the solid scientific basis of the work of Didier Pittet and this experience and leadership has permitted him to lead international strategies at the healthcare setting and national levels in Australia, Belgium, Canada, France, Hong Kong, Iran, Italy, Spain, Switzerland, UK, USA, and various countries in Africa, Asia, the Middle and Far East, and Central and South America. The experience of his team in engaging nations and healthcare settings worldwide in a universal commitment to patient safety is unique.

Speech Abstract

WHO Strategies to Fight Antimicrobial Resistance

Prof. Didier Pittet, MD, MS, CBE

Director, Infection Control and WHO Collaborating Centre on Patient Safety, The University of Geneva Hospitals and Faculty of Medicine; Lead Adviser, SAVE LIVES: Clean Your Hands, Service Delivery, WHO Headquarter, Geneva, Switzerland.

The World Health Organization (WHO) is "the directing and coordinating authority on international health within the United Nations system". The objective of WHO is the attainment by all peoples of the highest possible level of health. Health, as defined in the WHO Constitution, is a "state of complete physical, mental and social well-being and not merely the absence of disease or infirmity". WHO has a broad constitutional mandate and extensive law-making and convening power. The Constitution of WHO has a list of not less than 22 functions as providing technical guidance and harnessing scientific expertise, setting technical standards, helping countries to implement project, being a convening and negotiation forum for states and being an international norms setter. In other words, WHO cumulates technical, political and normative functions.

WHO has a strong antimicrobial resistance (AMR) mandate and has tackled AMR for a long time both regarding AMR in general but also regarding specific diseases such as HIV-AIDS, tuberculosis and Malaria. WHO is virtually active in all challenges (surveillance, infection prevention, conservation, containment, access and innovation) regarding AMR including in areas that are traditionally covered by other international organizations. In terms of knowledge, WHO has a strong network of experts that inform the activities of the organization. In terms of norms, WHO has adopted several resolutions on AMR and work on areas related to AMR. For example, WHO has been working on innovation in public health to evaluate diverse ways to incentive research and development of new antimicrobials. In terms of policies, WHO has formulated joint policies regarding AMR through the adoption of its 2015 WHO Global Action Plan and related plans for specific diseases. The broad normative functions of WHO makes WHO an essential forum in the area of "policy and regulations" considering however that international law has its advantage and benefits and it not per se a guarantee of effectiveness. In terms of institutions, recent innovation at WHO include the creation of mechanisms for surveillance (e.g. AGISAR, GLASS), stewardship (e.g. Global Framework for Development & Stewardship to Combat Antimicrobial Resistance, AMR awareness week) and research and development (e.g. GARDP in partnership with DNDi). Many activities conducted in partnerships with other actors. The main mechanisms for intersectoral collaboration regarding AMR include the tripartite collaboration with FAO and OIE, the Codex Alimentarius (WHO and FAO), the trilateral collaboration on public health, innovation and trade. Considered together the activities of the WHO include 1) synthesising scientific knowledge and producing technical guidance, 2) producing norms ranging from soft to hard law, 3) formulating global policies on AMR and 4) supporting project implementation. Given its wide range of activities and functions, WHO is the main player regarding AMR. The complexity of the challenges makes that WHO has to rely on the expertise of other international organizations. WHO should continue to orchestrate the global response on AMR based on strong collaboration within different departments at WHO and beyond through inter-organizational collaboration. Given the strong interdisciplinary nature of AMR, WHO might extend the range of WHO collaborative centres to better integrate social science research on AMR.

Keynote Speech IV Antimicrobial Resistance Detection and Containment; A Current US Approach

Moderator

Dr. Yi-Chun Lo Deputy Director-General, Centers for Disease Control

Speaker


Dr. Michael Bell

Deputy Director, Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention

APEC Conference on Strategies Against the Evolving Threats from Antimicrobial Resistance

Dr. Yi-Chun Lo Position: Deputy Director-General Department/organization: Centers for Disease Control Economy: Chinese Taipei

Educational Background

• M.D., National Taiwan University College of Medicine

Professional Career

•	2003-2008	Internal Medicine Residency and Infectious Disease
		Fellowship, National Taiwan University Hospital
٠	2009-2011	Epidemic Intelligence Service, US CDC
•	2012-2016	Medical Officer and FETP Director, CDC
•	2016-	Deputy Director-General, CDC

Publication

- Cheng CY, Wu HH, Zou H, Lo YC. Epidemiological characteristics and associated factors of acute hepatitis A outbreak among HIV-coinfected men who have sex with men in Taiwan, June 2015–December 2016. J Viral Hepat 2018 [Epub ahead of print]
- Wu HH, Shen YT, Chiou CS, Fang CT, Lo YC. Shigellosis outbreak among MSM living with HIV: a case-control study in Taiwan, 2015–2016. Sex Transm Infect 2018 [Epub ahead of print]
- Lo YC. Implementation of the IHR Joint External Evaluation: Taiwan's Experiences. Health Secur 2017;15:132–6.
- Liao YS, Liu YY, Lo YC, Chiou CS. Azithromycin-nonsusceptible Shigella flexneri 3a in men who have sex with men, Taiwan, 2015–2016. Emerg Infect Dis 2017;23:345–6.
- 11. Chiou CS, Izumiya H, Kawamura M, Liao YS, Su YS, Wu HH, Chen WC, Lo YC. The worldwide spread of ciprofloxacin-resistant Shigella sonnei among HIVinfected men who have sex with men, Taiwan. Clin Microbiol Infect 2016;22:383.e11–6.

APEC Conference on Strategies Against the Evolving Threats from Antimicrobial Resistance

Dr. Michael Bell Position: Deputy Director Department/organization: Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention Economy: the United States

Biography

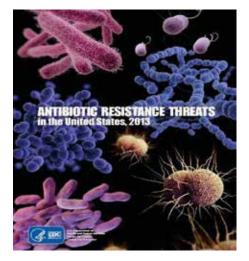
Dr. Michael Bell is the Deputy Director of CDC's Division of Healthcare Quality Promotion. Prior to that he served as the Associate Director for Infection Control and was the Executive Secretary for the US Healthcare Infection Control Practices Advisory Committee. His career has focused on investigating and preventing transmission of healthcare-associated illness, development of evidence-based infection control guidelines, and optimizing systems of care. Prior to his current position at CDC, he was the Chief of the Epidemiology Unit at the Viral Special Pathogens Branch, addressing control of high-risk pathogens.

He received his medical degree from the University of Washington and trained in Infectious Diseases at the University of California San Francisco.

Speech Abstract

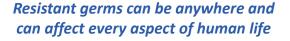
Antimicrobial Resistance Detection And Containment; a Current US Approach

Antibiotics are a precious resource that we must not lose. Antimicrobial resistance (AMR) is a natural phenomenon that is continuous in the presence of antibiotics. Traditional approaches to AMR in the United States did not effectively contain this growing threat. Today, the US approach is focused on Prevention of Infections and Appropriate Antibiotic Use, Early Detection and Fast Response for Containment of AMR threats, along with Innovation to support better diagnosis, treatment, and control of AMR pathogens, and address the roles of the microbiome and environment in AMR. Implementation of these efforts has required significant investments in national and local capacities. The Centers for Disease Control and Prevention, in partnership with state and local public health systems, human and animal health sectors, industry and academia, international collaborators, and patient representatives is leveraging those investments to ensure that we continue to have effective antibiotics on which to rely in the coming decades.



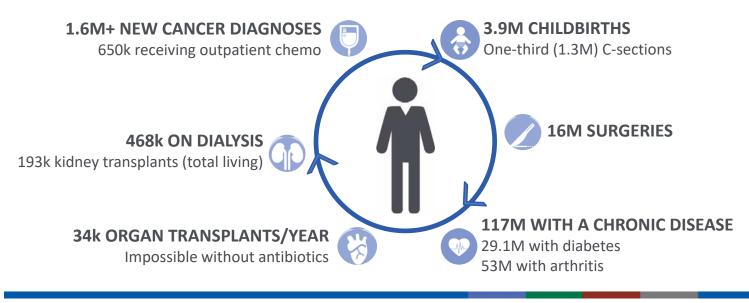
Antimicrobial Resistance Detection and Containment; a current US approach

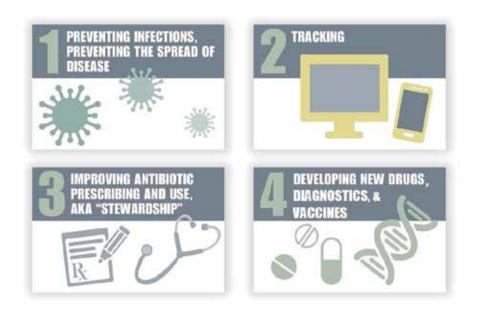
Michael Bell, MD Division of Healthcare Quality Promotion National Center for Emerging and Zoonotic Infectious Diseases No conflicts of interest to declare


Antimicrobial Resistance: A Growing Threat

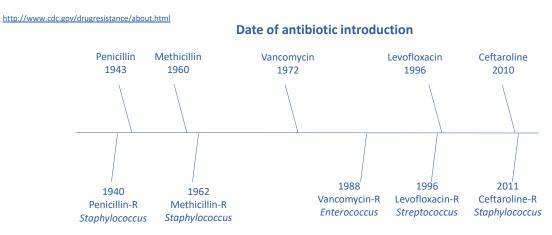
- Sickens >2 million people and kills at least
 23,000 people each year
- >\$20 billion each year in healthcare costs

Antimicrobial Resistance Threatens Every Person, Modern Medicine, and Industries


- Antibiotic resistant germs avoid the effects of the drugs designed to kill them
- AMR affects all communities and, without action, will continue to get worse
- AMR is not preventable, but it can be contained
- We still have time to make a difference


Resistance Threatens U.S. Healthcare and Undermines Our Ability to Heal and Cure

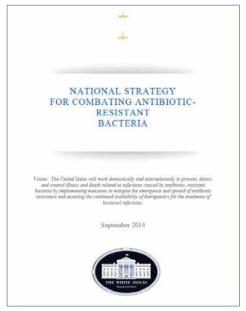
Life-saving treatments depend on antibiotics that work



New Drugs Alone Are Not Enough...

Combating AR requires comprehensive, aggressive action across the U.S. gov't and around the globe

Antibiotic Use Drives Resistance



National Momentum on AR: Post CDC Threat Report

National Strategy to Combat Antibiotic Resistant Bacteria, September 2014 – 5 Goals

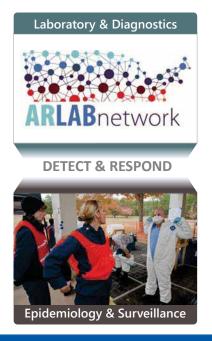
- 1. Slow the Emergence of Resistant Bacteria and Prevent the Spread of Resistant Infections
- 2. Strengthen National One-Health Surveillance Efforts to Combat Resistance
- Advance Development and Use of Rapid and Innovative Diagnostic Tests for Identification and Characterization of Resistant Bacteria
- 4. Accelerate Research to Develop New Antibiotics and Alternative Therapeutics, and Vaccines
- Improve International Collaboration and Capacities for Disease Prevention and Surveillance and Antibiotic Research and Development

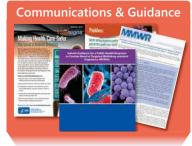
Fighting Antibiotic Resistance Where it Happens

Improving antibiotic use and infection prevention, with innovative and proven practices to control spread.

Rapidly identifying drug-resistant foodborne bacteria to stop and solve outbreaks and improve prevention.

Detecting, preventing, tracking and treating drug-resistant pathogens in the community.


Improving international collaboration and capacities for surveillance, infection control, prevention, stewardship, and public health research.



Exploring unanswered questions about AR and humans, animals, and the environment (e.g., surface water and soil).

