一、第一類法定傳染病 ... 1
1. 天花 .. 1
 ● 天花病毒分離與鑑定 ... 1
 ● 天花病毒核酸檢測 (Real-time PCR) 5
2. 鼠疫 .. 11
 ● 鼠疫桿菌分離與鑑定 .. 11
 ● 鼠疫桿菌 F1 抗體檢測 (酵素免疫分析法) 17
3. 嚴重急性呼吸道症候群 (SARS) ... 21
 ● SARS 病毒病原體分離、鑑定 ... 21
 ● SARS 病毒核酸檢測 (real-time PCR) 24
4. 狂犬病 .. 31
 ● 狂犬病病毒分離與鑑定 .. 31
 ● 狂犬病病毒核酸檢測 (RT-PCR) 34
 ● 狂犬病病毒抗體檢測 (ELISA) .. 40
5. H5N1 流感 ... 44
 ● H5N1 流感病毒分離、鑑定 .. 44
 ● H5N1 流感病毒螢光定量聚合酶連鎖反應 (real-time PCR) ... 46
二、第二類法定傳染病檢體 ... 50
1. 炭疽病 .. 50
 ● 炭疽桿菌分離與鑑定 .. 50
 ● 炭疽桿菌分子生物學核酸檢測 (即時定量聚合酶鏈鎖反應) ... 56
 ● 炭疽桿菌血清學抗體檢測 ... 61
2. 白喉 .. 66
 ● 白喉桿菌分離與鑑定 .. 66
 ● 白喉桿菌核酸檢測 (PCR) ... 74
 ● 白喉桿菌毒素測定 (Elek’s plate virulence test) 78
3. 傷寒、副傷寒 ... 83
 ● 傷寒、副傷寒及沙門氏桿菌分離與鑑定 83
4. 登革熱 .. 91
 ● 登革病毒分離與鑑定 ... 91
 ● 登革病毒核酸檢測 (Real-time RT-PCR) 97
 ● 登革病毒 NS1 抗原檢測 (Dengue virus NS1 antigen rapid test) ... 101
 ● 登革病毒、日本腦炎病毒 IgM 及 IgG 抗體檢測 (ELISA) 103
5. 流行性腦脊髓膜炎 .. 108
 ● 奈瑟氏腦膜炎雙球菌分離與鑑定 108
6. 桿菌性痢疾 ... 116
 ● 桿菌性痢疾分離與鑑定 .. 116
7. 阿米巴性痢疾 ... 124
 ● 桿疾阿米巴檢測 (鏡檢法) .. 124
痢疾阿米巴糞便核酸檢測(兩階段巢式PCR) 132
痢疾阿米巴糞便抗原（酵素免疫篩檢法） 139
痢疾阿米巴分子生物學確認檢驗(即時Real time PCR法) 143

小兒麻痺病毒分離與鑑定 ... 150

瘧原蟲檢測(鏡檢法) 1 ... 169
瘧原蟲分子生物學核酸檢測(兩階段巢式PCR法) 173

麻疹病毒分離與鑑定 .. 184
麻疹病毒核酸檢測 ... 194
麻疹病毒IgM抗體檢測(Indirect ELISA) 201
麻疹病毒IgG抗體檢測(Indirect ELISA) 210

A型肝炎病毒IgM抗體檢測(化學冷光微粒免疫分析法) 220

漢他病毒核酸檢測(Real-time RT-PCR) 227
漢他病毒抗體檢測(ELISA) .. 231

出血性大腸桿菌因子檢測 .. 243
出血性大腸桿菌毒素基因鑑定 (PCR) 248

德國麻疹病毒分離與鑑定 ... 253
德國麻疹病毒核酸檢測 ... 263
德國麻疹病毒IgM抗體檢測(Indirect ELISA) 269
德國麻疹病毒IgG抗體檢測(Indirect ELISA) 278

屈公病毒分離與鑑定 .. 287
屈公病毒IgM及IgG抗體檢測(ELISA) 295

霍亂弧菌分離與鑑定 .. 300
霍亂弧菌毒素基因鑑定 (PCR) 308
霍亂弧菌毒素檢測 (RPLA) ... 313

多重抗藥性結核病 ... 318
結核菌群間接藥物感受性試驗(瓊脂平板法) 318
結核菌群間接藥物感受性試驗(液態快速培養系統) 327
多重抗藥性結核菌RMP及INH抗藥基因檢測 336
多重抗藥性結核菌FLQ及針劑藥物抗藥基因檢測 344
結核菌群抗藥基因定序 ... 351
<table>
<thead>
<tr>
<th>18. 西尼羅熱</th>
<th>364</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 西尼羅病毒核酸檢測 (Real-time RT-PCR)</td>
<td>364</td>
</tr>
<tr>
<td>• 西尼羅病毒 IgM 及 IgG 抗體檢測 (ELISA)</td>
<td>368</td>
</tr>
<tr>
<td>19. 流行性斑疹傷寒</td>
<td>373</td>
</tr>
<tr>
<td>• 意發病、流行性及地方性斑疹傷寒病原體核酸檢測</td>
<td>373</td>
</tr>
<tr>
<td>• 流行性斑疹傷寒抗體檢測</td>
<td>379</td>
</tr>
</tbody>
</table>

三、第三類法定傳染病檢體 | 385 |
1. 百日咳	385
• 百日咳菌分離與鑑定	385
• 百日咳核酸檢測 (PCR)	392
• 百日咳核酸檢測 (PCR LAMP 法)	399
• 百日咳菌核酸菌株抗原分析	406
2. 日本腦炎	410
• 日本腦炎病毒分離與鑑定	410
• 日本腦炎病毒核酸檢測 (Real-time RT-PCR)	414
• 登革病毒、日本腦炎病毒 IgM 及 IgG 抗體檢測 (ELISA)	418
3. 結核病 (除多重抗藥性結核病外)	423
• 結核菌群培養	423
• 結核菌群去活化操作驗證程序與查核機制	430
• 抗酸菌抹片鏡檢	438
• 結核菌群與利福平抗藥基因核酸檢測 (Xpert MTB/RIF Assay)	444
• 結核菌群核酸菌種鑑定	448
• 非結核分枝桿菌核酸菌種鑑定	454
• 結核菌群間隔寡核酸分子分型法	463
• 結核菌群最佳化散置重複單元分子分型法	471
• 病理檢體卡介苗牛型結核菌核酸檢測	481
4. 先天性德國麻疹症候群	488
• 同德國麻疹	488
• B型肝炎病毒核心 IgM 抗體檢測 (化學冷光微粒免疫分析法)	489
• C型肝炎病毒抗體檢測 (化學冷光微粒免疫分析法)	495
• C型肝炎病毒核酸檢測 (Real-time RT-PCR)	502
• D型肝炎病毒 IgM 抗體檢測 (ELISA)	508
• E型肝炎病毒抗體檢測 (IgM/IgG)	516
• E型肝炎病毒抗體西方墨點法檢測 (IgM/IgG)	522
6. 流行性腮腺炎 (群聚感染)	533
• 腮腺炎病毒分離與鑑定	533
• 腮腺炎病毒核酸檢測	543
• 腮腺炎病毒 IgM 抗體檢測 (Indirect ELISA)	549
• 腮腺炎病毒 IgG 抗體檢測 (Indirect ELISA)	558
7. 退伍軍人病	567
退伍军人病病原菌分離與鑑定：567
嗜肺退伍军人菌抗原検測（EIA）：576
嗜肺退伍军人菌抗原検測（RIMA）：583
嗜肺退伍军人菌抗體検測（IFA）：587
退伍军人菌抗原検測（LATEX）：594
退伍军人菌抗體検測（DFA）：598
水中退伍军人菌分離與鑑定：602
8. 侵襲性b型嗜血桿菌感染症：611
 侵襲性b型嗜血桿菌分離與鑑定：611
9. 梅毒：618
 RPR（Rapid Plasma Reagin）快速血漿反應素試驗標準検驗方法：618
 VDRL（Venereal Disease Research laboratory）標準検驗方法：623
 TPPA（Treponema Pallidium Particle Agglutination）標準検驗方法：629
 TPHA（Treponema Pallidium Hemagglutination Agglutination）標準検
 騷方法：637
10. 淋病：646
 奈色氏淋病雙球菌分離與鑑定：646
 奈色氏淋病雙球菌染色鏡検（革蘭氏染色法）：651
 奈色氏淋病雙球菌及砂眼披衣菌分子生物検測（Real-Time-PCR）：655
11. 腸病毒感染併發重症：662
 腸病毒分離與鑑定：662
 腸病毒七十一型IgM抗體検測：672
 腸病毒七十一型核酸検測（反転録酶－聚合酶鎖反應法）：675
 腸病毒－巢式聚合酶鎖反應法(CODEHOP)：681
12. 人類免疫缺乏病毒感染與後天免疫缺乏症候群（AIDS）：688
 人類免疫缺乏病毒抗體検測（粒子凝集法）：688
 人類免疫缺乏病毒抗體検測（WB）：695
 人類免疫缺乏病毒核酸検測（Real-time RT-PCR）：703
四、第四類法定傳染病検體：711
1. 痘疹B病毒感染症：711
 痘疹B病毒分離與鑑定：711
 痘疹B病毒核酸検測（Real-time PCR）：715
 痘疹B病毒抗體検測：721
2. 鈎端螺旋體病：725
 鈎端螺旋體分離與鑑定：725
 鈎端螺旋體抗體検測（顯微凝集法）：730
 鈎端螺旋體抗體検測（ELISA）：737
3. 類鼻疽：741
 類鼻疽伯克氏菌分離與鑑定：741
4. 肉毒桿菌中毒：746
 肉毒桿菌分離與鑑定：746
肉毒桿菌中和試驗 .. 750
肉毒桿菌毒素檢測 .. 754
5. 侵襲性肺炎鏈球菌感染症 .. 758
 侵襲性肺炎鏈球菌分離與血清型別鑑定 758
Q熱 ... 765
 貝氏考克斯菌核酸檢測（STN-RT PCR） 765
 Q熱病原體血清學抗體檢測（IgM 與 IgG, IFA） 771
恙蟲病、地方性斑疹傷寒 .. 777
 恙蟲病及斑疹傷寒病原體分離與鑑定 777
 恙蟲病及斑疹傷寒病原體核酸檢測（Real-time PCR） 782
 恙蟲病抗體檢測（間接免疫螢光抗體法） ... 789
 地方性斑疹傷寒抗體檢測 795
8. 萊姆病 .. 801
 萊姆病病原菌分離與鑑定 801
 萊姆病病原菌抗體檢測（ELISA） 805
 萊姆病病原菌抗體檢測（WB） 807
9. 兔熱病 .. 815
 兔熱病病原菌抗體檢測（微量平板法） 815
 兔熱病病原菌抗體檢測（IHA） 818
10. 水痘併發症 ... 823
 水痘病毒分離與鑑定 823
 水痘病毒核酸檢測 832
 水痘病毒 IgM 抗體檢測（Indirect ELISA） 838
 水痘病毒 IgG 抗體檢測（Indirect ELISA） 847
11. 弓形蟲感染症 .. 858
 弓型蟲分子生物學核酸檢測（PCR） 858
 弓形蟲 IgM 及 IgG 抗體檢測（EIA 及 ELFA） 861
 弓形蟲 IgG 親和力試驗（IgG avidity test） ... 867
12. 流感併發症 ... 872
 流感病毒分離與鑑定（流感併發症） 872
 流感病毒核酸檢測（real-time PCR） 882
13. 庫賈氏病 .. 888
 庫賈氏病標示蛋白檢測（WB） 888
 庫賈氏病 PRNP 基因型別分析 896
14. 布氏桿菌病 ... 900
 布氏桿菌分離與鑑定 900
 布氏桿菌抗體檢測（RBT 及 CFT） 905
15. 李斯特菌 .. 908
 李斯特菌分離與鑑定 908
五、第五類法定傳染病検体 ... 912
1. 裂谷熱 .. 912
2. 裂谷熱病毒分離與鑑定 ... 912
 裂谷熱病毒核酸檢測（Real-time RT-PCR） 916
 裂谷熱病毒抗體檢測（ELISA） .. 921
2. 馬堡病毒出血熱 ... 925
 馬堡病毒分離與鑑定 ... 925
 馬堡病毒核酸檢測（Real-time RT-PCR） 929
 馬堡病毒抗體檢測（ELISA） .. 935
3. 黃熱病 ... 939
 黃熱病毒分離與鑑定 ... 939
 黃熱病毒核酸檢測（Real-time RT-PCR） 943
 黃熱病毒IgM及IgG抗體檢測（ELISA） 947
4. 伊波拉病毒出血熱 ... 952
 伊波拉病毒分離與鑑定 ... 952
 伊波拉病毒核酸檢測（Real-time RT-PCR） 956
 伊波拉病毒抗體檢測（ELISA） .. 963
5. 拉薩熱 ... 966
 拉薩病毒分離與鑑定 ... 966
 拉薩病毒核酸檢測（Real-time RT-PCR） 970
 拉薩病毒抗體檢測（ELISA） .. 976
6. 中東呼吸症候群冠狀病毒感染症 .. 980
 中東呼吸症候群冠狀病毒病原體分離、鑑定 980
 中東呼吸症候群冠狀病毒核酸檢測（real time RT-PCR） 983
7. H7N9流感 ... 988
 H7N9流感病毒核酸檢測（real time RT-PCR） 988
六、非法定傳染病檢體 .. 992
1. 金黃色葡萄球菌食品中毒 ... 992
 金黃色葡萄球菌分離與鑑定 ... 992
 金黃色葡萄球菌腸毒素檢測（RPLA） 998
 金黃色葡萄球菌毒素測定(聚合酶連鎖反應法) 1005
2. 腸炎弧菌食品中毒 ... 1010
 腸炎弧菌分離與鑑定 ... 1010
3. 食物中毒及腹瀉群聚 ... 1017
 諾羅病毒抗原檢測（ELISA） ... 1017
 諾羅病毒分子生物學檢測 ... 1024
 輪狀病毒抗原檢測（ELISA） ... 1029
 輪狀病毒分子生物學檢測 ... 1036
4. CRE抗藥性檢測 ... 1040
 CRE抗藥性檢測 ... 1040
5. VISA/VRSA抗藥性檢測 ... 1045
 VISA/VRSA菌種鑑定及抗藥性基因檢測 1045
6. A群鏈球菌侵襲性感染或毒性休克症候群 1052
A群链球菌菌种分离、鉴定 ... 1052
7. 肺炎链球菌 ... 1058
 • 肺炎链球菌核酸检测（PCR） .. 1058
 • 肺炎链球菌IgM 及IgG 抗体检测（MIF） 1066
8. 鹦鹉热 ... 1075
 • 鹦鹉热链球菌IgM及IgG 抗体试验 1075
9. 隐球菌症 ... 1084
 • 新型隐球菌抗原检测(latex agglutination test) 1084
10. 仙人掌菌 ... 1089
 • 仙人掌链球菌分隔与鉴定 .. 1089
中文索引 ... 1094
英文索引 ... 1099
1 目的
檢測疑似病患的血液或組織中是否含有天花病毒。

2 適用檢體種類
適用於病患發病期內皮膚水泡、血液、咽喉擦拭檢體或結痂檢體。

3 名詞解釋
無。

4 原理概述
利用 Vero 細胞株於組織培養皿中接種病患上述檢體，於 5% CO₂，37 °C 培養箱中培養 3 日，利用聚合酶鍵鎖反應（polymerase chain reaction, PCR）原理，將培養細胞內經純化之病毒核酸進行特異複製放大，以洋菜膠電泳分析法進行聚合酶鍵鎖反應產物分析，由 DNA 片段大小判定結果。

5 試劑耗材
5.1 EMEM 細胞培養液（Eagles' minimum essential medium），含 10% 胎牛血清【FBS】及 1% 三合一抗生素【PSA】
EMEM Gibco, USA, Cat. no. 51200-046
FBS, fetal bovine serum, certified, heat-inactivated, Cat. no. 10082-147
PSA, pen-strep-ampho sol., Gibco, USA, Cat. no. 15070-063
trypsin, 0.25 % with EDTA 4Na, liquid, Gibco, USA,Cat No. 25200-056。
5.2 特異引子：
VAR1-S1：CTGGTGTAGAGA TAGCCGA
VAR1-A1：ATGGCTTCCGA TTGGA TTAC
5.3 病毒核酸純化套組（QIAamp DNA blood mini kit, Quagen, USA）。
5.4 0.2 mL PCR 反應管。
5.5 聚合酶鍵鎖反應試劑（phusion high-fidelity DNA polymerase）。
5.6 洋菜膠（MetaPhor® agarose）。
5.7 Protech MI-100T Bio 100 bp DNA ladder。
5.8 無菌微量吸管尖（tip）：10 μL、20 μL、200 μL。
5.9 無菌蒸餾水。
5.10 可拋棄式無菌塑膠手套。

6 儀器設備
6.1 37 °C CO₂ 培養箱（Napco, USA, Model 5430）。
6.2 第 III 級生物安全櫃（La Calhene, France）。
6.3 第 II 級生物安全櫃（class II BSC, SterilGARD III Advance, USA, Baker Company）。
6.4 MJ research PTC 200 thermocycler。
6.5 5 - 40 μL, 40 - 200 μL 及 200 - 1,000 μL Pipette。
6.6 -20 °C 及-80 °C 冷凍櫃 (Thermo Scientific, USA)。

7 環境設施安全
7.1 於生物安全第四等級實驗室內檢體分裝、去活化。檢驗操作在生物安全等級 BSL-2 plus 實驗室進行。
7.2 水質：25 °C 蒸餾水或 RO 逆滲透可達 18 MΩ-CM 以上超純水。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 在 Vero 細胞株於含有 EMEM（含 10 % FCS 及 1 % PSA）培養液之 12 孔組織培養盤中培養。
10.2 將患者 100 μL 之檢體加入。
10.3 於 37 °C，5 % CO2 培養箱中培養約 3 - 4 天。
10.4 培養細胞內病毒核酸純化，依 QIAamp DNA blood mini kit 操作手冊
10.5 病毒核酸特異複製放大（PCR）:
10.5.1 反應溶液：
10X PCR buffer 5 μL, 10 mM dNTP 1 μL, 10 pmol/μL VAR1-S1 primer 1 μL, 10 pmol/μL VAR1-A1 primer 1 μL, ddH2O 40 μL, Taq 1 μL，檢體核酸或質體核酸陽性對照組 2 μL。
10.5.2 反應步驟：
98 °C 1 min, 再進行 40 次循環 98 °C 10 sec, 55 °C 30 sec, 72 °C 10 sec，最終以 72 °C 10 min 結束。
10.5.3 進行洋菜膠電泳分析。

11 結果判定
11.1 判讀標準
11.1.1 洋菜膠電泳分析判定：PCR 反應產物取 10 μL，在 3 % MetaPhor® Agarose 進行電泳後，檢視結果。天花病毒核酸 PCR 產物為 151 bp，其他痘病毒科 PCR 產物均大於 160 bp。
11.2 報告核發：病原體分離（陰性），病原體分離（陽性）
11.3 結果登錄：將檢體之檢驗結果登錄於檢體送驗單並加蓋檢驗者印章，送報告簽署人審核及蓋章，並登錄於網路報告系統。
12 品質管制
12.1 嚴防病原散佈或污染，工作時帶手套。
12.2 實驗過程遵循 S.O.P 的作業規範與流程，檢體處理需在 BSL-4 實驗室內操作，以避免污染。
12.3 生物安全櫃及培養箱定期做校正及維護。
12.4 置於 37 ℃ CO2 恆溫箱染色時應注意保持溼度。
12.5 必須要有未感染病毒之細胞及感染病毒（其他痘科病毒）之細胞分別做為陰性與陽性對照組。
12.6 聚合酶鍵鎖反應須含有陰性與陽性對照組。

13 廢棄物處理
13.1 檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序辦理。

14 參考資料

15 附錄
15.1 天花病毒分離與鑑定流程圖。
附錄 15.1 天花病毒分離與鑑定流程圖

適用於病患發病期內皮膚水泡，血液，咽喉擦拭檢體或結痂檢體

病毒分離組織培養

病患檢體
接種 Vero 細胞株

37 °C CO₂ 培養箱培養 3 天

聚合酶鍵鎖反應病毒核酸檢驗

陰性

重複接種一次

陽性

PCR 再確認

判定

陰性
目的

检测天花病毒基因。

适用检体种类

适用于符合天花病毒感染病征之病患血清检体。

名词解释

Smallpox virus：天花病毒。

原理概述

其技术原理是将待测的病毒 DNA，利用 PCR 技术将基因片段以几何级数倍增的方式增加到数十万倍，若以 Real Time PCR 契器进行时，则是 PCR 反应一面进行时，机器就利用 Taqman 萤光侦测技术与电脑分析并记录 PCR 的反应结果，因此能以萤光曲线即时呈现检验结果。

试剂耗材

5.1 检体稀释液（PBS pH 7.2, 0.05 % Tween 20, 0.5 % BSA）。5.2 QIAamp viral DNA 抽取试剂组。5.3 Real-time PCR 契器 LightCycler 所需之检体毛细管。5.4 LightCycler Fast-Start DNA master HybProbe（Cat no. 03 515 575 001）。5.5 Nuclease-free（RNase/DNase-free）无菌微量吸管尖（tip）：5 μL、10 μL、200 μL。5.6 Nuclease-free（RNase/DNase-free）无菌蒸馏水。5.7 可抛弃式无菌 Nuclease-free（RNase/DNase-free）塑胶手套。5.8 病毒基因製备：

国内直至目前为止并无第四级病毒感染之病例报告，更因此类病毒受到国际协会的管制无法获得这些第四级病毒做为参考病毒。所以这些病毒抗原之製备，则需靠人工合成基因之方式获得，本实验方法之阳性对照组由天花病毒之合成基因取代完整病毒。

5.9 引子与探针的合成：

天花病毒的引子与探针合成，分别选定侦侧的正痘病毒（二段基因序列：HA 及 DNA polymerase）及天花病毒（三段基因序列：HA, B9R 及 B10R）后，参照文献及利用 Roche 公司所出的 Probe design software 2.0 进行引子与探针序列之设计，之后再送交厂商合成。
<table>
<thead>
<tr>
<th>Pan-Orthopox virus</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HA (J7R)</td>
<td></td>
</tr>
<tr>
<td>Forward</td>
<td>5’-gatgatgcaactctatcatgta-3’</td>
</tr>
<tr>
<td>Reverse</td>
<td>5’-gtataattatcaaaatagaacgta-3’</td>
</tr>
<tr>
<td>Taqman-MGB</td>
<td>5’-6’FAM-agtgcgttactaagga-MGBNFQ-3’</td>
</tr>
<tr>
<td>Pan-Orthopox virus</td>
<td>DNA polymerase (E9L)</td>
</tr>
<tr>
<td>Forward</td>
<td>5’-gaacatctttgaggagagaccc-3’</td>
</tr>
<tr>
<td>Reverse</td>
<td>5’-caactcttagccagaacgtatgag-3’</td>
</tr>
<tr>
<td>Taqman-MGB</td>
<td>5’-6’FAM-caggctaccctcaa-MGBNFQ-3’</td>
</tr>
<tr>
<td>Variola virus</td>
<td>HA (J7R)</td>
</tr>
<tr>
<td>Forward</td>
<td>5’-tcattggagaatccacaaca-3’</td>
</tr>
<tr>
<td>Reverse</td>
<td>5’-catcattgggcttgatgat-3’</td>
</tr>
<tr>
<td>Taqman-MGB</td>
<td>5’-6’FAM-aagacgctggaccaat-MGBNFQ-3’</td>
</tr>
<tr>
<td>Variola virus</td>
<td>B9R</td>
</tr>
<tr>
<td>Forward</td>
<td>5’-cagatagctgggtgtcagaac-3’</td>
</tr>
<tr>
<td>Reverse</td>
<td>5’-atacgttccaatcagattc-3’</td>
</tr>
<tr>
<td>Taqman-MGB</td>
<td>5’-6’FAM-caatgggaacattac-MGBNFQ-3’</td>
</tr>
<tr>
<td>Variola virus</td>
<td>B10R</td>
</tr>
<tr>
<td>Forward</td>
<td>5’-caaaatgcagggtacaaacaaca-3’</td>
</tr>
<tr>
<td>Reverse</td>
<td>5’-caatgaatccttaggtgcacga-3’</td>
</tr>
<tr>
<td>Taqman-MGB</td>
<td>5’-6’FAM-taattgacggaagtaaa-MGBNFQ-3’</td>
</tr>
</tbody>
</table>
儀器設備
6.1 The LightCycler instrument system。
6.2 微量吸管 (pipettemen): 5 μL、10 μL、200 μL。
6.3 計時器。
6.4 37 °C 水浴箱。

環境設施安全
送檢樣本在 BSL-4 實驗室的隔離箱分裝後，必需經去活性處理才可將檢體送
出一般實驗室進行血清學測試，如經 Guanidine Thiocynate 處理才可進入分
生 (BSL-2) 實驗室進行病毒核酸抽取及 PCR 等實驗，而只有操作活病毒的
實驗如病毒培養、動物實驗等才需進入 BSL-4 實驗室操作。

檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
reeid=6C7C52E7A7D5621A。

檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
reeid=6C7C52E7A7D5621A。

檢驗步驟
10.1 檢驗前檢體處理
10.1.1 檢體以 2,000 rpm 離心 30 min，分離出上清液備用。
10.1.2 在接獲疑似第四級病毒檢體時，先將裝運檢體之容器以 UV 燈
照射 20 min, P4 實驗室工作人員在實驗室操作將容器打開拿出
檢體，在隔離箱內將送檢樣本（血液或尿液）經過濾處理後分
裝：
10.1.2.1 感染細胞株進行病毒培養。
10.1.2.2 加入 Guanidine Thiocynate 溶液中進行病毒核酸抽取
及 PCR 之實驗。
10.1.3 在細胞株觀察到有細胞病變時，將細胞外溶液或細胞加入
Guanidine Thiocynate 溶液中，進行病毒核酸抽取及 PCR 或
real-time PCR 之實驗，一部分將細胞加入最終濃度為 10 %福馬
林中，進行免疫抗原之診斷、以刮杓將細胞刮下後加入最終濃
度為 10 %福馬林中，進行細胞內免疫抗原之診斷或加入
Glutaldehyde 中進行電子顯微鏡觀察等各種相關之診斷實驗。
10.2 檢體 DNA 萃取:
採用商品化套組QIAamp DNA minikit（qiagen, GmbH, Hilden, Germany）
進行DNA萃取，參照其手冊操作之。
10.2.1 取100 μL乳剤於1.5 mL微量離心管，依序加入100 μL Buffer
ATL、20 μL Proteinase K 混合均勻後。
10.2.2 56 ℃離心（spin down），後加入200 μL buffer AL 並混合均勻。
10.2.3 70 ℃加熱，10 min 後短暫離心。
10.2.4 再加入200 μL酒精（96 - 100%）混合均勻。
10.2.5 並將液體移置Spin column。以8,000 rpm 離心1 min 後丟棄濾
液收集管。
10.2.6 更換新的收集管後加入500 μL Buffer AW1，於8,000 rpm 離心
1 min 後丟棄濾液收集管。
10.2.7 更換新的收集管加入500 μL Buffer AW2，以14,000 rpm 離心
3 min 後丟棄濾液收集管。
10.2.8 更換新的1.5 mL微量離心管加入200 μL Buffer AE，置於室溫
1 min，以8,000 rpm 離心1 min 後收集濾液（DNA）。
10.2.9 該濾液檢體即可進行即時定量聚合酶連鎖反應或存於-20 ℃ 備
用。

10.3 Real-time PCR amplification
10.3.1 製備試劑:
10.3.1.1 製備 Primer
以H2O將Primer溶解，使其濃度為100 μM，再以
H2O將Primer稀釋到0.5 μM。
10.3.1.2 製備 Probe：
以H2O將Probe溶解，使其濃度為100 μM，再以H2O
將Primer稀釋到0.05 μM。

10.3.2 製備 Real time PCR Mix：
DNA template（500 ng genomic DNA or 10^3 - 10^10 copies plasmid
DNA / 5 μL）
0.5 μM Forward primer 2 μL x Z
0.5 μM Reverse primer 2 μL x Z
0.05 (~0.1) μM Probe 2 μL x Z
Master mix, 5X conc. 4 μL x Z
H2O 5 μL x Z

Total 15 μL
（Z= 總反應數 + 1）
以微量吸管混合均勻，勿 Vortex。
10.3.3 取15 μL PCR mix 至LightCycler capillary。
10.3.4 加入 DNA template 各5 μL。
10.3.5 將各毛細管封上專用蓋子。
10.3.6 離心 700 × g，5 sec。（或 spin down）
10.3.7 將毛細管放入檢體轉盤。
10.3.8 Run real-time PCR:

程式設定:

<table>
<thead>
<tr>
<th>Cycle step</th>
<th>Temperature</th>
<th>Time</th>
<th>Number of cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial denaturation</td>
<td>95 °C</td>
<td>10 min</td>
<td>1</td>
</tr>
<tr>
<td>Denaturation</td>
<td>95 °C</td>
<td>15 sec</td>
<td>45</td>
</tr>
<tr>
<td>Annealing and Extension</td>
<td>60 °C</td>
<td>40 sec</td>
<td></td>
</tr>
<tr>
<td>Final extension</td>
<td>72 °C</td>
<td>5-10 min</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>4 °C</td>
<td>hold</td>
<td></td>
</tr>
</tbody>
</table>

10.3.9 軟體分析結果。

利用儀器軟體分析 PCR 產物，亦可進一步利用洋菜膠電泳技術分析 PCR 產物。

11 結果判定:

11.1 判讀標準：45 個 PCR 循環加上螢光曲線的鑑定過程在 30 min 內，經螢光放射分析即可得到結果。並將陽性對照組之模板 DNA 用量為 100 ng、10 ng、1 ng、100 pg、10 pg、1 pg 等核酸濃度，測定核酸與循環數之標準曲線，可應用於檢體之定量分析。

11.2 報告核發：有螢光曲線產生（Ct 值小於 40 cycles），則可判定為陽性。

11.3 結果登錄：將檢體之檢驗結果登錄於檢體送驗單並加蓋檢驗者印章，送報告簽署人審核及蓋章，並登錄於網路報告系統。

12 品質管制

略。

13 廢棄物處理

檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

略。

15 附錄

15.1 天花病毒基因檢測分析法流程圖。
附錄 15.1 天花病毒基因檢測（real-time PCR）流程圖

<table>
<thead>
<tr>
<th>病毒檢體前處理</th>
</tr>
</thead>
<tbody>
<tr>
<td>檢體 DNA 萃取</td>
</tr>
<tr>
<td>Real-time PCR reaction</td>
</tr>
</tbody>
</table>

陽性判定：
具有多組基因片段螢光曲線產生，並且 Ct value < 40

未確定判定：
螢光曲線產生過晚（超過 40 個 Cycles 之後）
或只有部分基因片段螢光曲線出現

陰性判定：
無螢光曲線產生

再重複 PCR 確認（使用不同基因之引子）
目的
鼠疫檢體或送驗培養基上可疑鼠疫桿菌的分離與鑑定。

適用檢體種類
對懷疑鼠疫患者之膿、痰、咽喉拭子、血液、淋巴腺腫抽取液，及身體組織如肝臟、脾臟、心臟及骨髓解剖之材料等。動物組織或蚤之標本。

名詞解釋
無。

原理概述
4.1 以特定培養基分離鼠疫桿菌，利用菌落型態、染色特徵、生化代謝、血清學特性及噬菌體感受性鑑定。
4.2 PCR 則利用鼠疫桿菌攜帶之三種致病質體（96.2、70.3 及 9.6 kb）及其染色體基因 caf1·yopM·pla·invv，設計多重核酸引子（multiplex primer），再藉由 PCR 將疑似鼠疫檢體或菌株之去氧核糖核酸進行複製，以鑑定是否為鼠疫桿菌。

試劑耗材
5.1 Gram’s staining 染劑。
5.2 Wayson stain 染色液的配製
5.2.1 取 0.2 g Fuchsin 溶於 10 mL 無水酒精。
5.2.2 取 0.75 g Methylene blue 溶於 10 mL 無水酒精。
5.2.3 將 5.2.1 及 5.2.2 混合後再加入 200 mL 5 % Phenol，以濾紙過濾後即成。
5.3 Methanol。
5.4 磷酸緩衝液。
5.5 陽性對照（Yersinia pestis Yreka, PMBP-0019 疫苗株）。
5.6 陰性對照（E coli ATCC 25922）。
5.7 培養基：
5.7.1 BAP。
5.7.2 MacConkey agar。
5.7.3 TSI。
5.7.4 SIM（semisolid）。
5.7.5 Lysine。
5.7.6 Citrate。
5.7.7 Urease。
5.7.8 VP（semisolid）。
5.7.9 Ornithine。
5.7.10 Arginine。
5.7.11 Yersinia Selective agar（含 Yersinia antimicrobic supplement CN）。
5.7.12 TSB。
5.7.13 Tryptic soy agar (TSA)。
5.8 Oxidase: 可選用商品化試劑，如榮研、Difco、BBL、Rosco 等均有 Oxidase 試劑，型態有 Strips、Disks、Tablets 等。
5.9 3% Catalase。
5.10 快速生化鑑定試劑套組：API 20 E：bioMerrieus，France。
5.11 無菌微量吸管尖（tip）：1,000 uL、200 uL。
5.12 無菌滴管（dropper）：3mL。
5.13 接種針（環）。
5.14 轉玻片。
5.15 水質：25°C 蒸餾水或 RO 逆滲透可達 18 MΩ-CM 以上超純水。
5.16 PCR 專用八連排反應管。
5.17 GoTaq green master mix（Promega Corp., Cat no. M7122）。
5.18 引子序列
 yopM（S）：ATA ACT CAT CGG GGG CAA AAT
 （A）：GCG TTA TTT ATC CGA ATT TAG C
 pla（S）：ATC TTA CTT TTC GTG AGA AG
 （A）：CTT GGA TGT TGA GCT TCC TA
 inv（S）：TAA GGG TAC TAT CGC GGC GGA
 （A）：CGT GAA ATT AAG CGT GGC GGA
 caf1（S）：CAG GAA CCA CTA GCA CA T C
 （A）：CCC CCA CAA GGT TCT CAC
5.19 電泳偵測試劑：
 5.19.1 1.5% agar 膠片。
 5.19.2 Tracking dye。
 5.19.3 0.5xTBE 緩衝液 pH 8.2 - 8.3。
 5.19.4 核酸標記（100 bp DNA ladder）。

6 儀器設備
6.1 37°C 培養箱（incubator）。
6.2 微量電子天平。
6.3 第二級生物安全櫃（class II A2 BSC）。
6.4 4°C 冰箱。
6.5 -20°C 冷凍櫃。
6.6 顯微鏡。
6.7 半自動化偵測血液培養裝置。
6.8 核酸增幅儀。
6.9 DNA 電泳膠體觀察照相設備。
6.10 馬克法藍氏濁度標準組（McFarland nephelometer standard units）。
7 環境設施安全
於生物安全第二等級（BSL-2）實驗室之設施內，但個人防護及操作均依生物安全第三等級（BSL-3）實驗室規定實施。

8 檢體採集
8.1 對懷疑鼠疫患者之膿、痰、咽喉拭子、血液、淋巴腺腫抽取液，及身體組織如肝臟、脾臟、心臟及骨髄解剖之材料等。動物組織或蚤之標本。
8.2 參照本署出版之「傳染病檢體採檢手冊」第二版。
 http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869
 &nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
9.1 檢體以 4 °C 低溫快速運送，拭子可置入 Cary-Blair transport medium 低溫運送，淋巴液及血液培養瓶以室溫運送。
9.2 參照本署出版之「傳染病檢體採檢手冊」第二版。
 http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869
 &nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢驗前處理：若高度污染標本或取自齲齒動物蚤類，可先作動物接種，蚤約 25 隻以 2 mL 生理食鹽水研磨，再以 0.5 mL 上清液皮下接種於實驗五週齡 BAL/C 老鼠，觀察 21 天後，取其脾臟分離培養，或接種於 Yersinia Selective medium。
10.2 接種和抹片製作：檢體接種於 BAP、MacConkey agar、Yersinia selective agar。
 10.2.1 患者之膿、痰、咽喉拭子及全血可直接作抹片和培養。
 10.2.2 臟器採樣或培養基上可疑菌落（以磷酸緩衝液稀釋），塗抹在乾淨之玻片上每一檢體塗抹數片，注意勿太厚。
 10.2.3 懷疑腺鼠疫患者早期腫，少有壞疽，可利用 18 - 22 號針頭注射 1 - 2 mL 食鹽水入淋巴腺區再抽取，作抹片和培養。
 10.2.4 血液檢體量應 6 - 10 mL，將血液檢體以體積 1 : 6 - 10 接種於血液培養瓶中（血液培養瓶瓶蓋先以 70 % 酒精及 2 % 碘酊消毒），於 37 ℃ 有氧狀況下，培養 14 - 16 hr 後觀察，然後每天觀察，培養基中若呈混濁，即將培養液混合均勻並取出作革蘭氏染色及次培養於 MacConkey、Yersinia selective agar 及 BAP 培養基中。
10.3 抹片染色：將玻片置於空氣中自然風乾，作 Gram’s 染色法及 Wayson 染色法。
 Wayson 染色法：將玻片置於甲醇（methanol）中 5 - 10 min 即完成固定之抹片，於其上滴加 Wayson 染色液，靜置 25 sec 後充分水洗，置於濾紙上自然風乾後，即可鏡檢培養：
10.4 在 25 °C 及 37 °C 培養。
10.5 觀察：24 - 48 hr 後進行觀察與鑑定。

10.6 鑑定：

10.6.1 菌落觀察：在 BAP 培養 24 hr 後，菌落甚小如針尖大小，在 48 - 72 hr 後能見非溶血平滑較典型菌落，老的菌落呈凝蛋型中央突起，邊緣不規則，在 MacConkey agar 菌落亦甚小，呈無色（乳糖非發酵性），而在 Yersinia selective agar 能見紫紅色平滑菌落可和其他雜菌區別。鼠疫桿菌在 25 °C 比 37 °C 培養生長好。

10.6.2 革蘭氏染色及 Wayson 染色：顯微鏡下鏡檢形態呈革蘭氏陰性桿菌或球桿菌，Wayson 染色抹片可見到雙極性（bipolarity）特徵。

10.6.3 生化試驗：TSI、Citrate、Urease、SIM、VP（semisolid）、Ornithine、Arginine、Lysine medium，並操作 Oxidase 試驗，然後將接種之培養基在 37 °C 一般培養箱過夜培養。SIM 細菌運動性 25 °C 或 37 °C 均為陰性。培養在 TSB 48 hr 後，輕微混濁可見絮狀菌體凝集現象。API 20 E 需比對其電腦碼並符合，其他生化特性如 Catalase 陽性，Oxidase 陰性，亦可輔助確認菌株。

10.6.3.1 PCR
10.6.3.2 培養於 Tryptic soy agar（TSA）培養基之疑似鼠疫菌株。
10.6.3.3 檢驗步驟

10.6.3.3.1 模版準備：於 1.5 mL 微量離心管內加入 100 uL 無菌蒸餾水，取平板上之分離菌製成微濁菌液，約 McFarland no.1 濃度。100 °C 水浴 10 min 取出直接置於冰塊內冷卻，4 °C 離心，取上清液當作模版，置於 -20 °C 冰箱保存。

10.6.3.3.2 PCR 反應物：25 uL 2X GoTaq green master mix，0.1 uM caf1 引子組，0.1 uM yopM 引子組，0.1 uM pla 引子組，0.05 uM inv 引子組，模版 2 uL，以二次蒸餾水加到 50 uL。

10.6.3.3.3 PCR 反應條件：Predenature 95 °C 5 min，Denature 94 °C 30 sec，Annealing 54 °C 1.5 min，Extension 72 °C 1 min，以上 30 Cycles，Post extension 72 °C 10 min，4 °C 保存。

10.6.3.3.4 PCR 產物之確認：將 10 uL 的 PCR 增殖產物加 2 uL Tracking dye 混合，以 1.5% 洋菜膠，50 Voltagge，約 1.5 hr，0.5 X TBE,
進行 Minigel 電泳分析。再以 0.5 uL/mL Ethidium bromide 染色 15 min, 水洗 10 min 後觀察。可見 565 bp (yopM)、480 bp (pla)、295 bp (inv) 及 171 bp (caf1) 四個片段。

11 結果判定
11.1 陽性結果標準：Wayson stain 鼠疫桿菌經染色後，於顯微鏡下可見淺藍色卵形短桿菌，且菌體兩端濃染，中央淡染之雙極性菌體，狀如安全別針。MacConkey agar 菌落呈無色（乳糖非發酵性），而在 Yersinia selective agar 能見紫紅色平滑菌落。API 20 E 電腦碼為 Yersinia pestis 95% 以上。符合前項檢驗結果即判定為鼠疫桿菌陽性。
11.2 結果判定
野生鼠疫桿菌可見 565 bp (yopM)、480 bp (pla)、295 bp (inv) 及 171 bp (caf1) 四個片段。
11.3 報告核發：鼠疫桿菌陽性，鼠疫桿菌陰性。
11.4 鼠疫桿菌分離與鑑定流程圖，如附錄 15.1。

12 品質管制
12.1 一般培養基及試劑依品質管制規定辦理。
12.2 參照菌株為 Yersinia pestis Yreka, PMBP-0019 疫苗株及 Y. pseudotuberculosis ATCC 6902。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃, 30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
14.1 蔡文城。2000。實用臨床微生物診斷學，第九版。九洲圖書文物有限公司，臺灣。

15 附錄
15.1 鼠疫桿菌分離與鑑定流程圖。
附錄 15.1 鼠疫桿菌分離與鑑定流程圖

檢體或可疑菌落

可疑菌落

培養分離

Yersinia selective agar, BAP, MacConkey agar

25 °C 及 37 °C 培養

菌落型態

生化反應

PCR

正向反應 負向反應

陽性判定

陰性判定

革蘭氏染色

Wayson stain

無雙極性特徵 雙極性特徵

抺片
1 目的
以血清學檢測法檢測人體或鼠類血清中 F1 抗體之效價，以診斷是否曾遭受鼠疫桿菌感染。

2 適用檢體種類
適用於人體血清檢體及動物血清檢體。

3 名詞解釋
無。

4 原理概述
利用 F1 為抗原，與血清中之 F1 特異性抗體結合，以酵素標識抗體間接地將此反應轉成顔色訊號，由全自動酵素免疫分析儀讀取結果判定。

5 試劑耗材
5.1 0.1 M Carbonate Buffer, pH 9.2, 1 L：含 Sodium carbonate（NaCO₃）1.36 g，Sodium bicarbonate（NaHCO₃）7.35 g。
5.2 10 X PBS Stock Solution, pH 7.3, 1 L：含 NaCl 80 g, KCl 2 g, Na₂HPO₄·7H₂O 11.5 g, KH₂PO₄ 2 g。
5.3 96 孔 ELISA plate。
5.4 Blocking buffer：4 % BSA＋0.1 % Sodium azide 之 pH 7.2 PBS。
5.5 Washing buffer（PBS-T）：0.05 % Tween-20 之 pH 7.2 PBS。
5.6 F1 抗原（自備）：本實驗室保存之鼠疫桿菌 Yersinia pestis Yreka 疫苗株以 caseine amino acid 或 BHI（brain heart infusion) agar 於 37 ℃ 培養 48-72 小時，加 PBS 沖洗培養基表面，再刮下菌落，以-20--60 ℃ 冰冷丙酮 (acetone) 混和殺菌固定，放置室溫隔夜，以 10,000 rpm 在 0 ℃ 離心 30 分鐘，棄上清液，再以 Toluene 飽和之 2.5% NaCl 提取，利用 30%硫酸銨 (ammonium sulfate) 沉澱萃取液，透析沉澱的 F1 抗原再通過 Superdex-200 Hload preparative gel filtration column 純化，冷凍乾燥保存。試驗前先以 pH7.0 生理食鹽水配製為 200 μg/mL，於 4 ℃ 隔夜溶解。
5.7 老鼠抗鼠疫 F1 多價免疫球蛋白或單株抗體（自備）。
5.8 HRP stabilizer：Nalgene KPL ELISA kit，USA。
5.9 HRP conjugate：Nalgene KPL ELISA kit，USA。
5.10 TMB substrate：Nalgene KPL ELISA kit，USA。
5.11 TMB stop solution：Nalgene KPL ELISA kit，USA。
5.12 無菌 tip：需 1,000 μL、200 μL 與 10 μL 等三種規格。
5.13 陽性對照血清：免疫老鼠 42 天後血清稀釋 100 倍。
5.14 陰性對照血清：正常血清。

6 儀器設備
6.1 ELISA reader
6.2 37 °C 恆溫培養箱。
6.3 插電式可調溫水浴箱。
6.4 離心機。
6.5 Pipetman：需 1,000 μL、200 μL、10 μL 與八爪 300μL 等四種規格。
6.6 Mixer。
6.7 4 °C 冰箱。
6.8 -20 °C 冷凍櫃。
6.9 pH meter。
6.10 第二級生物安全櫃（class II BSC）。

7 環境設施安全
於生物安全第二等級（BSL-2）實驗室之設施內，檢體前處理於生物安全櫃操作。

8 檢體採集
8.1 檢體的採集，除不添加任何抗凝劑外，血清量不得少於 200 μL。
8.2 參照本署出版之「傳染病檢體採檢手冊」第二版。
 http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
9.1 血清檢體以低溫保存運送。
9.2 參照本署出版之「傳染病檢體採檢手冊」第二版。
 http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢驗前處理
 10.1.1 以 0.1 M Carbonate Buffer 將 F1 抗原稀釋成 0.1 ug F1 抗原/100 μL，加至 96 孔 ELISA 盤進行 Coating，4 °C Overnight，但不超過 16 hr*吸去 Carbonate Buffer，加 200 μL/孔 Blocking buffer，4 °C Overnight。若不馬上使用，可不用倒掉 Blocking buffer，封膜避光 4 °C 保存，可安定保存 6-12 個月。
 10.1.2 血採集後，先以 2,000 rpm 離心 6 min，所得血清分裝儲存於-20 °C 冷凍櫃。血清標本品質不佳，如有溶血現象，不宜使用。
10.2 檢驗步驟
 10.2.1 每一檢體血清稀釋 500 倍，陽性對照與陰性對照同法做稀釋。
 10.2.2 加 100 μL/孔待測檢體，置於 37 °C 30 min。
 10.2.3 PBS-T wash 5 次。
 10.2.4 用 HRP Stabilizer 稀釋 HRP Conjugate 成 1：5,000，加 100 μL/孔，置於 37 °C 30 min。
 10.2.5 PBS-T wash 5 次。
10.2.6 加 100 uL/孔 TMB substrate，放置室温 15 min，避光。
10.2.7 加 100 uL/孔 TMB stop solution，混和均勻並小心去除氣泡。
10.2.8 放 ELISA reader，用 450 nm 讀取 OD 值。

11 結果判定
11.1 抽樣正常港區老鼠血清 40 支，以平均值加 3 個 SD 定 ELISA cut point 值 (cutpoint value average=0.176239)。超過此值判定為陽性。
11.2 報告核發：鼠疫桿菌抗體陽性，鼠疫桿菌抗體陰性。
11.3 結果登錄：將檢體之檢驗結果登錄於實驗室資訊系統，經 PI 核准報告後發佈。

12 品質管制
12.1 本實驗法檢測人體或鼠類需使用不同二次抗體。
12.2 若陽性標準液之吸光值未達上述之標準或陰性標準液超過上述標準時，必須重做檢驗。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先滅菌袋裝妥密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
14.5 Nalgene KPL ELISA kit 廠品說明。

15 附錄
15.1 鼠疫桿菌 F1 抗體酵素免疫分析法（ELISA）測定流程圖
附錄 15.1 鼠疫桿菌 F1 抗體酵素免疫分析法（ELISA）測定流程圖

96 孔 ELISA 盤吸附鼠疫桿菌 F1 抗原

待測血清及陰性、陽性對照血清
1: 500 X 稀釋 100 μL/孔

37 ℃，30 min
PBS-T wash 洗 5 次

用 HRP Stabilizer 稀釋 HRP conjugate 成
1: 5,000，加 100 μL/孔

37 ℃，30 min
PBS-T wash 洗 5 次

加 100 μL/孔 TMB substrate，
放室溫 15 min，避光。

加 100 μL/孔 TMB stop solution，混
和均勻並小心去除氣泡

ELISA reader，用 450 nm
讀取 OD 值

OD 值大於
0.176239 為陽
性判定

OD 值小於
0.176239 為陰
性判定
1 目的
在疑似受感染個案之採集檢體中，分離與鑑定是否存在 SARS 病毒。

2 適用檢體種類
痰、糞便、咽喉拭子。

3 名詞解釋
無。

4 原理概述
選擇適當的細胞株 (Vero E6) 培養 SARS 病毒，觀察細胞病變 (CPE) 的出現，最後再以 SARS 病毒核酸檢測方法確認。

5 試劑耗材
5.1 試劑
5.1.1 Growth medium（由含 10 % FBS 與 1 X pen-strep solution 之 DMEM 組成）。
5.1.1.1 Dulbecco’s modified eagle medium (DMEM)。
5.1.1.1.1 With 4,500 mg/L D-glucose (high glucose)。
5.1.1.1.2 With L-glutamine。
5.1.1.1.3 Without sodium pyruvate。
5.1.1.2 Fetal bovine serum (FBS)：以 56 °C Heat inactivate 後開封，以 15 mL 離心管分裝，-20 °C 儲存。
5.1.1.3 Pen-strep solution (100 X)。
5.1.1.3.4 With 10,000 units/mL penicillin G。
5.1.1.3.5 With 10,000 μg/mL streptomycin sulfate in 0.85 % saline，開封後以 15 mL 離心管分裝，-20 °C 儲存。
5.1.2 Sample pretreat medium（由含 2 X pen-strep solution 之 DMEM 組成）。
5.1.3 Maintain Medium（由含 2 % FBS 與 1 X pen-strep solution 之 DMEM 組成）。
5.1.4 Trypsin-EDTA。
5.1.4.1 With 0.05 % trypsin。
5.1.4.2 With 0.53 mM EDTA in Hanks’ balanced salt solution (HBSS) without Ca++ and Mg++, 開封後以 15 mL 離心管分裝，-20 °C 儲存。
5.1.5 Vero E6 細胞株。
5.2 耗材：
5.2.1 25-cm² Culture vessels (T-25)。
5.2.2 24 well Plate。
5.2.3 Pipette：1 mL，5 mL，10 mL，25 mL。
5.2.4 200 μL Tip。
5.2.5 3 mL 無菌塑膠吸管。
5.2.6 1.5 mL Eppendorf tube。
5.2.7 無菌螺旋試管：2 mL、4 mL。
5.2.8 無菌離心管：15 mL、50 mL。
5.2.9 5 mL 針筒。
5.2.10 0.45 μM 針頭過濾器。
5.2.11 抗凍標籤紙。
5.2.12 油性細字筆。

6 儀器設備
6.1 生物安全櫃（BSC 2B）。
6.2 37 °C 二氧化碳培養箱。
6.3 倒立相差顯微鏡。
6.4 水浴槽。
6.5 電動輔助吸管。
6.6 4 °C 冰箱。
6.7 -20 °C、-80 °C 冷凍櫃。
6.8 乾浴器。

7 環境設施安全
於生物安全第三等級（BSL-3）實驗室之設施內操作。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體編號：收件檢體依通報疾病及種類編號。
10.2 檢驗前處理
 10.2.1 開啓生物安全櫃之紫外光照射操作枱面 20 min。
 10.2.2 將 5.1.1-5.1.4 試劑先置於 37 °C 回溫或解凍。
10.2.3 檢體前處理
 10.2.3.1 咽喉拭子：加 1.5 mL Sample pretreat medium 至採檢管充分攪拌，將溶液吸出至 4 mL 滅菌塑膠檢體瓶中，以 5 mL 針筒吸取溶液後，拔去針頭，接上 0.45 μm
過濾器過濾後置於 2 mL 無菌試管保存，接種細胞或暫時置於 -80°C 保存。

10.3 檢驗步驟：
10.3.1 接種：取長滿單層之 Vero E6 細胞，吸出 Growth medium，接種檢體 100 μL, 輕輕搖動使檢體佈滿細胞層，置於 37°C 合 5% CO₂ 的培養箱培養，其間約間隔 15 min，即輕輕搖動 plate，使檢體能均勻散布於細胞層並防止細胞層乾燥。1 hr 後加入 1 mL Maintain medium，置於 37°C 含 5% CO₂ 的培養箱培養。
10.3.2 每天觀察細胞是否產生細胞病變 (CPE)，可培養 7 天，若發現細胞病變，收集細胞培養液，進行病毒核酸檢測方法鑑定確認。

11 結果判定
11.1 判讀標準：產生細胞病變 (CPE) 且經病毒核酸檢測方法測定為陽性者，判定為陽性。
11.2 報告核發：SARS-CoV 病毒分離陽性，SARS-CoV 病毒分離陰性。
11.3 結果登錄：完成檢驗後，將檢驗結果填寫於檢體送驗單之”檢驗結果欄”，並上網登錄於實驗室資訊管理系統，傳送實驗室主管審核，待審核通過後發佈結果。

12 品質管制
12.1 全程作業都要在生物安全櫃內進行。
12.2 二氧化碳培養箱內壁每月要定期以抗黴菌劑擦拭及水盤添加抑菌劑的無菌水以保持培養箱內溼度。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121°C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。
目的
以分子生物學的技術利用反轉錄酶-聚合酶鍵鎖反應（RT-PCR）與即時定量 RT-PCR 來檢測檢體中是否有 SARS 病毒。

適用檢體種類
適用之檢體種類包括痰 (sputum)、糞便 (stool)、咽喉拭子 (throat swab)、血清 (serum)、血漿 (plasma) 等。

名詞解釋
無。

原理概述
4.1 RT-PCR：
利用分子生物學技術 RT-PCR 與 Real-time RT-PCR 高敏感度的方法來檢測檢體中的 SARS 病毒 RNA。RT-PCR 之原理為設計專一性之引子 (primers)，把檢體中的病毒 RNA 反轉錄成 cDNA，並將擴增放大。

4.2 即時定量 RT-PCR：
此系統的定量原理是利用一標記兩種螢光的 DNA 探針來偵測聚合酶鍵反應的產物。此 DNA 探針的 5’端標記一報告染劑 (reporter dye)，3’端則標記一遮蔽染劑 (quencher dye)，完整的 DNA 探針其報告染劑所散發出的螢光會被遮蔽染劑所掩蓋。當聚合酶進行延伸反應 (extension phase) 時，具有從 5’端 DNA 切割活性的 DNA 聚合酶將探針切割，使得 5’端報告染劑與 3’端遮蔽染劑分開，遮蔽效應被破壞，此時即可偵測到螢光反應。

試劑耗材
5.1 QIAamp viral RNA kit。
5.2 One-step RT-PCR kit。
5.3 TBE buffer（tris-borate/EDTA electrophoresis buffer）。
5.4 陽性對照組 (positive control)：採用已知 SARS 陽性的檢體作對照；陰性對照組 (negative control)：採用 SARS 陰性的檢體作對照或以水作陰性對照。
5.5 試劑 TaqMan one-step RT-PCR master mix reagents（SN：4309169）4 °C 保存與 TaqMan exogenous internal positive control（VIC）(SN：4308323) -20 °C 保存。
5.6 Optical 96 well reaction plate（Part Number N801-0560）。
5.7 Optical plate adhesive covers（Part Number 4311971）。
5.8 Agarose。
5.9 DEPC 水。
5.10 無菌 PCR 反應管。
5.11 無菌 2 µL, 20 µL, 100 µL, 200 µL, 1,000 µL Tips。
5.12 無菌 1.5 mL 微量離心管。
5.13 手套。
衛生福利部疾病管制署傳染病標準檢驗方法

編號： SARS 病毒核酸檢測 (real-time PCR) 核准日期： 年 月 日
頁次：第 25 頁/共 1104 頁 修訂日期： 年 月 日

6 儀器設備
6.1 PCR thermal cycler。
6.2 即時定量檢測儀（如 ABI system, Bio-rad system, LightCycler system 等）。
6.3 電泳槽。
6.4 DNA 電泳膜體觀察設備。
6.5 2 μL, 20 μL, 100 μL, 200 μL, 1,000 μL Pipetman。

7 環境設施安全
採用獨立的操作空間，將 RNA 或 DNA 有關的實驗室分開，以避免污染，影響結果。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體前處理
10.1.1 檢體編號：核對檢驗單之個案與檢體是否相符，給予疾病編號。
10.1.2 血清或添加抗凝劑如 Sodium citrate 或 EDTA 的血漿皆可使用。
 10.1.2.1 檢體的採集量並無严格限制。
 10.1.2.2 檢體的運送：4 °C。
 10.1.2.3 摘集後之檢體，以 2,000 rpm 離心 10 min，以分離出的血清備用。
10.1.3 咽喉拭子檢體
 10.1.3.1 棉棒充分攪拌後，於塑膠管壁旋轉擠乾取出。
 10.1.3.2 於 4 °C，2100 ×g 離心 15 min。
 10.1.3.3 收集上清液分裝於 2 - 3 支 Cryotube，標示階號及日期，取 140 μL，其餘保存於-70 °C。
10.1.4 糞便檢體
 10.1.4.1 取糞便 1 g，放入 15 mL 離心管中，加入玻璃圓球及 10 mL PBS (+) 液調成 10 %懸浮液。
 10.1.4.2 於 4 °C，2100 ×g 離心 15 min。
 10.1.4.3 收集上清液分裝於 2 - 3 支 Cryotube，標示階號及日期，取 140 μL，其餘保存於-70 °C。
10.1.5 痰檢體：
10.1.5.1 取 PBS 緩衝液與痰檢體約 1：1 的比例混合。
10.1.5.2 搖拌使其均質化並於 4 ℃，2100 ×g 離心 15 min。
10.1.5.3 收集上清液，取 140 μL，其餘保存於 -70 ℃。