CDC's Work in Antimicrobial Resistance

PREVENT & CONTAIN

INNOVATE

Accelerating & Implementing Innovations to Combat AR

Industry Partners

Synergies with Industry, e.g. CDC's Isolate Bank:

- *C. auris* diversity panel used by EPA to test disinfectants
- Isolates for development of new rapid diagnostics
- Environmental testing of antibiotics in pesticides

Leaders in Applied Research

Research on AMR in healthcare, food, and community, e.g.:

- New ways to detect AR and improve abx use
- Domestic and international AMR transmission and colonization
- Microbiome
- AMR in water systems, environment
- AMR data sources

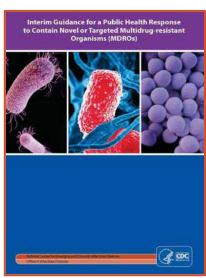
Prevention Networks

Piloting and evaluating evidence-based prevention strategies in healthcare e.g.:

- Developing ways to model AR and HAI transmission
 Improving infection
- control interventions
- Assessing antibiotic stewardship and use

Academic & Healthcare Investigators

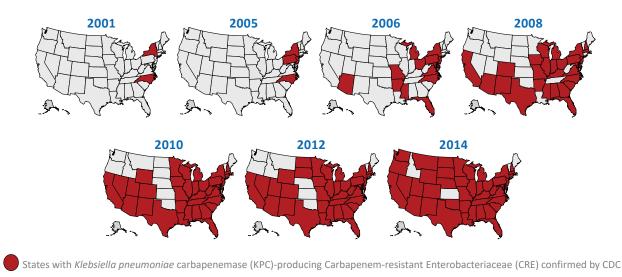
Discovering and scaling up new ways to protect people:

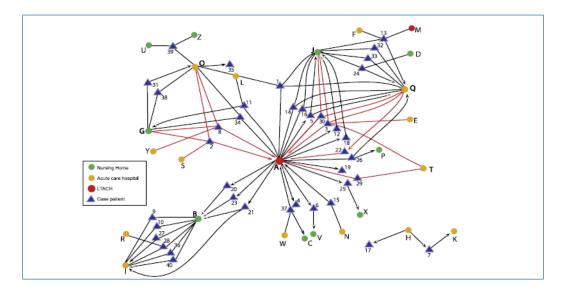

- Domestic and international HAI prevention research
- Research on
 environmental AMR
- Healthcare information
 technology development
- Veterinary healthcare quality improvement

CDC's Containment Strategy

Systematic approach to slow spread of novel or rare multidrug-resistant organisms or mechanisms—at a single case—through an aggressive response.

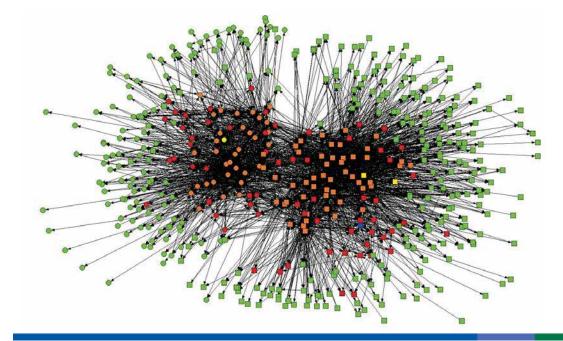
- Targeted threats: mcr, carbapenemaseproducing organisms, pan-resistant organisms, Candida auris
- Emphasis on settings historically linked to amplification (e.g., LTC, LTAC, vSNF)
- Main components: Detection, infection control assessments, colonization screenings
- Response tiers based on threat


Guidance available on CDC's website: www.cdc.gov/hai/outbreaks/mdro



Why We Need a Containment Strategy

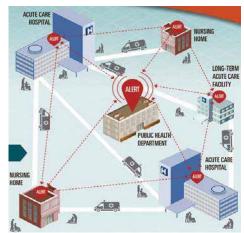
KPC, the first type of CRE found in the U.S., spread from 2 states in 2001 to 45 states, DC, and Puerto Rico in 13 years.



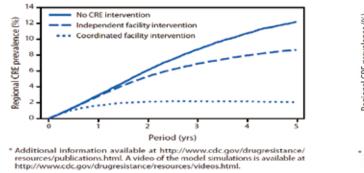

carbapenem-resistant Enterobacteriaceae (CRE) Outbreak: Several Healthcare Facilities in More than a County, Illinois, 2008

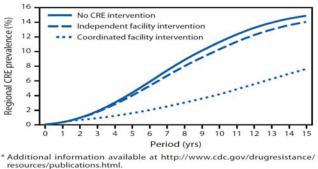
Won S, Munoz-Price S, Lolans K, Hota B, Weinstein R, Hayden M. for the Centers for Disease Control Prevention Epicenter Program. Rapid and Regional Spread of Klebsiella pneumoniae Carbapenemased CID 2011:53

Connectedness of Healthcare Facilities, Washington and Oregon

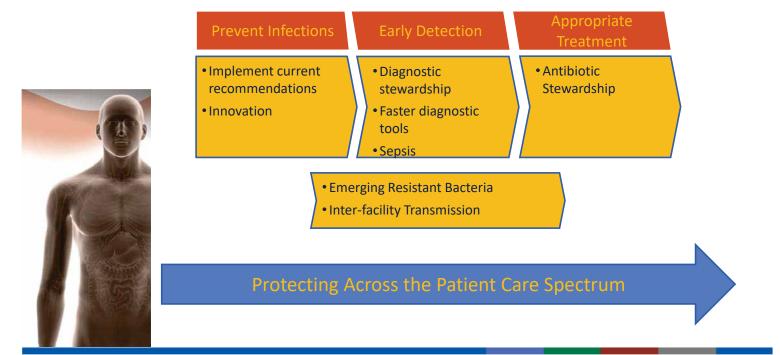

Prevention of *C. difficile,* MRSA, and Other MDROs: Need for Regional Prevention Approach

All state health departments are being funded by CDC to prevent healthcareassociated infections and antibiotic resistance.


- Traditional Approach
 - Promotion of prevention efforts independently implemented by individual health care facilities
 - Does not account for inter-facility spread through movement of colonized/infected patients
 - Not effective for CDI and MDROs
- Regional Approach
 - Recognizes that individual facilities are components of integrated and dynamic networks connected via patient movement
 - Occurrences in one healthcare facility may affect many other healthcare facilities

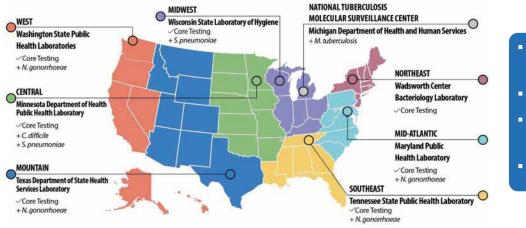

Prevention and Stewardship

 In 27 states and 4 cities, CDC is aggressively expanding CRE, C. difficile, and other MDRO prevention and antibiotic stewardship programs


Projected Prevalence of CRE Based on Modeling

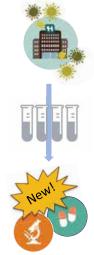
Conclusion: Coordinated prevention approaches assisted by public health agencies have the potential to more completely address emergence and dissemination of MDROS and in comparison to independent facility based efforts.

Thinking Holistically to Protect Patients



Antibiotic Resistance Laboratory Network

National laboratory capacity to detect AR in healthcare, food, and community Tracks resistance to identify outbreaks faster, stop spread, and protect people


224

- CDC headquarters expertise and coordination
- 7 regional labs
- 1 National TB Molecular Surveillance Center
- 57 state and local labs

CDC & FDA Antibiotic Resistance Isolate Bank

New innovations can support earlier diagnoses and more effective treatment options that can slow antibiotic resistance.

CDC uses bacteria samples (isolates) from health departments, labs, and outbreak and surveillance activities.

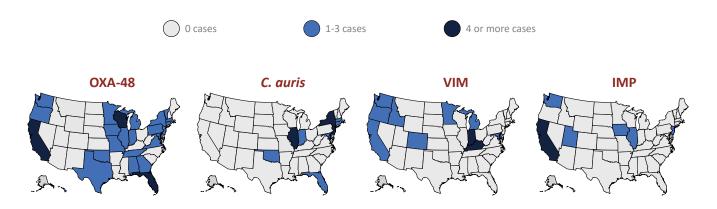
CDC analyzes and sequences the bacteria's resistance and makes the data and sample available.

Researchers can use the bacteria and data to challenge, develop new diagnostic tests and antibiotics.

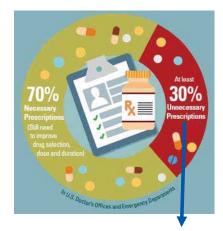
Laboratorians can validate lab tests to improve patient care.

BY THE NUMBERS as of Nov. 1, 2017

CDC curated 15 panels from its 450,000+ isolate collection

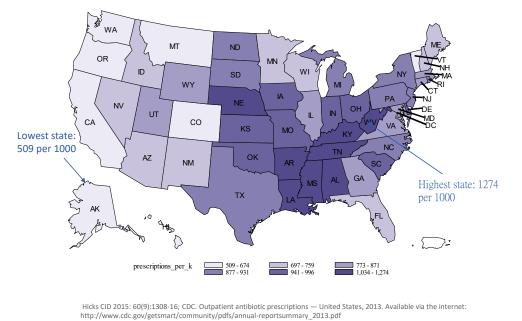

65,300 isolates shared since July 2015

570+ unique customers


743 orders processed

CDC's Containment Strategy in Action

CDC and states have successfully contained many emerging threats, like *C. auris* and types of CRE, to single or few cases.



How much antibiotic use is unnecessary?

Represents unnecessary risks to patients of adverse drug events, *Clostridium difficile* infection and development of antibiotic resistance.

Fleming-Dutra et al. JAMA 2016;315(17): 1864-1873.

Three Things Health Plans Should Know About Antibiotic Harms that Have Nothing to Do with Resistance

- 1. Antibiotic adverse events can be severe, examples:
 - Antibiotic-associated diarrhea (e.g., C. difficile infection)
 - Life-threatening allergic reactions (e.g., anaphylaxis)
- 2. Antibiotic adverse events can cost the health plan in ER visits
 - 1 in 1000 antibiotic prescriptions leads to an ER visit for an adverse event
 - ~200,000 estimated ER visits/year in U.S.
 - Antibiotics: most common cause of drug-related ER visits in children
- 3. Antibiotic adverse events may have long-term consequences for chronic disease
 - Disruption of microbiota and microbiome linked to chronic disease

Linder. Clin Infect Dis. 2008 Sep 15;47(6):744-6 Shehab, et al. Clin Infect Dis. 2008 Sep 15;47(6):735-43. Shehab et al. JAMA 2016:316:2115-25. Bourgeois, et al. Pediatrics. 2009;124(4):e744-50. Vangay, et al. Cell host & microbe 2015; 17(5): 553-564.

Potential Impact of C. difficile Prevention

		Intervention	Effectiveness	
	10%	25%	50%	75%
Cohort of 1,000 hospitalized Medicare beneficiaries ≥65 years old				
Total CDI infections averted over 5 years	7.36	18.59	36.94	56.06
Total CDI-attributed deaths averted over 5 years	1.20	2.93	5.91	8.97
Among all hospitalized Medicare beneficiaries ≥65 years old				
Total CDI infections averted over 5 years	101,000	257,000	509,000	773,000
Total CDI-attributed deaths averted over 5 years	16,000	41,000	82,000	124,000

National Perspective

- An intervention with <u>50% effectiveness</u> would:
 - Save \$2.5 billion in direct medical costs over 5 years.
 - Save \$689 billion in societal costs over 5 years.

R Slayton, ICHE 2015; 36:681-687

Improving Education on Antibiotic Use

- New educational effort: Refining messaging and expanding to new target audiences.
 - Focus on patient safety: Unnecessary antibiotics cause preventable harm
 - Increased messaging for adult patients
 - New effort to reach hospitalists, nurse practitioners, physician assistants
- "U.S. Antibiotic Awareness Week"
 - November 12-19, 2018
 - Addresses key need to provide information on antibiotic use, especially to patients.

Working with Partners to Improve Stewardship Across All Healthcare Settings

228

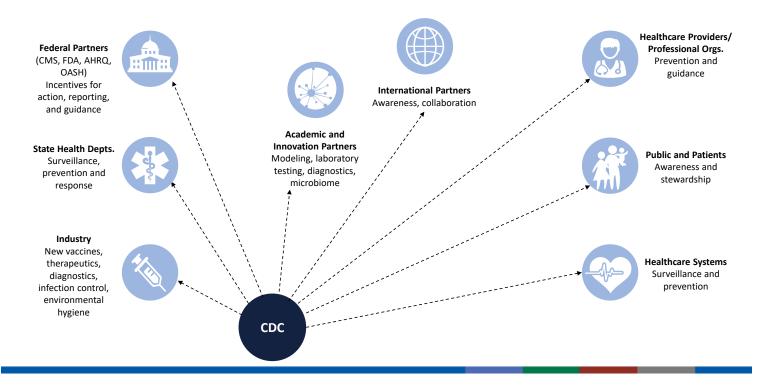
<u>https://www.cdc.gov/getsmart/healthcare/implementation/core-elements.html;</u> <u>https://www.cdc.gov/longtermcare/prevention/antibiotic-stewardship.html</u> <u>https://www.cdc.gov/getsmart/community/improving-prescribing/core-elements/core-outpatient-stewardship.html</u> <u>https://www.cdc.gov/getsmart/healthcare/implementation/core-elements-small-critical.html</u>

Get Ahead of Sepsis

Goal

Emphasizes the importance of sepsis early recognition, timely treatment, reassessment of antibiotic needs, and prevention of infections that could lead to sepsis.

Anticipated Outcomes


- Increase awareness of need for early recognition and prompt treatment.
- Increase awareness of preventing infections that can lead to sepsis.

KNOW THE RISKS. SPOT THE SIGNS. ACT FAST.