10.2 萃取病毒 RNA
10.2.1 取 140 μL 的檢體，加入 560 μL Lysis buffer（AVL），震盪混合，室溫靜置反應 10 min。
10.2.2 加入純酒精 560 μL 終止反應。
10.2.3 將上述混合液分兩次加入通管柱（column），並以離心（8,000 rpm·1 min）方式加速混合液通過濾膜。檢體中如有 RNA 存在，會吸附在管柱底部的濾膜上。
10.2.4 以清洗液（AW1）500 μL，離心 8,000 rpm·1 min，作第一次沖洗，清洗膜上所吸附的雜質。
10.2.5 以清洗液（AW2）500 μL，離心 14,000 rpm·3 min，作第二次沖洗，清洗膜上剩餘吸附的雜質。
10.2.6 離心 14,000 rpm·1 min，以徹底去除膜上殘留酒精。
10.2.7 加入 50 μL DEPC 水，室溫靜置 1 min，在 4 ℃ 離心 8,000 rpm·1 min，取得 RNA。

10.3 反轉錄酶－聚合酶鍵鎖反應（RT-PCR）（以 Qiagen one-step RT-PCR kit 為例）
10.3.1 試劑添加量如下：

<table>
<thead>
<tr>
<th>試劑</th>
<th>量</th>
</tr>
</thead>
<tbody>
<tr>
<td>5X buffer</td>
<td>10 μL</td>
</tr>
<tr>
<td>Cor-p-F2 forward primer (10 μM)</td>
<td>3 μL</td>
</tr>
<tr>
<td>Cor-p-R1 reverse primer (10 μM)</td>
<td>3 μL</td>
</tr>
<tr>
<td>RNA enzyme mix</td>
<td>2 μL</td>
</tr>
<tr>
<td>dNTP</td>
<td>2 μL</td>
</tr>
<tr>
<td>Q solution</td>
<td>10 μL</td>
</tr>
<tr>
<td>DEPC treatment H2O</td>
<td>15 μL</td>
</tr>
<tr>
<td>RNA sample</td>
<td>5 μL</td>
</tr>
<tr>
<td></td>
<td>50 μL</td>
</tr>
</tbody>
</table>

10.3.2 取 5 μL RNA 做模板，加入引子組（primers 參考引子組序列表）與 RT-PCR 試劑試劑添加量如 10.3.1

10.3.3 使用 PCR thermal cycler。
10.3.3.1 R.T.作用，50 ℃ 30 min。
10.3.3.2 Taq 活化作用，95 ℃ 15 min。
10.3.3.3 Denaturation，95 ℃ 35 sec。
10.3.3.4 Annealing，51 ℃ 40 sec。
10.3.3.5 Extension，72 ℃ 60 sec。
10.3.3.6 重複 10.3.3.3 至 10.3.3.5 步驟 40 cycle。
10.3.3.7 Final extension, 72 ℃ 10 min。
10.3.4 膠片電泳分析
10.3.4.1 製備 1.5%洋菜膠: 6 g Agarose 溶於 400 mL (1X)TBE buffer。
10.3.4.2 選擇 100 bp DNA size marker：5 μL (2 ng/μL)。
10.3.4.3 取二次產物 10 μL，各加入 2 μL 6X Loading dye。
10.3.4.4 進行電泳分離：100 V，35 min。
10.3.4.5 膠片染色：1 μL /mL Ethidium bromide 染色 10 min，
H₂O 褪染。
10.3.4.6 使用 UV light 観察，並照相紀錄。

10.4 即時反轉錄酶－聚合酶鏈鎖反應（real time RT-PCR）(以 AB one-step RT-PCR 為例)
10.4.1 試劑添加量

<table>
<thead>
<tr>
<th>成分</th>
<th>用量</th>
</tr>
</thead>
<tbody>
<tr>
<td>2X Master mix buffer</td>
<td>12.5 μL</td>
</tr>
<tr>
<td>SARS2 forward primer（10 μM）</td>
<td>1 μL</td>
</tr>
<tr>
<td>SARS2 reverse primer（10 μM）</td>
<td>1 μL</td>
</tr>
<tr>
<td>CDC-probe（5 μM）</td>
<td>0.5 μL</td>
</tr>
<tr>
<td>RNA enzyme mix</td>
<td>0.67 μL</td>
</tr>
<tr>
<td>Exo IPC mix</td>
<td>1.25 μL</td>
</tr>
<tr>
<td>IPC DNA</td>
<td>0.25 μL</td>
</tr>
<tr>
<td>DEPC treatment H₂O</td>
<td>2.9 μL</td>
</tr>
<tr>
<td>RNA sample</td>
<td>5 μL</td>
</tr>
<tr>
<td></td>
<td>25 μL</td>
</tr>
</tbody>
</table>

10.4.2 取適量的 RNA 加到 one-step RT-PCR 混合反應液(reaction mix)中，加入適當濃度的引子與探針。反轉錄作用為 48 ℃ 30 min，
接著為活化 AmpliTaq DNA 聚合酶 95 ℃ 10 min，再進行 PCR 反應 40 個循環：
denature 95 ℃ 15 sec, Annealing-extension 為 60 ℃ 1 min，螢光訊號的收集 Annealing-extension 的步驟，
並以 ABI Prism SDS 軟體進行分析。

10.4.3 Real-time RT-PCR 反應條件
10.4.3.1 RT reaction: 48 ℃，30 min。
10.4.3.2 Taq activation: 95 ℃，10 min (1 replication cycle)。
10.4.3.3 PCR reaction: 95 ℃·15 sec: 60 ℃·1 min(45 replication cycles)。

10.5 檢驗後處理
檢驗完成後之檢體與廢液，於髙溫高壓滅菌器滅菌後，依感染性醫療
廢棄物處理。檢驗後之剩餘檢體依序裝入檢體架內保存。
11 結果判定
11.1 判讀標準
 11.1.1 RT-PCR：RT-PCR 產物各取 5 μL，在 1.5 %洋菜膠進行分析，
 檢視分析結果。增幅產物片段約 368 bp。若出現上述 RT-PCR
 產物，檢驗結果為陽性。
 11.1.2 Real-time RT-PCR：
 11.1.2.1 標準曲線（standard curve）分析：根據 NTC (none
 template control) 的背景螢光值將 Base line 定在 0.20，
 按下機器分析鈕，依據所輸入的標準品的濃度計算出
 Standard curve (Ct 值與標準品濃度)。
 11.1.2.2 檢體螢光值分析：檢體中的病原體於 RT-PCR 的反應
 過程中由螢光標記的探針於片段增幅時所釋放出的
 螢光值，根據標準曲線定出檢體中 SARS 病毒濃度。
 11.1.2.3 注意事項：建議標準曲線的 R2 值趨近於 1。
 11.2 報告核發：SARS 病毒 real-time PCR 陽性，SARS 病毒 real-time PCR
 陰性。
 11.3 結果登錄：完成檢驗後，將檢驗結果填寫於檢體送驗單之”檢驗結果欄”，
 並上網登錄於實驗室資訊管理系統，傳送實驗室主管審核，待審核通
 過後發佈結果。

12 品質管制
12.1 陽性對照組：陽性對照組呈現陽性螢光訊號產生。
12.2 陰性對照組：陰性對照組(二次水)
 需無任何螢光訊號產生。
12.3 若檢驗結果不符合上述任一品質管制要點，該結果不可作為檢驗結果
 判讀依據，檢體需重新檢驗。

13 廢棄物處理
 檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥
 密封，再以 121 ℃, 30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
 14.1 WHO. PCR primers for SARS developed by WHO Network Laboratories.
 14.2 WHO biosafety guidelines for handling of SARS specimens.
 detection of SARS-associated coronavirus and comparison with real-time
15 附錄

15.1 SARS 病毒鑑定流程圖。
15.2 SARS 病毒診斷用引子組序列表。
15.3 注意事項

15.3.1 以 Heparin 為抗凝劑的血漿或溶血検體可能會干擾 Taq polymerase 的作用，降低檢驗敏感性。
15.3.2 病毒 RNA 的萃取，除了最後一步 RNA 的洗脫（elution）是在 4 ℃ 下離心之外，其餘步驟皆可在室溫下進行。
15.3.3 序列分析：將經 RT-PCR 增幅的 DNA 片段作定序分析，並將定序的結果利用 NCBI 的基因庫作序列分析。
附錄 12.1 SARS 病毒鑑定流程圖

痰、咽喉拭子、糞便等

病毒 RNA 萃取

RT-PCR or real-time RT-PCR 檢測

結果判定

附錄 12.2 SARS 病毒診斷用引子組序列表

Cor-p-F2 :5’-CTAACATGCTTAGGATAATGG-3’
Cor-p-R1 :5’-CAGGTAAGCGTAAAACCTCATC-3’
SARS2 Forward: 5’-GGAGCCTTTGAATACCCAAAG-3’
SARS2 Reverse: 5’-GCACGGTCGGCAGCATG-3’
CDC-Probe: 5’-CCACATTGGCACCACCGCAATCC-3’
1 目的
以株化細胞（老鼠神經胚胎細胞株）分離狂犬病毒。

2 適用檢體種類
適用於人體體內組織檢體。

3 名詞解釋
無。

4 原理概述
利用株化細胞（老鼠神經胚胎細胞株）分離狂犬病毒。

5 試劑耗材
5.1 老鼠神經胚胎細胞培養培養盒 25 cm² 或 75 cm²。
5.2 Eagle’s minimal essential 細胞培養液（見附錄）。
5.3 0.01 M 磷酸鹽緩衝食鹽溶液，pH 7.2 - 7.4，無鈣、無鎂離子。
5.4 試劑級丙酮（Sigma）。
5.5 Buffered glycerol mounting medium, pH 8.5。
5.6 70 % Isopropanol rubbing alcohol 桌面消毒水。
5.7 Trypsin/EDTA。
5.8 0.04 % Trypan blue in PBS。
5.9 四級胺（Zepharin）金屬器械消毒水。

6 儀器設備
6.1 剪刀、鎬子。
6.2 壓舌板。
6.3 八孔細胞培養玻片盤（Chamber slide; Labteck）。
6.4 四孔經氟龍處理的玻片（corning）。
6.5 細胞培養培養盒 25 T 和 75 T。
6.6 固定槽和染色盤。
6.7 CO₂ 恆溫箱，37 °C，0.5 % CO₂。
6.8 離心機。
6.9 1 mL 細胞保存瓶。
6.10 15 mL 離心管。
6.11 13 × 100 mm 試管。
6.12 冰箱。
6.13 螢光顯微鏡。
6.14 倒立顯微鏡。
7 環境設施安全
略。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 以目視及鏡檢選取生長良好，培養於 75 cm² 培養盒之無污染之 MNA 細胞。
10.2 於無菌操作台內操作抽取培養液。
10.3 以 PBS([Ca(-), Mg(-)]) 5 mL 清洗細胞二次，加注 2 毫升 Trypsin/EDTA，置 37 °C 處理約 5 min，加入 8 mL 細胞培養液並用滴管將細胞沖散。
10.4 取 5 支 75 cm² 培養盒，每瓶先加入 8 mL 的細胞培養液，再加入 2 mL 上述 10.3 細胞懸浮液。
10.5 培養 3 - 4 天後，細胞可做為分離病毒之用或持續繼代之用。
10.6 取一小片擦手紙封住腦組織樣品瓶口，輕輕打開瓶蓋以避免病毒霧氣溢出。
10.7 以無菌棉棒竹籤端取出約 0.2 克重，約米粒大的檢體組織，以竹籤端搗碎製成 20 % 乳劑，於 1600 rpm 離心 10 min。
10.8 取 0.5 mL 乳剝上清液於試管，加入 2 mL (4 × 10⁶ 個細胞/mL) 之細胞懸浮液，以手套包裹住試管後震盪混合數秒。
10.9 置於 37 °C 湿式恒溫箱內培養 30 min，每 15 min 搖動混合一次。
10.10 不鏽鋼淺盤上，鋪上浸溼的擦手紙並壓平以便放置玻片。96 孔盤的上蓋經 70 % isopropanol 噴灑消毒 10 min 後以紙巾擦乾，做為蓋子蓋住玻片。
10.11 檢體系統細胞混合後，分裝 1 個 25 cm² 培養盒和製作 12 片四孔經鐵氟龍處理的玻片，每孔加入 0.2 mL。
10.12 培養 24 hr 後，取一玻片經直接螢光抗體染色 (dFA)，於 200 倍視野觀察是否有細胞質內熒光。

11 結果判定
11.1 判讀標準：若出現細胞質內熒光則判定為陽性，可收集 25 cm² 培養盒之病毒液。若 4 - 5 天 dFA 仍舊呈陰性，則於第 5 天盲目繼代。25 cm² 培養盒棄上清液後，以 Trypsin-EDTA 處理細胞懸浮液，繼續培養和以
dFA判定是染含有狂犬病病毒，盲目继代至少三次以上，以确认是否可分離出狂犬病病毒。

11.2 報告核發：病原體分離(陰性)，病原體分離(陽性)
11.3 結果登錄：相關檢驗紀錄及檢體送驗單陳核實驗室主管審核，由本署內部之網站應用系統進入傳染病通報系統輸入檢驗結果。

12 品質管制
12.1 嚴防病原散佈或污染，工作時帶手套。
12.2 實驗過程遵循 S.O.P 的作業規範與流程，檢體處理需在 BSL-2 實驗室內操作，以避免污染。
12.3 生物安全櫃及培養箱定期做校正及維護。
12.4 置於 37°C CO2 恆溫箱培養時應注意保持溼度。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋妥密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序辦理。

14 參考資料
無。

15 附錄
15.1 MEM 培養基（100 mL）

- MEM with Earles Salts（BRL） 90 mL
- Fetal Bovine Serum 10 mL
- Glutamine, 3%（BRL） 2 mL
- MEM vitamin（BRL） 2 mL
- Gentamicin, 40 mg/mL 0.24 mL
- Streptomycin, 250 mg/mL 0.5 mL
- Penicillin, 5x10⁵ U/mL 0.5 mL

15.2 Lysis buffer
- 10 mM Tris HCl, pH 7.5
- 150 mM NaCl
- 1.5 mM MgCl
- 0.65% NP-40
1. 目的
以分子生物學技術，利用反轉錄酶－聚合酶鏈鎖反應（RT-PCR）來檢測檢體中是否含有狂犬病毒核酸。

2. 適用檢體種類
適用於人體體內組織。

3. 原理概述
利用具特殊專一性之引子（primers），把檢體中的狂犬病毒 RNA 經由 RT-PCR 的過程，增幅出 DNA 片段，以篩選檢體是否有狂犬病病毒。所用之引子是根據犬病毒的 nucleoprotein 區域所設計的。

4. 名詞解釋
無。

5. 試劑耗材
5.1 QIAmp viral RNA kit。
5.2 RT-PCR reagent
5.3 TBE buffer（tris-borate/EDTA electrophoresis buffer）。
5.4 positive control RNA（Rabipur 狂犬病病毒疫苗株）。
5.5 Agarose。
5.6 水質：25 ℃ 蒸餾水或 RO 逆滲透可達 18 MΩ-CM 以上超純水。
5.7 無菌 PCR 反應管。
5.8 無菌 2 μL、20 μL、100 μL、200 μL、1,000 μL Tips。
5.9 無菌 1.5 mL 微量離心管。
5.10 手套。

6. 儀器設備
6.1 PCR thermal cycler。
6.2 Agarose 電泳槽。
6.3 DNA 電泳膠體觀察設備。
6.4 2 μL、20 μL、100 μL、200 μL、1,000 μL Pipetman。

7. 環境設施安全
應有獨立的操作空間，盡量與操作 RNA 或 DNA 有關的實驗室分開，以避免污染，影響結果。

8. 檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體前處理
10.1.1 檢體的採集量至少 0.5 cc
10.1.2 檢體的運送：4°C。
10.2 萃取病毒 RNA
10.2.1 吸取 140 μL 的血清檢體，加入 560 μL Lysis buffer（AVL），震盪混合，室溫靜置反應 10 min。
10.2.2 加入純酒精 560 μL 終止反應。
10.2.3 將上述混合液分兩次，以離心方式（8,000 rpm，1 min）通過管柱（column），檢體中如有 RNA 存在，會吸附在管柱底部的膜上。
10.2.4 以清洗液（AW1）500 μL，離心 8,000 rpm，1 min，作第一次沖洗，清洗膜上所吸附的雜質。
10.2.5 以清洗液（AW2）500 μL，離心 12,000 rpm，1 min，作第二次沖洗，清洗膜上剩餘吸附的雜質。
10.2.6 離心 12,000 rpm，3 min，以徹底去除膜上殘留酒精。
10.2.7 加入萃取液（AVE），室溫靜置 9 min，在 4°C 離心 8,000 rpm，2 min，取得 RNA。
10.3 反轉錄酶－聚合酶鍊鎖反應（RT-PCR）
10.3.1 取 10 μL RNA 做模板，加入引子組各 10 pmole，70°C 作用 10 min 後，並使其降溫至 4°C。
10.3.2 加入反應溶液（成份如下表），調整反應總體積至 100 μL。

<table>
<thead>
<tr>
<th>試劑</th>
<th>加入</th>
<th>體積</th>
</tr>
</thead>
<tbody>
<tr>
<td>2X RT-PCR buffer</td>
<td>25 μL</td>
<td></td>
</tr>
<tr>
<td>SuperScript III RT/Platinum Taq Mix</td>
<td>2 μL</td>
<td></td>
</tr>
<tr>
<td>RNaseOUT</td>
<td>1 μL</td>
<td></td>
</tr>
</tbody>
</table>

10.3.3 反轉錄酶－聚合酶鍊鎖反應（RT-PCR）：使用 PCR thermal cycler。
10.3.3.1 R.T.作用：50°C，30 min。
10.3.3.2 Taq 活化作用：95°C，10 min。
10.3.3.3 Denaturation：95°C，30 sec。
10.3.3.4 Annealing：56 ℃，40 sec。
10.3.3.5 Extension：72 ℃，60 sec。
10.3.3.6 重複 10.3.3.3 至 10.3.3.5 步驟 40 cycle。
10.3.3.7 Final extension：72 ℃，10 min。

10.4 膠片電泳分析
10.4.1 製備 1.5 %洋菜膠：6 g agarose 溶於 400 mL (1X) TBE buffer。
10.4.2 選擇 100 bp DNA size Marker：5 μL（25 ng/μL）。
10.4.3 取二次產物 10 μL，各加入 2 μL 6X loading dye。
10.4.4 進行電泳分離 100 V，35 min。
10.4.5 膠片染色：1 μL/mL ethidium bromide 染色 10 min，H2O 褪染。
10.4.6 使用 UV light 觀察，並照相紀錄。

10.5 檢驗後處理
10.5.1 檢驗完成後之檢體與廢液，於高溫高壓滅菌器滅菌後，依感染性醫療廢棄物處理。
10.5.2 檢驗後之剩餘檢體依序裝入檢體架內保存。

11 結果判定
11.1 判讀標準
11.1.1 RT-PCR 產物各取 5 μL，在 1.5 %洋菜膠進行反應，檢視反應結果。
11.1.2 產物長度如下
RT-PCR 產物：增幅出的片段約 1,468 bp。

11.2 報告核發：RT-PCR(陽性)、RT-PCR(陰性)。
11.3 結果登錄：相關檢驗紀錄及檢體送驗單陳核實驗室主管審核，由本署內部之網站應用系統進入傳染病通報系統輸入檢驗結果。

12 品質管制
12.1 嚴防病原散佈或污染，工作時帶手套。
12.2 實驗過程遵循 S.O.P 的作業規範與流程，檢體處理需在生物安全櫃內操作，以避免污染。
12.3 生物安全櫃定期做校正及維護。
12.4 聚合酶鏈鎖反應須含有陰性與陽性對照組。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序辦理。

14 參考資料
14.5 狂犬病検査マニュアル, 日本国立感染症研究所獣医科学部, 第14-19頁, 2012。
14.6 Qiagen, QIAamp viral RNA mini 専一性之 primers kit handbook pp.18 - 19.

15 附錄
15.1 狂犬病病毒鑑定（反轉錄酶－聚合酶鍊鎖反應法）流程圖。
15.2 狂犬病病毒診斷用引子組序列表。
附錄 15.1 狂犬病病毒鑑定（反轉錄酶－聚合酶鏈鎖反應法）流程圖

組織、血清、血漿
→ 病毒 RNA 萃取
→ 反轉錄酶－聚合酶鏈鎖反應（RT-PCR）
→ 巢式聚合酶鏈鎖反應（nested PCR）
→ 結果判定
→ 定序與序列分析
附錄 15.2 狂犬病病毒診斷用引子組序列表

N7：5’- ATG TAA CAC C(T/C)C TAC AAT GG - 3’

JW6(DPL)：[5’- CAA TTC GCA CAC ATT TTG TG - 3’

JW6(E)：5’- CAG TTG GCA CAC ATC TTG TG - 3’

JW6(M)：5’- CAG TTA GCG CAC ATC TTA TG - 3’
1 目的
檢測狂犬病病毒抗體。

2 適用檢體種類
適用於人體體內組織。

3 名詞解釋
無。

4 原理概述
利用狂犬病病毒醣蛋白作為抗原，與待測血清進行抗原抗體反應，以酵素標
記抗體間接地將此反應轉成顏色訊號，由全自動酵素免疫分析儀讀取結果。

5 試劑耗材
5.1 試劑組：PLATELIA™ RABIES II KIT (Ref.: 3551180)，BIO-RAD，
France。
 5.1.1 已吸附狂犬病病毒醣蛋白之 96 孔微量滴定盤：試劑組(R1)保存
 4℃冰箱。
 5.1.2 清洗液 Wash solution (10X)：試劑組(R2)保存 4℃冰箱。
 5.1.3 陰性對照組 Negative control：試劑組(R3) 保存 4℃冰箱。
 5.1.4 陽性對照組0.5 EU/ml Positive control (human)：試劑組(R4a) 保
 存 4℃冰箱。
 5.1.5 陽性對照組4 EU/ml Positive control (human)：試劑組(R4b) 保
 存 4℃冰箱。
 5.1.6 檢體稀釋液(TRIS-EDTA buffer)：試劑組(R6)保存 4℃冰箱。
 5.1.7 酵素 conjugate (Protein A labeled with Peroxidase)：試劑組(R7)
 保存 4℃冰箱。
 5.1.8 基質緩衝液(citric acid and sodium acetate with 0.015% H₂O₂ and
 4% DMSO)：試劑組(R8)保存 4℃冰箱。
 5.1.9 呈色剤(TMB 受質)：試劑組(R9)保存 4℃冰箱。
 5.1.10 終止液 (1 N sulphuric acid solution)：試劑組(R10)保存 4℃冰箱。
5.2 耗材
 5.2.1 96 孔微量滴定盤封膜。
 5.2.2 無菌微量吸管尖 (tip)：10μL、200μL、1,000μL。
 5.2.3 可拋棄式無菌塑膠手套。
 5.2.4 無菌離心試管：15mL
 5.2.5 無菌蒸餾水。
 5.2.6 黑膠蓋。
儀器設備
6.1 第二級生物安全櫃 (Class II BSC)。
6.2 全自動酵素免疫分析儀 (ELISA reader: Thermo scientific Multikan FC, USA)。
6.3 全自動盤式清洗器。 (Microplate washer: Thermo scientific Wellwash，USA)
6.4 微量吸管 (pipettemen): 20μL、100μL、1,000μL。
6.5 8爪微量吸管。
6.6 計時器。
6.7 37 °C 恆溫培養箱。

環境設施安全
於生物安全第二等級 (BSL-2) 實驗室之設施內操作。

檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowt reeid=6C7C52E7A7D5621A。

檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowt reeid=6C7C52E7A7D5621A。

檢驗步驟
10.1 檢驗前血清處理
10.1.1 檢體以 1,500 rpm 離心 10 min，分離出血清備用。
10.2 檢驗步驟
10.2.1 使用 R6 試劑 100 倍稀釋 R3、R4a、R4b 控制組和待測血清。
10.2.2 取 100μl 稀釋過的檢體加入 microplate (R1)中，並封上薄膜放入 37±2℃的培養箱中 1 小時± 5 分鐘。
10.2.3 準備 Wash Buffer 與稀释 conjugate solution，將 500μl R7 以 4.5ml R2 wash buffer 10 倍稀釋。
10.2.4 移除薄膜後，用 wash buffer 清洗三次。
10.2.5 在 wells 中加入 conjugate solution (R7) 100μl，蓋上新的膜後放入培養箱中 37±2℃的培養箱中 1 小時± 5 分鐘。
10.2.6 準備 Enzymatic development solution (R8 : R9 = 11 : 1)
10.2.7 移除薄膜後，利用 wash buffer 清洗五次。
10.2.8 在 wells 中加入 enzymatic development solution (R8+R9) 100μl，
並蓋上黑膠蓋避光，放在室溫(18 - 30℃) 30± 5 分鐘。
10.2.9 在 wells 中加入 100μl 的 stop solution (R10)。
10.2.10 利用 450-620 nm 波長讀取吸光值。

10.3 檢驗後處理
10.3.1 完成檢驗，試劑組儲存於 4℃冰箱保存。
10.3.2 檢驗後之檢體應依序歸回檢體盒，放置-20℃冰箱保存。
10.3.3 整理清除實驗工作桌面上之抗污紙墊及使用後拋棄之微量吸管尖和手套，包裝於廢棄物滅菌塑膠袋。

11 結果判定
11.1 判讀標準：
11.1.1 每個 R3 之 OD 讀值需小於 0.05，且每個 R4a 之 OD 讀值應大於 0.300 小於 1.200，每個 R4b 之 OD 讀值應大於 1.500 小於 3.500。若有任一對照組數值不符合上述條件，即應重複該次實驗。
11.1.2 若檢體之 OD 讀值大於 R4a 平均值，表示血清抗體陽性
11.1.3 若檢體之 OD 讀值小於 R4a 平均值，表示血清抗體陰性。
11.2 報告核發：IgG anti-Rabies virus(陽性)、IgG anti-Rabies virus(陰性)。
11.3 結果登錄：將檢驗結果填寫於檢體送驗單之”檢驗結果”欄，並於送驗單背面蓋章，相關檢驗紀錄及檢體送驗單陳核實驗室主管審核，由本署內部之網站應用系統進入傳染病通報系統輸入檢驗結果。
11.3.1 檢體送驗單及原始列印檢驗結果自行歸檔。

12 品質管制
12.1 陰性對照組(R3)OD 讀值需<0.05
12.2 陽性對照組(R4a)OD 讀值需介於 0.300~1.200 間
12.3 陽性對照組(R4b)OD 讀值需介於 1.500~3.500 間

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
14.2 PLATELIA™ RABIES II KIT 原廠試劑說明書

15 附錄
15.1 狂犬病病毒抗體試驗-酵素免疫分析法流程圖。
附錄 15.1 狂犬病病毒抗體試驗（酵素免疫分析法）流程圖

吸附狂犬病病毒合成醣蛋 白 96 孔 ELISA 微孔盤

100 倍稀釋待測血清、陰性及陽性標準 液後，置入 ELISA 微孔盤，100μL/well

37 °C，1 小時±5 分鐘
清洗液清洗 3 次

ELISA 微孔盤孔內加入酵素 conjugate，100μL/well

37 °C，1 小時±5 分鐘
清洗液清洗 5 次

ELISA 微孔盤孔內加入基質緩衝液 及 TMB，100 μL/ well

室溫 30 min± 5 分鐘

ELISA 微孔盤孔內加入 stop solution，100μL/ well

ELISA reader：Thermo scientific Multikan FC，用 450 /620 nm 讀取 OD 值

陽性判定：OD_{450/620} 值高於 阳性對照組(R4a)平均值者，視為陽性反應

陰性判定：OD_{450/620} 值低於 阳性對照組(R4a)平均值者，視為陰性反應
1 目的
檢測 H5N1 流感病毒病原體。

2 適用檢體種類
適用之檢體種類包括咽喉拭子、鼻咽拭子、鼻咽抽出液、支氣管肺泡灌洗液等。

3 名詞解釋
無。

4 原理概述
利用 H5N1 流感病毒可感染 MDCK 細胞株之特性，進行病毒病原體之培養，
觀察細胞病變(CPE)之出現，最後再以 H5N1 流感病毒核酸檢測方法確認。

5 試劑耗材
5.1 試劑
5.1.1 緩衝液：PBS，GibcoBRL，美國。
5.1.2 DMEM 培養基：GibcoBRL，美國。
 5.1.2.1 生長培養基：添加 10 %胎牛血清，100 U/mL 抗生素。
 5.1.2.2 維持培養基：添加 100 U/mL 抗生素，2.0 μg/mL 之
 tpck-trypsin，不添加胎牛血清。
5.1.3 胰蛋白酶：Tpck treated trypsin，Sigma。

5.2 耗材
5.2.1 25T 細胞培養盒。
5.2.2 75T 細胞培養盒。
5.2.3 5 mL 針筒。
5.2.4 0.45 μM 針筒用過濾膜。
5.2.5 刻度吸管：10 mL、5 mL、1 mL。
5.2.6 21 孔熒光檢測玻片。
5.2.7 96 孔 U 型底孔盤。
5.2.8 96 孔盤封盤膠膜。
5.2.9 八爪分注器。
5.2.10 手套、口罩等個人安全防護用品。

6 儀器設備
6.1 第二級生物安全櫃。
6.2 35 ℃ 二氧化碳恆溫培養箱。
6.3 高速離心機。
6.4 倒立顯微鏡。

7 環境設施安全
7.1 季節性流感於生物安全第三等級 (BSL-3) 實驗室內操作。
8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 接種
10.1.1 取已接種於 culture tube 並長滿平面之 MDCK 細胞，吸除舊有生長培養基，以不含 Mg 离子的 PBS 溶液清洗兩次後，加入同量含有 2.0 μg/mL Tpck-trypsin 維持培養基。
10.1.2 每一檢體接種 2 支 Culture tube，每支 Tube 接種 100 μL 檢體，培養於 35 °C，CO₂ 培養箱 7 - 10 日。

10.2 觀察
10.2.1 自接種後翌日起每天以倒立顯微鏡觀察細胞形態。
10.2.2 接種細胞產生 50 % 以上細胞病變者 (CPE 達二至三價)，收集細胞及培養液，立即進行鑑定。

10.3 檢驗後處理
病毒液置於抗低溫之保存管，存於 4 °C 或 -80 °C，螢光玻片存於 -20 °C，其餘廢液及檢驗器具均以高溫滅菌銷毀。

11 結果判定
11.1 判讀標準：培養液經 H5N1 病毒核酸檢測方法測定為陰性者，判定為陽性。
11.2 報告核發：H5N1 流感病毒分離陽性，H5N1 流感病毒分離分離陰性。
11.3 結果登錄：完成檢驗後，將檢驗結果填寫於檢體送驗單之“檢驗結果欄”，並上網登錄於實驗室資訊管理系統，傳送實驗室主管審核，待審核通過後發佈結果。

12 品質管制
實驗室每年進行內部檢驗能力評估，每季進行人員檢驗流程熟悉度檢視。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
目的
以分子生物學的技術利用反轉錄酶-聚合酶連鎖反應（RT-PCR）檢測檢體中是否有 H5N1 流感病毒。

適用檢體種類
適用之檢體種類包括血清、咽喉拭子、鼻咽拭子、鼻咽抽出液、支氣管肺泡灌洗液等。

名詞解釋
無。

原理概述
即時定量 RT-PCR：
此系統的定量原理是利用一標記兩種螢光的 DNA 探針來偵測聚合酶連鎖反應的產物。此 DNA 探針的 5’端標記一報告染劑（reporter dye），3’端則標記一遮蔽染劑（quencher dye），完整的 DNA 探針其報告染劑所散發出的螢光會被遮蔽染劑所掩蓋。當聚合酶進行延伸反應（extension phase）時，具有從 5’端 DNA 切割活性的 DNA 聚合酶將探針切割，使得 5’端報告染劑與 3’端遮蔽染劑分開，遮蔽效應被破壞，此時即可偵測到螢光反應。

試劑耗材
5.1 試劑
5.1.1 QIAmp viral RNA kit。
5.1.2 One-step RT-PCR kit。
5.1.3 TBE buffer（tris-borate/EDTA electrophoresis buffer）。
5.1.4 陽性對照組（positive control）：以建立之 H5 陽性標準 Plasmid DNA 的檢體作對照；陰性對照組（negative control）：採用 H5N1 陰性的檢體作對照或以水作陰性對照。
5.1.5 Agarose。
5.1.6 DEPC 水。

5.2 耗材
5.2.1 無菌 PCR 反應管。
5.2.2 無菌 2 μL, 20 μL, 100 μL, 200 μL, 1,000 μL Tips。
5.2.3 無菌 1.5 mL 微量離心管。
5.2.4 手套。

儀器設備
6.1 PCR thermal cycler。
6.2 電泳槽。
6.3 DNA 電泳膠體觀察設備。
6.4 2 μL, 20 μL, 100 μL, 200 μL, 1,000 μL Pipetman。
7 環境設施安全
採用獨立的操作空間，將 RNA 或 DNA 有關的實驗室分開，以避免污染，影響結果。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體前處理
10.1.1 檢體編號：核對檢驗單之個案與檢體是否相符，給予疾病編號。
10.1.2 血清或添加抗凝劑如 sodium citrate 或 EDTA 的血漿皆可使用
 10.1.2.1 檢體的採集量並無嚴格限制。
 10.1.2.2 檢體的運送：4 °C。
 10.1.2.3 採集後之檢體，以 2,000 rpm 離心 10 min，以分離出的血清備用。
10.1.3 咽喉拭子檢體
 10.1.3.1 棉棒充分攪拌後於塑膠管壁旋轉擠乾取出。
 10.1.3.2 於 4 °C，2,100 ×g 離心 15 min。
 10.1.3.3 收集上清液分裝於 2 - 3 支 Cryotube，標示號碼及日期，取 140 μL，其餘保存於 -70 °C。
10.1.4 痰檢體
 10.1.4.1 取 PBS 緩衝液與痰檢體約 1：1 的比例混合
 10.1.4.2 攪拌使其均質化並於 4 °C，2,100 × g 離心 15 min。
10.1.5 收集上清液，取 140 μL，其餘保存於 -70 °C。
10.2 萃取病毒 RNA
 10.2.1 吸取 140 μL 的檢體，加入 560 μL Lysis buffer (AVL)，震盪混合，室溫靜置反應 10 min。
 10.2.2 加入純酒精 560 μL 終止反應。
 10.2.3 將上述混合液分兩次加入通管柱 (column)，並以離心 (8,000 rpm, 1 min) 方式加速混合液通過濾膜，檢體中如有 RNA 存在，會吸附在管柱底部的濾膜上。
 10.2.4 以清洗液 (AW1) 500 μL，離心 8,000 rpm，1 min，作第一次沖洗，清洗膜上所吸附的雜質。
 10.2.5 以清洗液 (AW2) 500 μL，離心 14,000 rpm，3 min，作第二次沖洗，清洗膜上剩餘吸附的雜質。
10.2.6 加入 DEPC 水，室溫靜置 9 min，在 4 °C 離心 8,000 rpm·1 min，
10.3 轉錄酶－聚合酶連鎖反應（RT-PCR）（以Qiagen one-step RT-PCR kit
10.3.1 試劑添加量
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5X buffer</td>
<td>10 μL</td>
</tr>
<tr>
<td>Forward primer（10 μM）</td>
<td>3 μL</td>
</tr>
<tr>
<td>Reverse primer（10 μM）</td>
<td>3 μL</td>
</tr>
<tr>
<td>RNA enzyme mix</td>
<td>2 μL</td>
</tr>
<tr>
<td>dNTP</td>
<td>2 μL</td>
</tr>
<tr>
<td>DEPC treatment H2O</td>
<td>25 μL</td>
</tr>
<tr>
<td>RNA sample</td>
<td>5 μL</td>
</tr>
<tr>
<td></td>
<td>50 μL</td>
</tr>
</tbody>
</table>

10.3.2 使用 PCR thermal cycler
 10.3.2.1 R.T.作用，63 °C 3 min。
 10.3.2.2 Taq 活化作用，95 °C 30 sec。
 10.3.2.3 Denaturation，95 °C 10 sec。
 10.3.2.4 Annealing，58 °C 30 sec。
 10.3.2.5 Extension，72 °C 3 sec。
 10.3.2.6 重複 10.3.3.3 至 10.3.3.5 步驟 45 cycle。

10.4 檢驗後處理
 檢驗完成後之檢體與廢液，於高溫高壓滅菌器滅菌後，依感染性醫療
 廢棄物處理。檢驗後之剩餘檢體依序裝入檢體架內保存。

11 結果判定
 11.1 判讀標準
 Real-time RT-PCR：若有螢光訊號產生，即可判定為 H5N1 流感病毒
 real-time RT-PCR 陽性。
 11.2 報告核發：H5N1 流感病毒 real-time PCR 陽性，H5N1 流感病毒 real-time
 PCR 陰性。
 11.3 結果登錄：完成檢驗後，將檢驗結果填寫於檢體送驗單之”檢驗結果欄”，
 並將檢驗結果上網登錄於實驗室資訊管理系統，傳送實驗室主管審核，
 待審核通過後發佈結果。

12 品質管制
 12.1 陽性對照組：陽性對照組 RNA 之 Ct 值應介於 25~26 之間。
 12.2 陰性對照組：陰性對照組（二次水）需無任何熒光訊號產生。
 12.3 若檢驗結果不符合上述任一品質管制要點，該結果不可作為檢驗結果
 判讀依據，檢體需重新檢驗。
13 廢棄物處理
廢棄物處理之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121°C, 30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

15 附錄
15.1 H5N1 病毒診斷用引子組序列表
H5-266F: 5’- TGCCGGAATGGTCTTACATAGTG -3’
H5-290P: 5’-(FAM)-AGAAGGCAATCCAGTCAATGACCTCTGTTA-(TAMRA)-3’
H5-347R: 5’- TCTTCATAGTCATTGAATCCCTCG -3’

15.2 注意事項
15.2.1 以 Heparin 為抗凝劑的血漿或溶血檢體可能會干擾 Taq polymerase 的作用，降低檢驗敏感性。
15.2.2 病毒 RNA 的萃取，除了最後一步 RNA 的洗脫 (elution) 是在 4°C 下離心之外，其餘步驟皆可在室溫下進行。
15.2.3 序列分析：將經 RT-PCR 增幅的 DNA 片段作定序分析，並將定序的結果利用 NCBI 的基因庫作序列分析。
1 目的
分離與鑑定炭疽桿菌，以確定病例與感染源。

2 適用檢體種類
2.1 人體血液、腦脊髓液、皮膚水泡液、痂皮檢體。
2.2 非人體檢體之郵件、白粉。

3 名詞解釋
無。

4 原理概述
以培養基分離培養細菌後，依據菌落形態、細菌生理特徵、芽胞形狀、生化反應特性、PCR 分子檢測等方法原理鑑定之。

5 試劑耗材
5.1 BAP（blood agar plate）。
5.2 SIM（sulfide indole motility）agar。
5.3 革蘭氏染色液（Gram stain solution）。
5.4 API 50 CHB 生化鑑定套組。
5.5 AB TaqMan *Bacillus Anthracis* Detection kit。
5.6 real-time PCR 毛細管。
5.7 載玻片。
5.8 接種環（針）。
5.9 1 mL 無菌塑膠吸管。
5.10 無菌（含濾棉）微量吸管尖（tip）：200 μL、20 μL、10 μL。
5.11 無菌棉棒。

6 儀器設備
6.1 37 °C 培養箱。
6.2 立體解剖顯微鏡：有變焦功能，至少可放大 4.5X。
6.3 顯微鏡：能放大至 1,000 倍之一般光學顯微鏡。
6.4 微量吸管（Pipetman）。
6.5 即時定量聚合酶鏈鎖反應器。

7 環境設施安全
於生物安全第三等級（BSL-3）實驗室之設施內操作。

8 檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treecid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。
9 檢體運送及保存

參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟

10.1 檢體前處理

實驗室於收到檢體及送驗單後，先行核對檢體種類、姓名、數量等資料正確與否，並依序登錄於紀錄簿。

10.2 分離培養

10.2.1 人體血液、腦脊髓液、皮膚水泡液、痂皮檢體等：以無菌棉花棒沾取少許或以無菌滴管吸取少許接種於 BAP 培養基上。

10.2.2 非人體檢體之郵件、白粉檢體：先將無菌棉花棒以無菌水浸溼，再以此棉棒沾取上述檢體，並將之浸泡於無菌水數 min 後（視檢體多寡酌量使用無菌水），取適量接種於 BAP 培養基上。

10.2.3 培養：37 ℃ CO₂ 培養箱培養。

10.2.4 觀察：18 - 24 hr 後，開始觀察有無可疑菌落，如有即進行鑑定。

10.3 鑑定

10.3.1 菌落型態及染色

10.3.1.1 直接抹片染色觀察：直接取少量新鮮血液、腦脊髓液、水泡液檢體置玻片上做成抹片，進行革蘭氏染色，觀察有無革蘭氏陽性、菌體中央具卵圓形芽孢的竹節狀排列長桿菌。

10.3.1.2 菌落型態：炭疽桿菌在 BAP 培養基上，呈現不溶血或微溶血之大型乳白色菌落，直徑約 2 - 5 mm，外觀呈磨砂玻璃、粗糙、扁平、圓形具水母頭狀（蛇髮女妖頭髮狀 medusa-head）。

10.3.1.3 菌落染色觀察：挑選獨立可疑之菌落型態作革蘭氏染色，符合革蘭氏陽性、菌體中央具卵圓形芽孢之竹節狀排列長桿菌，進行後續鑑定。

10.3.2 菌膜染色鑑定

菌膜染色鑑定：挑選可疑菌落，作 Polychrome methylene blue stain，觀察菌體型態是否符合藍黑色、方邊角、桿狀，外鞘膜則呈現無色透明。

10.3.3 運動性試驗（motility）

以無菌接種針挑取可疑菌落插入運動性試驗培養基（SIM）中，置 37 ℃ 培養箱隔夜培養，觀察有無運動性。

10.3.4 API 50 CHB 生化鑑定

10.3.4.1 取數個菌落置入 API 50B 安瓿培養液中，混合均勻將濃度調整為 2 McFarland。

10.3.4.2 將調好之菌液以滴管分別慢慢注入 50 個試驗孔中，置 37 ℃ 培養 24 - 48 hr。
10.3.4.3 觀察試驗孔溶液轉黃色為陽性，紅色為陰性。編號 25 的孔洞（Esculin test）變成黑色為陽性反應。分別於 24 及 48 hr 各登記判讀結果一次，並由 API 細菌鑑定

検索電脳軟體查詢菌種名稱。

10.3.5 AB TaqMan Bacillus Anthracis Detection kit - real time PCR 鑑定
取數個可疑新鮮菌落，放入含 100 μL 無菌水的 1.5 mL 微量離
心管中，100 °C 煮沸 10 min 後，10,000 rpm 離心 5 min，取上
清液作為 PCR 反應模板 DNA。

11 結果判定

11.1 判讀標準：符合下列結果判定為炭疽桿菌陽性；如有其中一項不符合，
判定為炭疽桿菌陰性。

11.1.1 菌落型態：BAP 培養基上呈不溶血或微溶血大型乳白色菌落，
直徑約 2 - 5 mm，外觀呈磨砂玻璃、粗糙、扁平、形狀具水母
頭狀（蛇髪女妖頭髮狀 medusa-head）。

11.1.2 革蘭氏染色：革蘭氏陽性、菌體中央具卵圓形芽孢的竹節狀排
列長桿菌。

11.1.3 菌膜染色：藍黑色方邊角桿狀，外鞘膜則呈現無色透明。

11.1.4 運動性試驗：無運動性。

11.1.5 API 50 CHB 生化鑑定：經鑑定菌種為炭疽桿菌。

11.1.6 Real-time PCR 鑑定：pXO1, pXO2 二質體之標的基因擴增曲線
(FAM 螢光) 皆呈陽性，IPC (internal positive control, VIC 螢光)
擴增曲線可為出現或無出現；陰性對照組之 IPC 反應應出現。

11.2 報告核發：炭疽桿菌陽性、炭疽桿菌陰性。

11.3 結果登錄：將檢體之檢驗結果登錄於炭疽桿菌分離與鑑定紀錄表及檢
體送驗單並加蓋檢驗者印章，送報告簽署人審核及蓋章，並登錄於網
路報告系統。

12 品質管制

12.1 培養基
測試時間：每一批號由廠商提供品質管制文件，實驗室每季進行一次
品管測試。
測試菌株：no.1, no.2, BA-Japan。
測試方法：使用新鮮的測試菌，取適量接種於培養基，37°C 隔夜培養。
觀察結果：菌落型態或測試反應符合炭疽桿菌反應特性。

12.2 試劑套組
測試時間：每一批號由廠商提供品質管制文件，每批號進行一次品管
測試。
測試菌株：no.1, no.2, BA-Japan。
測試方法：使用新鮮的測試菌，依操作手冊說明進行試驗。
觀察結果：試驗結果需符合陽性判定結果。
13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
14.1 蔡文城。2010。實用臨床微生物診斷學：嗜氧性革蘭氏陽性桿菌的鑑定（芽孢桿菌屬及相關菌屬），第十版，九州圖書文物有限公司，臺灣。
14.3 API 50 CHB 操作手冊。
14.4 AB TaqMan Bacillus Anthracis Detection kit 操作手冊。

15 附錄
15.1 炭疽桿菌分離與鑑定流程圖
15.2 炭疽桿菌分離與鑑定紀錄表
附錄 15.1 炭疽桿菌分離與鑑定流程圖

血液、腦脊髓液、皮膚水泡液、痂皮檢體

郵件、白粉檢體

接種於 BAP，37℃ 培養 18-24 小時

無疑似菌落

大型乳白色菌落、圓形粗糙、扁平，外觀呈磨砂玻璃，不溶血（或微溶血）。

革蘭氏染色

陰性

革蘭氏陽性，菌體中央具卵圓形芽孢之竹節狀排列長桿菌。

陽性

API 50 CHB 生化鑑定
Real-time PCR 鑑定
荚膜染色（具荚膜）
運動性試驗（無運動性）

陰性

陰性判定

陽性

炭疽桿菌陽性
附錄15.2炭疽桿菌分離與鑑定紀錄表

<table>
<thead>
<tr>
<th>檢體編號或姓名</th>
<th>檢體種類（採檢日期）</th>
<th>檢體採檢運送狀況適當</th>
<th>是</th>
<th>否</th>
<th>是</th>
<th>否</th>
<th>是</th>
<th>否</th>
<th>是</th>
<th>否</th>
</tr>
</thead>
<tbody>
<tr>
<td>指甲樣物品</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BAP培養基上大型乳白色菌落、圓形粗糙、扁平、呈磨砂玻璃外觀</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>溶血</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>運動性試驗</td>
<td></td>
</tr>
<tr>
<td>陽性</td>
<td></td>
</tr>
<tr>
<td>陰性</td>
<td></td>
</tr>
<tr>
<td>革蘭氏染色</td>
<td></td>
</tr>
<tr>
<td>陽性</td>
<td></td>
</tr>
<tr>
<td>陰性</td>
<td></td>
</tr>
<tr>
<td>桿菌</td>
<td></td>
</tr>
<tr>
<td>非桿菌</td>
<td></td>
</tr>
<tr>
<td>莢膜染色</td>
<td></td>
</tr>
<tr>
<td>陽性</td>
<td></td>
</tr>
<tr>
<td>陰性</td>
<td></td>
</tr>
<tr>
<td>Real-time PCR結果</td>
<td></td>
</tr>
<tr>
<td>陽性</td>
<td></td>
</tr>
<tr>
<td>陰性</td>
<td></td>
</tr>
<tr>
<td>API 50 CHB鑑定結果</td>
<td></td>
</tr>
<tr>
<td>綜合結果</td>
<td></td>
</tr>
<tr>
<td>炭疽桿菌</td>
<td></td>
</tr>
<tr>
<td>陰性</td>
<td></td>
</tr>
<tr>
<td>陽性</td>
<td></td>
</tr>
</tbody>
</table>

備註

檢驗者：

實驗室負責人：
1 目的
针对疑似检体或菌落进行即时定量聚合酶链锁反应法检测炭疽杆菌的核酸，以确定病例与感染源。

2 適用検体種類
2.1 人体血液、脑脊髓液、皮膚水泡液、痂皮或組織検体。
2.2 非人体検体之郵件、白粉。
2.3 次培養之菌落。

3 名詞解釋
無。

4 原理概述
以即时定量聚合酶链锁反应增幅炭疽杆菌分别位於其 pXO1 與 pXO2 質體上的兩個標的基因。

5 試劑耗材
5.1 Real-time PCR 毛細管。
5.2 AB TaqMan Bacillus Anthracis Detection kit。
5.3 QIAamp DNA mini kit。
5.4 Proteinase K (20 μg/mL，保存在 4 ℃)。
5.5 接種環 (針)。
5.6 1 mL 無菌塑膠吸管。
5.7 1.5 mL 離心管。
5.8 無菌 (含濾棉) 微量吸管尖 (tip): 1 mL、200 μL、20 μL、10 μL。
5.9 無菌棉棒。
5.10 無菌研磨棒。
5.11 解剖剪刀。
5.12 無菌 TE buffer。

6 儀器設備
6.1 水浴槽。
6.2 微量分注器 (Pipetman)。
6.3 即時定量聚合酶链锁反應器。
6.4 桌上型離心機。

7 環境設施安全
於生物安全第三等級 (BSL-3) 實驗室之設施內操作。

8 検体採集
參照本署出版之「傳染病検体採検手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowt reeid=6C7C52E7A7D5621A。
9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treecid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體前處理
10.1.1 實驗室於收到檢體及送驗單後，先行核對檢體種類、姓名、數量等資料正確與否，並依序登錄於紀錄簿。
10.1.2 人體痂皮或組織檢體以消毒之解剖剪刀剪碎，取適量於 1.5 mL 離心管並加入無菌 TE buffer 以研磨棒磨碎。
10.1.3 人體血液、腦脊髓液、皮膚水泡液與 TE buffer 等比例混合，同上述磨碎之組織液，每 200 μL 加入 20 μL proteinase K 於 56 ℃反應 2 - 3 hr。
10.1.4 非人體檢體之郵件、白粉與次培養之菌落，以無菌棉棒或接種環收集待測樣本後，浸泡並使其溶於 TE buffer 中，同様每 200 μL 加入 20 μL proteinase K 於 56 ℃反應 2 - 3 hr。

10.2 核酸萃取
10.2.1 於 56 ℃反應完成後，取出震盪混合 10 - 15 sec，加入 200 μL Buffer AL，震盪混合 10 - 15 sec 後，置入 70 ℃水浴槽，反應作用 10 min。
10.2.2 取出離心管，加入 200 μL 96 – 100 % Ethanol，震盪混合 10 - 15 sec。
10.2.3 以微量分注器將上述離心管中的液體移至 QIAamp spin column 中，並以 8,000 rpm 離心 1 min。
10.2.4 倒掉濾液，換新的 Collection tube，在 Column 中加入 500 μL Buffer AW1，以 8,000 rpm 離心 1 min。
10.2.5 倒掉濾液，換新的 Collection tube，在 Column 中加入 500 μL Buffer AW2，以 14,000 rpm 離心 3 min。
10.2.6 倒掉濾液，再以 14,000 rpm 離心 1 min。
10.2.7 丟棄 Collection tube，將 QIAamp spin column 套上新的 1.5 mL 離心管，加入 150 μL Buffer AE 或無菌水，室溫下靜置 5 min。
10.2.8 以 8,000 rpm 離心 1 min，所得於離心管中的 DNA 產物，於實驗後放置-20 ℃保存。

10.3 即時定量聚合酶連鎖反應
10.3.1 以 AB TaqMan Bacillus Anthracis Detection kit 進行炭疽桿菌核酸之檢測。
10.3.2 每個檢體包括陽性與陰性對照組都要進行兩種反應即 pXO1 與 pXO2 標的基因的偵測。
10.3.3 每個反應加入 2X master mix 15 μL，10X pXO1 或 pXO2 target mix 3 μL，PCR 級無菌水 7 μL，與待測 DNA 檢體 5 μL，總反應體積為 30 μL。
10.3.4 上機反應條件如下：95 ℃ 20 sec；45 個循環之 95 ℃ 3 sec、60 ℃ 30 sec。
10.3.5 反應結束後，分析反應擴增曲線。

11 結果判定
11.1 判讀標準
符合下列結果判定為炭疽桿菌核酸檢測陽性；如有其中一項不符合，判定為陰性：
兩個標的基因(FAM 螢光)皆有擴增曲線反應，IPC (internal positive control, VIC 螢光)擴增曲線可為出現或無出現；陰性對照組之 IPC 反應應出現。
11.2 報告核發：炭疽桿菌核酸檢測陽性、炭疽桿菌核酸檢測陰性。
11.3 結果登錄：將檢體之檢驗結果登錄於炭疽桿菌分離與鑑定紀錄表及檢體送驗單並加蓋檢驗者印章，送報告簽署人審核及蓋章，並登錄於網路報告系統。

12 品質管制
12.1 試劑套組：AB TaqMan Bacillus Anthracis Detection kit。
測試時間：每一批號由廠商提供品質管制文件，每批號進行一次品質管制測試。
測試菌株：BA-no.1, BA-no.2, BA-Japan。
測試方法：以測試菌株為待測檢體，進行上述標準流程之實驗。
觀察結果：實驗結果需符合陽性判定結果。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃, 30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
14.1 蔡文城。2010。實用臨床微生物診斷學：嗜氧性革蘭氏陽性桿菌的鑑定 (芽孢桿菌屬及相關菌屬) , 第十版。九州圖書文物有限公司, 臺灣。
14.4 AB TaqMan Bacillus Anthracis Detection kit 操作手冊。

15 附錄
15.1 炭疽桿菌核酸檢測流程圖。
15.2 炭疽桿菌核酸檢測紀錄表。
附錄 15.1 炭疽桿菌核酸檢測流程圖

血液、腦脊髓液、皮膚水泡液、痂皮檢體

溶於 TE buffer 中，每 200 μL 加入 20 μL proteinase K，於 56°C 反應 2 - 3 小時。

核酸萃取

即時定量聚合酶鏈鎖反應

炭疽桿菌核酸檢測陽性

兩個標的基因（FAM 螢光）皆有擴增曲線反應，IPC（VIC 螢光）擴增曲線可為出現或無出現；陰性對照組之 IPC 反應應出現。

陰性判定

陽性判定中任一項不符合，判定為陰性。
附錄 15.2 炭疽桿菌核酸檢測紀錄表

<table>
<thead>
<tr>
<th>項目</th>
<th>檢體編號或姓名</th>
<th>陽性對照組</th>
<th>陰性對照組</th>
<th>檢體編號</th>
<th>檢體編號</th>
</tr>
</thead>
<tbody>
<tr>
<td>檢體種類（採檢日期）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>檢體採檢運送狀況適當</td>
<td>是</td>
<td>否</td>
<td>是</td>
<td>否</td>
<td>是</td>
</tr>
<tr>
<td>核酸萃取適當</td>
<td>是</td>
<td>否</td>
<td>是</td>
<td>否</td>
<td>是</td>
</tr>
<tr>
<td>加入 master mix 2 μL, capB 或 pagA detection mix 2 μL, 無菌水 11 μL</td>
<td>是</td>
<td>否</td>
<td>是</td>
<td>否</td>
<td>是</td>
</tr>
<tr>
<td>加入待測 DNA 檢體 5 μL</td>
<td>是</td>
<td>否</td>
<td>是</td>
<td>否</td>
<td>是</td>
</tr>
<tr>
<td>Real-time PCR 結果 pXO1 target</td>
<td>陽性</td>
<td>陰性</td>
<td>陽性</td>
<td>陰性</td>
<td>陽性</td>
</tr>
<tr>
<td>Real-time PCR 結果 pXO2 target</td>
<td>陽性</td>
<td>陰性</td>
<td>陽性</td>
<td>陰性</td>
<td>陽性</td>
</tr>
<tr>
<td>NTC IPC- pXO1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTC IPC- pXO2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>綜合結果</td>
<td>炭疽桿菌核酸檢測</td>
<td>陰性</td>
<td>陰性</td>
<td>陰性</td>
<td>陰性</td>
</tr>
<tr>
<td></td>
<td>陽性</td>
<td>陽性</td>
<td>陽性</td>
<td>陽性</td>
<td></td>
</tr>
<tr>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>檢驗者：</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>實驗室負責人：</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1 目的
檢測炭疽桿菌抗體。

2 適用檢體種類
適用於符合炭疽桿菌病徵之病患血清檢體。

3 名詞解釋
Bacillus Anthracis：炭疽桿菌。

4 原理概述
將已純化之炭疽桿菌 Protective antigen (PA)抗原接合至指定編號之微球組，
送至 Bio-Plex 儀器內以螢光激發微球作為偵測依據，並以已知濃度之 PA 單
株抗體作為標準物，所得到的反應曲線，可作為抗體相對定量之標準曲線。

5 試劑耗材
5.1 Gel-loading micropipette tip。
5.2 Antigen (PA 1 mg/mL in PBS)。
5.3 Bio-Plex beads (#43)。
5.4 Bio-Plex Amine Coupling Kit(含 bead wash buffer、bead activation buffer、
PBS, pH 7.4、blocking buffer、storage buffer、staining buffer、coupling
reaction tubes)。
5.5 PBST: 0.1 % Tween-20 in PBS。
5.6 Mouse anti-human IgM-PE。
5.7 Mouse anti-human IgG (Fc-PE)。
5.8 PE labeled goat anti-mouse Ig。
5.9 Purified PA-2C6 Monoclonal Ab。
5.10 Filter plate。

6 儀器設備
6.1 第二級生物安全櫃 (Class II BSC)。
6.2 Bio-Plex 200。
6.3 Vacuum maniford。
6.4 全自動清洗器。
6.5 微量吸管 (pipettemen)：1,000 μL、100 μL、30μL。
6.6 8 爪微量吸管。
6.7 計時器。

7 環境設施安全
於生物安全第二等級 (BSL-2) 實驗室之設施內操作。
8 檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體前處理
檢體無添加抗凝劑，血清無溶血且量不少於200 μL。