Partners are Critical

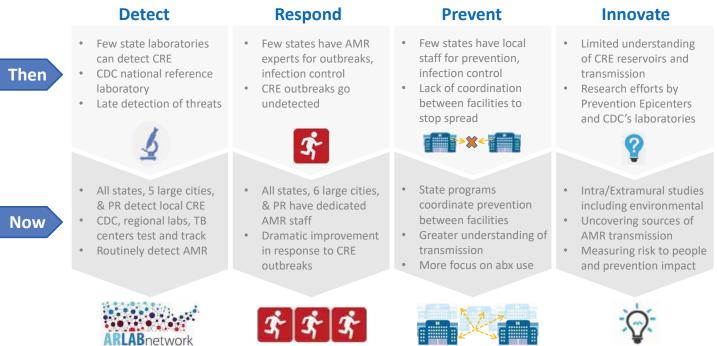
Examples of CDC's Global Work to Combat AR

Innovation & Infection Control in Vietnam

- Piloting shorter-course preventive therapy to reduce TB disease and slow development of resistant TB
- Studying latent TB management by offering testing and treatment before traveling to the United States.
- Establishing national AR and HAI surveillance network of 16 sites to generate critical data
- Developing national infection control expertise through a national Technical Advisory Group to reduce HAIs and improve containment

Improving TB Diagnostics in Mexico

Linking patients diagnosed with TB to care and treatment


First National TB Program in China

Strengthening the Chinese TB surveillance system and collaborating on lab quality assurance programs


Strengthening HAI/AR Programs in India

- Implementing HAI and AR surveillance in 30+ sites across country to better understand AR burden
- Initiating programs to prevent and reduce central line associated bloodstream infections
- Assessing stewardship programs to improve antibiotic use

Transformative Investments to Combat AMR

AMR Impacts Real People

Thank you!

For more information, contact CDC 1-800-CDC-INFO (232-4636) TTY: 1-888-232-6348 www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

Session III Infection Control Strategies to Contain Antimicrobial Resistance (AMR)

Moderator

Prof. Yin-Ching Chuang

Professor, Chi Mei Medical Center

Prof. David Chien Boon Lye Associate Professor, Tan Tock Seng Hospital

APEC Conference on Strategies Against the Evolving Threats from Antimicrobial Resistance

Prof. Yin-Ching Chuang

Position: Professor Department/organization: Chi Mei Medical Center Economy: Chinese Taipei

Education Background

• Kaohsiung Medical College

Professional Career

- Chair Professor, Chi Mei Medical Center
- Honorary superintendent, Chi Mei Liouying Hospital
- Regional Commander of the Communicable Disease Control Medical Network of the CDC

APEC Conference on Strategies Against the Evolving Threats from Antimicrobial Resistance

Prof. David Chien Boon Lye

Position: Associate Professor Department/organization: Tan Tock Seng Hospital Economy: Singapore

Educational Background

•	1996	MBBS, University of Melbourne, Australia
	2004	

- 2004 Fellow of Royal Australasian College Physicians
- 2009 Fellow, Academy of Medicine, Singapore,

Medicine, Singapore

• 2016 Fellow, Royal College of Physicians, Edinburgh

Professional Career

•	2011-2015	Chair, Chapter of Infectious Diseases, College of Physicians,
		Singapore
•	2012-2014	Treasurer, College of Physicians, Singapore
•	2014-	Vice President, College of Physicians, Singapore
•	2015-	President, Society for Infectious Diseases (Singapore)
•	2016-	Bursar, Academy of Medicine, Singapore
•	2016-	Board member, College of Clinician Scientists, Academy of

Publications

- A Versporten, P Zarb, I Caniaux, M-F Gros, N Drapier, M Miller, V Jarlier, D Nathwani, H Goossens, on behalf of the Global-PPS network. First web-based Global Point Prevalence Survey of Antimicrobial Consumption and Resistance (GLOBAL-PPS) in 53 Countries: results on hospitalized adults. Lancet Global Health 2018, in press.
- HL Htun, TW Yeo, CC Tam, J Pang, YS Leo, DC Lye. Metformin use and severe dengue in diabetic adults. Scientific Reports 2018, in press.
- K Saeed, S Esposito, I Gould, T Ascione, M Bassetti, E Bonnet, E Bouza, M Chan, JS Davis, G De Simone, M Dryden, T Gottlieb, K Hijazi, DC Lye, P Pagliano, C Petridou, E Righi, J Segreti, S Unal, AN Yalcin. Hot topics in necrotising skin and soft tissue infections. Int J Antimicrob Agents 2018, in press.

Session III Infection Control Strategies to Contain Antimicrobial Resistance (AMR)

Speaker

Prof. Satoshi Hori

Professor, Department of Infection Control Science, Juntendo University

Ms. Patricia Ching

Principal Nurse, WHO Collaborating Center For Epidemiology, School Of Public Health, University Of Hong Kong

Prof. Marilyn Cruickshank

Professor of Nursing Research, University of Technology Sydney

APEC Conference on Strategies Against the Evolving Threats from Antimicrobial Resistance

Prof. Satoshi Hori Position: Professor Department/organization: Department of Infection Control Science, Juntendo University Economy: Japan

Biography

Satoshi HORI gained his BS and MD from Juntendo University in 1991, PhD in 1994, DipHIC in 2001, and OHP in 2008. He has been appointed as the Professor of Infection Control Science and Medical Education in Juntendo Graduate School and the Director of Infection Control in 6 Juntendo University Hospitals.

He is a former council member of the Japanese Society for Infection Prevention and Control (JSIPC), and developed the guidelines of controlling influenza A H1N1 in hospitals (2009) and the guidance of controlling multi-drug resistant Gram negative organisms in hospital (2011). In 2011, He was awarded as the "Lobury Lecture" in the Healthcare Infection Society (UK), and as the "Best Article of the Tear" in the JSIPC.

He has investigated facility management and coordination in healthcare facilities and has been involved in many health building constructions. "Technical Award in building facilities" was granted by the Society of Heating, Air-Conditioning and Sanitary Engineering of Japan in 2018.

He is also editorial boards in the Lancet Infectious Diseases.

Speech Abstract

Ten Years Improvement in Infection Control Practice and Antimicrobial Optimization in The 29 Private University Hospitals in Japan

The main focus on AMR had been multidrug resistant GPC infections from mid-1980s. Since the huge outbreak of Multidrug resistant *Acinetobacter baumannii* (27 out of 46 MDRA positive patients died in 12 months) had occurred in one of a famous private university hospital in Tokyo in 2010, Japanese Association of Private Medical School (JAPMS) had launched the nationwide infection control network, called 'The Council for Infection Control (CIC)' in the same year.

The main activities are as follows; 1) an infection control practice cross-round between a pair of university hospitals using newly developed infection control audit tools for both practice and environment: 2) several common quality indicators (Qis) related with hand hygiene, optimal antimicrobial prescription, and antimicrobial resistance had been set, and each university hospital has tried to improve to the equivalent of the 'bench mark level': 3) several AMR data were referred as outcome indicators for those activities. Each achievement had been confirmed in the annual meeting of CIC.

After 9 years activities, mean alcohol-based hand rub consumption in hospitals has increased to 22.15 L/1,000 patient-days. The proportion of MRSA in *Staphylococcus aureus* blood steam isolates slightly declined from 43.1 to 41.0%. The proportion of MRSA with MIC level of vancomycin was 4 and more, decreased from 0.23 to 0.00%. In Gram negative bacilli, the proportions of carbapenem resistance were slightly decreased from 14.1 to 13.62% in *Pseudomonas aeruginosa*, and from 2.51% to 0.89% in *Acinetobacter spp*.. The proportion of Extended spectrum beta-lactamase producers increased from 16.60 to 23.10% in *Escherichia coli*, and from 6.55 to 6.86% in *Klebsiella pneumoniae*.

Although the proportions of resistant isolates have not been significantly improved, the number of infection cases which were difficult to be treated, such as MDRA an MRSA with vancomycin MIC >4 may decreased. In recent years, the proportion of ESBL/carbapenemase producers in the community is increasing. The AMR movement should be encouraged both in the hospitals and the community.

Ms. Patricia Ching Position: Principal Nurse Department/organization: WHO Collaborating Center for Epidemiology, School Of Public Health, University of Hong Kong Economy: Hong Kong, China

Educational Background

- Diploma of Nursing Administration (1989 at the Hong Kong Polytechnic).
- Certified Practitioner of Healthcare Quality (CPHQ) since 1997
- Honorary Fellow Member in Infection Control, conferred by the Hong Kong Academy of Nursing, May 2018

Professional Career

- Principal Nurse of WHO Collaborating Centre for Infectious Disease Epidemiology and Control, The University of Hong Kong
- Senior Nurse, WHO Collaborating Centre Hospital Authority Hong Kong for infection control, outbreak, education and research. (2010-2012)
- Senior Nurse adviser, Infection Control, Hong Kong Baptist Hospital (2012 till present)
- Senior Nurse adviser, Infection Control, Hong Kong Evangel Hospital (2017 February till present)
- Nurse consultant, Accreditation, Hong Kong University Shenzhen Hospital, Shenzhen, China.

Publications

- Seto WH, Yuen SW, Cheung CW, Ching PTY, Cowling BJ, Pittet D: Hand hygiene promotion and the participation of infection control link nurses: An effective innovation to overcome campaign fatigue. AJIC 2013: July
- Seto WH, Li KH, Cheung CWY, Ching PTY, Cowling BJ: Breaking a Guinness World Record on Hand Sanitizing Relay, initiating a call for vital research in overcoming campaign fatigue for hand hygiene. F1000 Research 2014 Oct, 3:234. doi:10.12688/f1000research.5403.1.

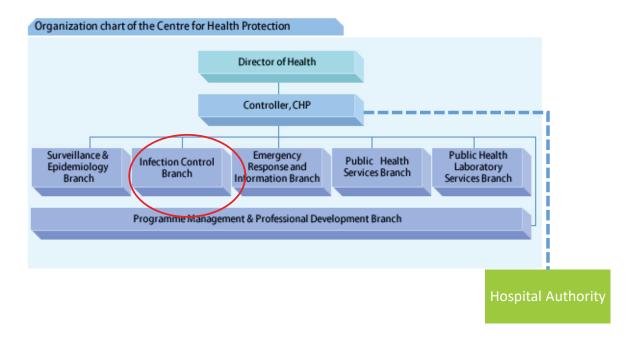
- Seto WH, Cowling BJ, Cheung CWY, Wong CYY, Ching PTY, Pittet D, Chen RCI: Impact of the first hand sanitizing relay world record on compliance with hand hygiene in a hospital. AJIC 2015 Mar: 43(3):295-297
- Ling ML, Apisarnthanarak A, Jaggi N, Harrington G, Morikane K, Thu le TA, Ching P, Villanueva V, Zong Z, Jeong JS, Lee CM: APSIC guide for prevention of Central Line Associated Bloodstream Infections (CLABSI). Antimicrob Resist Infect Control. 2016 May 4;5:16. doi: 10.1186/s13756-016-0116-5. eCollection 2016.
- Ling ML, Ching P, Widitaputra A, Stewart A, Sirijindadirat N, Thu LTA APSIC guidelines for disinfection and sterilization of instruments in health care facilities. Antimicrobial Resistance & Infection Control 2018 February 7:1:25 doi: 10.1186/s13756-018-0308-2. eCollection 2018

Speech Abstract

Strategies to Prevent and Control AMR Infection in Hong Kong

The resistance profiles of multiple drug resistant organisms (MDROs) have been closely monitored in public hospitals under the Hospital Authority in Hong Kong. Among the positive organisms include methicillin-resistant concerned MDROs, Gram Staphylococcus aureus (MRSA) and vancomycin-resistant enterococcus (VRE). Gram negative organisms include extended spectrum beta-lactamase producing Enterobacteriaceae (ESBL-E) and the WHO top priority organisms of carbapenemresistant Enterobacteriaceae (CRE), carbapenem-resistant Acinetobacter baumannii (CRAB), and carbapenem-resistant Pseudomonas aeruginosa (CRPA). There are a total of 53 hospitals in Hong Kong, 80% (n=42) are public while 20% (n=11) are private hospitals. The private hospital are equipped with ample of single rooms and therefore pledged to be MDRO free. However isolation rooms in the public hospitals are lacking and therefore controlling strategies require prioritization. As MRSA and ESBL are already endemic and with insufficient single rooms thus patients are cared in general ward with standard precautions emphasizing hand hygiene compliance and dedicated care equipment such as BP cuff and stethoscopes. Patients infected or colonized with VRE, CRE, CRAB and CRPA are cared in single rooms and implementing contact precautions. When upsurge of new cases or outbreaks occurs, patients with similar organisms will be cohorted in a multiple bedded room or cubicle applying contact precautions. Active surveillance screening is only done for identifying VRE and CRE, while others are screened when there is clustering or outbreaks. Environmental hygiene and cleaning is presently improved as a strategy for preventing the spread of MDRO. Disposable cleaning clothes impregnated with 2-in-one disinfectant detergent are used for cleaning and disinfection of the patients' environment daily and also terminally after discharge. The focus is the high touch areas such as bed rails, bed tables, door handle, switches etc that are usually contaminated by healthcare workers' hand. In time of outbreak, new room non-touch room disinfection machines with vaporized hydrogen peroxide are used to terminate hospital outbreaks. The strategies for controlling MDRO in Hong Kong are: 1. Prioritize MDRO of significance using search and destroy approaches. 2. Cohort of same MDRO when upsurge of cases and outbreak. 3. Improve on environmental cleaning and disinfection using disposable wipes. The strategies has been proven effective during the VRE outbreak in Hong Kong in 2013-2014.

Strategies for Preventing Healthcare-Associated MDRO infections in Hong Kong

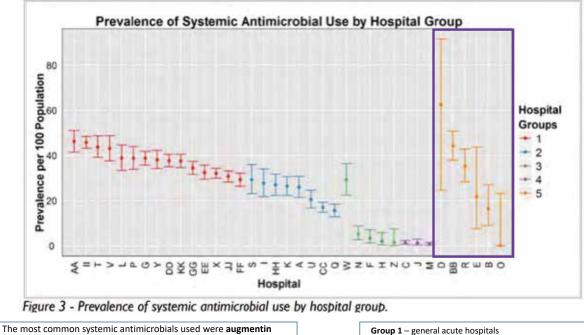

Health Facts of Hong Kong

2017 Edition

Health Facilities (End 2016)

		_
Number of Public Hospitals and Institutions under Hospital Authority	42	
Number of Private Hospitals	11	
Number of Nursing Homes	63	
Number of Hospitals under Correctional Institutions	21	
Number of Hospital Beds in Hospitals in Hospital Authority	28 126	
Number of Hospital Beds in Private Hospitals	4 226	/
Number of Hospital Beds in Nursing Homes	5 858	
Number of Hospital Beds in Correctional Institutions	880	

Organization chart of the Centre for Health Protection



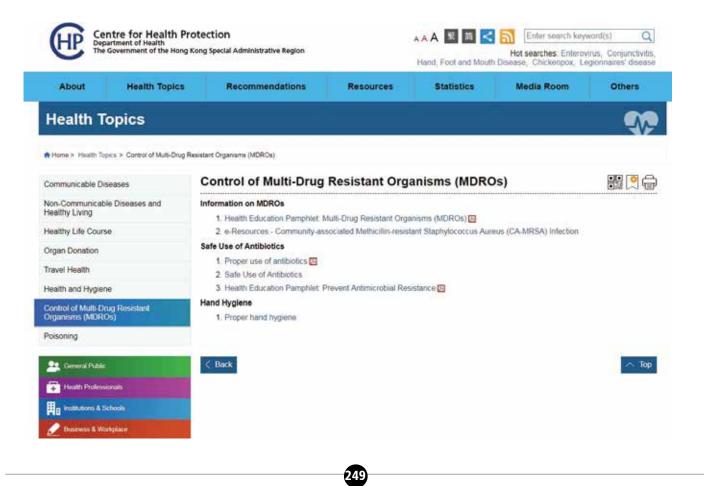
LENS ON CHP

Prevalence survey of infections in public hospitals 2010

Prevalence	Overall Infection % (95% C.I.)	CAI % (95% C.I.)	HAI % (95% C.I.)	ОНАІ % (95% С.І.)
2010	15.0 (14.5-15.5)	11.9 (11.5-12.4)	2.7 (2.5-2.9)	0.5 (0.4-0.6)
2007	15.2 (14.7-15.7)	11.4 (11.0-11.8)	3.2 (2.9-3.4)	0.8 (0.7-0.9)

(11.8%), followed by cefuroxime (2.7%) and levofloxacin (2.4%). The pattern was similar to 2007. The overall prevalence of systemic antimicrobial use was higher in 2010 compared to 2007 (26.6%; 95% C.I.: 26.0%-27.2%)

Group 2 – hospitals with mixture of acute/ non-acute beds;
Group 3 – hospitals with non-acute/infirmary beds
Group 4 – psychiatric hospitals
Group 5 – acute hospitals of special nature.


Infection Control Challenges and Opportunities

IN

CONTROLLING OF MDRO

Challenges and Opportunities

- Prioritize MDRO
- Modify Isolation Facilities
- Improve Environmental Cleaning

MDRO in HA hospitals Hong Kong

		2012	2013	2014	2015	Change
MRSA / all S. aureus		43.6%	46.3%	45.7%	46.1%	→
		0.138	0.146	0.143	0.146	→
bed days	≥ 2 days of admission	0.059	0.062	0.059	0.057	→
VRSA		0%	0%	0%	0%	→
VRE		0.34%	1.26%	0.74%	0.25%	2
	24.3%	23.9%	23.3%	23.2%	→	
(<i>E.coli</i> and <i>Klebsiella</i> spp. only) CRE/CPE Carbapenemase producing Enterobactericeae (E.coli & Klebs total isolates)		36	33	108 (105,993)	132 (110,858)	1
MDRA		10.4%	18.6%	24.9%	15.9%	SI .
(E.coli and Klebsiella spp. only)CRE/CPE Carbapenemase producing Enterobactericeae (E.coli & Klebs total isolates)MDRA1		0.07%	0.09%	0.06%	0.02%	SI -

MRPA=concomitant R to Imipenem, Ceftazidime. Amikacin and Ciprofloxacin

MDRA= concomitant R to Fluoroquinolones, Aminoglycosides, Cephalosporins and BL/BLase inhibitor combinations

MDRO in HA hospitals

	2014	2015	2016	2017	Change
MRSA / all S. aureus	45.7%	46.1%	43.5%	43.1%	R
MRSA BSI per 1,000 acute bed days	0.143	0.146	0.158	0.144	→
VRSA	0%	0%	0%	0%	none
VRE	0.74%	0.25%	0.18%	0.15%	N
ESBL producing Enterobacteriaceae (<i>E.coli</i> and <i>Klebsiella</i> spp. only)	23.3%	23.2%	22.4%	22.0%	N
CPE Carbapenemase producing Enterobacteriaceae (E.coli & Klebs total isolates)	0.10%	0.12%	0.30%	0.40%	t
MDRA	24.9%	15.9%	11.7%	8.6%	R
MRPA	0.06%	0.02%	0.02%	0.06%	→

MRPA=concomitant R to Imipenem, Ceftazidime. Amikacin and Ciprofloxacin

MDRA= concomitant R to Fluoroquinolones, Aminoglycosides, Cephalosporins and BL/BLase inhibitor combinations

Yea	r	201	L 1	2012	2	20	13	2014	1	20	15	2016		2017	
No of nev	w cases	19	•	36		3	3	108		13	34	340		473	
Importe	d case	10 (5	3%)	27 (75	%)	26 (7	/9%)	48 (44	%)	41 (3	31%)	79 (23%	%)	127 (27%))
Imported	from:	China	9	China	23	China	16	China	42	China	31	China	63	China	101
Hospitali	ization	USA	1	Thailand	2	India	4	India	4	India	6	India	7	India	8
history o	utside			Chinese Taipei	1	Pakistan	2	Vietnam	1	Nepal	3	Nepal	2	Thailand	5
HK (Sir October 20	nce 1			Burma	1	Indonesi a	1	Germany	1	Thailan d	1	Vietnam	2	Vietnam	3
criteria ha	as been					Cambodi a	1					Pakistan	2	America	1
extended						Korea	1					Indonesia	1	Bangladesh	1
months						Thailand	1					Bail	1	Cambodia	1
mont	:hs)											Cambodia	1	Nepal	1
														Pakistan	1
														Singapore/Kuala lumpur	1
														Spain	1
														Chinese Taipei	1
														UK/India	1
														Ukraine	1
	Clinical pecimen	9 (47	7%)	%) 13 (36%) 3 (9%) 11 (11%) 21* (15%)		45 (13%	6)	46 (10%)							
specimen S	creening	10 (5	3%)	23 (649	%)	30 (9	91%)	97 (89	%)	114*	(85%)	295 (875	%)	427 (90%)	

Data Source: Hospitals reported to CICO office *1 patient had positive results in both clinical and screening specimens

-	Year		20	11	20	12	2011		201		20	16	2016	6	2017	100	2017 (2	01
No of new cases								A	340		06		85					
	ported c	Automation and	- Andrewson and the	10 (52.6%)		5%3	25 (78.7	6963	48 (44%)		41 (30	Conception of the	and the second s	79 (58.6%)		8%)	31 (36.4%)	
-	orted fro	Add and a local diversion of the local divers	China	9	China	23	China	16	China	42	China	31	China	63	China	11	China	24
Hospitalization history			USA	1	Thailand	2	india	4	India	4	india	5	India	7	Thailand	2	Thailand	2
			-	-	Chinese Taipei	1	Dakistan	2	Vietnam	1	Nepal	3	Nepal	2	India	1	India	1
	de HK (Si				Burma	1	Indonesia	1	Germany	1	Thailand	. 1	Vietnam	2	Bangladesh	1	UK& India	1
Detober						-	Cambodia	- 1	Constant Constant	-			Pakistan	2	and the second	-	Spain	1
has been							Korea	14					Indonesia	1			Ukraine	1
6 month	ts to 12 r	nenths)					Thailand	1	1				Bail	1				
								-	1				Cambodia	1				
-	1	Sterile	10		c		0	_	TIT block	1.000	1 (periton	and marshift	din blood	2 bile, 1	0		Thing	
	poerine		10	AND .			0	_	< (1 0i000	1 0 00	a (percon	eat swabj	hydrosalpinx asp.)		1.0		9 (7 urine, 2 ETA/Sputum)	
Type of Ipecime h	Clnical specime n	Non sterife	8 {3 uri sputum swi	ne, 4 L 1 pus	1 (8-uri sputum, 3	ne, 3	3 (MSU, CSU abscess wall		9 (5 CSL sputum/) thigh tis knee wo	ETA, 1 sue, 1	20* (10 urine, 2 soutum, 5 wound, 1 tissue, 1 peritoneal dialysis fluid, 1 pus swab)		tubal drain fluid, 4					
	Screening		10 (52.6%)		23 (63	1.9%)	30 (90.9%)		97 (89%)		114* (85.07%)		295# (88.8%)		88 (91.7%)		75 (88.2%)	
	NDM		2	2 10		0	18		48		10		190		47		60	
	10.00	PC	1.14	4 7			7		36		19		52		н			
	5.77	AD.		1	1						0		5 67				7	
	1000	M		2	1	-	4		11		1		0		0			
PCR	100	KĂ		1			0	0		1			21		6		5	
result		+IMP		ŧ.	c		1		- ÷	Ť.		8	0		0		0	
	NDM	+OXA	0	1	2		0		5		1	È.	3		0		2	
	KPC	HMP	0	2	0	6	2		3.		2		0		0		0	
	100000	+IMI	0			0 0			0		0		1		0		0	
-		+ IMP	0		9		0	_	0			0		1			0	
	1.	0	1		- 3		1		1		0				2		2	
	1.1.2.7	-4 14	1	1	2		2		0			2	1		2			
	1.	-24		0.40	0		2		1			2			0	5	1	
	70	-34		2			3		4		3	i i	'n		6		1	
Age		44					1		4		1	2	26		8	3	(a)	
		-54			1		4		n		1		32		4		8	
	55	-64	1		1		4		23		2	4	53		10		7	
	65	-80	2	1	9				40		3	4	106		26		24	
	>0	81	. 4	2	8		8		17			2	54		35		21	

To show the PCR typing

- 1. NDM
- 2. KPC
- 3. IMI

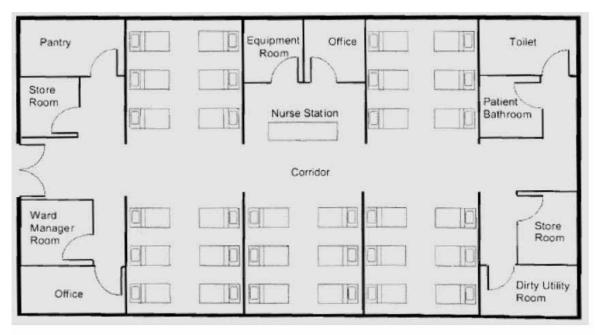
"Usually accepted that eradication would be unlikely in the highly endemic setting"

< 20 cases 20-39 cases >39 cases 100% elimination79% elimination10% elimination

Marshall et al, JHI 2004:56:253 Boyce JM: ICHE 1991:12:36

Still we should try to lower the incidence...