10.2 Bead Activation
10.2.1 選出Bio-Plex #43，vortex震盪30 sec，再以超音波震盪30 sec。
（務必使COOH beads呈現單一懸浮顆粒，若仍出現聚集物，
再以超音波震盪30 sec，直到看不到聚集之顆粒為止）
10.2.2 取出100 μL（1.25 × 10^6 beads）到1管Coupling reaction tube
中，離心14,000 × g，4 min，小心吸除上清液。
10.2.3 加入100 μL的Bead wash buffer，震盪10 sec，超音波震盪10 sec，
離心10,000 × g，2 min，小心吸除上清液。
10.2.4 將beads懸浮在80 μL的Bead activation buffer中，震盪30 sec，
超音波震盪30 sec。
10.2.5 製備EDC（50 mg/mL）及S-NHS（50 mg/mL）in bead activation
buffer（務必新鮮配製）。
10.2.6 加入10 μL的50 mg/mL EDC後立刻加入10 μL的50 mg/mL S-NHS至beads中，
高速震盪5 sec，待全部管子都加過EDC和S-NHS後，高速震盪30 sec，以錫箔紙將管子包住，在旋轉
器上室溫旋轉20 min，12 rpm。（反應過程中，微球一定要維
持懸浮狀態）
10.2.7 加入150 μL的PBS，pH 7.4，高速震盪10 sec，離心10,000 × g，
2 min，小心吸除上清液。
10.2.8 重複步驟10.1.7。
10.2.9 將微球懸浮於100 μL的PBS，pH 7.4中，中速震盪30 sec，超
音波震盪15 sec。

10.3 Protein Coupling
10.3.1 加入PA抗原溶液（抗原量為5 - 12 mg），以PBS將最終體積
調整至500 μL。以錫箔紙將管子包住，在旋轉器上室溫旋轉
2 hr，15 rpm。（反應過程中，微球一定要維持懸浮狀態）
10.3.2 離心10,000 × g，2 min，小心吸除上清液。
10.3.3 用500 μL PBS, pH 7.4 清洗微球，離心10,000 × g，2 min，小心
吸除上清液（不可以用超音波震盪）。
10.3.4 將微球懸浮在 250 μL 的 Blocking buffer 中，中速震盪 15 sec，
以錫箔紙將管子包住，在旋轉器上室溫旋轉 30 min。
10.3.5 離心 10,000 × g，2 min，小心吸除上清液。
10.3.6 用 500 μL Storage buffer 清洗微球，離心 10,000 × g，2 min，小
心吸除上清液。
10.3.7 將微球懸浮在 150 μL 的 Storage buffer 中，避光 4℃ 保存。
10.3.8 利用血球計數盤計算出微球濃度。

10.4 Immunoassay
10.4.1 檢體製備：
10.4.1.1 Negative control：1 % normal human serum in PBS, pH 7.4。
10.4.1.2 Diluent：1 % normal human serum in PBS, pH 7.4（稀
釋檢體之稀釋液）。
10.4.1.3 Sample：以 Diluent 進行 1:100 倍稀釋。
10.4.1.4 Standard：purified PA-2C6 MoAb，以 Standard diluent
（1 % normal mouse serum in PBS, pH 7.4）進行兩倍
序列稀釋至 1,000 ng/mL - 0.12 ng/mL。
10.4.2 微球配製：將 BioPlex #43-PA beads 震盪 30 sec，取適量之微球
於 PBST 中（各反應需 2,500 beads in 50 μL PBST）。
10.4.3 取一個 96 Well filter plate，以 150 μL PBST/孔 預潤 2 次，利用
Vacuum maniford 將液體吸掉。將稀釋後的微球懸浮液依指定
位置加入各孔中，50 μL/孔。
10.4.4 依序取 50 μL 的陰性對照組、檢體、標準品至指定位置中。
10.4.5 室溫靜置 30 min，避光 vortex。
10.4.6 利用 Vacuum maniford 將上清液吸掉，以 150 μL 的 PBST 清洗
3 次。
10.4.7 依序加入稀釋後之二次抗體。
10.4.7.1 Mouse anti-human IgM-PE。
10.4.7.2 Mouse anti-human IgG (Fc-PE)。
10.4.7.3 PE labeled goat anti-mouse Ig（加至標準品之反應槽中）
50 μL/孔。
10.4.8 室溫靜置 30 min，避光 vortex。
10.4.9 利用 Vacuum maniford 將上清液吸掉，以 150 μL 的 PBST 清洗
3 次。
10.4.10 各加入 100 μL 的 PBST。
10.4.11 利用 BioPlex 分析。

11 結果判定
11.1 判讀標準：建立 anti-PA 之參考值(cut-off value)，以人類健康者血清與
各微球反應產生之螢光值，求出 mean + 3SD 作為 cut-off value。將螢光
值高於陰性對照組之平均值加 3 倍標準差者，視為陽性反應。
11.2 報告核發：炭疽桿菌血清學抗體檢測陽性，炭疽桿菌血清學抗體檢測陰性。

11.3 結果登錄：將檢體之檢驗結果登錄於檢體送驗單並加蓋檢驗者印章，送報告簽署人審核及蓋章，並登錄於網路報告系統。

12 品質管制
每次執行陽性及陰性對照血清。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

15 附錄
15.1 炭疽桿菌抗體試驗-螢光免疫分析法流程圖。
附錄 15.1 炭疽桿菌抗體試驗流程圖

Bead Activation
Bio-plex #43 votex

Protein Coupling
加入 PA 抗原溶液

以 storage buffer 清洗及保存微球
清洗液清洗 4 次

利用血球計數盤計算微球濃度

Immunoassay
檢體製備、微球製備

酵素免疫分析盤孔內加入二次抗體 50 μL/well

利用 Vaccum maniford 清洗

Bio-Plex 200 讀取螢光

陽性判定：螢光值高於陰性對照組平均值加 3 倍標準差者，視為陽性反應

陰性判定：螢光值低於陰性對照組平均值加 3 倍標準差者，視為陰性反應

再以 Real-Time PCR 確認
1 目的
利用微生物分離培養鑑定檢查檢體是否有白喉桿菌。

2 適用檢體種類
適用於病患病灶偽膜，咽喉、鼻腔黏膜擦抹棉棒。

3 名詞解釋
無。

4 原理概述
微生物培養分離，依據生化特性鑑定。

5 試劑耗材
5.1 馬克法藍氏濁度標準組（McFarland nephelometer standard units）：商品化產品（Remel）。
5.2 培養基
5.2.1 亞碲酸鉀培養基(tellurite medium)：取 BHI base 3.7 gm 及 Bacto agar 1.5-3.0 gm 及蒸餾水 100 mL。以蒸氣高壓滅菌 121 ℃，15 min，冷卻至 50 ℃ 再加入無菌的脫纖維血液（sterile defibrinate blood）5 - 10 mL 及 1 % 亞碲酸鉀（1 % potassium tellurite）3 - 4 mL，無菌傾注在平板，凝固後置 4 ℃ 保存待用。
5.2.2 DSS 鑑別培養基 CMP，臺灣。
5.2.3 Loeffler blood serum。
5.2.4 Neisser’s 染色變法染色液
第一液（Neisser 液）
酒精（95 % alcohol） 2 mL
美藍（methylene blue） 0.1 g
蒸餾水（distilled water） 95 mL
冰醋酸（acetic acid） 5 mL
使用前：將第一液以 2 體積
混合
第二液
結晶紫（crystal violet） 0.1 g
酒精（95 % alcohol） 1 mL
蒸餾水（distilled water） 30 mL

5.2.5 沙黃溶液
Safranin O 2.5 g
酒精（95 % alcohol） 100 mL
2.5 % Safranin 酒精溶液（使用時稀釋 10 倍）。
5.2.6 無菌生理食鹽水
5.2.7 華蘭氏染液（Gram's stain solution）：Difco
5.3 吸管：無菌，10 mL 吸管應該有 0.1 mL 刻度。
5.4 微量吸管尖 tip：無菌，需 1,000 μL、200 μL 與 20 μL 三種。
5.5 接種針 (環)：鎳鈦合金、鉑銥或鈷銥，或可拋棄式。
5.6 載玻片及蓋玻片。
5.7 可拋棄式塑膠手套。
5.8 試管：10 × 100 mm，13 × 100 mm 試管或其他合適者。
5.9 無菌濾膜：孔徑 0.45 μm 之親水性醋酸纖維膜。
5.10 品質管制菌種：Corynebacterium diphtheriae ATCC14779。

6 儀器設備
6.1 高壓滅菌釜。
6.2 生物安全操作台。
6.3 冰箱：4 °C 與-20 °C 及-80 °C 冰箱。
6.4 35 – 37 °C 培養箱。
6.5 電動 pipetaid。
6.6 微量吸管 Pipetman：需 1,000 μL、200 μL、30 μL 等三種規格。
6.8 減菌用容器：10 公升不鏽鋼容器。

7 環境設施安全
於生物安全第二等級（BSL-2）實驗室之設施內操作。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢視檢體採檢運送是否恰當，檢體依序編號登錄。
10.2 將進行分離培養所需之培養基 Potassium tellurite blood agar plate，BAP 及試劑由 4 °C 冰箱拿出置室溫回溫 30 min 待用。
10.3 分離培養
將 Cary-Blair 輸送培養基中之棉棒取出直接塗佈於白喉桿菌分離用培養基 Potassium tellurite blood agar plate 及 BAP （觀察溶血 Corynebacterium diphtheriae 不溶血），置 37 ℃ 培養 48 hr，並且咽喉拭子直接塗抹於乾淨玻片上，作染色鏡檢，以 Neisser's 液染小體染色法，顯微鏡観察是否有典型異染小體桿菌存在。
10.4 鑑定

10.4.1 觀察分離培養基上之菌落,挑取黑色可疑菌落接種於 DSS、ID. NF-18 kit 或 API coryne 生化鑑別套組,置於 37 ℃ 培養 18 - 24 hr 後,觀察其生化反應,如葡萄糖分解、蔗糖不分解時,即為可疑疑。將菌接種於 Loeffler 血清培養基上於 37 ℃ 培養 20 - 24 hr 後,再作塗抹標本染色觀察有否典型異染小體出現,以供參考鑑定。如生化反應符合,染色抹片標本出現典型異染小體時,則以白喉桿菌毒素測定法 (Elek’s plate virulence test) 作毒素產生試驗。

10.4.2 Gram's stain。

10.4.3 DSS 鑑定試驗: 挑取 Potassium tellurite blood agar plate 上之黑色可疑菌落,以穿刺及畫斜面方式接種於 DSS 培養基,37 ℃ 培養 18 - 24 hr 後,觀察糖類發酵之生化反應。

10.4.4 Neisser's 液染色

10.4.4.1 挑菌生長於 Loeffler 血清培養基上塗抹在玻片上,自然乾燥,固定。

10.4.4.2 染色液 (混合液) 染約 10 - 15 sec, 水洗。

10.4.4.3 沙黃溶液,染數秒 - 1 min。

10.4.4.4 水洗、乾燥、鏡檢。

10.4.4.5 異染體呈黑棕色 (藍紫色) 位桿菌體兩端,菌體呈淡紅色。

10.4.5 生化試驗: 商品試劑 ID. NF-18 kit、API coryne system 等商品, 依據套組說明製備菌液、接種菌液於鑑定盤各反應格、培養、判讀結果。

11 結果判定

11.1 DSS 生化判定

<table>
<thead>
<tr>
<th>菌名</th>
<th>DSS 培養基</th>
<th>(Sucrose) 斜面高層凝固水</th>
<th>(Dextrose) 高層</th>
<th>(Starch) 高層</th>
</tr>
</thead>
<tbody>
<tr>
<td>白喉菌 C. diphtheriae Gravis</td>
<td>鹼性</td>
<td>鹼性</td>
<td>呈色反應陰性 (無變化)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>鹼性</td>
<td>鹼性</td>
<td>呈色反應陽性 (褐色)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>鹼性</td>
<td>鹼性</td>
<td>呈色反應陽性 (褐色)</td>
<td></td>
</tr>
<tr>
<td>C. hoffmannii</td>
<td>鹼性</td>
<td>鹼性</td>
<td>呈色反應陽性 (褐色)</td>
<td></td>
</tr>
<tr>
<td>C. xerosis</td>
<td>鹼性</td>
<td>鹼性</td>
<td>呈色反應陽性 (褐色)</td>
<td></td>
</tr>
</tbody>
</table>

酸性: 糖發酵，顏色變 (指示藥: water blue) 青色 (指示藥: phenol red 紅色)。

鹼性: 無發酵，顏色無變化。
11.2 生化表現

<table>
<thead>
<tr>
<th>菌名</th>
<th>生化試驗</th>
<th>Nitrate reduction</th>
<th>Urease</th>
<th>Esculin hydrolysis</th>
<th>Acid production from:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. diphtheriae Gravis</td>
<td></td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>Glucose</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>+</td>
<td>Malose</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>Sucrose</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>Mannitol</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>Xylose</td>
</tr>
<tr>
<td>C. diphtheriae intermedia</td>
<td></td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>Glucose</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>+</td>
<td>Malose</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>Sucrose</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>Mannitol</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>Xylose</td>
</tr>
<tr>
<td>C. diphtheriae Mitis</td>
<td></td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>Glucose</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>Malose</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>Sucrose</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>Mannitol</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>Xylose</td>
</tr>
<tr>
<td>C. pseudodiphtheriae</td>
<td></td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>Glucose</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>Malose</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>Sucrose</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>Mannitol</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>Xylose</td>
</tr>
</tbody>
</table>

11.3 將檢體之檢驗結果登錄於白喉桿菌生化試驗紀錄表、白喉桿菌分離與鑑定紀錄表及檢體送驗單並加蓋檢驗者，送報告簽署人審核及蓋章。

12 品質管制

12.1 培養基生長試驗：每一批號取1/10量，接種品管菌株，37°C培養18-24 hr後，生長觀察生長狀況。

12.2 培養基無菌試驗：每一批號取1/10量，37°C培養18-24 hr後，觀察。

12.3 品管菌株：*Corynebacterium diphtheriae* ATCC14779。

13 廢棄物處理

13.1 送驗之病灶偽膜，咽喉、鼻腔黏膜擦抹棉棒塗抹培養基後，置冰箱保存1個月後，滅菌丟棄。

13.2 過程使用過之物品皆需經121°C，30 min高壓滅菌後，再依廢棄物處理要求丟棄。

13.3 菌種保存：經鑑定之新鮮菌株，以有冷凍保存溶液之保存試管保存(protect)。取一整個接種環菌量之菌落置於保存液中，搖晃均勻後，靜置30 sec，將冷凍保存液吸出，隨後旋緊試管蓋子，放入-80°C保存，並做詳細的菌種保存紀錄。

14 參考資料

14.1 蔡文城。2000。實用臨床微生物診斷學，第九版。九州圖書文物有限公，臺灣。

15 附錄
15.1 白喉桿菌分離與鑑定流程圖。
15.2 白喉桿菌分離與鑑定紀錄表。
15.3 白喉桿菌生化試驗紀錄表。
附錄15.1 白喉桿菌分離與鑑定流程圖

白喉桿菌檢驗

檢體

分離培養

有菌落生成

無菌落生成

染色、生化鑑定

陽性判定

陰性判定
附錄 15.2 白喉桿菌分離與鑑定紀錄表

<table>
<thead>
<tr>
<th>項目</th>
<th>檢體採檢運送狀況適當</th>
<th>Potassium tellurite blood agar plate 上之菌落是黑色。</th>
<th>Gram's stain</th>
<th>DSS 培養基生化特性鑑定</th>
<th>DSS 培養基生化特性鑑定</th>
<th>DSS 培養基生化特性鑑定</th>
<th>Neisser's 液染色異染顆粒</th>
<th>綜合結果</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>是</td>
<td>否</td>
<td>是</td>
<td>否</td>
<td>是</td>
<td>否</td>
<td>是</td>
<td>否</td>
</tr>
<tr>
<td></td>
<td>是</td>
<td>否</td>
<td>是</td>
<td>否</td>
<td>是</td>
<td>否</td>
<td>是</td>
<td>否</td>
</tr>
<tr>
<td>檢體採檢運送狀況適當</td>
<td>是</td>
<td>否</td>
<td>是</td>
<td>否</td>
<td>是</td>
<td>否</td>
<td>是</td>
<td>否</td>
</tr>
<tr>
<td>Potassium tellurite blood agar plate 上之菌落是黑色。</td>
<td>是</td>
<td>否</td>
<td>是</td>
<td>否</td>
<td>是</td>
<td>否</td>
<td>是</td>
<td>否</td>
</tr>
<tr>
<td>DSS 培養基生化特性鑑定</td>
<td>陽性</td>
<td>陰性</td>
<td>陽性</td>
<td>陰性</td>
<td>陽性</td>
<td>陰性</td>
<td>陽性</td>
<td>陰性</td>
</tr>
<tr>
<td>(sucrose) 鑑定</td>
<td>陽性</td>
<td>陰性</td>
<td>陽性</td>
<td>陰性</td>
<td>陽性</td>
<td>陰性</td>
<td>陽性</td>
<td>陰性</td>
</tr>
<tr>
<td>(dextrose) 鑑定</td>
<td>陽性</td>
<td>陰性</td>
<td>陽性</td>
<td>陰性</td>
<td>陽性</td>
<td>陰性</td>
<td>陽性</td>
<td>陰性</td>
</tr>
<tr>
<td>(starch) 鑑定</td>
<td>陽性</td>
<td>陰性</td>
<td>陽性</td>
<td>陰性</td>
<td>陽性</td>
<td>陰性</td>
<td>陽性</td>
<td>陰性</td>
</tr>
<tr>
<td>ルゴル液加入</td>
<td>陽性褐色</td>
<td>陰性不變色</td>
<td>陽性褐色</td>
<td>陰性不變色</td>
<td>陽性褐色</td>
<td>陰性不變色</td>
<td>陽性褐色</td>
<td>陰性不變色</td>
</tr>
</tbody>
</table>

實驗室編號：

實驗室主管：

檢驗者：
附录 15.3 白喉桿菌生化試驗紀錄表

白喉桿菌生化試驗紀錄表

<table>
<thead>
<tr>
<th>生化試驗</th>
<th>实验室编号</th>
<th>Nitrate reduction</th>
<th>Urease</th>
<th>Esculin hydrolysis</th>
<th>Acid production from</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>实验室编号</td>
<td>陽性</td>
<td>陰性</td>
<td>陽性</td>
<td>陰性</td>
</tr>
</tbody>
</table>

実驗室主管： 檢驗者：
1 目的
白喉毒素以聚合酶链锁反应（PCR）快速診斷鑑定。

2 適用檢體種類
培養於 Tryptic soy agar (TSA) 培養基之疑似白喉菌株。

3 名詞解釋
無。

4 原理及概述
利用白喉毒素基因 tox 之 A 和 B subunit 製作二組 Primers，再藉由 PCR 將疑似白喉菌株之去氧核糖核酸進行複製，以鑑定是否有白喉毒素基因。

5 試劑耗材
5.1 殺菌蒸餾水。
5.2 PCR 試驗。
 5.2.1 10 倍 PCR 緩衝液。
 5.2.2 所需核酸引子如下：
 Tox1：ATC CAC TTT TAG TGC GAG AAC CTT CGT CA
 Tox2：GAA AAC TTT TCT TCG TAC CAC GGG ACT AA
 Dipht6F：ATA CTT CCT GGT A TC GGT AGC
 Dipht6R：CGA A TC TTC AAC AGT GTT CCA
 5.2.3 去氧核糖 (dNTP)。
 5.2.4 去氧核糖核酸聚合酶 (taq polymerase)。
 5.2.5 氯化鎂 MgCl2。
 5.2.6 純水。
 5.2.7 微量吸管 Pipetman。
5.3 電泳偵測試劑
 5.3.1 1.2 % agar 膠片。
 5.3.2 Tracking dye。
 5.3.3 TBE 緩衝液 pH 8.2 - 8.3。
 5.3.4 核酸標記 (100 bp DNA ladder)。
 5.3.5 Ethidium bromide 溶液 (50 μM)。

6 儀器設備
 6.1 桌上型離心機。
 6.2 生物安全操作箱。
 6.3 4°C -20 °C 冰箱。
 6.4 核酸增幅儀：Biometra。
 6.5 水浴槽
 6.6 電泳槽
 6.7 DNA 電泳膠體觀察照相設備
環境設施安全
7.1 菌株需於生物安全第二等級 (BSL-2) 實驗室之設施內操作。
7.2 菌株處理、PCR 反應混和物配製、PCR 反應進行、電泳皆需於獨立區域操作。

檢體採集
8 無。

檢體運送及保存
9 無。

檢驗步驟
10.1 於 1.5 mL 微量離心管內加入 100 μL 減菌蒸餾水，取平板上之分離菌製成微濁菌液，約 McFarland no.1 濃度。100 °C 水浴 10 min 取出直接置於冰塊內冷卻，4 °C 離心，取上清液當作模板置於-20 °C 冰箱保存。
10.2 PCR 反應物: 25 μL 2× PCR Master Mix (0.05 units/μL Taq DNA Polymerase in reaction buffer, 4 mM MgCl₂, 0.4 mM dNTPs of each, Fermentas), 12.5 μM 每一引子各 1 μL，模版 10 μL，以二次蒸餾水加到 50 μL。
10.3 PCR 反應條件: Predenature 95 °C 2 min, Denature 95 °C 30 sec，Annealing 55 °C 30 sec，Extension 72 °C 1 min，以上 35 Cycle，Post extension 72 °C 10 min，4 °C 保存。
10.4 PCR 產物之確認: 將 8 μL 的 PCR 增殖產物加 2 μL Tracking dye 混合，以 1.2 %洋菜膠，50 Voltage，約 1.5 hr，1× TBE，進行 Minigel 電泳分析。
10.5 膠片染色: 以 0.5 μL/mL Ethidium bromide 染色 15 分，水洗 10 min 後觀察。
10.6 陽性菌株 ATCC13812，陰性菌株 ATCC11913 做對照組檢驗比較。

結果判定
11.1 陽性白喉毒素基因可見 248 bp (A subunit)、297 bp (B subunit) 兩個片段。
11.2 判定白喉感染應配合臨床症狀，培養菌落性狀，菌落生化反應。

品質管制
12 品質管制
所使用試劑皆應於有效期內用完。

廢棄物處理
13.1 檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 °C，30 min 高壓後，依本署廢棄物處理作業程序。
13.2 Ethidium bromide 為 carcinogen 倒掉前加入分解劑後再作處理。
14 參考資料

15 附錄
15.1 白喉毒素聚合酶鏈鎖反應（PCR）快速診斷鑑定流程圖。
附錄 15.1 白喉毒素聚合酶鏈鎖反應（PCR）快速診斷鑑定流程圖。

檢體（已分離之培養菌）

接種針點取數個新鮮菌落，放入含 100 μL 無菌水的 1.5 mL Eppendorf 中，以 100 ℃ 熱煮 10 分鐘後，4 ℃ 離心 14,000 rpm，10 min，取上清液當作 Template。

PCR 反應混和物配製

放入 PCR 機器

中進行反應

電泳法分析產物

結果判定
目的
利用免疫沉降法檢驗白喉桿菌是否含有毒素。

適用檢體種類
適用於從病患已分離出之純培養菌株之毒素鑑定。

名詞解釋
無。

原理概述
利用免疫沉澱法測試當抗原抗體結合時會有沉降線出現，免疫沉降線的出現可得知有無毒素抗原。

試劑耗材
5.1 正常兔血清（或小牛血清，抗毒素血清（疾病管制署研究檢驗及疫苗研製中心）。
5.2 培養基
基礎培養基
蛋白胨（proteose peptone） 20 g
食鹽（sodium chloroide） 2.5 g
瓊脂（agar） 15 g
蒸餾水（distilled water） 1,000 mL
pH 7.8
高壓滅菌 121 °C，15 min。
5.3 無菌培養皿。
5.4 無菌生理食鹽水。
5.5 吸管：無菌，10 mL 吸管應該有 0.1 mL 刻度。
5.6 微量吸管尖 tip：無菌，需 1,000 μL、200 μL 與 10 μL 三種。
5.7 接種針（環）：鎳鉻合金、鉑銥或銅線，或可拋棄式。
5.8 可拋棄式塑膠手套。
5.9 試管：10 × 100 mm，13 × 100 mm 試管或其他合適者。
5.10 無菌濾膜：孔徑 0.45 μm 之親水性醋酸纖維膜。
5.11 7 × 1.5 cm 小片之濾紙。
5.12 品質管制菌種：Corynebacterium diphtheriae ATCC13812。

儀器設備
6.1 高壓滅菌釜。
6.2 生物安全操作台。
6.3 冰箱：4 °C 與-20 °C 冰箱。
6.4 電子式微量天平，可秤至 0.001 g。
6.5 pH 值測定儀。
6.6 搖拌器。
6.7 35 ℃培養箱。
6.8 電動 Pipetaid。
6.9 微量吸管 Pipetman：需 1,000 µL、200 µL、2 µL 等三種規格。
6.10 殺菌用容器：10 公升不鏽鋼容器。
6.11 已殺菌剪刀及鉗子。

7 環境設施安全
於生物安全第二等級 (BSL-2) 實驗室之設施內操作。

8 檢體採集
無。

9 檢驗步驟
9.1 平板配製：濾紙小片浸於 100 單位/mL 白喉抗毒素血清。約 2 mL 的兔血清（或小牛血清）及最後血清濃度 10-20% 加入 20 mL 冷至 50 ℃的基礎培養基。傾倒在平板皿。上述培養基未凝固前，放置有浸於 100 單位/mL 白喉抗毒素血清的濾紙小片（1.5 × 7 cm）在平板皿中央部。培養基凝固後表面應乾燥。

9.2 Elek's plate virulence test
9.2.1 接種：塗抹培養被檢菌，與數濾紙小片直角交叉於一直線方向。培養 33 - 37 ℃觀察 2 - 7 天。應做毒素陽性菌株及陰性菌株之對照。

9.2.2 判定：陽性菌株在濾紙小片數 mm 之處，略 45 度角度，呈現白色沉降線（斑線）。陰性菌株不呈現沉降線（斑線）。沉降線出現通常 48 - 72 hr，毒素愈大出現愈快，但需繼續觀察約一星期。

10 結果判定
10.1 Elek's plate virulence test 毒性試驗

![圖示](image)
10.1 將檢體之檢驗結果登錄於白喉桿菌毒素測定檢驗紀錄表及檢體送驗
單並加蓋檢驗者，送報告簽署人審核及蓋章。

11 品質管制
毒素陽性菌株 Corynebacterium diphtheriae ATCC13812，沉降線出現通常48 - 72 hr。

12 廢棄物處理
過程使用過之物品皆需經121 °C，30 min 高壓滅菌後，再依廢棄物處理要求
丟棄。

13 參考資料
13.1 蔡文城。2000。實用臨床微生物診斷學，第九版。九州圖書文物有限
公司，臺灣。

14 附錄
14.1 白喉桿菌毒素測定流程圖。
14.2 白喉桿菌毒素測定紀錄表。
附錄 14.1 白喉桿菌毒素測定流程圖

已分離之白喉桿菌

培養基製備

接種已分離之 Corynebacterium diphtheriae 及陽性對照菌株

33 – 37 °C 培養，2 - 7 天
觀察沉降線出現情況

結果判讀
附錄 14.2 白喉桿菌毒素測定紀錄表

<table>
<thead>
<tr>
<th>項目</th>
<th>Elek 氏法</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>第 2 天沉降線出現</td>
</tr>
<tr>
<td></td>
<td>第 3 天沉降線出現</td>
</tr>
<tr>
<td></td>
<td>第 4 天沉降線出現</td>
</tr>
<tr>
<td></td>
<td>第 5 天沉降線出現</td>
</tr>
<tr>
<td></td>
<td>第 6 天沉降線出現</td>
</tr>
<tr>
<td></td>
<td>第 7 天沉降線出現</td>
</tr>
</tbody>
</table>

實驗室編號：

實驗室主管：

檢驗者：

頁次：第 82 頁/共 1104 頁
目的
分離與鑑定傷寒、副傷寒桿菌及一般沙門氏桿菌，以確定病例與感染源。

檢體種類與採檢容器
2.1 患者血液；患者、帶菌者、接觸者之糞便、直腸拭子、尿液；疑似污染的水質。
2.2 便盒、細菌拭子、無菌離心管、採血管。

原理概述
利用選擇性培養基由待驗檢體中分離培養出特定細菌之特性，並根據其上所生長的菌落形態特徵進行初步的鑑別；之後挑選疑似菌落進行生化反應試驗，以個別菌種所能進行的特定生化反應來鑑定之；同時利用菌株表面所表現的特有抗原性質，進行抗血清凝集反應來確認該菌株並決定其血清型別；最後綜合以上反應試驗判定結果。

檢驗性能特徵
4.1 精密度: N/A。
4.2 準確度: N/A。
4.3 量測不確定度: N/A。
4.4 分析特異性: 綜合 API20E 生化試驗及抗血清凝集反應為 92.8%。
4.5 分析靈敏度與偵測極限: N/A。
4.6 量測區間: N/A。
4.7 診斷特異性及診斷敏感度
 4.7.1 特異性:100%
 4.7.2 敏感度: N/A。

參照本署最新版傳染病檢體採檢手冊。

試劑耗材
6.1 試劑
 6.1.1 培養基
 6.1.2 SS（Salmonella-Shigella）agar
 6.1.3 HE（Hektoen Enteric）agar
 6.1.4 TSIA（triple sugar iron agar）
 6.1.5 LIA（lysine iron agar）
 6.1.6 SIM（sulfide indole motility）agar
 6.1.7 TSB（tryptic soy broth）
 6.1.8 BAP（blood agar plate）
 6.1.9 API 20E 生化鑑定套組
 6.1.10 VITEK 2 革蘭氏陰性菌鑑定卡（VITEK 2 GN）
 6.1.11 氧化酶試紙（oxidase strips），或氧化酶試劑（oxidase reagent）
 6.1.12 O 群及 Vi 沙門氏菌抗血清。詳見附錄說明
6.1.13 H 抗血清
6.1.14 無菌生理食鹽水：0.85 % NaCl。
6.1.15 馬克法藍氏濁度標準組 (McFarland nephelometer standard units)。
6.1.16 嗜氧性血液培養瓶
6.2 耗材
6.2.1 載玻片。
6.2.2 無菌吸管：3 mL。
6.2.3 接種針（環）。
6.2.4 無菌塑膠試管。
6.2.5 1 mL 無菌針筒及針頭。
6.2.6 鎖子。
6.2.7 0.2 µm 無菌過濾杯組裝置。
6.3 個人防護耗材
6.3.1 橡膠手套。
6.3.2 口罩。
6.3.3 不露趾鞋子。
6.3.4 針頭回收盒。
7 儀器設備
7.1 第二級生物安全櫃 (class II BSC)。
7.1.1 使用前確認具年度合格標籤。
7.2 離心機
7.3 高壓滅菌鍋
7.3.1 使用前確認具合格檢測標籤。
7.4 Pipetman。
7.5 37 °C 培養箱 (incubator)。
7.6 水浴槽。
7.7 幫浦機。
8 環境與設施安全 (實驗室生物安全等級 BSL2)
8.1 於生物安全第二等級 (BSL-2) 實驗室之設施內操作。
8.2 操作人員須於實驗前穿上實驗衣，橡膠手套，及口罩，在實驗室內著包覆性鞋子。
8.3 操作人員使用針筒原則：
8.3.1 實施針頭不回套或單手回套法。
8.3.2 使用過的針頭不置於桌面，使用完直接放於針頭回收盒。
8.3.3 依本署「實驗室生物安全意外事故及災害應變計畫指引」，發生針扎或其他刺傷、割傷及皮膚遭接觸之溢出物或噴濺物污染時，應脫除防護衣，徹底使用肥皂及清水清洗，必要時應尋求醫療照護。報告受傷原因與涉及操作可能之病原微生物，並適當保存完整之醫療紀錄。
9 校正程序: N/A。
9.1 頻率: 依腸道及腹瀉病毒實驗室「儀器設備校正方法暨校正頻率一覽表」(RDC-QR-1701-03)，所明定之各項儀器設備之校正頻率進行校正。
9.2 校正液: N/A。
9.3 校正步驟: N/A。
9.4 數據儲存: 外校之儀器設備廠商將出具校正報告，所有校正與管控紀錄，依本署「品質與技術紀錄管制作業程序」(RDC-QP-1201)之規定予以保存。
9.5 校正量測追溯: 詳見各別報告之紀載。
9.6 允收標準: 詳見腸道及腹瀉病毒實驗室「儀器設備校正方法暨校正頻率一覧表」(RDC-QR-1701-03)。

10 品質管制
10.1 內部品管
10.1.1 血清凝集鑑定之品質管制
10.1.1.1 應於有效期內使用，同一批號試劑，第一次使用時取一組進行試驗，之後每隔6個月再取一組進行試驗。
10.1.1.2 使用 S. typhi # 52344 T6（局內保存並經過測試之菌株）作為 O9、Vi 及 Hd 血清之陽性反應標準菌株；S. paratyphi A ATCC 9150 作為 O2 及 Ha 血清之陰性反應標準菌株；S. choleraesuis ATCC 10708 作為 O6,7 血清之陽性反應標準菌株；E. coli ATCC 25922 為陰性反應標準菌株，每月試驗一次。
10.1.1.3 試驗結果必須符合陽性反應及陰性反應，始可使用。
10.1.2 陽性結果（鑑定出法定傳染病病原菌時）第二者複查
10.2 外部品管: N/A。

11 檢驗步驟
11.1 檢體前處理
11.1.1 於第二級生物安全櫃內拆開包裝及接種檢體:
11.1.1.1 實驗室於收到檢體及送驗單後，先行核對檢體種類、姓名、數量等資料正確與否，並依序登錄於紀錄簿。
11.1.1.2 血液檢體以針筒吸取管內血液並以無菌操作方式注入血液培養瓶中，將血液培養瓶置於 37℃ 培養箱培養。
11.1.1.3 水質檢體以無菌過濾杯組裝置接幫浦機過濾處理後，並用消毒過之鑷子取出。
11.2 檢驗中
11.2.1 分離培養
11.2.1.1 糞便、直腸拭子或尿液檢體塗抹接種於 SS、HE 培養盤，微量檢體或檢驗反應異常等情況下另加做 BAP 等培養盤，並以接種環依三區劃法劃開，37℃ 培養 18 - 24 hr。
11.2.1.2 血液培養瓶於隔日即進行分離培養，以 1 mL 針筒吸取培養
養瓶內檢體約 0.5 mL，滴入接種於 SS、HE 培養盤，以接種環依三區劃法劃開，置於 37 ℃ 培養箱培養 18 - 24 hr；血液培養瓶需每天觀察有否細菌生長，需觀察 7 - 10 天，若有混濁、氣泡等生長情形，應即時進行上述分離培養程序，發送檢驗報告前若無生長跡象，亦需再進行一次分離培養的程序，確認有否細菌的生長。

11.2.1.3 過濾水質檢體的濾膜以鎳子取出後，覆蓋於 SS、HE 培養盤上接種，並以接種環均勻劃開後，置於 37 ℃ 培養箱培養 18 - 24 hr。

11.2.2 生化反應鑑定

在上述分離培養的 SS 培養盤上挑選無色半透明或具有黑色中心可疑菌落，於 HE 培養盤上挑選綠色、藍綠色或具有黑色中心可疑菌落，使用接種針以穿刺划線法接種於 TSIA、LIA，以穿刺法接種於 SIM，37 ℃ 培養 18 - 24 hr，觀察其生化反應特性（生化反應判定參照附錄 21.2）。

11.2.3 抗血清凝集反應鑑定與分型

11.2.3.1 O 群及 Vi 抗血清凝集反應

疑似菌株先以 Poly O 群抗血清進行凝集試驗，如果反應陽性再以個別的 O 群抗血清分別試驗其屬於哪一個 O 群。傷寒疑似菌株（O9 陽性）另需進行 Vi 抗血清的測試。所有的 O 群及 Vi 抗血清反應皆採用玻片凝集法，於載玻片上滴取一滴的抗血清（O 群或 Vi 抗血清），以接種針取適量待測菌與之混合均勻，於 30 sec - 1 min 內觀察凝集反應；陰性對照組試驗為，取一滴的無菌生理食鹽水與抗血清試劑混合均勻。

11.2.3.2 H 抗原分析

傷寒、副傷寒菌的鑑定還需進行 H 抗原分析，在疑似傷寒菌株 O9、疑似副傷寒菌株 O2 抗血清凝集反應陽性時，須進行其 H 抗原的分析。採用試管凝集法，菌株接種於 TSB broth 37 ℃ 培養 4 - 6 hr 後，加入等量含 1% 福馬林之無菌生理食鹽水（0.85 % NaCl）作為抗原液，取 0.5 mL 抗原液於無菌試管中，並加入 H 血清（鑑定傷寒菌時加入 d 血清，副傷寒菌時加入 a 血清）二滴或 50 μL，放置於 50 – 52 ℃ 水浴槽反應，0.5 - 1 hr 內觀察有否出現雲絮狀凝集。

11.2.3.3 細菌之外套膜（capsular，Vi）可能會阻斷凝集反應，因此會導致某些具有外膜的疑似菌其 O 羣凝集反應可能會出現偽陰性或不典型反應，因此如果發生判讀結果不明確的情形，可將調製的高濃度菌液以 100 ℃ 乾熱加熱 30 - 60 min，破壞細菌之外套膜後，再以此菌液重測其抗原反應。

11.2.4 其他確認試驗，若結果判讀不明確（不典型生化或血清凝集反應）或任何有確認必要的狀況下進行。

11.2.4.1 API 20E 生化鑑定套組：依照本署「API 20 E（腸道菌屬及革蘭氏陰性桿菌）細菌鑑定法」檢驗標準方法（編號：
11.2.4.2 **VITEK 2 菌叢陰性菌鑑定卡 (VITEK 2 GN):** 依照原廠全自動微生物分析儀 VITEK 2 標準操作流程執行。

11.2.4.3 微生物鑑定質譜儀標準操作程序 (編號：RDC-SOP-V5-116)。

11.2.4.4 氧化酶試驗 (Oxidase test): 挑選 TSA 培養基上菌落進行試驗。

11.3 檢驗後處理

11.3.1 廢棄物處理：檢驗過程之物品、微生物及剩餘檢體等感染性事業廢棄物，應先以標有 「生物醫療廢棄物」標誌的專用紅色廢棄袋裝妥密封，貼上化學指示劑; 針頭或玻璃等尖銳物品應集中置於密封厚壁塑膠容器，外面貼有 「生物醫療廢棄物」標誌，均再以 121℃，每平方公分 1.06 公斤以上壓力，60 mins 高壓滅菌後，由合約清理廠商處理。

11.3.2 檢體儲存於檢體專用 4℃ 冰箱、桌面使用後以 70% 酒精擦拭。

12 干擾與交互反應: R 型菌株會產生偽陽性，必需做陰性對照。

13 結果判定

13.1 陽性判定標準 (附錄 21.2):

13.1.1 傷寒可疑菌符合下表傷寒所有反應結果，即判定為傷寒陽性：約 90 % 傷寒菌 Vi 陽性反應，因此若 Vi 陰性，但其他所有結果符合，仍判定為陽性。副傷寒 A 疑似菌符合下表副傷寒 A 所有反應結果，即判定為副傷寒陽性，H 抗原分析至 a 陽性即可判定為陽性。沙門氏菌疑似菌符合下表沙門氏菌所有反應結果，即可判定為沙門氏菌陽性。不符合下表反應結果的判定為陰性。

<table>
<thead>
<tr>
<th>S. typhi</th>
<th>S. paratyphi A</th>
<th>Salmonella</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 培養基上典型菌落特徵</td>
<td>無色半透明或具有黑色中心</td>
<td>無色半透明或具有黑色中心</td>
</tr>
<tr>
<td>HE 培養基上典型菌落特徵</td>
<td>綠色、藍綠色或少有黑色中心</td>
<td>綠色、藍綠色或少有黑色中心</td>
</tr>
<tr>
<td>TSIA AS/ABa</td>
<td>K/A</td>
<td>K/A</td>
</tr>
<tr>
<td>Gas</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>H2S</td>
<td>+/-</td>
<td>+/-</td>
</tr>
<tr>
<td>LIA</td>
<td>K/K</td>
<td>K/A</td>
</tr>
<tr>
<td>SIM-IND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SIM-MOT</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>SIM-IPA</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O 群抗原型別 b</td>
<td>O9, [Vi]</td>
<td>O2</td>
</tr>
<tr>
<td>H 抗原型別</td>
<td>d</td>
<td>a:[1, 5]</td>
</tr>
</tbody>
</table>
"斜面/底部之反應變化，K:不變色或呈紅色，A:酸化，呈黃色。

13.1.2 S. paratyphi B 及 S. paratyphi C 已被列入一般沙門氏菌，因此其檢
驗與結果判定標準依沙門氏菌標準檢驗操作並判定之，若須進一步
鑑定，可將其送至參考實驗室檢驗確認。
13.1.3 API 20E 生化試驗套組的檢驗結果，依其說明書指示之方法判
定。
13.2 報告核發(LIMS 系統登錄型式): 傷寒陽性、副傷寒陽性、沙門氏菌陽
性及陰性。
13.3 結果登錄：將檢體之檢驗結果登錄於實驗室資訊系統，經 PI 核准報告
後發佈。

14 生物參考區間/臨床決策值: 陰性。
15 檢驗結果的可報告區間: 陰性。
傷寒桿菌陽性、副傷寒桿菌陽性、沙門氏菌陽性。
16 結果超出量測區間之操作說明: N/A。
17 危急值/異常值:
17.1 危急值:陽性。
17.2 異常值:參照本署結果報告管理作業程序(RDC-QP-2201)辦理，於 LIMS
系統登錄結果報告後，系統即會自動進行異常通報。
18 臨床意義: 傷寒桿菌陽性即為傷寒、副傷寒桿菌陽性即為副傷寒、沙門氏菌
陽性即為沙門氏菌感染症。
19 變異的潜在來源: 檢體採檢與保存運送須參照本署出版之「防疫檢體採檢手
冊」，檢體保存不良可能造成細菌無法培養出，造成檢驗僞陰性。

20 參考資料
20.1 RDC-QP-1601 安全衛生作業程序。
20.2 蔡文城。2000。實用臨床微生物診斷學，第九版。九州圖書文物有限
公司，臺灣。第 639-716 頁。
Enterobacteriaceae: color atlas and textbook of diagnostic microbiology, 5th
General principles of specimen collection and handling, specimen
collection transport and processing, enterobacteriaceae: introduction and
identification, Escherichia, Shigella and Salmonella：Manual of clinical
21 附錄

21.1 傷寒、副傷寒及沙門氏桿菌分離與鑑定流程圖。

21.2 生化反應判定表。

附錄 21.1 傷寒、副傷寒及沙門氏桿菌分離與鑑定流程圖

血液檢體 → 接種血液培養瓶 → 37°C，7 - 10 天 → 接種 SS 及 HE plate → 37°C，18 - 20 小時 → TSIA、LIA、SIM 生化鑑定

水檢體 → 過濾，取出濾膜

肛門拭子、糞便或尿液 → 37°C，18 - 20 小時 → SS 上無色半透明、HE 上綠色或具有黑色中心之可疑菌落 → 無可疑菌落

TSIA:K/A, Gas-, H₂S +/-, LIA:K/K, IPA-, Motility+
TSIA:K/A, Gas+, H₂S +/-, LIA:K/A, IPA-, Motility+
TSIA:K/A, Gas+, H₂S +/-, LIA:K/K, IPA-, Motility+

生化反應不符 → 抗血清凝集反應鑑定

O9 陽性 H:d 陽性 [Vi 陽性]
O2 陽性 H:a 陽性
poly O 陽性

傷寒陽性 副傷寒陽性 沙門氏菌陽性

陰性判定
目的
檢測疑似病患的血液或組織中是否含有登革病毒。

適用檢體種類
適用於急性期發病病患七日內血液檢體或組織檢體。

名詞解釋
無

原理概述
利用白線斑蚊細胞株於細胞培養盤中接種病患血清或組織研磨液，於 28 ℃培養箱中培養 7 日，取其細胞於 24 孔玻璃片上，加入抗登革病毒單株抗體及螢光標記的山羊抗鼠抗體，於螢光顯微鏡下檢查，測定是否有登革病毒。

試劑耗材

5.1 檢測試劑

5.1.1	RPMI 細胞培養液（RPMI 1640，含 1% 胎牛血清【FCS】及 1% 三合一抗生素【PSA】）
5.1.2	白線斑蚊細胞株（C6/36, 前美國海軍醫院第二研究所）
5.1.3	FITC-goat anti-mouse IgG
5.1.4	登革病毒（台灣本土株當控制組）：各型登革病毒以 C6/36 細胞培養 7 天，取上清液，當登革病毒來源。
5.1.4.1	登革病毒第一型（8700828）。
5.1.4.2	登革病毒第二型（454009）。
5.1.4.3	登革病毒第三型（8700829）。
5.1.4.4	登革病毒第四型（9201818）。
5.1.5	單株抗體
5.1.5.1	抗黃病毒單株抗體（ATCC HB-112）。
5.1.5.2	抗登革病毒單株抗體（ATCC HB-114）。
5.1.5.3	抗登革病毒第一型單株抗體（ATCC HB-47）。
5.1.5.4	抗登革病毒第二型單株抗體（ATCC HB-46）。
5.1.5.5	抗登革病毒第三型單株抗體（ATCC HB-49）。
5.1.5.6	抗登革病毒第四型單株抗體（ATCC HB-48）。
5.1.6	丙酮。
5.1.7	磷酸鹽緩衝液。
5.1.8	甘油緩衝液。

5.2 耗材

5.2.1	96 孔培養盤。
5.2.2	50 mL 的離心管。
5.2.3	24 孔玻璃片
5.2.4	蓋玻片
5.2.5	無菌 250 μL、1,250 μL 之吸管尖
6 儀器設備
6.1 28℃ CO₂培養箱。
6.2 37℃ CO₂培養箱。
6.3 第Ⅱ級生物安全櫃。
6.4 螢光顯微鏡。
6.5 吹風機。
6.6 5 – 40 ul Pipette 及 40 - 200 ul Pipette。
6.7 -20℃及-80℃冷凍櫃。

7 環境設施安全
7.1 檢驗操作在生物安全第二等級（BSL-2）實驗室進行。
7.2 水質：25℃蒸餾水或RO逆滲透去離子可達18 MΩ-CM以上超純水。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體前處理
10.1.1 於4℃,2,100 x g離心15分鐘,上清液盛於塑膠小瓶(1.8mL),標示號碼及日期,保存於-80℃。
10.2 步驟
10.2.1 在96孔細胞培養盤中將患者血清5ul以細胞培養液做20, 40, 80, 160倍連續稀釋, 每孔加入50ul之2倍連續稀釋血清。每孔中再加入100ul C6/36細胞懸浮液【培養C6/36 cell於flask 75T,加15 ml培養液(RPMI 1640,含5% FCS 及1% PSA)培養約3-4天, 以細胞括桿括下細胞→以血球計測器計算細胞量。配製成 1×106/ml細胞懸浮液】。
10.2.2 置28℃5％CO₂培養箱培養7天。
10.2.3 將每一孔中培養液移至另一無菌盤中, 置於-80℃保存。
10.2.4 取20 μL PBS刮下培養盤中之細胞, 在24孔玻璃片上做抹片。
10.2.5 於室溫中風乾後，置於-20℃丙酮固定10 min。取出24孔玻璃片陰乾。
10.2.6 此檢體抹片可保存於-20℃冰箱中或直接染色。
10.2.8 在抹片上加上25 μL抗黃病毒單株抗體。
10.2.9 將抹片放置在潮濕的培養皿中，置於 37℃ 溫箱 30 min。
10.2.10 將抹片取出並以磷酸鹽緩衝液（換三次）洗去多餘之抗體。
10.2.11 以蒸餾水沖洗。
10.2.12 在室溫中將玻璃片以冷風吹乾或陰乾。
10.2.13 將抹片加上 25 μL 萤光標記之山羊抗鼠抗體（FITC-goat anti-mouse IgG）。
10.2.14 重複 10.2.9 至 10.2.12。
10.2.15 滴上甘油緩衝液，然後以蓋玻片覆蓋。
10.2.16 以螢光顯微鏡檢查。
10.2.17 若鏡檢結果為陽性則將此陽性患者培養盤中之細胞取出，在 24 孔玻璃片上做抹片（點 5 孔）。
10.2.18 重複 10.2.5 至 10.2.16，其中 10.2.8 步驟之抗體為抗登革病毒單株抗體及抗登革病毒第一、二、三、四型單株抗體。

11 結果判定
11.1 判讀標準
11.1.1 在螢光顯微鏡下將檢測檢體與 Positive control 及 Negative control 比對判讀。
11.1.2 當檢體呈現陽性時在螢光顯微鏡下可見黃綠色之細胞；當檢體呈現陰性時在螢光顯微鏡下無綠色細胞僅可見到細胞陰影。
11.2 報告核發：無，內部登錄處理。
11.3 結果登錄：無，內部登錄處理。

12 品質管制
12.1 嚴防病原散佈或污染，工作時帶手套。
12.2 實驗過程遵循 S.O.P 的作業規範與流程，並在 BSL-2 實驗室內操作，
免避免污染。
12.3 生物安全櫃及培養箱定期做校正及維護。
12.4 置於 37℃ 溫箱染色時應注意保持溼度。
12.5 C6/36 培養溫度不可超過 32℃。
12.6 必須要有未感染病毒之細胞及感染病毒之細胞分別做為陽性與陰性對照組。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
15 附錄
15.1 登革熱檢驗流程表。
15.2 登革病毒分離與鑑定流程圖。

附錄 15.1 登革熱檢驗流程表

登革熱檢驗流程表

病毒分離及鑑定試驗（virus isolation and identification）

核酸試驗（real-time RT-PCR）

NS1抗原檢測（NS1 antigen rapid test）

IgM及IgG抗體試驗（Capture IgM & IgG ELISA）
附錄 15.2 登革病毒分離與鑑定流程圖。

患者發病七日內血清

病毒分離細胞培養

血清稀釋 20 倍
2 倍連續稀釋至 160 倍
接種 C6/36 細胞株

28 °C CO₂ 培養箱培養 7 天

登革病毒螢光抗體檢驗

陰性

陽性

重複接種一次

分型

陰性

判定
1 目的
以反轉錄－聚合酶鏈鎖反應（RT-PCR）分子診斷方法檢測疑似病患的血清檢體是否含有登革病毒核酸。

2 適用檢體種類
血清。

3 名詞解釋
Threshold cycle (Ct)：係指 PCR 產物複製的量，累積到足以被偵測到的第一個循環點稱之。換句話說，Ct 的值越小，表示檢體中初始 DNA/RNA 的含量越多。

4 原理概述
利用對黃病毒及登革病毒具有專一性之引子（primers）與檢體中之病毒核酸分子結合配對，並利用 RT-PCR 的複製過程及特殊的熒光定量化學方法偵測 RT-PCR 產物，以決定檢體中是否含有登革病毒核酸序列。檢體先以黃病毒及登革病毒共通引子篩檢，當檢體呈陽性時，再以不同登革病毒血清型專一性引子做病毒型別的鑑定。

5 試劑耗材
5.1 檢測試劑
5.1.1 病毒 RNA 萃取試劑套組。
5.1.2 SYBR green 定量反轉錄－聚合酶鏈鎖反應單步驟試劑套組。
5.2 耗材
5.2.1 檢體瓶。
5.2.2 無菌吸管。
5.2.3 定量 PCR 專用八連管反應管及蓋。
5.2.4 無菌過濾型 10 μL, 20 μL, 100 μL, 200 μL, 1,000 μL 吸管尖。
5.2.5 無菌 1.5 mL 微量離心管。
5.2.6 無粉手套。

6 儀器設備
6.1 第 II 級生物安全櫃。
6.2 即時多重定量 PCR 偵測系統。
6.3 10 μL, 20 μL, 40 μL, 100 μL, 200 μL, 1,000 μL 微量滴管分注器。
6.4 高速離心機。
6.5 真空抽氣機。
6.6 冰箱：4 ℃。
6.7 冷凍櫃：-20 ℃。
6.8 高壓滅菌鍋。
7 環境設施安全
7.1 病人血清檢體應在第 II 級生物安全櫃（BSL-2）內處理。
7.2 檢驗操作在生物安全第二等級（BSL-2）實驗室進行。
7.3 應有獨立的操作空間，盡量與操作 DNA 有關的實驗室分開，以避免污染，影響結果。

8 檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體前處理
10.1.1 裝有靜脈血的無菌真空試管以 2,000 轉離心 10 分鐘，以無菌吸管將血清吸入檢體瓶內旋緊瓶蓋。
10.1.2 檢體瓶上標註檢體標號。
10.1.3 檢體處理好後置 2-8°C 冰箱冷藏。
10.2 步驟
10.2.1 萃取病毒 RNA，依據所使用試劑製造業者的操作手冊進行。
10.2.2 單步驟即時定量反轉錄-聚合酶鏈鎖反應，取 5 μL RNA 做模板，加入黃病毒引子或登革病毒共通引子或登革病毒分型引子組（參考附錄 15.1），並依據所使用試劑製造業者的操作手冊，加入其他所需試劑，調整反應總體積至 25 μL。
10.2.3 單步驟即時定量反轉錄-聚合酶鏈鎖反應程式設定：
10.2.3.1 RT 作用：50 °C，30 min。
10.2.3.2 Taq polymerase activation：95 °C，15 min。
10.2.3.3 Denaturation：95°C，15 sec。
10.2.3.4 Annealing：55 °C，30 sec。
10.2.3.5 Extension：72 °C，20 sec。
10.2.3.6 77 °C，30 sec，收集螢光值。
10.2.3.7 重複 10.2.3.3 至 10.2.3.6 步驟 45 Cycle。
10.2.4 Melting curve analysis：
10.2.4.1 95 °C，1 min。
10.2.4.2 以 0.2°C/秒速率降溫至 68°C，收集螢光值。

11 結果判定
11.1 判讀標準
11.1.1 陽性對照組的 Ct 值需小於或等於 30·Tm 值需大於或等於 79℃。
11.1.2 陰性對照組的 Ct 值需大於或等於 40，Tm 值需小於 79℃。Ct 值或 Tm 值有一項符合上述要求即可。

11.1.3 陽性對照組或陰性對照組其中之一不符合設定值時，則重新實驗。

11.1.4 在陽性對照與陰性對照組符合設定值下，凡樣品經黃病毒引子組、登革病毒共通引子及登革病毒分型引子組之 Ct 值均小於 35、Tm 值均大於或等於 79℃者，判為登革病毒陽性，反之則判為登革病毒陰性。

11.2 報告核發
11.2.1 登革熱病原體檢驗方法：螢光定量聚合酶連鎖反應（real-time PCR）
11.2.2 結果：陽性，大類：登革熱，型別：第一型、第二型、第三型或第四型。
11.2.3 結果：陰性。

11.3 結果登錄：將檢體檢驗數據結果登錄於檢驗紀錄表，送請實驗室主管檢討確認，再依實驗室資訊管理系統（LIMS）之操作步驟，將檢驗結果登錄於系統，陳送指定之實驗室主管審核複校，發出正式檢測報告。

12 品質管制
12.1 每次進行實驗時皆有對照組，陽性對照組與陰性對照組的 Ct 值需符合設定值。
12.2 實驗過程遵循標準檢驗方法的作業規範與流程，並在個別獨立的操作空間內操作，以避免污染。
12.3 即時多重定量 PCR 偵測系統定時作檢測與校正。
12.4 微量滴管分注器定期校正。
12.5 注意試劑套組的使用期限與適當的儲放溫度。

13 廢棄物處理
檢測過程之物品、廢液及剩餘樣本等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121℃，30 min 高壓滅菌後，依本案廢棄物處理作業程序處理。

14 參考資料

15 附錄
15.1 登革病毒診斷用引子組序列表。
附錄 15.1 登革病毒診斷用引子組序列表

<table>
<thead>
<tr>
<th>Dengue- specific primers</th>
<th>參與反應的濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>R36 5’-CAA TAT GCT GAA ACG CGA GAG AAA-3’</td>
<td>120 nM</td>
</tr>
<tr>
<td>R169 5’-CCC CAT CTA ACC AAT ATT CCT GCT-3’</td>
<td>120 nM</td>
</tr>
<tr>
<td>R170 5’-CCC CAT CTG TTC AGT ATC CCT GCT-3’</td>
<td>120 nM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flavivirus- specific primers</th>
<th>參與反應的濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLF1 5’-GCC ATA TGG TAC ATG TGG CTG GGA GC-3’</td>
<td>60 nM</td>
</tr>
<tr>
<td>FLR3 5’-GTK ATT CTT GTG TCC CAW CCG GCT GTG TCA TC-3’</td>
<td>60 nM</td>
</tr>
<tr>
<td>FLR4 5’-GTG ATG CGR GTG TCC CAG CCR GCK GTG TCA TC-3’</td>
<td>60 nM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dengue-serotype specific primers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dengue serotype 1:</td>
</tr>
<tr>
<td>R36 5’-CAA TAT GCT GAA ACG CGA GAG AAA-3’</td>
</tr>
<tr>
<td>R53 5’-CGC TCC ATA CAT CTT GAA TGA G-3’</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dengue serotype 2:</th>
</tr>
</thead>
<tbody>
<tr>
<td>R36 5’-CAA TAT GCT GAA ACG CGA GAG AAA-3’</td>
</tr>
<tr>
<td>R54 5’-AAG ACA TTG ATG GCT TTT GA-3’</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dengue serotype 3:</th>
</tr>
</thead>
<tbody>
<tr>
<td>R36 5’-CAA TAT GCT GAA ACG CGA GAG AAA-3’</td>
</tr>
<tr>
<td>R65 5’-AAG ACG TAA ATA GCC CCC GAC-3’</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dengue serotype 4:</th>
</tr>
</thead>
<tbody>
<tr>
<td>R36 5’-CAA TAT GCT GAA ACG CGA GAG AAA-3’</td>
</tr>
<tr>
<td>R56 5’-AGG ACT CGC AAA AAC GTG ATG AAT-3’</td>
</tr>
</tbody>
</table>
1 目的
登革病毒 NS1 抗原檢測。

2 適用檢體種類
適用於人體血清或血漿之檢體。

3 名詞解釋
無。

4 原理概述
當血清或血漿檢體中含有登革病毒 NS1 抗原時，會與結合紙條 (conjugate pad) 上的膠體金粒子 (colloidal gold particles) - 抗登革病毒 NS1 抗體結合體形成複合物，在測試條上利用色層分析原理往上移動時會被測試線 (test line) 上所吸附之抗 NS1 抗體抓住, 出現紫紅色線條。

5 試劑耗材
5.1 NS1 抗原測試組 (Bio-Rad Cat no. 70700；每組含測試條 25 條及液體移動輔助液乙瓶)。
5.2 12 × 75 mm 圓底試管。
5.3 丢棄式 200 μL 吸管尖。
5.4 手套。

6 儀器設備
6.1 100 μL 或 200 μL 之微量滴管分注器 (pipettors)。

7 環境設施安全
7.1 病人檢體應在第 II 級生物安全櫃 (class II BSC) 內處理。
7.2 檢驗操作在生物安全第二等級 (BSL-2) 實驗室進行。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體編號登錄。
10.2 以微量滴管分注器取 50 μL 之血清，置入 12 × 75 mm 圓底試管底部。
10.3 於 12 × 75 mm 圓底試管上方，垂直滴入一滴（約 50 μL）液體移動輔
衛生福利部疾病管制署傳染病標準檢驗方法

編號：登革病毒 NS1 抗原檢測 (Dengue virus NS1 antigen rapid test) 核准日期：年 月 日

取一測試條，依指示方向，置入 12 × 75 mm 圓底試管內。

將試管直立，靜置於常溫下 15 min。

進行結果判讀。

若測試線反應很弱，可將測試條放回試管內，靜置 15 min 後，再進行結果判讀。

11 結果判定

11.1 結果判定應於反應後 15 - 30 min 內進行。

11.1.2 測試條上方出現之橫條訊號，為陰性對照組訊號。所有血清檢體，於測試後，均應出現此一訊號。若該訊號未出現，則應考慮測試組是否已過期或失效。

11.1.3 測試條中間出現之橫條訊號，代表測試結果為陽性。

11.1.4 典型之陽性測試結果，應出現上方及中間之兩條橫條訊號。

11.1.5 本項測試屬定性測試，對急性期之登革熱病患之陽性正確率依檢體來源不同而有所差異；惟陰性結果並不保證被測人未被登革病毒感染。

11.1.6 本項測試對孕婦、關節炎病患之血清，或血清內含抗細胞核抗體者，偶會有偽陽性之可能；又血清內含大量溶血物質，亦會造成偽陽性之結果。

11.2 報告核發：

11.2.1 檢驗方法：登革病毒 NS1 抗原檢測
11.2.2 結果：陽性。
11.2.3 結果：陰性。

11.3 結果登錄：將檢體檢驗數據結果登錄於檢驗紀錄表，送請實驗室主管檢討確認，再依實驗室資訊管理系統（LIMS）之操作步驟，將檢驗結果登錄於系統，陳送指定之實驗室主管審核複校，發出正式檢測報告。

12 品質管制

12.1 測試組應於有效期內使用。
12.2 微量滴管分注器應定期做校正。

13 廢棄物處理

檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃, 30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

Dengue NS1 Ag Strip (Bio-Rad Cat no. 70700) Instruction Manual.