Overcrowding in Hong Kong Public Hospital Influenza Winter Peak 2018 occupancy of 120-150% - camp beds


Isolation Policies in Hospital Authority – Hong Kong

IC tactics	MRSA	VISA/ VRSA	VRE	ESBL	CRE	CRAB/ MDRA	CRPA/ MRPA
Single room	No	Yes	Yes	No	Yes	lf available (MDRA)	Yes (MRPA-XDR)
PPE, HH, EnH, Deq	нн	Yes	Yes	нн	Yes	Yes	Yes
CMS alert	No	Yes	Yes	No	Yes	MDRA	Yes
Discharge to RCHE	Allowed	2 –ve culture	2 –ve culture	Allowed	2 –ve culture	Allowed	MRPA: 2 –ve culture
Send isolate to reference lab	No	Yes	Yes	No	Yes	No	No
Notify Dept Health	No	Yes	Yes	No	No	No	MRPA: Yes

Challenges in isolation facilities

- Not enough single room isolation
- Increase manpower when patients are nursed in single room

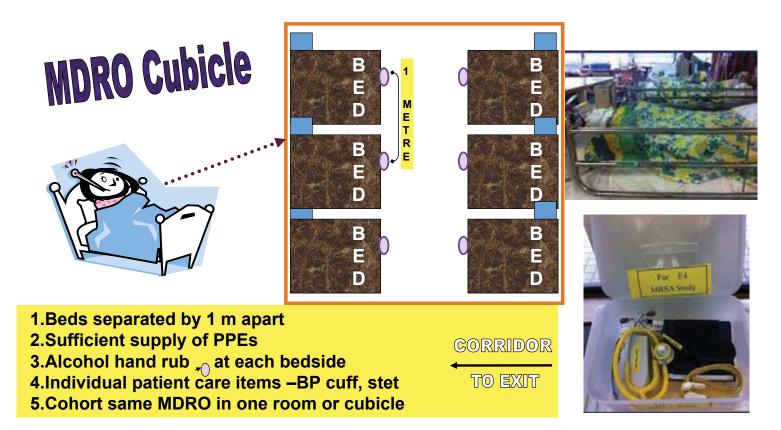
Layout of general patient ward

Resolution: Single cohort (Specific MDRO patients) Group cohort (patient with same diagnosis)

 Single cohort ante room - Existing site constraint issue

Resolution: Shared ante room with interlocking doors

MDRO in HA hospitals

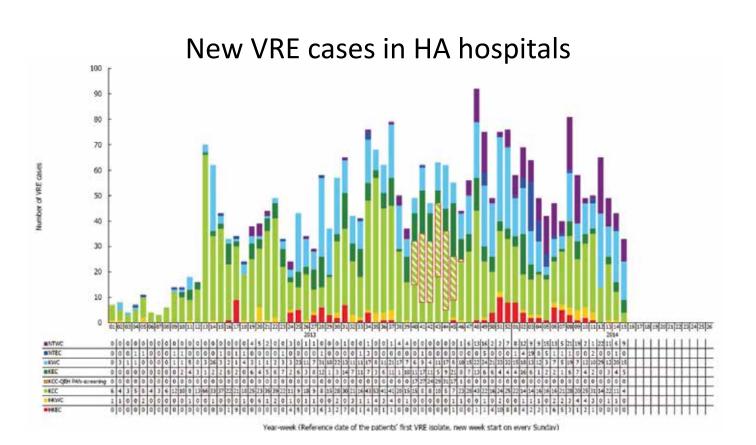

	2014	2015	2016	2017	Change
MRSA / all S. aureus	45.7%	46.1%	43.5%	43.1%	R
MRSA BSI per 1,000 acute bed days	0.143	0.146	0.158	0.144	→
VRSA	0%	0%	0%	0%	none
VRE	0.74%	0.25%	0.18%	0.15%	Ľ
ESBL producing Enterobacteriaceae (<i>E.coli</i> and <i>Klebsiella</i> spp. only)	23.3%	23.2%	22.4%	22.0%	R
CPE Carbapenemase producing Enterobacteriaceae (E.coli & Klebs total isolates)	0.10%	0.12%	0.30%	0.40%	t
MDRA	24.9%	15.9%	11.7%	8.6%	Ľ
MRPA	0.06%	0.02%	0.02%	0.06%	→

MRPA=concomitant R to Imipenem, Ceftazidime. Amikacin and Ciprofloxacin

MDRA= concomitant R to Fluoroquinolones, Aminoglycosides, Cephalosporins and BL/BLase inhibitor combinations

Isolation Policies in Hospital Authority – Hong Kong

			•		-		
IC tactics	MRSA	VISA/ VRSA	VRE	ESBL	CRE	CRAB/ MDRA	CRPA/ MRPA
Single room	No	Yes	Yes	No	Yes	If available (MDRA)	Yes (MRPA-XDR)
PPE, HH, EnH, Deq	нн	Yes	Yes	нн	Yes	Yes	Yes
CMS alert	No	Yes	Yes	No	Yes	MDRA	Yes
Discharge to RCHE	Allowed	2 –ve culture	2 –ve culture	Allowed	2 –ve culture	Allowed	MRPA: 2 -ve culture
Send isolate to reference lab	No	Yes	Yes	No	Yes	No	No
Notify Dept Health	No	Yes	Yes	No	No	No	MRPA: Yes



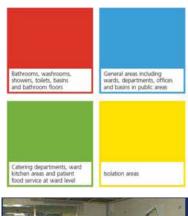
Nurses station is a clean zone. Medical charts stay here. No gowns or gloves allowed. Mask not really needed if not going in to see patients.

Challenges and Opportunities

Environmental cleaning

Using reusable wash clothes -spreading MDRO and OSH concern

Cleansing of the Environment

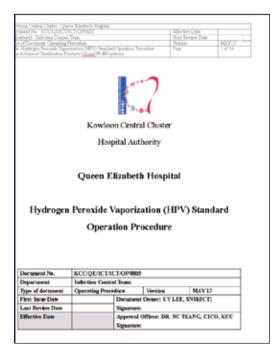

HA guideline Hong Kong	CDC	wно	AUS	NHS	Canada
when the environment is visibly soiled or contaminated;	~	×	~	×	×
General housekeeping surfaces - according to housekeeping cleaning schedule			~	~	√
HTA in General clinical area - cleaned with detergent and water at least once daily	more frequent schedule	1	1	~	1
HTA in Contact Precautions - cleaned and disinfected at least twice daily.	more frequent schedule	At least daily	(Base on Risk level, e.g. Outbreak)	(Base on Risk level, e.g. ICU, AED)	(Base on Risk level, e.g. VRE, C. diff)

Meeting the challenge of VRE outbreak

Improvement on environmental cleaning

From reusable wash clothes disposable jay clothes From disposable jay clothes single use disinfectant wipes Plus non-touch environmental disinfection machines Manual Cleaning :

- Standardize cleaning protocols in clinical areas
- Designated team for EH
- Training
- Onsite coaching and return demonstration regular monitoring of cleanliness
- Use of dedicated equipment
- Disposable wipe
- 2:1 disinfectants


Wipes

Cotton, Disposable, Microfiber, Nonwoven Spunlace

Wipe should have sufficient wetness to achieve the disinfectant contact time. Discontinue use of a disposable wipe if it no longer leaves the surface visibly wet for \geq 1min

New technology for the control of MDROs

MDRO in HA hospitals

	2014	2015	2016	2017	Change
MRSA / all S. aureus	45.7%	46.1%	43.5%	43.1%	R
MRSA BSI per 1,000 acute bed days	0.143	0.146	0.158	0.144	→
VRSA	0%	0%	0%	0%	none
VRE 2013 - 1.26%	0.74%	0.25%	0.18%	0.15%	N
ESBL producing Enterobacteriaceae (<i>E.coli</i> and <i>Klebsiella</i> spp. only)	23.3%	23.2%	22.4%	22.0%	N
CPE Carbapenemase producing Enterobacteriaceae (E.coli & Klebs total isolates)	0.10%	0.12%	0.30%	0.40%	1
MDRA	24.9%	15.9%	11.7%	8.6%	Ľ
MRPA	0.06%	0.02%	0.02%	0.06%	→

MRPA=concomitant R to Imipenem, Ceftazidime. Amikacin and Ciprofloxacin

MDRA= concomitant R to Fluoroquinolones, Aminoglycosides, Cephalosporins and BL/BLase inhibitor combinations

Turning Challenges to Opportunities

- Difficulties in controlling MDRO
 - Prioritize MDRO for contact precautions
 - Emerging MDRO implement "search and destroy"
- Coping with insufficient isolation facilities
 - Prioritize emerging MDRO for contact precautions
 - Cohorting SAME mdro with special droplet precautions
- Ineffective environmental cleaning
 - Convert old practice to most up-to-date practices
 - Changed to disposable wipes and non-touch environment disinfection machine

 $\mathbf{26}$

APEC Conference on Strategies Against the Evolving Threats from Antimicrobial Resistance

Prof. Marilyn Cruickshank

Position: Professor of Nursing Research Department/organization: University of Technology Sydney Economy: Australia

Educational Background

- Registered Nurse, Royal Alexandra Hospital for Children
- Neurological and Neurosurgical Nursing, Royal Prince Alfred Hospital
- Paediatric Intensive Care Nursing, NSW College of Nursing
- Emotional & Behavioural Problems of Childhood, NSW Institute of Psychiatry
- Paediatric HIV Nursing, Newark Children's Hospital New Jersey USA
- Bachelor of Arts, University of New England Australia
- Bachelor of Arts Honours Class I, University of New England Australia
- PhD, University of Technology Sydney

Professional Career

- Director, Australian national healthcare associated infection program Chair, Australian Antimicrobial Resistance Standing Committee
- Designer and co-author, National Surveillance and Reporting of Antimicrobial Resistance and Antibiotic Usage for Human Health in Australia
- Co-editor, Antimicrobial stewardship in Australian hospitals
- Appointed Professor Faculty, Nursing and Midwifery, Griffith University, in recognition of professional activities in healthcare associated infection and antimicrobial resistance
- Appointed Professor of Nursing (Research), University of Technology Sydney to lead research initiatives with the Sydney Children's Hospitals Network.
- President, Australasian College of Infection Prevention and Control

Publications

- Grayson ML, Stewardson AJ, Russo PL, Ryan KE, Olsen KL, Havers SM, Greig S, Cruickshank M. The Australian National Hand Hygiene Initiative after 8 years - a successful potential blueprint for sustained national action. The Lancet Infectious Diseases 2018
- Zimmerman P-A, van de Mortel T, Cruickshank M and Shaban R. Infection Prevention and Control. In: Bloomfield J, Pegram A, Wilson R, et al., (eds.). Clinical Nursing Skills: An Australian Perspective. 1st ed. Port Melbourne: Cambridge University Press, 2017, p. 123–56.
- Stewardson AJ, Stuart RL, Marshall C, Cruickshank M and Grayson ML. More doctor-patient contact is not the only explanation for lower hand-hygiene compliance in Australian emergency departments. Infection Control and Hospital Epidemiology, 2017; 38: 502-4.
- Bloomfield J PA, Wilson R, Pearson A, Proctor N, McGuiness W, Stein-Parbury J, Bristow S, Dally J, Gillespie B, Hay B, Lakeman R, Kuunst E, Smith Z, Nortojn-Westwood N, Robertson-Malt S, Shaban RZ, van de Mortel T, Zimmerman P, Wood E, Cruickshank M, Brown N, Cameron K, Christensen C, Doyle C, Dunstan T, Ferguson M, Green J, Jackson D, Mackey L, Manwa D, Michael C & Rushford K. Clinical Nursing Skills: An Australian Perspective. Melbourne: Cambridge University Press, 2016.
- Stewardson A, Russo P, Cruickshank M and Grayson M. Implementation of the Australian national hand hygiene initiative. Antimicrobial Resistance and Infection Control. 2015; 4 (Suppl 1): O46.

Speech Abstract

Carrot or Stick? Building Capacity in ASP and Infection Control Through Quality Accreditation

Building and operating robust systems for the surveillance and reporting of antimicrobial resistance and antibiotic usage requires comprehensive recognition and integration of the relevant technical, scientific, governance, policy, financial and jurisdictional levers and constraints. A number of strategies have been demonstrated to enhance appropriate use of antibiotics and reduce their use overall. To enhance and increase the potential for sustainability of these strategies – the "carrots", regulation is required – the "stick" is required.

Scientifically, antimicrobial resistance is a complex and important issue; no one action alone will provide an effective response. The situation is exacerbated by the ability of many bacteria to share genetic material and pass on resistance genes, and the inadvertent Antimicrobial stewardship (AMS) is one of the most important and effective interventions in promoting appropriate use. In some countries AMS is maturing in the hospital sector but stewardship strategies need to be developed and enhanced for antimicrobial use in the community, including residential aged care facilities.