15 附錄

無。
1 目的
登革病毒及日本腦炎病毒 IgM 和 IgG 抗體檢測。

2 適用檢體種類
適用於人體血清或腦脊髓液之檢體。

3 名詞解釋
無。

4 原理概述
利用 Capture IgM 與 IgG 酵素免疫分析法，測定病人血清或腦脊髓液中之登革熱或日本腦炎特異性抗體。

5 試劑耗材
5.1 Dilution buffer：Casein blocking buffer（Sigma, Product no. C7594, USA）+ 2.5 % Normal rabbit serum+ 4% Normal goat serum + 0.05 % Tween-20，pH 7.2。
5.2 Washing buffer（1.5X PBS+0.05 % Tween-20，pH 7.2）。
5.3 Human positive and negative control sera
5.3.1 Dengue primary positive control(以 dilution buffer 1：100 稀釋)。
5.3.2 Dengue secondary positive control（以 dilution buffer 1：100 稀釋）。
5.3.3 JE positive control（以 dilution buffer 1：100 稀釋）。
5.3.4 Negative control（以 dilution buffer 1：100 稀釋）。
5.4 去活化病毒細胞培養液（病毒經 C6/36 細胞培養 5 - 7 天，收集上清液，經 UV 照射 1 hr，分裝後保存於-80 °C 冷凍櫃）
5.4.1 DENV-1, strain 8700828。
5.4.2 DENV-2, strain 454009。
5.4.3 DENV-3, strain 8700829。
5.4.4 DENV-4, strain 8700544。
5.4.5 JEV, strain JaGAR。
5.5 含抗黃病毒屬外套抗原(envelope)單株抗體之小鼠腹水（Glyconex, Cat. no. FL0232, Taiwan）。
5.5.1 以 Protein A/G 管柱，經親合性純化後之抗黃病毒屬外套抗原（envelope）單株抗體（抗體名稱為 D56.3）；該 D56.3 抗體可連與 Innova Biosciences 公司生產之 Lightning-Link Alkaline Phosphatase kit 反應，以製備抗黃病毒屬外套抗原單株抗體-鹼性磷酸酶結合體 （簡稱 D56.3-AP）。
5.6 山羊抗小鼠 IgG 抗體-鹼性磷酸酶結合體。（goat anti-mouse IgG-AP conjugate, Jackson, Code no. 115-006-071, USA）
5.7 Substrate reagent, p-Nitrophenyl-phosphate(p-NPP)(Chemicon, USA, Cat. no. ES009-500mL)。
衛生福利部疾病管制署傳染病標準檢驗方法

編號：登革病毒、日本腦炎病毒IgM及IgG抗體檢測（ELISA）

頁次：第104頁/共1104頁

5.8 96孔微量滴定盤
 5.8.1 Anti-human IgM真空乾燥盤（ELISA plate coated with goat anti-human IgM）。
 5.8.2 Anti-human IgG真空乾燥盤（ELISA plate coated with goat anti-human IgG）。

5.9 八連排稀釋管。
5.10 吸棄式250 μL、1,000 μL 吸管尖。
5.11 手套。

6 儀器設備
 6.1 第II級生物安全櫃（class II BSC）。
 6.2 全自動酵素免疫分析儀（Tecan, Genesis workstation 150, Germany）。
 6.3 微量滴管分注器2 μL、20 μL、100 μL、200 μL、1,000 μL（pipettors）。
 6.4 震盪器。
 6.5 冰箱：4 ℃。
 6.6 冷凍櫃：-20 ℃。
 6.7 高壓滅菌鍋。

7 環境設施安全
 7.1 病人血清檢體應在第II級生物安全櫃內處理。
 7.2 檢驗操作在生物安全第二等級（BSL-2）實驗室進行。

8 檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treecode=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。。
http://www.cdc.gov.tw/professional/list.aspx?treecode=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
 10.1 檢體編號登錄。
 10.2 檢體量須大於0.5 mL。
 10.3 四型登革病毒細胞培養液（DENV-1、DENV-2、DENV-3、DENV-4）分別以Dilution buffer四倍稀釋，各取等量混合後，以1：1,000之稀釋比例，加入含抗黃病毒屬外套抗原（envelope）單株抗體之小鼠腹水FL0232（登革熱病毒加偵測腹水混合液）。另日本腦炎病毒細胞培養液以Dilution buffer四倍稀釋後，以1：1,000之稀釋比例，加入含抗黃病毒屬外套抗原（envelope）單株抗體之小鼠腹水FL0232（日本腦炎病毒加偵測腹水混合液）。
10.3.1 D56.3-AP（5.5.1）與病毒稀釋液以 1:2,000 比例混合，即可配製登革熱病毒加登測抗體混合液及日本腦炎病毒加登測抗體混合液，以此混合液進行測定，則可省略步驟 10.4、10.10 及 10.11。

10.4 山羊抗小鼠 IgG 抗體-鹼性磷酸酶結合體以 Dilution buffer 1：4000 稀釋。

10.5 取待測血清 7 μL 加入 Dilution buffer 0.7 mL 稀釋 100 倍。若是腦脊髓液，則取 70 μL 加入 Dilution buffer 0.7 mL 稀釋 11 倍。

10.6 取 0.1 mL 待測血清(步驟 10.5)及陰性、陽性對照血清(試劑耗材 5.3)，加入 anti-human IgM 及 anti-human IgG 之 96 孔真空乾燥盤。

10.7 置於 37 ℃溫箱，搖盪 30 min，然後以 Washing buffer 清洗 4 次。

10.8 取 0.1 mL 登革熱病毒加登測腹水混合液及日本腦炎病毒加登測腹水混合液（步驟 10.3）分別加入 96 孔真空乾燥盤。

10.9 置於 37 ℃溫箱，搖盪 30 min，然後以 Washing buffer 清洗 4 次。

10.10 取 0.1 mL 山羊抗小鼠 IgG 抗體-鹼性磷酸酶結合體稀釋液（步驟 10.4）加入 96 孔真空乾燥盤。

10.11 置於 37 ℃溫箱，搖盪 30 min，然後以 Washing buffer 清洗 4 次。

10.12 取 0.1 mL/孔 呈色劑（p-NPP）加入 96 孔微量滴定盤中呈色。

10.13 置於 37 ℃溫箱，搖盪 40 min。

10.14 將微量滴定盤於酵素免疫分析儀裡，以雙波長 405、630 nm 測定吸光度（OD405-630）。

11. 結果判定

11.1 判讀標準

11.1.1 若血清檢體之登革病毒特異性 IgM 抗體之 OD 值大於 0.5，且登革病毒 IgM OD 值/日本腦炎病毒 IgM OD 值大於或等於 2，判為登革熱 IgM 陽性。

11.1.2 若血清檢體之登革病毒特異性 IgG 抗體之 OD 值大於 0.5，判為登革熱 IgG 陽性。

11.1.3 Dengue primary positive control 應符合 IgM OD 值＞1.5，IgG OD 值＞0.5。

11.1.4 Dengue secondary positive control 應符合 IgM OD 值＞0.5，IgG OD 值＞1.5。

11.1.5 JE positive control 應符合 IgM OD 值＞1.5，IgG OD 值＞1.5。

11.1.6 JE negative control 應符合 IgM OD 值＜0.2，IgG OD 值＜0.2。

11.2 報告核發：

11.2.1 檢驗方法：登革病毒及日本腦炎病毒 IgM 和 IgG 抗體檢測。

11.2.2 結果：陽性。

11.2.3 結果：陰性。

11.3 結果登錄：將檢體檢驗數據結果登錄於檢驗紀錄表，送交實驗室主管檢討確認，再依實驗室資訊管理系統（LIMS）之操作步驟，將檢驗結果登錄於系統，陳送指定之實驗室主管審核複校，發出正式檢測報告。
12 品質管制
12.1 應於有效期內使用，同一批號試劑，第一次使用時取一組進行試驗，之後每隔3 - 6個月再取一組進行試驗。
12.2 每次檢驗應加入陽性及陰性控制組血清。
12.3 遵循S.O.P的作業規範與流程，並在個別獨立的操作空間內操作，以避免污染。
12.4 微量滴管分注器定時做校正。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋妥密密封，再以121℃，30 min高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

15 附錄
登革病毒、日本腦炎病毒 IgM 及 IgG 抗體試驗（酵素免疫分析法）流程圖。
附錄 15.1 登革病毒、日本腦炎病毒 IgM 及 IgG 抗體試驗（酵素免疫分析法）
流程圖。

```
96 孔微量真空乾燥盤 Coated with anti-human IgM
96 孔微量真空乾燥盤 Coated with anti-human IgG

待測血清及陰性、陽性對照血清 1：100 稀釋
0.1 mL/孔，37 ℃，30 min (shaking)，洗 4 次
取 0.1 mL 登革熱病毒加偵測抗體混合液及日本腦炎病毒加偵測抗體混合液
分別加入 96 孔真空乾燥盤
0.1 mL/孔，37 ℃，30 min (shaking)，洗 4 次
山羊抗小鼠 IgG 抗體-鹼性磷酸酶結合體 1：4000 稀釋
0.1 mL/孔，37 ℃，30 min (shaking)，洗 4 次
p-NPP 呈色劑
0.1 mL/孔，37 ℃，40 min (shaking)
以酵素免疫分析儀，測定雙波長 405、630 nm 之吸光度（OD_{405-630}）
列印結果
結果判定
```
1 目的
流行性腦脊髓膜炎通報病例之人體檢體中奈色氏腦膜炎雙球菌的分離鑑定與血清分型。

2 適用檢體種類
適用於病患血液、腦脊髓液與醫院分離菌株。

3 名詞解釋
無。

4 原理概述
以特定培養基分離奈色氏腦膜炎雙球菌，並利用細菌生長菌落特性，菌體型態，生化代謝與血清學特性鑑定與分型。

5 試劑耗材
5.1 巧克力平板（chocolate agar plate）。
5.2 MTM（modified Thayer-Martin agar）。
5.3 BHI（brain heart infusion）broth。
5.4 革蘭氏染色液（Gram's stain solution）：Difco，美國，武藤化學，日本或其它具相同鑑別力之試劑。
5.5 API NH生化鑑定套組：BioMérieux，法國，或其它具相同鑑別力之生化系統。
5.6 抗血清：Neisseria meningitidis agglutinating sera A，B，C，Y，W135，Muréx Biotech，法國或其它具相同鑑別力之試劑。
5.7 氧化酶試劑（oxidase strips）：MAST，英國，BioMérieux，法國或其它具相同鑑別力之試劑。
5.8 無菌滴管（dropper）：1 mL。
5.9 接種針（loop）。
5.10 載玻片。
5.11 無菌生理食鹽水：0.85% NaCl。
5.12 無菌塑膠手套。
5.13 標準菌株：N. meningitidis BCRC10714=ATCC13090。
5.14 標準菌株：Staphylococcus epidermidis ATCC12228。
5.15 標準菌株：血清型 A，N. meningitidis ATCC13077。
5.16 標準菌株：血清型 B，N. meningitidis ATCC13090。
5.17 標準菌株：血清型 C，N. meningitidis ATCC13102。
5.18 標準菌株：血清型 Y，N. meningitidis ATCC35561。
5.19 標準菌株：血清型 W135，N. meningitidis ATCC35559。

6 儀器設備
6.1 二氧化碳培養箱。
6.2 高壓滅菌鍋。
<table>
<thead>
<tr>
<th>頁次：第 109 頁/共 1104 頁</th>
<th>奈色氏腦膜炎雙球菌分離與鑑定</th>
<th>核準日期：年月日</th>
</tr>
</thead>
</table>

6.3 光學顯微鏡：能放大至 1,000X 油鏡。

6.4 第 2 級生物安全櫃（class II BSC）。

7 環境設施安全
7.1 於生物安全第二等級（BSL-2）實驗室之設施內操作。
7.2 處理檢體、接種時於生物安全櫃內操作。

8 檢體採集
請參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
請參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 分離培養
10.1.1 檢體接種：
10.1.1.1 血液：依據血液培養瓶的需要量而定。要求送驗單位取出血液之後立刻接種於血瓶，血液檢體以 1:5 - 1:10 的比例接種於血液培養瓶。
10.1.1.2 腦脊髓液：取 1 - 2 滴液體接種於巧克力平板及 BHI broth（增菌備用），其他未接種液體置於 35°C, 3–7% CO₂ 二氧化碳培養箱保留到檢驗結果登錄後。
10.1.1.3 菌株：挑取菌落，接種巧克力平板。
10.1.2 培養：35°C, 3–7% CO₂ 二氧化碳培養箱培養。
10.1.3 觀察：
10.1.3.1 血液：培養 16 - 18 hr 後觀察，若培養液有混濁或紅血球溶解情形，立即將培養液混合均勻，取 0.5 mL 培養液次培養於巧克力平板，培養 16 - 18 hr 後，開始觀察有無可疑菌落，如有則進行鑑定，如無則繼續培養及隔日觀察，至少需培養 72 hr；陰性之血瓶於第 5 天時，再次培養於巧克力平板培養觀察。
10.1.3.2 腦脊髓液：平板培養 16 - 18 hr 後，開始觀察有無可疑菌落，如有則進行鑑定，如無則繼續培養及隔日觀察，至少需培養 72 hr；液態培養基每天觀察連續 7 天，其間液態培養基若有呈現混濁時，則次培養於巧克力平板，培養 16 - 18 hr 後，開始觀察有無可疑菌落，如有則進行鑑定，如無則繼續培養及隔日觀察，至少需培養 72 hr。
10.1.3.3 菌株：培養 16 - 18 hr 後，進行鑑定。

註：將進行分離培養所需之培養基巧克力平板、MTM 或試劑由 4 °C 冰箱拿出，置室溫回溫 30 min 待用。

10.2 鑑定

10.2.1 菌落型態及染色：挑取巧克力平板上直徑約 1 毫米，為凸起、光滑有光澤、圓形、無色或乳白略帶灰色，作 Gram's stain，符合革蘭氏陰性雙球菌，咖啡豆狀，成雙排列。

10.2.2 生化鑑定

10.2.2.1 Oxidase test：以接種環挑取單一菌落直接塗於 strip 上，觀察顏色變化，10 sec 內變為藍色，為陽性反應。

10.2.2.2 API-NH 生化鑑定套組或其它具相同鑑別力之生化系統，依套組說明製備菌液、接種菌液於鑑定盤各反應格、培養、判讀結果，得到一組數字查尋判定是否為 Neisseria meningitidis，可信度需達 95 % 以上。

10.2.3 血清分型：

血清型之測試利用玻片凝集法：

10.2.3.1 將載玻片用蠟筆分格，測試位置如圖說明：

<table>
<thead>
<tr>
<th>第一片</th>
<th>第二片</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B C Y W135</td>
<td>N</td>
</tr>
</tbody>
</table>

A：血清型 A 測試，B：血清型 B 測試，C：血清型 C 測試，
Y：血清型 Y 測試，W135：血清型 W135 測試，
N：陰性對照（無菌食鹽水）。

10.2.3.2 在每一格分別滴入 1 滴（約 40 μL）無菌 0.85% 食鹽水，用 1 μL 接種環挑取 1/4 loop 量的新鮮菌落於各分格中與食鹽水混合均勻，個別加入相對應之抗血清（不要稀釋使用）或無菌食鹽水，均勻搖晃玻片約 1 min，觀察並記錄凝集情形。

11 結果判定

11.1 判讀標準：

11.1.1 脳膜炎雙球菌陽性判定標準：

<table>
<thead>
<tr>
<th>項目和標準</th>
<th>Neisseria meningitidis</th>
</tr>
</thead>
<tbody>
<tr>
<td>試驗或基質</td>
<td>Neisseria meningitidis</td>
</tr>
<tr>
<td>1.巧克力平板上典型菌落</td>
<td>凸起、光滑有光澤、圓形無色或乳白略帶灰色之菌落</td>
</tr>
<tr>
<td>2.革蘭氏染色試驗</td>
<td>革蘭氏陰性，咖啡豆狀成雙排列，直徑約在 0.6 至 0.8 μm 左右</td>
</tr>
<tr>
<td>3.Oxidase 試驗</td>
<td>藍色或藍紫色</td>
</tr>
<tr>
<td>4.快速 生化鑑定系統</td>
<td>適速 生化鑑定系統或其它具相同鑑別力之生化系統。得到一組數字，依照說明書查尋號碼簿，判定菌株是否為 N. meningitidis</td>
</tr>
</tbody>
</table>
腦膜炎雙球菌陽性需符合以上條件，若其中有一不符合者，即判定為腦膜炎雙球菌陰性。

11.1.2 血清分型判定標準：

11.1.2.1 血清型 A: *N. meningitidis* agglutinating sera A 產生凝集，其他抗血清無凝集。

11.1.2.2 血清型 B: *N. meningitidis* agglutinating sera B 產生凝集，其他抗血清無凝集。

11.1.2.3 血清型 C: *N. meningitidis* agglutinating sera C 產生凝集，其他抗血清無凝集。

11.1.2.4 血清型 Y: *N. meningitidis* agglutinating sera Y 產生凝集，其他抗血清無凝集。

11.1.2.5 血清型 W135: *N. meningitidis* agglutinating sera W135 產生凝集，其他抗血清無凝集。

11.1.2.6 其他：凝集狀況與以上條件不符合。

11.2 報告核發：腦膜炎雙球菌陽性，血清型 A 或 B 或 C 或 Y 或 W135 或其他。脳膜炎雙球菌陰性。

11.3 結果登錄：將檢體之檢驗結果登錄於奈氏脳膜炎雙球菌紀錄表及検體送驗單並加蓋檢驗者印章，送實驗室主管審核及蓋章，並登錄於網路報告系統。

11.3.1 結果的可報告區間

陽性：*N. meningitidis* 血清型 A 或 B 或 C 或 Y 或 W135 或其他。

陰性：non-*N. meninitidis*，No growth。

11.3.2 緊急通報

無。

11.3.3 干擾因素

病人因素：病程發展階段、抗生素使用。

採樣運送時：採檢部位、運送時間和溫度。

11.3.4 潛在變異的來源

接種劃線技術。

菌落型態辨識。

11.3.5 檢驗性能之規格

12 品質管制

12.1 MTM plate 之品質管制：

12.1.1 測試時間：每一批號由廠商提供品質管制文件，實驗室每年進行一次品質測試。

12.1.2 測試菌株：*N. meningitidis* BCRC10714 = ATCC13090，*Staphylococcus epidermidis* ATCC12228。

12.1.3 測試方法：使用新鮮的測試菌，生長在固體營養培養基一天的菌，挑菌懸浮於 2 mL 無菌水中，調菌液濁度 0.5 McFarland，以 1 μL 的 Loop 取菌液接種於測試培養基上，35 °C ± 3 - 7% CO₂ 二氧化碳培養箱培養。
12.1.4 觀察結果紀錄：預期結果

N. meningitidis BCRC10714 = ATCC13090，24 hr 後可見 1 - 2 mm 菌落。*Staphylococcus epidermidis* ATCC12228，24 hr 後沒有菌落生長或生長菌落稀少。

12.2 抗血清：
12.2.1 測試時間：於第一次使用時。
12.2.2 測試菌株：血清型 A，*N. meningitidis* ATCC13077；血清型 B，*N. meningitidis* ATCC13090；血清型 C，*N. meningitidis* ATCC13102；血清型 Y，*N. meningitidis* ATCC35561；血清型 W135，*N. meningitidis* ATCC35559。
12.2.3 測試方法：（依 10.2.3 節）。
12.2.4 觀察結果紀錄：試驗結果必須符合判定標準（依 11.1.2 節），始可使用。

12.3 能力試驗

13 廢棄物處理

檢驗過程之物品、廢液、及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃, 30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
14.1 蔡文城。2000。實用臨床微生物診斷學，第九版。九州圖書文庫公司，臺灣。第 534-539 頁。

15 附錄
15.1 奈色氏腦膜炎雙球菌分離與鑑定流程圖。
15.2 奈色氏腦膜炎雙球菌分離與鑑定紀錄表。
15.3 _______Plate 品質管制紀錄表。
附錄 15.1 奈色氏腦膜炎雙球菌分離與鑑定流程圖

個案檢體（正常無菌部位，如血液、腦脊髓液）、醫院分離菌株

依檢體總類分別接種 Chocolate agar plate，MTM plate，BHI broth

35 ℃，3 - 7 % CO₂，1-3 天

直徑約 1 mm，為凸起、光滑有光澤、圓形、無色或乳白略帶灰色

無可疑菌落

革蘭氏染色

陰性，咖啡豆狀成雙排列

陽性

Oxidase test

陽性 陰性

API-NH 生化鑑定系統

查詢號碼為 Neisseria meningitidis 可信度 95 %以上

血清分型凝集試驗

符合血清型 A 或 B 或 C 或 Y 或 W135 判定標準

腦膜炎雙球菌 血清型 A 或 B 或 C 或 Y 或 W135

不符合血清型 A 或 B 或 C 或 Y 或 W135 判定標準

腦膜炎雙球菌 血清型其他
奈色氏腦膜炎雙球菌分離與鑑定紀錄表

| 檢體編號 | 收件日期 | 檢驗日期 | 檢體總類 | 檢體採檢運送狀況適當 | 是 | 否 | 是 | 否 | 是 | 否 | 是 | 否 | 是 | 否 | 是 | 否 |
|-----------|-----------|-----------|-----------|------------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Chocolate agar plate | 上菌落外觀特徵，凸起、光滑、光澤、圓形、無色或乳白略帶灰色之菌落。血液：7天。腦脊髓液，液態增菌：7天。培養/觀察 | 是 | 否 | 是 | 否 | 是 | 否 | 是 | 否 | 是 | 否 | 是 | 否 | 是 | 否 |
| 培養期 | 第2天 | 第3天 | 第4天 | 第5天 | 第6天 | 第7天 | 第8天 |
| 菌株 | 革蘭氏染色:陽性或陰性，雙球菌或桿菌 | 陽性 | 陰性 | 陽性 | 陰性 | 陽性 | 陰性 | 陽性 | 陰性 |
| | Oxidase test:陽性藍色或藍紫色，陰性不變色 | 陽性 | 陰性 | 陽性 | 陰性 | 陽性 | 陰性 | 陽性 | 陰性 |
| 生化試驗 API-NH（紀錄檢索碼） | | | | | | | | | |
| 血清分型凝集試驗 Neisseria meningitidis | Antiser A、B、C、X、Y、W135、其他，(有反應之項目用圈選紀錄) | | | | | | | | | |
| 附註 | | | | | | | | | |
| 綜合結果 | | | | | | | | | |
| 報告日期 | | | | | | | | | |
| 檢驗者 | | | | | | | | | | |
| 實驗室主管 | | | | | | | | | |
附錄 15.3 _______ Plate 品質管制紀錄表

衛生福利部疾病管制署研究檢驗及疫苗研製中心

________ Plate 品質管制紀錄表

培養基名稱：____________________________
廠牌：__________________________ Cat no.：__________________________
批號：__________________________ 有效期限：________________________

交貨日期：年 月 日 交貨數量：________________________
試驗日期：年 月 日

品管（查驗）紀錄

<table>
<thead>
<tr>
<th>項 目</th>
<th>結 果</th>
<th>判 定</th>
<th>備 註</th>
</tr>
</thead>
<tbody>
<tr>
<td>無菌性試驗</td>
<td>□ No growth □ Contamination</td>
<td>□ 合格 □ 不合格</td>
<td></td>
</tr>
<tr>
<td>有效性試驗</td>
<td>1. 試驗菌：生長描述：</td>
<td>□ 合格 □ 不合格</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. 試驗菌：生長描述：</td>
<td>□ 合格 □ 不合格</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. 試驗菌：生長描述：</td>
<td>□ 合格 □ 不合格</td>
<td></td>
</tr>
<tr>
<td>包裝</td>
<td>□ 完整 □ 破損</td>
<td>□ 合格 □ 不合格</td>
<td></td>
</tr>
<tr>
<td>水分</td>
<td>□ 正常 □ 太乾</td>
<td>□ 合格 □ 不合格</td>
<td></td>
</tr>
<tr>
<td>其它</td>
<td>□ 合格 □ 不合格</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

實驗室 PI： 品管技術人員：
目的
痢疾桿菌的分離鑑定與血清型判定。

檢體種類與採檢容器
適用於人體糞便、直腸拭子、環境擦拭拭子與水檢體。

原理概述
以特定培養基分離菌株，並利用生化代謝與血清學特性鑑定與分型。

檢驗性能特徵
4.1 精密度: N/A。
4.2 準確度: N/A。
4.3 量測不確定度: N/A。
4.4 分析特異性: 綜合 API20E 生化試驗及抗血清凝集反應為 92.8%。
4.5 分析敏度與偵測極限: N/A。
4.6 量測區間: N/A。
4.7 診斷特異性及診斷敏感度
 4.7.1 特異性: 100%
 4.7.2 敏感度: N/A。

病人準備：参照本署最新版傳染病檢體採檢手冊。

試劑耗材
6.1 試劑
 6.1.1 培養基
 6.1.2 SS（Salmonella-Shigella）agar
 6.1.3 HE（Hektoen Enteric）agar
 6.1.4 TSIA（triple sugar iron agar）
 6.1.5 LIA（lysine iron agar）
 6.1.6 SIM（sulfide indole motility）agar
 6.1.7 TSB（trypsic soy broth）
 6.1.8 BAP（blood agar plate）
 6.1.9 API 20E 生化鑑定套組
 6.1.10 VITEK 2 革蘭氏陰性菌鑑定卡（VITEK 2 GN）
 6.1.11 氧化酶試紙（oxidase strips 或氧化酶試劑（oxidase reagent）
 6.1.12 鑑定血清 A、B、C、D 亞群抗血清。詳見附錄說明
 6.1.13 無菌生理食鹽水：0.85 % NaCl。
 6.1.14 馬克法蘭氏濁度標準組（McFarland nephelometer standard units）
6.2 耗材
 6.2.1 载玻片。
 6.2.2 無菌吸管：3 mL。
 6.2.3 接種針（環）。
 6.2.4 無菌塑膠試管。
 6.2.5 1 mL 無菌針筒及針頭。
 6.2.6 鐵子。
 6.2.7 0.2 µm 無菌過濾杯組裝。

6.3 個人防護耗材
 6.3.1 橡膠手套。
 6.3.2 口罩。
 6.3.3 不露趾鞋子。
 6.3.4 針頭回收盒。

7 儀器設備
 7.1 第二級生物安全櫃（class II BSC）。
 7.1.1 使用前確認其年度合格標籤。
 7.2 離心機
 7.3 高壓滅菌鍋
 7.3.1 使用前確認其合格檢測標籤。
 7.4 Pipetman。
 7.5 37 ℃ 培養箱（incubator）。
 7.6 水浴槽。
 7.7 幫浦機。
 7.8 具有變焦功能的立體解剖顯微鏡（至少可放大 4.5 倍）。
9 校正程序: N/A。