AMS refers to coordinated actions designed to promote and increase the appropriate use of antimicrobials and is a key strategy to conserve the effectiveness of antibiotics. In health care settings, AMS programmes have been shown to improve the appropriateness of antibiotic use; reduce institutional rates of resistance, morbidity and mortality; reduce health care costs, including pharmacy costs; and reduce the adverse consequences of antibiotic use, including toxicity.¹

An example of such regulation is the National Safety and Quality Health Service (NSQHS) Standards introduced 2013 by the Australian governments which form the basis of mandatory accreditation. The NSQHS require every Australian hospital and day procedure service to implement infection prevention and antimicrobial stewardship programs. With the introduction of the Standards, Australia has mandated requirements for infection prevention and control and antimicrobial stewardship in hospitals and day procedure services. The Standards have laid the basis for a significant role in helping to improve the appropriateness of antimicrobial usage

¹ Duguid M, Cruickshank M (eds). Antimicrobial Stewardship in Australian Hospitals. Australian Commission on Safety and Quality in Health Care, Sydney, 2010

APEC Conference on Strategies Against the Evolving Threats from Antimicrobial Resistance

in Australian hospitals. Hospital accreditation criteria for AMS in Australia include

- have an AMS program in place
- provide prescribing clinicians with access to current therapeutic guidelines
- undertake monitoring of antimicrobial use and resistance
- take action to improve the effectiveness of AMS

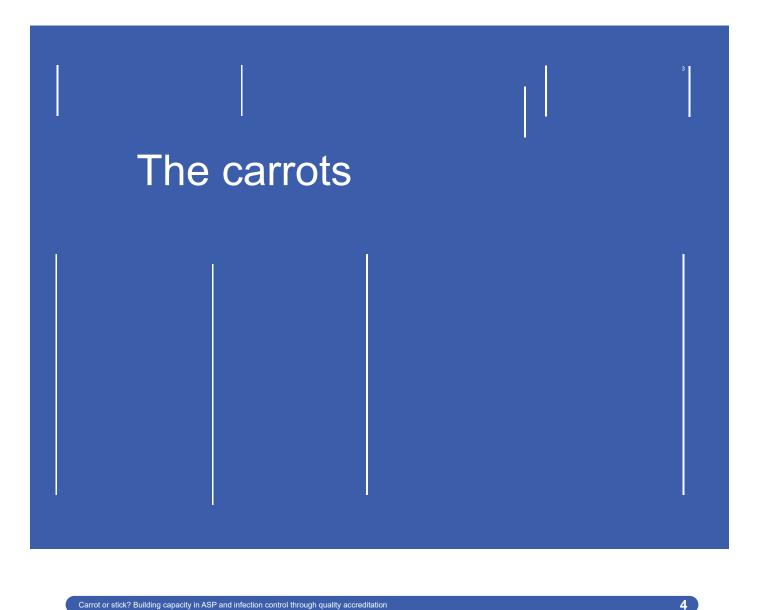
Reducing antimicrobial usage is one element of a comprehensive national approach to preventing and containing the spread of AMR and requires collaboration between experts, regulatory authorities, and producers, and integrated monitoring of the effects of interventions is essential.

Carrot or stick? Building capacity in ASP and infection control through quality accreditation

Professor Marilyn Cruickshank APEC September 2018

Where to start?

Carrot or stick? Building capacity in ASP and infection control through quality accreditation



The phrase "carrot and stick" is a metaphor for the use of a combination of reward and punishment to induce a desired behaviour. It is based on the idea that a cart driver might activate a reluctant horse by dangling a carrot in front of it and smacking it on the rear with a stick.

269

Kotter's 8-step change model

Carrot or stick? Building capacity in ASP and infection control through quality accreditation

APEC 2018

APEC 2018

6

Do HAI matter?

Carrot or stick? Building capacity in ASP and infection control through quality accreditation

Pain, suffering and possible death for patients More work for health staff

Increase LOS, costs, available beds etc

Who is at risk of HAI?

Carrot or stick? Building capacity in ASP and infection control through quality accreditation

The old The young The very sick Patients who have had surgery Patients with IV lines Patients with drains Patients who are immunocompromised Patients who are immunocompromised Patients with central lines, dialysis catheters Patients with urinary catheters Patients with increased LOS Patients with co-morbidities

Carrot or stick? Building capacity in ASP and infection control through quality accreditation

APEC 2018

8

Where to start?

Priorities:

- Quick wins
- Unify professionals voice, action,
- Bring 8 jurisdictions on board save time and \$\$\$

272

Standardisation

APEC 2018

Initial (small) steps in national HAI Surveillance

Putting good practice into policy and good policy into practice

What should a national program look like?

273

APEC 2018

Engaging with experts – Implementation Advisory Committee

The committee brought clinical, academic, professional, research and government expertise with geographical representation across Australia:

APEC 2018

National data

Carrot or stick? Building capacity in ASP and infection control through quality accreditation

Only from large data sets can decisions be made on some HAI measures.

 local and state surveillance data bases do not contain sufficient data to reliably plot trends eg antimicrobial usage

274

- to inform and update infection control guidelines, national programs
- guide national policy and priorities
- monitor national trends APEC 2018

Carrot or stick? Building capacity in ASP and infection control through quality accreditation

AAA Infections Audit Annually, Additional Isolation Precautions, Additional Precautions Audit Aged care infection control practiceland hygiene solution audit by audits,

air sampling in theatre all clinical areas. Antibiotic prophylaxis BBSE cause & eff Blood and Body F Blood fridge, Care of patient eq central devices central IV access central line CJD questionnaire Clinical Audits Clinical waste & s Clinical waste mai Cold chain. Correct waste disr customer focus si Decubitus Ulcers Drinking water Education Attenda Engineering and E engineering, Environment Environmental & environmental all Environmental Au Environmental Hy Environmental sw environmental/house keeping auditso equipment e.g. IV pumps Equipment Reprocessing Annually Eye Infections and flash steriliser use in theatres; flash steriliser. food handling, Food safe food safe program food services, Food storage. Food temperature, C 2018 Fridge temp record immunisatios Fridge temperatures monitored

general infection control audit

glutaraldehyde management

GOR/CSD/

hand hygiene compliance competency company rep hand hygiene station audit, hand washing audit

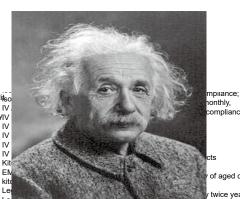
mortuary audit motor vehicle audit. MRO compliance audits MRO documentation audits MRO MRSA audits MRSA documentation N95/P2 fir checking competency needle stick body fluid,

in clinical areas annually PPE knowledge/donning & doffing assessment; processsing of equipment. proper disposal of waste RADIOLOGY. Rain water (Dialysis), Rain water (drinking),

site audit annually specimen collection SSI audit. SSI prophylaxis staff compliance to uniform i.e. jewellery, hair, nails staff immunisation audit, staff knowledge of infection control standard & additional precautions

"Not everything that can be counted counts,

and


not everything that counts can be counted"

es, hand

eatres

sment

Iges

Le Legionella water testing of patient/staff use areas legionnaire Gastroscopes (GESA guidelines), H20 testing 3 monthly linen, maintenance mask fit testing annually

Post Body Fluids Audit annually PPE audit PPE Availability Audits 3 monthly, PPE compliance audits PPE Compliance.

scope cleaning Sharp disposal ompliance sharps Sharps and clinical waste management sharps and sharps containers Sharps Audit sharps bins audits sharps compliance of aged careharps container audit Sharps containers: audit disposal e year, practices and safety sharps control Sharps disposal Sharps information audit sharps management sharps safety & biohazard injuries sharps safety,

Albert Einstein

Ward/Department based IC audits (all principles audited), warm water Warm water / Legionella waste Waste Compliance: Waste disposal, Waste management WASTE water testing Wound Drains

14

Infections – what are healthcare associated infections (HAI)?

Infections patients get as the result of health care

	CA- Comr	nunity Asso	ociated			HO- Hospita	l Onset	HACO- Healthcare-Assoc. Community Onset	
		d1	d2	d3	d4	d5	d6		
		adm date					d/c date		
					i.e. 72	-96 hrs post adm			
Primary cat	tegory						Codes		
CA	No admiss	ion within 3	365 days			Subclassify	CA		
	Was not a	dmitted fro	m reside	ntial care add	ress		CA-OS	Where overseas exposure recorded within previous 6 m	onths
но						Subclassify	HO-HNE	HNE LHD hospital onset	
							HO-nonHNE	Non-HNE LHD hospital onset	
HACO	ONE or mo	ore of:				Subclassif y	HACO-HNE	Specify HNE LHD hospital that was the last prior location	1
	Admission	within 365	days				HACO-nonHNE	Specify non-HNE hospital that was the last prior location	i i
	Residentia	l care resid	ent at tir	ne of detectio	n		HACO-OS	Where HACO exposure(s) were in a foreign location with recent hospital exposure	iout m
HNE= Hunt	er New England	d Local Hea	lth Distri	ict					

275

APEC 2018

Need for standardisation

Aims for AMS Forum

Carrot or stick? Building capacity in ASP and infection control through quality accreditation

Snapshot of current state of AMS across Australia

Be inspired by examples of successful/innovative programs

<u>276</u>

What are the likely barriers to implementing the recommendations?

Making change easy - Collection by HHApp

Central HH database

New direct-entry HH compliance App

- i-Phones, other Smartphones
- Benefits:

APEC 2018

- Reduces data management time by 50%
- No duplicate data entry and errors
- Potential WHO, NZ, Singapore

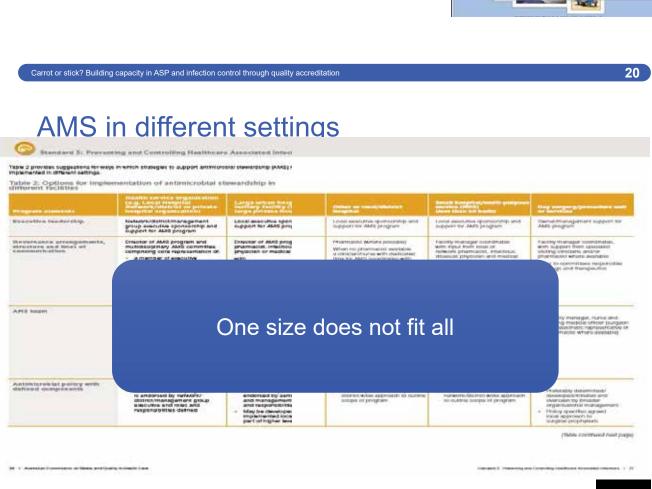
Carrot or stick? Building capacity in ASP and infection control through quality accreditation

Platform and database - potentially huge

I'm here to help! APEC 2018

The Clinical Care Standard for AMS

277


Infection Control Guidelines

Australian Guidelines for the Prevention and Control of Infection in Healthcare based on:

- Best available current scientific evidence
- International guidelines (CDC, EPIC II)
- Best practice / expert opinion

Guidelines don't implement themselves

APEC 2018

278

APEC 2018

AUSTRALIANCOMMISSIONen SAFETYweDUALITYwHEALTHCARE

7. m

Rural and regional hospitals

About 1/3 of hospitals in Australia are < 20 beds

Depend on GP visiting medical officers

Lack of access to ID physicians, clinical microbiology, pharmacists or pathology services

Lack of access to education and training

Difficulty in retaining experienced clinicians

APEC 2018

Private hospital sector

Carrot or stick? Building capacity in ASP and infection control through quality accreditation

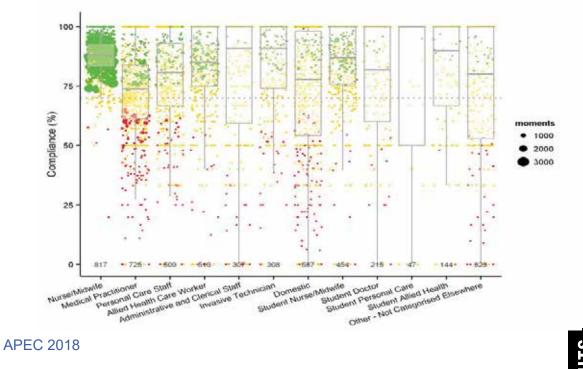
> 40% of all hospital care and > 60% of surgery

Limited scope to introduce restrictions, prescribing policies,

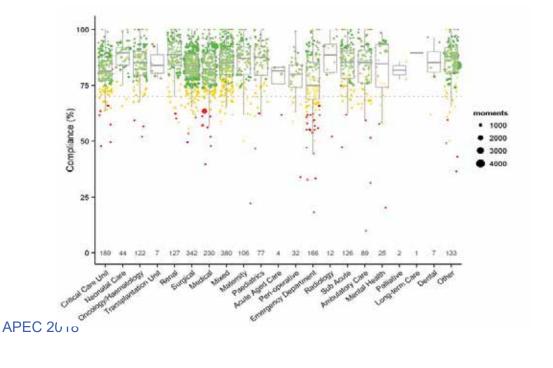
No inherent hierarchy in private hospitals – but some influence by peers

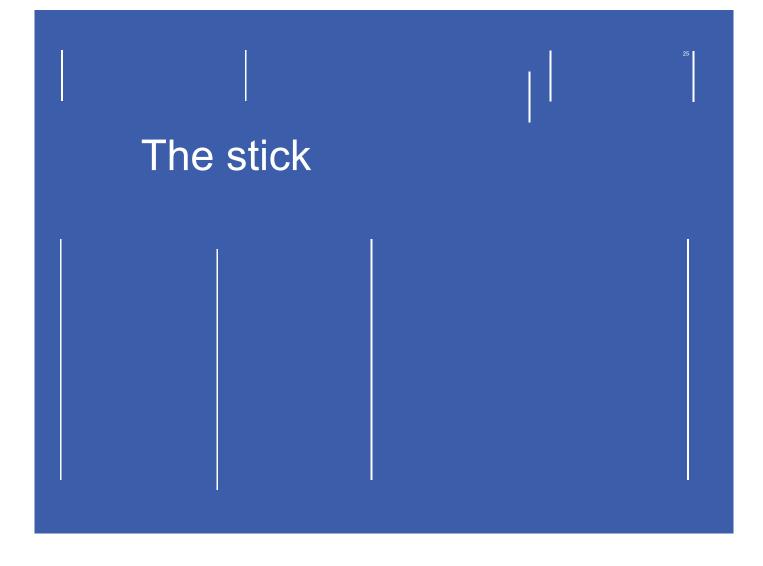
Doctors are the "customers"

Nurses often follow doctors protocols rigidly


ID physicians involved at patient rather than hospital level

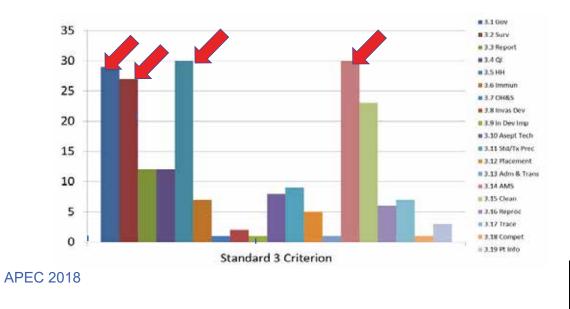
27/





24

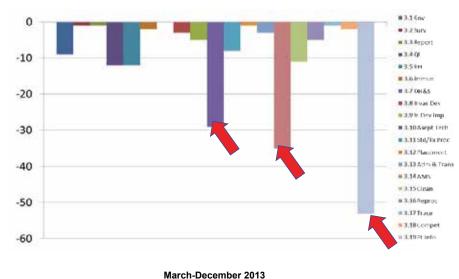
Hand Hygiene Performance: Department Type


Priorities for Standard 3

Carrot or stick? Building capacity in ASP and infection control through quality accreditation

Having an effective governance framework
Identifying what is working well
Knowing your risks and/or gaps
Having systems to gather, review and report evidence
Having a plan to address risks and respond
Aiming for the best (either 0 or 100%)
Demonstrating progress/improvement
Engaging with others in the organisation

281



UT:

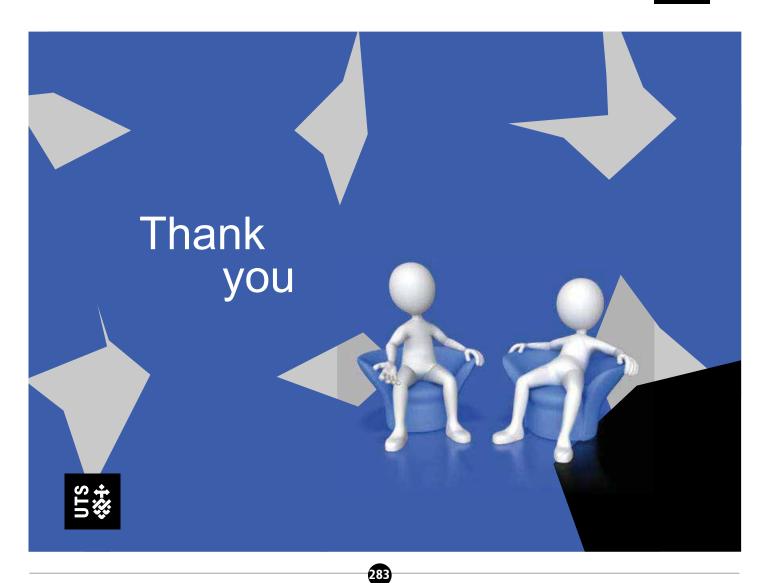
28

Not Met Health service accreditation

Carrot or stick? Building capacity in ASP and infection control through quality accreditation

282

APEC 2018


Steps to national roll out

Carrot or stick? Building capacity in ASP and infection control through quality accreditation

lt's wasn't easy!

- involve key stakeholders in design and implementation
- agreed organisational objectives
- use trained personnel to collect and manage data, and provide them with appropriate information technology support
- use definitions of surveillance events that are unambiguous, practical, specific and can be validated
- use reliable and practical methods for detecting events
 APEC 2018

Closing Remarks

Dr. Jih-Haw Chou

Director-General, Centers for Disease Control

APEC Conference on Strategies Against the Evolving Threats from Antimicrobial Resistance

Dr. Jih-Haw Chou

Position: Director-General Department/organization: Centers for Disease Control Economy: Chinese Taipei

Educational Background

- MPH (Environmental Toxicology), University of California at Berkeley
- MPH (Epidemiology), National Taiwan University
- DDS, Taipei Medical College
- LLB, Fu Jen Catholic University

Professional Career

- Deputy Director-General, CDC.
- Health Commissioner, Taipei County Health Department
- Deputy Health Commissioner, Taipei County Health Department
- Director, Div. Research, Planning and Development, Taipei City Health Department
- Branch Chief, National Quarantine Service, Department of Health
- Specialist, Bureau of Communicable Disease Control, Department of Health

Publications

- Huang Angela SE, Chen WC, Huang WT, Huang ST, Lo YC, Wei SH, Kuo HW, Chan PC, Hung MN, Liu YL, Mu JJ, Yang JY, Liu DP, Chou JH, Chuang JH, Chang FY. Public Health Responses to Reemergence of Animal Rabies, Taiwan, July 16-December 28, 2013. PLoS ONE. 10(7):e0132160, 2015.
- Chiu HH, Hsieh JW, Wu YC, Chou JH, Chang FY. Building core capacities at the designated points of entry according to the International Health Regulations 2005: a review of the progress and prospects in Taiwan. Global Health Action. 7:24516, 2014.
- Chiu HH, Hsieh JW, Wu YC, Chou JH, Chang FY. Maintaining Human Health at the Border of Taiwan. Biosecurity and Bioterrorism.12(6):346-355,2014.
- Lo YC, Chuang JH, Kuo HW, Huang WT, Hsu YF, Liu MT, Chen CH, Huang HH, Chang CH, Chou JH, Chang FY, Lin TY, Chiu WT. Surveillance and vaccine effectiveness of an influenza epidemic predominated by vaccine-mismatched influenza B/Yamagata-lineage viruses in Taiwan, 2011-12 season. PLoS ONE. 8(3):e58222, 2013.
- Chuang JH, Huang AS, Huang WT, Liu MT. Chou JH, Chang FY, Chiu WT. Nationwide surveillance of influenza during the pandemic (2009-10) and postpandemic (2010-11) periods in Taiwan. PLoS ONE. 7(4):e36120, 2012.

List of Participants

Australia

Marilyn Cruickshank
 Professor of Nursing Research
 University of Technology Sydney
 marilyn.cruickshank@uts.edu.au

Chile

Mrs. María Aldunate
 Chief of Drug information section
 Institute of Public Health
 faldunate@ispch.cl

Hong Kong, China

Miss Patricia Ching
 Principal Nurse
 WHO Collaborating Center For Epidemiology,
 School Of Public Health, University Of Hong
 Kong
 chingpty@yahoo.com.hk

Prof. Wing Hong Seto
 Co-Director
 WHO Collaborating Centre for Infectious
 Disease Epidemiology and Control, The
 University of Hong Kong
 whseto@hku.hk

Indonesia

Dr. Triya Novita Dinihari
 Head
 Section for early warning,
 DG for Diseases Prevention and Control,
 Ministry of Health
 tndinihari@yahoo.com

Miss Bunga Dian Kurniati
 Pharmacist
 National Agency of Drug and Food Control
 bunga_dian_k@yahoo.com

Japan

Prof. Satoshi Hori
 Professor
 Department of Infection Control Science,
 Juntendo University
 shori@juntendo.ac.jp

• Dr. Junko Sato

Director

Office of International Cooperation, Pharmaceuticals and Medical Devices Agency sato-junko@pmda.go.jp

 Mr. Takahiro Shirakawa Inspector
 National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries takahiro_shirakaw140@maff.go.jp

Prof. Kazuhiro Tateda
 President
 Japanese Association for Infectious Diseases
 kazu@med.toho-u.ac.jp

Miss Yoko Nakata
 Health Policy Senior specialist
 MSD K.K (Japan)
 yoko.nakata@merck.com

Malaysia

Dr. Noor Amelia Abdrasid
 Principal Assistant Director
 Medical Development Division, Ministry of
 Health
 dramelia_ar@moh.gov.my

Dr. Suraya Amir Husin
 Senior Principal Assistant Director
 Medical Development Division, Ministry of
 Health
 drsurayaamirhusin@gmail.com

Prof. Victor Lim
 Pro Vice-Chancellor
 International Medical University
 victor_lim@imu.edu.my

Peru

 Mr. Victor Fiestas Solórzano Infectious Disease Specialist National Institute Health vfiestas@ins.gob.pe Mr. Luis Fernando Donaires Toscano Infectious Disease Specialist National Institute Health fernandod1225@gmail.com

The Philippines

 Dr. Irene Florentino-Farinas Medical Officer IV
 Department of Health ayeenfarinasmd@gmail.com

Republic of Korea

Mr. Damon Ihm
 Policy Manager
 Merck Sharp & Dohme
 damon.ihm@merck.com

Miss Young Jin Nah
 Sr. Market Access Specialist
 Merck Sharp & Dohme
 young.jin.nah@merck.com

Singapore

Dr. Claudia Adler
 Regional Commercial Lead
 MSD Asia Pacific
 claudia.adler@merck.com

 Prof. David Chien Boon Lye Associate Professor Tan Tock Seng Hospital david_lye@ttsh.com.sg

 Miss Hui Ling, Esther Ng Director, Market Access Asia Pacific MSD International GmbH esther.ng@merck.com

Switzerland

 Prof. Didier Pittet
 Chief Medical Officer, University hospitals of Geneva
 didier.pittet@hcuge.ch

Thailand

Dr. Mintra Lukkana
 Veterinarian
 National Bureau of Agricultural Commodity and
 Food Standards, Ministry of Agriculture and
 Cooperatives
 I.mintra@gmail.com

Miss Rathar Benchapalanont
 Pharmacist
 Food and Drug Administration, Ministry of
 Public Health
 raththar.b@gmail.com

USA

Dr. Michael Bell
 Deputy Director
 Division of Healthcare Quality Promotion,
 Centers for Disease Control and Prevention
 zzb8@cdc.gov

Mrs. Lynn Cinelli
 Director
 Merck Sharp & Dohme
 lynn.cinelli@merck.com

Mr. Silas Holland
 Director
 Merck Sharp & Dohme
 silas.holland@merck.com

 Mr. Michael Schmitz
 Director
 C&M International mschmitz@crowell.com

Vietnam

Mr. Hung Thai Cao
 Deputy Director
 Department of Medical Service Administration,
 Ministry of Health
 thai_caohung@yahoo.com

Mrs. Thi Minh Chau Nguyen
 Deputy Director
 The International Cooperation Department,
 Ministry of Health
 chautinotina@yahoo.com

Chinese Taipei

Prof. Feng-Yee Chang
 Professor
 Tri-Service General Hospital, National Defense
 Medical Center
 fychang@ndmctsgh.edu.tw

Miss Hsiao-Ling Chang
 Deputy Director
 Division of Infection Control and Biosafety,
 Centers for Disease Control
 hlchang@cdc.gov.tw

Prof. Shan-Chwen Chang
 Dean
 College of Medicine, National Taiwan University
 changsc@ntu.edu.tw

 Mrs. Shu-Ling Chang Nurse
 Division of Infection Control and Biosafety, Centers for Disease Control ling@cdc.gov.tw

Miss Ching-I Chen
 Assistant
 Agricultural Technology Research Institute
 1052073@mail.atri.org.tw

Mrs. Hsiu-Chu Chen
 Pharmacist
 Taichung Veterans General Hospital
 kiku@vghtc.gov.tw

Dr. Li-Kuang Chen
 Chief of Laboratory Diagnosis Section
 Hualien Tzu Chi Hospital, Buddhist Tzu Chi
 Medical Foundation
 lkc@tzuchi.com.tw

Dr. Shih-Chung Chen
 Minister
 Ministry of Health and Welfare

Dr. Yao-Shen Chen
 Chief
 Department of Internal Medicine, Kaohsiung
 Veterans General Hospital
 yschen@vghks.gov.tw

Prof. Yee-Chun Chen
 Professor
 Department of Internal Medicine, National
 Taiwan University Hospital and College of
 Medicine
 yeechunchen@gmail.com

Miss Yu-Wen Chen
 Pharmacist
 Shionogi
 kylie@shionogi.com.tw

Dr. Chun-Wen Cheng
 Medical doctor
 Division of Infectious Diseases, Linkou Chang
 Gung Memorial Hospital

Miss Wan-Hsin Cheng
 Chief
 Public Health Bureau Tainan City Government
 dc13@tncghb.gov.tw

Prof. Wen-Jin Cherng
 Superintendent
 Linkou Chang Gung Memorial Hospital

 Miss Chia-Wen Chiang Nurse
 China Medical University Hospital
 2jdiagxl@yahoo.com.tw

 Dr. Chuen-Sheue Chiang Associate Researcher
 Center for Diagnostics and
 Vaccine Development,
 Centers for Disease Control cschiang10@cdc.gov.tw

 Dr. Shih- Ming Johnson Chiang President World Veterinary Association (WVA) jvh125@gmail.com

Miss Hui-Yi Chien
 Public Health Officer
 Division Of Planning and Coordination,
 Centers for Disease Control
 ivy0311@cdc.gov.tw

Dr. Li-Jung Chien
 Section Chief
 Division of Infection Control and
 Biosafety, Centers for Disease Control
 jung@cdc.gov.tw

Dr. Chien-Shun Chiou
 Principal Investigator
 Center for Diagnostics and Vaccine
 Development,
 Centers for Disease Control
 nipmcsc@cdc.gov.tw

Prof. Cheng-Hsun Chiu
 Professor
 Department of Pediatrics, Chang Gung
 Memorial Hospital
 chchiu@adm.cgmh.org.tw

Dr. Jih-Haw Chou
 Director General
 Centers for Disease Control

Mrs. Wei-Hui Chou
 Specialist
 Division of Infection Control and Biosafety,
 Centers For Disease Control
 weihui@cdc.gov.tw

 Dr. Yu-Ju Chou
 Medical Officer
 Northern Regional Center,
 Centers for Disease Control awuxawu@gmail.com

Mr. Chien-Hua Chu
 Specialist
 Division of Infection Control and
 Biosafety, Centers for Disease Control
 olin0725@gmail.com

Mrs. Sun Chin Chuan
 Commissioner
 Taipei Tzu Chi Hospital
 wagdar@ms39.hinet.net

• Miss Hsin-Tzu Chuang

Pharmacist Shionogi meredith@shionogi.com.tw

Mr. Pei-Hua Chuang
 Associate Technical Specialist
 Food and Drug Administration
 cph@fda.gov.tw

Prof. Yin-Ching Chuang
 Professor
 Chi Mei Medical Center
 secretary@mail.chimei.org.tw

Mr. Yuan-Zong Gu
 Medical Technologist
 Taipei Veterans General Hospital
 tmub8604008@pchome.com.tw

Mrs. Li-Yuan Ho
 Registered Nurse
 Nursing Department, Rueifang Miner Hospital
 leann35311@yahoo.com.tw

Miss Hsuan-ling Hsiao
 Clinical Pharmacist
 Linkou Chang Gung Memorial Hospital
 ellisa@adm.cgmh.org.tw

Miss Yi-Chen Hsieh
 Public Health Inspector
 Department of Health, Taipei City Government
 lizzie248@health.gov.tw

Mrs. Mia-Hui Hsu
 ICN
 Nursing Department, Rueifang Miner Hospital cefiros@ms25.hinet.net

 Miss Wei-Ting Hsu Assistant Technical Specialist Division of Infection Control and Biosafety, Centers For Disease Control wthsu@cdc.gov.tw

Mr. Wen-Chien Hsu
 Medical Technologist
 Tri-Service General Hospital Songshan Branch
 ymdarwins@gmail.com

Miss Chi Hsuan
 Section Chief
 Public Health Bureau, Ping Tung County
 Government
 pthchihsuan@ksmail.mohw.gov.tw

Miss Yi-Jen Hung
 Medical Technologist
 Taipei Municipal Gan-Dau Hospital
 lily80053131@gmail.com

 Dr. Chen-Hua Huang Doctor
 Cathy General Hospital infection@cgh.org.tw

• Dr. Chin-Cheng Huang Deputy Minister Council of Agriculture

Miss Jing-Fang Huang
 Assistant Researcher
 Agricultural Technology Research Institute
 hcf@mail.atri.org.tw

 Prof. Kao-Pin Huang
 Professor
 China Medical University Hospital kapihw@gmail.com

Miss Li-Jung Huang
 Secretary General
 Taiwan Society Of Health-System Pharmacists
 lijung8819@gmail.com

 Prof. Yhu-Chering Huang Attending Physician Chang Gung Memorial Hospital ychuang@cgmh.org.tw Miss Yu-Chin Huang Nurse
 Ruefang Miner Hospital
 vive@ms4.hinet.net

Dr. Chieh Ju
 Doctor
 New Taipei City Hospital
 hopeliu@ms26.hinet.net

Miss Yu-Fen Ke
 Senior Technical Specialist
 Division of Infection Control and
 Biosafety, Centers for Disease Control
 kyf@cdc.gov.tw

Dr. Shu-Chen Kuo
 Attending Physician and Assistant Investigator
 National Health Research Institutes
 Iudwigvantw@gmail.com

Prof. Wen-Chien Ko
 Chief of Division of Infectious Diseases
 Division of Infectious Diseases, Department of
 Internal Medicine, National Cheng Kung
 University Hospital
 winston3415@gmail.com

Miss An-Chi Lai
 Section Chief
 Division of Planning and Coordination,
 Centers for Disease Control
 angellai@cdc.gov.tw

Mr. Wei-Fan Lai
 Medical Laboratory Scientist
 Hope Doctor Hospital
 k223930@yahoo.com.tw

• Dr. Susan Shin-Jung Lee Chief, Division of Infectious Diseases Kaohsiung Veterans General Hospital ssjlee28@yahoo.com.tw

Miss Yi-Ting Lee
 Pharmacist
 Shionogi
 annie_lee@shionogi.com.tw

• Yuan-Ti Lee Director of Infection Disease cshy521@csh.org.tw

Miss Rachel Li
 Stationed Agent
 Division of Infection Control and
 Biosafety, Centers for Disease Control fabail@cdc.gov.tw

Dr. Ching-Len Liao
 Director
 National Institute of Infectious Diseases and
 Vaccinology
 chinglen@gmail.com

Mr. Wei-Tsen Laio
 Associate Coordinator
 Joint Commission of Taiwan
 wt.liao@jct.org.tw

Miss Chien-Yuan Lin
 Director
 Division of Planning and Coordination,
 Centers for Disease Control
 hscylin@cdc.gov.tw

Dr. Chii-Jeng Lin
 President
 Joint Commission of Taiwan

Mr. David Lin
 Country Manager
 Pfizer Limited

Dr. Huan-Po Lin
 Visiting Doctor
 Country Hospital
 jameslin@url.com.tw

Miss Le-Hau Lin
 Nursing Home Director
 Population Hospital
 sf7324742@Gmail.Com

Dr. Stephen Sheng-Fong Lin
 Pfizer Limited
 APAC Regional Medical Therapeutic Area Lead
 stephen.lin@pfizer.com

Mrs. En-Chi Liu
 Infection Control Nurse
 Chang Gung Memorial Hospital
 angel20050714@adm.cgmh.org.tw

Mr. KevinLiu
 Director
 Pfizer Limited
 kevin.Liu@pfizer.com

Miss Li-Ling Liu
 Counselor
 Ministry of Health and Welfare

Miss Tsui-Ping Liu
 Supervisor
 Linkou Chang Gung Memorial Hospital
 blue1010@adm.cgmh.org.tw

Dr. Yung-Ching Liu
 Chief Infection Disease
 Taipei Medical University --Shuang Ho Hospital
 08682@s.tmu.edu.tw

 Dr. Hsiu-Jung Lo Investigator
 National Health Research Institutes hjlo@nhri.org.tw

• Dr. Yi-Chun Lo Deputy Director-General Centers for Disease Control loyichun@cdc.gov.tw

Mrs. Hui-Li Lu
 Medical Technologist
 Taichung Armed Forces General Hospital
 lulu803m2005@yahoo.com.tw

Mrs. Ying-Ping Ma
 Specialist Animal Health Inspection Division
 Bureau of Animal and Plant Health Inspection
 and Quarantine Council of Agriculture
 v019009@mail.baphiq.gov.tw

Mr. Jasper Macslarrow
 Director, International Affairs-Asia
 Pfizer Limited
 jasper.macslarrow@pfizer.Com

 Dr. Jung-Jung Mu Research Fellow
 Center for Diagnostics and
 Vaccine Development,
 Centers for Disease Control
 Jjmu@cdc.gov.tw Prof. Sung-Ching Pan
 Doctor
 National Taiwan University Hospital
 scpbpan@gmail.Com

Miss Wan-Chen Shen
 Pharmacist
 Taipei Medical University –Shuang Ho
 Hospital
 16323@s.tmu.edu.tw

Mrs. Yi-Ting Shen
 Professional Nurse
 Office of Preventive Medicine,
 Centers for Disease Control
 beckeyshen@cdc.gov.tw

Dr. Chung-Liang Shih
 Director General
 Ministry of Health and Welfare

Dr. Tai-Hwa Shih
 Deputy Director General
 Bureau of Animal and Plant Health Inspection
 and Quarantine (BAPHIQ)
 hcshih@mail.baphiq.gov.tw

Miss Yu-Yen Shih
 Senior Specialist
 Division of Infection Control and Biosafety,
 Centers for Disease Control
 yyshih@cdc.gov.tw

Mr. Chen-Yi Su
 Doctor
 Tan Chai Hospital
 sujohn789@yahoo.com.tw

 Dr. Chih-Kuang Su Attending Physician Xinzhuang Yingren Hospital thome666@yahoo.com.tw • Dr. Ying-Shih Su Medical Officer Eastern Regional Center, Centers for Disease Control sih0818@cdc.gov.tw

Dr. Cheng-Sheng Tai
 Attending Doctor Taipei Veterans General
 Hospital, Taitung Branch
 t7612217@gmailcCom

Miss Chun-His Tai
 Infection Control Medical Technician
 Taichung Veterans General Hospital
 taichun1209@hotmail.com

Miss Kuei-Lien Tien
 Registered Nurse
 Center for Infection Control, National
 Taiwan University Hospital
 kltien@ntuh.gov.tw

Miss Chia-Shan Tsai
 Pharmacist
 Taipei Medical University – Shuang Ho Hospital
 10587@s.tmu.edu.tw

Miss Chia-Yin Tsai
 Public Health Inspector
 Department of Public Health Taoyuan

Miss Ching-Hua Tsai
 Asso. Market Access Director
 Merck Sharp & Dohme
 yvette.tsai@merck.com

 Dr. Chin-Shiang Tsai
 Attdening Physician
 National Cheng-Kung University Hospital jasonmammal@gmail.com

F

Tsai-Ling Yang Lauderdale
 Investigator
 National Institute of Infectious Diseases and
 Vaccinology
 lauderdale@nhri.org.tw

Miss Wan-Hsuan Tsai
 Assitant Technical Specialist
 Division of Infection Control and
 Biosafety, Centers for Disease Control
 washt@cdc.gov.tw

Dr. Shu-Hui Tseng
 Director
 Division of Infection Control and
 Biosafety, Centers for Disease Control
 tsengsh@cdc.gov.tw

Dr. Tsung-Pei Tsou
 Medical Officer
 Division of Preparedness and Emerging
 Infectious Diseases,
 Centers for Disease Control
 tsungpei@cdc.gov.tw

Miss Kai-Hao Wang
 Sr. Public Affairs/Policy Manger
 Pfizer Limited
 kai-hao.wang@pfizer.com

 Dr. Kung-Ching Wang Medical Officer
 Central Regional Center,
 Centers for Disease Control kcwang35@cdc.gov.tw

Prof. Kwua-Yun Wang
 Vice President
 Taiwan Nurses Association
 twna@twna.org.tw

Mr. Cheng-Hao Wu
 Program Coordinator
 Division of Planning and Coordination,
 Centers for Disease Control
 collinwu@cdc.gov.tw

Dr. Chi-Jung Wu
 Assistant Investigator and Attending Physician
 National Health Research Institutes
 wucj@nhri.org.tw

 Dr. Hao-Hsin Wu Medical Officer
 Division of Infection Control and Biosafety, Centers for Disease Control
 wuahushing@cdc.gov.tw

Mrs. Hsiu-Hui Wu
 Assistant Researcher
 Agricultural Technology Research Institute
 hhwu@mail.atri.org.tw

Dr. Jiunn-Shyan Julian Wu
 Section Chief
 Division of Infection Control and Biosafety,
 Centers for Disease Control
 delight@cdc.gov.tw

Dr. Mai-Szu Wu
 Superintendent
 Taipei Medical University --Shuang Ho
 Hospital maiszuwu@gmail.com

Dr. Yi-Chun Wu
 Division Director
 Division of Quarantine,
 Centers for Disease Control
 wuyj@cdc.gov.tw

Miss Hsiang-Yin Yeh
 Associate Technical Specialist
 Ministry of Health and Welfare
 mdime@mohw.gov.tw

Dr. Muh-Yong Yen
 Director
 Taipei City Hospital
 myyen1121@gamil.com

														0			
														4			
																	l