9.1 頻率: 兇腸道及腹瀉病毒實驗室「儀器設備校正方法暨校正頻率一覽表」(RDC-QR-1701-03)，所明定之各項儀器設備之校正頻率進行校正。

9.2 校正液: N/A。

9.3 校正步驟: N/A。

9.4 數據儲存: 外校之儀器設備廠商將出具校正報告，所有校正與品管紀錄，依本署「品質與技術紀錄管制作業程序」(RDC-QP-1201)之規定予以保存。

9.5 校正量測追溯: 詳見各別報告之記載。

9.6 充收標準: 詳見腸道及腹瀉病毒實驗室「儀器設備校正方法暨校正頻率一覽表」(RDC-QR-1701-03)。

10 品質管制

10.1 內部品管

10.1.1 血清凝集鑑定之品質管制

10.1.1.1 應於有效期內使用，同一批號試劑，第一次使用時取一組進行試驗，之後每隔6個月再取一組進行試驗。

10.1.1.2 使用 Shigella sonnei ATCC 3564 (D 型) (局內保存並經過測試之菌株) 為血清之陽性反應標準菌株；E.coli ATCC 25922 為陰性反應標準菌株，每月試驗一次。

10.1.1.3 試驗結果必須符合陽性反應及陰性反應，始可使用。

10.1.2 陽性結果 (鑑定出法定傳染病病原菌時) 第者複查

10.2 外部品管: N/A。

11 檢驗步驟

11.1 檢體前處理

11.1.1 於第二級生物安全櫃內拆開包裝及接種檢體：

11.1.1.1 實驗室於收到檢體及送驗單後，先行核對檢體種類、姓名、數量等資料正確與否，並依序登錄於紀錄簿。

11.1.1.2 水質檢體以無菌過濾杯組裝置接幫浦機過濾處理後，並用消毒過之鑷子取出。

11.2 檢驗中

11.2.1 分離培養

11.2.1.1 糞便、直腸拭子檢體塗抹接種於 SS、HE 培養盤，並以接種環依三區劃法劃開，37 °C 培養 18 - 24 hr。

11.2.1.2 環境擦拭拭子：擦拭拭子直接塗抹於 SS、HE 培養盤。

11.2.1.3 水檢體 1,000 mL 以 0.45 μm 過濾膜過濾，將過濾膜置於 5 mL TSB 中，於 37 °C 增菌培養 15 - 18 小時後，次培養於 SS 、HE 培養盤上。
11.2.2 生化反應鑑定

11.2.2.1 在上述分離培養的 SS 培養盤上挑選無色或粉紅色稍混濁菌落，於 HE 培養盤上挑選綠色、藍綠色之可疑菌落，使用接種針以穿刺劃線法接種於 TSIA、LIA，以穿刺法接種於 SIM，37 °C 培養 18-24 hr，觀察其生化反應特性（生化反應判定參照附錄 21.2）。

11.2.2.2 三管生化反應：TSIA：k/A、Gas（-）、H2S（-），LIA：K/A，SIM：Motility（-）、Indole（-）、H2S（-）、IPA（-）則為疑似痢疾桿菌。

11.2.3 抗血清凝集反應鑑定與分型

11.2.3.1 以痢疾桿菌 A-D 混合型多價血清作玻片凝集反應。

11.2.3.2 若多價血清為陽性，且無菌生理食鹽水為陰性反應，再以相對應之次因子血清作玻片凝集反應以決定其型別。

11.2.4 其他確認試驗，在結果判讀不明確（不典型生化或血清凝集反應）或任何有確認必要的狀況下進行。

11.2.4.1 API 20E 生化鑑定套組：依照本署「API 20 E（腸道菌屬及革蘭氏陰性桿菌）細菌鑑定法」檢驗標準方法（編號：RDC-SOP-V5-E24），與 11.2.4.2 及 11.2.4.3 選擇性執行。

11.2.4.2 VITEK 2 革蘭氏陰性菌鑑定卡（VITEK 2 GN）：依照原廠全自動微生物分析儀 VITEK 2 標準操作流程執行。

11.2.4.3 微生物鑑定質譜儀標準操作程序（編號：RDC-SOP-V5-I16）。

11.2.4.4 氧化酶試驗（Oxidase test）：挑選 TSA 培養基上菌落進行試驗。

11.3 檢驗後處理

11.3.1 廢棄物處理：檢驗過程之物品、微生物及剩餘檢體等感染性事業廢棄物，應先以標有「生物醫療廢棄物」標誌之專用紅色廢棄袋裝妥密封，貼上化學指示劑；針頭或玻璃等尖銳物品應集中置於密封厚壁塑膠容器，外面貼有「生物醫療廢棄物」標誌，均再以 121 ℃，每平方公分 1.06 公斤以上壓力，60 mins 高壓滅菌後，由合約清理廠商處理。

11.3.2 檢體儲存於檢體專用 4°C 冰箱、桌面使用後以 70%酒精擦拭。

12 扰與交互反應：一些大腸桿菌屬可能會產生偽陽性，必需做陰性對照。
結果判定
13.1 陽性判定標準（附錄 21.2）：
13.1.1 菌落型態、Oxidase 反應陰性、生化反應、血清凝集反應皆符合，
即生化反應與血清型別結果一致，判定為痢疾桿菌陽性。若有一不
符合者，即判定為陰性。
13.1.2 API 20E 生化試驗套組的檢驗結果，依其說明書指示之方法判
定。

13.2 報告核發 (LIMS 系統登錄型式)：痢疾桿菌陽性，痢疾桿菌陰性。
13.3 結果登錄：將檢體之檢驗結果登錄於實驗室資訊系統，經 PI 核准報告
後發佈。

生物參考區間/臨床決策值：陰性。

15 檢驗結果的可報告區間：陰性。
痢疾桿菌陽性。

結果超出量測區間之操作說明：N/A。

危急值/異常值：
17.1 危急值：陽性。
17.2 異常值：參照本署結果報告管理作業程序 (RDC-QP-2201) 辦理，於 LIMS
系統登錄結果報告後，系統即會自動進行異常通報。

臨床意義：痢疾桿菌陽性即為痢疾。

變異的潛在來源：檢體採檢與保存運送須參照本署出版之「防疫檢體採檢手
冊」，檢體保存不良可能造成細菌無法培養出，造成檢驗僞陰性。

參考資料
20.1 RDC-QP-1601 安全衛生作業程序。
20.2 蔡文城。2000。實用臨床微生物診斷學，第九版。九州圖書文物有限
公司，臺灣。第 717-720 頁。
20.3 善養寺浩等：腸管系病原菌之檢查法，醫學書院，第四版，1985。
20.4 14.2 坂崎利一編集：食水系感染症及細菌性食物中毒，中央法規出版社，
2000，139 頁至 152 頁。
General principles of specimen collection and handling, specimen
collection transport and processing, enterobacteriaceae: introduction and
identification, Escherichia, Shigella and Salmonella: Manual of clinical
microbiology vol.1, 8th edition. • American Society for Microbiology,
20.7 日本大阪府立公眾衛生研究所感染症檢查手冊，第 II 集，2001。

21 附錄
21.1 痢疾桿菌分離與鑑定流程圖。
21.2 生化反應判定表。
附錄 21.1 痢疾桿菌分離與鑑定流程圖

1. 畫便、直腸拭子
2. 飲用水、環境水
3. 0.45 µM 過濾膜過濾
4. TSB培養15 - 18小時
5. SS或CHROM shigella培養基
6. 37°C，18 - 20小時
7. 可疑菌落：SS 培養基呈現無色或粉紅色，CHROM shigella 培養基，底部背景為紅色，呈現白色或灰白色菌落
8. 三管生化反應及Oxidase
9. API 20 E 生化鑑定
10. 血清凝集反應
11. 符合
12. 不符合
13. 痢疾桿菌陽性
14. 痢疾桿菌陰性
附錄 21.2 生化反應判定表

<table>
<thead>
<tr>
<th>試驗</th>
<th>正反應</th>
<th>負反應</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS</td>
<td>黃色（斜面酸化）。指利用 Lactose 及 Sucrose 之能力。</td>
<td>紅色或不變色。指不利用 Lactose。</td>
</tr>
<tr>
<td>AB</td>
<td>黃色（基底酸化）或黑色（由於產硫化氫將黃色掩蓋）。指利用 Glucose 之能力。</td>
<td>紅色或不變色。指不利用 Glucose。</td>
</tr>
<tr>
<td>Gas</td>
<td>任何氣泡產生，指產生 CO₂ 及 H₂ 之能力。</td>
<td>無任何氣泡產生。</td>
</tr>
<tr>
<td>H₂S</td>
<td>產生黑色沉澱。</td>
<td>無黑色沉澱。</td>
</tr>
<tr>
<td>LIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IND</td>
<td>加入 Kovacs indole 試劑 5 滴後，培養基上層呈紅色。</td>
<td>不呈紅色（呈銅色）。</td>
</tr>
<tr>
<td>MOT</td>
<td>細菌生長遠離接種線，培養基呈混濁。</td>
<td>只生長於接種線上。</td>
</tr>
<tr>
<td>IPA</td>
<td>培養基出現棕褐色環。</td>
<td>不出現棕褐色環。</td>
</tr>
<tr>
<td>Oxidase test</td>
<td>紫色</td>
<td>無色（不變色）。</td>
</tr>
</tbody>
</table>
衛生福利部疾病管制署傳染病標準檢驗方法

編號： 痢疾阿米巴檢測(鏡檢法) 核准日期：
頁次：第 124 頁/共 1104 頁 修訂日期：

1 目的

建立以汞-碘-甲醛液染色、離心沉澱處理之糞便檢體，於顯微鏡下鑑別形態。
應用於疑似阿米巴性痢疾患者及個案接觸者之初步篩檢，最後確認需以分子
生物學檢驗法判定。

2 檢體種類與採檢容器

2.1 適用檢體種類與採檢容器: 請參照本署最新版傳染病檢體採檢手冊。
2.2 穩定性: MIF 糞渣低溫冷藏(2-8℃)冰箱下可保存至少 6 個月。

3 原理概述

本法具固定、染色、濃縮之功能，除了檢查痢疾阿米巴（囊體及活動體）外，
亦可同時檢查其他腸道原蟲（囊體及活動體）及蠕蟲（蟲卵和幼蟲）。MIF
溶液中之甲醛、丙酮及酒精可固定原蟲之形態；碘及伊紅可將原蟲之核、類
染色體等構造染色，Merthiolate 具防腐作用、可抑制細菌生長，伊紅可將背
景染成紅色以利觀察。

4 檢驗性能特徵

4.1 真實度: N/A
4.2 精密度: N/A
4.3 量測不確定度: N/A
4.4 分析特異性: N/A
4.5 分析靈敏度: N/A
4.6 偵測極限與定量極限: N/A
4.7 量測範圍: N/A
4.8 診斷特異性及診斷敏感度: N/A

5 病人準備:

請參照本署最新版傳染病檢體採檢手冊。

6 試劑耗材

6.1 試劑:

6.1.1 MIF 染劑已商品化(實用醫療公司. SY8044)，可直接購買使用。
內含魯氏碘液（Lugol’s iodine solution）60ml×2 及 MF 儲存液
470 ml ×2。
6.1.2 乙酸乙酯(Ethyl acetate)。

6.2 耗材

6.2.1 張氏糞便濃縮集卵瓶。
6.2.2 竹棒。
6.2.3 帶蓋塑膠標本盒。
6.2.4 PP 耐酸鹼尖底離心管。
6.2.5 塑膠滴管。
6.2.6 載玻片。
6.2.7 蓋玻片。
6.2.8 棉棒。
6.2.9 油鏡用油。

6.3 個人防護耗材
6.3.1 實驗衣。
6.3.2 乳膠手套。
6.3.3 平面口罩。

7 儀器設備
7.1 低速離心機。
 7.1.1 使用前確認具年度合格標籤。
 7.1.2 離心時若有異常，立刻停止轉動，靜置 30 分鐘再後續處理。
7.2 光學顯微鏡：10X 目鏡（加裝目鏡測微尺）搭配 10X、40X 與 100X 物鏡。
7.3 抽氣櫃。
7.4 高壓滅菌鍋。
 7.4.1 使用前確認具合格檢測標籤。
7.5 4℃冰箱(Whirpool)

8 環境與設施安全
8.1 於生物安全第二等級 (BSL-2) 實驗室之設施內操作。
8.2 操作處理乙酸乙酯之步驟需在抽氣櫃中進行。
8.3 操作實驗時，應穿著實驗衣及戴乳膠手套及口罩。
8.4 實驗操作時，若遭試劑或檢體接觸皮膚或黏膜時，應立即以大量清水沖洗。

9 校正程序
9.1 頻率: N/A。
9.2 校正液: N/A。
9.3 校正步驟: N/A。
9.4 數據儲存: N/A。
9.5 校正量測追溯: N/A。
9.6 允收標準: N/A。

10 品質管制
10.1 內部品管
 10.1.1 MIF (自配品管檢體)
 10.1.1.1 取尿沉渣(已確定內含白血球或上皮細胞)約 0.6 c.c 當品管檢體。
 10.1.1.2 將 MIF 6ml 加入 0.6ml 尿沉渣細胞內(10:1)染色 3 分鐘。
 10.1.1.3 顯微鏡鏡檢，若細胞染上紅色即為染液品管通過。
10.1.2 操作前檢視所有液及試藥是否過期。
10.1.3 每年一次能力評估執行內部品管，針對檢體製作與檢驗加作陽性(糞便)及陰性(糞便)對照組盲測。
10.1.4 顯微鏡之接目鏡測微尺每年需校正一次。
10.1.5 每年校正離心機一次。
10.1.6 所有品管結果應詳實紀錄，並定期由寄生蟲實驗室負責人審核。
10.1.7 實驗室應有參考書籍或掛圖及教學示範玻片。

10.2 外部品管
10.2.1 每年進行三次美國 CAP(Parasitology)之能力試驗，並將得分及合格項數記錄於「能力試驗摘要紀錄表」(RDC-QR-2101-02)。
10.2.2 於每年底提出下一年度之參加計劃。
10.2.3 接獲能力測試檢體時，應立即打開包裝，檢視檢體是否完整，若有洩漏或破損，應立即通知代理廠商處理。
10.2.4 能力測試結果，應於規定時間內寄出，同時影印副本保存。
10.2.5 能力測試檢體應適當保存，以供日後必要時之複驗。
10.2.6 能力測試結果，應作為重要品管參考依據，若有偏離允許範圍之情形發生，應依矯正及預防措施作業程序，加以矯正及採取預防措施。

11 檢驗步驟
11.1 檢驗步驟
11.1.1 新鮮大便 1g（約拇指頭大，解出不超過 1hr，解不出者再交與生理食鹽水洗腸灌腸），置於糞便濃縮集卵瓶。
11.1.2 配以 MF 儲存液: 魯氏碘液=15:1 比例新鮮配製，在使用前才混合，混合後立即使用。(MIF 配製後勿置放超過 24 小時，碘液會揮發而染色效果遞減)。
11.1.3 將 10 ml MIF 溶液加入含糞便之濃縮集卵瓶，以竹棒或攪拌棒充分攪拌均勻，於室溫靜置 overnight(overnight 染色效果最好，若無法 overnight，則至少 2 小時以上染色固定，才會上色均勻)。
11.1.4 拿掉黃色夾子，利用採便棒戳破薄膜，讓懸浮液經瓶內濾紙過濾至尖底管。
11.1.5 濾液以 12 mL 尖底離心管承接，以 MIF 溶液補足至 7 mL，離心管上需至少標示實驗室檢體編號及疾管署條碼(Barcode)，並確認送驗檢體姓名、疾管署條碼(Barcode)與送驗單資料是否吻合。
11.1.6 加入 0.5-1 mL 乙酸乙酯，加蓋塞住管口，上下振盪 30 sec。
11.1.7 以 2000 rpm 離心 2 min，以竹棒沿管壁旋轉一圈鬆動糞層，迅速倒掉上清液，保留沉澱物約 0.5-1 mL，立即以棉棒擦拭管壁周圍，以免乙酸乙酯回流影響鏡檢。
11.1.8 以塑膠滴管吸取沉澱物一滴於標示實驗室檢體編號及疾管署條碼之載玻片上，蓋上蓋玻片，先在低倍物鏡（10X）下觀察整
12 干擾與交互反應
12.1 在採檢前曾預防性投藥，蟲體形態變形，不利檢出，影響檢驗結果的正確性。
12.2 檢查腸道阿米巴原蟲，應儘可能採用 1 小時內的新鮮糞便，以免原蟲壞死。
12.3 若糞便中混有水、尿液或人體其他分泌物如經血，則可能破壞滋養體而導致檢出率下降。
12.4 勿使用甘油浣腸灌腸之糞便。
12.5 病人必須是沒有喝鋇、鉍、鎂或油脂，因此類大便是不適合作寄生蟲鏡檢。
12.6 檢體需不帶肥皂及滅菌劑。

13 結果判定
13.1 判定標準
13.1.1 腸道原蟲大小(單位: μm)為重要的判斷依據。
13.1.1.1 痢疾阿米巴和哈氏阿米巴型態相似，10μm 為 cyst 之界線，12μm 為 trophozoite 之界線。
13.1.2 腸道阿米巴原蟲鑑別要點：運動(偽足運動、鞭毛運動、纖毛運動)，細胞核(核的數目、核膜的厚薄、核膜內緣有無染色質、核膜染色質細緻或粗繡、核仁大小、形狀及位置)，活動體細胞質內容物(細菌、yeast、RBC、WBC) 等來加以區分。
13.1.3 記錄所觀察的原蟲、蟲卵與蟲體之種別，原蟲需註明是囊體或活動體。(如附錄 21.2 Entamoeba histolytica/E. dispar 之型態)
13.1.4 依據 1997 年 WHO 專家會議中決議：顯微鏡檢查如發現痢疾阿米巴之囊體及活動體，其檢驗結果應載明為「E. histolytica/ E. dispar」或「疑似痢疾阿米巴」。

13.2 報告核發
13.2.1 以本署 LIMS 系統進行報告核發。

13.3 結果登錄
13.3.1 將檢驗結果填寫於檢體送驗單之「檢驗結果」欄，並由 LIMS
系統輸入檢驗結果，點選報告送審，待實驗室主管核准後始正式對外釋出結果報告，並以電子傳真輸送。

13.3.2 檢體送驗單及原始列印檢驗結果自行歸檔。

14 生物參考區間/臨床決策值:
NOT FOUND : 沒發現任何囊體、活動體和其他病原體。

15 檢驗結果的可報告區間
15.1 未發現痢疾阿米巴原蟲(囊體或活動體)及其他病原體，報告以「Not found」發出。
15.2 鏡檢結果為疑似痢疾阿米巴原蟲(囊體、活動體或囊體及活動體)，其檢驗結果應載明為「E. histolytica/E. dispar」或「疑似痢疾阿米巴」囊體、活動體或囊體及活動體。
15.3 若發現其他病原體，則直接以發現的病原體名稱發出。

16 結果超出量測區間之操作說明: N/A

17 危急值/異常值
17.1 危急值: 當鏡檢結果為「疑似痢疾阿米巴」，須填寫危險值(陽性個案)通報紀錄表(RDC-QR-2201-02)。
17.2 異常通報: 當鏡檢結果為「疑似痢疾阿米巴」，則將結果輸入 LIMS，經 PI 審核報告會自動上傳至傳染病通報通報系統並同步傳真給通報醫院及當地衛生局及區管中心。

18 臨床意義
18.1 痢疾阿米巴主要寄生於腸道，可能侵犯宿主腸壁組織，引發腸道病徵，輕微者腹部不適、間歇性下痢或便秘，重者伴隨發燒、寒顫、血便或黏液軟便。此外，也可能發生次發性腸外感染，其中以肝膿瘍(liver abscess)最为普遍，更甚者為肺膿瘍或腦膿瘍等。因大部分感染者沒有症狀，故主要經由糞便檢驗。痢疾阿米巴之形態與腸道共生原蟲 E. dispar 相同，鏡檢不易區分，所以目前確認的方法是 Real-time PCR 確認；此外，病例也可能因發生腸道或腸外之侵入性感染，可經由醫院病理組織切片檢驗確認。抽血檢驗痢疾阿米巴的血清抗體反應，其檢驗陽性並不一定代表現階段感染，抽血僅能作為參考。糞便檢體鏡檢發現疑似痢疾阿米巴之囊體或活動體，則為疑似病例；若糞便檢體經聚合酶連鎖反應檢驗陽性或經醫院病理組織切片檢驗發現痢疾阿米巴活動體者，則為確定病例。
18.2 阿米巴痢疾目前是列為我國第二類法定傳染病，發現後需立即 24 小時內通報疾管署進一步確認，以利投藥治療及控制疫情發生。
18.3 陰性結果不代表病人未受痢疾阿米巴感染，有可能因病人做預防性投藥等因素。
19 變異的潛在來源
19.1 檢體不新鮮、放置太久會造成阿米巴原蟲形態改變。
19.2 痢疾阿米巴可能間歇性排放，鏡檢檢出率不穩，故需於7天內採三次粪便送疾管署做分子生物學核酸檢驗確認是痢疾阿米巴原蟲。
19.3 痢疾阿米巴之形態與腸道共生原蟲E. dispar相似，鏡檢無法區分，國內目前確認的方法是以Reai-time PCR進行鑑別診斷。
19.4 高溫可殺死囊體，影響檢出率。
19.5 粪便濃縮集卵法檢驗限制，每公克糞便1000隻以上，方可驗出。
19.6 鏡檢因涉及人員經驗、技術等因素，可影響檢驗之敏感性。
19.7 若寄生在腸道以外（例如：肝膿瘍、肺膿瘍等），原蟲囊體可能無法經由腸道排出。

20 參考文件
20.1 RDC-QP-1601 安全衛生作業程序
20.6 實用醫療有限公司 MIF染色固定液 Cat.No.SY8044 試劑說明書
20.7 實用醫療有限公司 CEFA 粪便濃縮集卵瓶操作說明書
20.8 余森海、許隆棋, 人體寄生蟲學彩色圖譜，藝軒出版社，2002

21 附錄
21.1 痢疾阿米巴檢驗流程圖。
21.2 Entamoeba histolytica/E. dispar 之型態
附錄 21.1 痢疾阿米巴檢驗流程圖

取得待測檢體

將檢體編碼建檔

檢體分析

教養院主動篩檢或
聚集性感染之大批檢體

一般通報檢體

ELISA 篩檢

MIF 鏡檢

Real-time PCR

陽性(+) 陰性(-) 陽性(+) 陰性(-) 陽性(+) 陰性(-)

採檢三次

糞便檢體

Real-time PCR

陽性(+) 陰性(-)

治療後一個月再採

檢三次糞便追蹤

附錄 21.2 Entamoeba histolytica/E. dispar 之型態

囊體(cyst)

1~4 個核，未成熟囊體 1~2 個核，通常 12-15 um。核周染色值(PC)顆粒細緻，通
常大小一致且分布均勻，核仁(KC)小，密實或分散的，通常居中，偶而偏心。類
染色體呈長棒形，邊緣圓鈍。
活動體(trophozoite)

1 個核，通常 20-30 um。染色值(PC)顆粒細緻，通常大小一致且分布均勻，核仁(KC)小，密實或分散的，通常居中，偶而偏心。細胞質外觀呈細緻顆粒，內含細菌或 RBC。
衛生福利部疾病管制署傳染病標準檢驗方法

編號：

痢疾阿米巴糞便核酸檢測
(兩階段巢式PCR)

核准日期：年 月 日
修訂日期：年 月 日

頁次：第 132 頁/共 1104 頁

1 目的
以痢疾阿米巴Small subunit ribosomal RNA gene（SSU-rDNA）為偵測標的，建立分子生物學確認檢驗方法，以利第二類法定傳染病阿米巴性痢疾個案確認及防疫工作之進行。

2 適用檢體種類
新鮮糞便、潰瘍組織刮除物及膿瘍抽出物。

3 名詞解釋
無。

4 原理概述
根據GenBank資料庫之E. histolytica和E. dispar的SSU-rDNA序列，其基因庫之索引號碼及其DNA序列長度分別是E. histolytica：gi 9283/emb X56991（長度1947-bp）；E. dispar：gi 1212896/emb Z49256（長度1949-bp），以GCG系統(genetic computer group package)進行比對而設計PCR(polymerase chain reaction，聚合酶鏈鎖反應)引子，設計為巢式(nested)暨兩階段式(two step)以增加敏感度，並利用引子3’端對兩者序列之選擇性黏合為原則，可同時對兩個種別進行鑑別，引子的特異性經由BLAST程式對GenBank資料庫進行搜尋比對及PCR產物直接定序而確認。

5 試劑耗材
5.1 檢體保存液：5.3M GIT（guanidine isothiocyanate）
5.2 1.5 mL 離心管
5.3 核酸萃取試劑組：MagNa pure LC DNA isolation Kkit III（Bacteria, Fungi）
5.3.1 清洗緩衝液I（wash buffer I）
5.3.2 清洗緩衝液II（wash Buffer II）
5.3.3 清洗緩衝液III（wash buffer III）
5.3.4 溶解/吸附緩衝液（lysis/binding buffer）
5.3.5 磁性玻璃微粒懸浮液（magnetic glass particles(MGPs) suspension）
5.3.6 萃取緩衝液（elution buffer）
5.4 核酸萃取器（MagNa pure LC）耗材
5.4.1 小試劑槽（reagent tubs small）
5.4.2 中試劑槽（reagent tubs medium M20）
5.4.3 大試劑槽（reagent tubs large）
5.4.4 檢體槽（sample cartridge）
5.4.5 反應槽（processing cartridge）
5.4.6 吸管保存槽（tip stand）
5.4.7 大微量吸管（reaction tips large）
5.4.8 小微量吸管（reaction tips small）
5.5 PCR試劑
5.5.1 5μM Outer 1 primer（5’-GAA ATT CAG ATG TAC AAA GA-3’）。
5.5.2 5 µM Outer 1R primer（5'- CAG AAT CCT AGA ATT TCA C-3'）。
5.5.3 10 µM Eh 1 primer（5'- AAG CAT TGT TTC TAG ATC TG-3'）。
5.5.4 10 µM Eh 2 primer（5'- CAC GTT AAA AGA GGT CTA AC-3'）。
5.5.5 10 µM Ed1 primer(5'- AAA CAT TGT TTC TAA ATC ATC CA-3')。
5.5.6 10 µM Ed2 primer（5'- ACC ACT TAC TAT CCC TAC C-3'）。
5.5.7 10X PCR buffer。
5.5.8 2 mM dNTP（dGTP, dCTP, dTTP, dATP 2 mM each）。
5.5.9 10X Dye（20 %[w/v] Sucrose, 1mM Cresol Red）。
5.5.10 25 mM MgCl₂。
5.5.11 AmpliTaq Gold DNA polymerase（5 units/µL）。
5.5.12 5 mg/mL BSA。
5.5.13 純水（pure water）。

5.6 電泳分析試劑
5.6.1 洋菜膠（Agarose）。
5.6.2 1X TBE 電泳緩衝液：1X TBE（tris-borate-EDTA） buffer。
5.6.3 DNA 分子量指標：100 bp Ladder marker。
5.6.4 染色液：0.5 µg/mL Ethidium bromide。

6 儀器設備
6.1 控溫震盪加熱器。
6.2 高速離心機。
6.3 核酸萃取器：MagNA Pure LC。
6.4 聚合酶鈾鎖反應器：96 孔 GeneAmp® PCR system 9700（Applied Biosystems, CA, USA）。
6.5 電泳槽（Mupid II）。
6.6 紫外線照相系統。

7 環境設施安全
無。

8 檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。
10 檢驗步驟
10.1 檢體 DNA 萃取：
10.1.1 將已處理之檢體，置於控溫震盪加熱器 95 ℃ 加熱 30 min。
10.1.2 冷卻至室溫，置於高速離心機以 14,000 rpm 離心 5 min。
10.1.3 移取 250 μL 上清液至檢體槽（sample cartridge）。
10.1.4 將檢體槽置入核酸萃取器（MagNA pure LC）進行 DNA 萃取。
10.1.5 檢體 DNA 最後溶於 100 μL 萃取緩衝液（elution buffer）。
10.1.6 移取檢體 DNA 至 1.5 mL 離心管，置於 4 ℃ 冰箱冷藏保存。

10.2 第一階段 PCR：
10.2.1 配置 PCR 反應混合液，每一檢體其反應包括以下成分：

<table>
<thead>
<tr>
<th>PCR 試劑</th>
<th>體積(μL)</th>
<th>濃度(總體積 25 μL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 μM Outer 1 primer</td>
<td>2.5</td>
<td>0.5 μM</td>
</tr>
<tr>
<td>5 μM Outer 1R primer</td>
<td>2.5</td>
<td>0.5 μM</td>
</tr>
<tr>
<td>10X PCR buffer</td>
<td>2.5</td>
<td>1X</td>
</tr>
<tr>
<td>2 mM dNTP</td>
<td>2.5</td>
<td>200 μM</td>
</tr>
<tr>
<td>10X Dye</td>
<td>2.5</td>
<td>1X</td>
</tr>
<tr>
<td>25 mM MgCl₂</td>
<td>1.5</td>
<td>1.5 mM</td>
</tr>
<tr>
<td>AmpliTaq Gold(5 U/μL)</td>
<td>0.2</td>
<td>0.04 U/μL</td>
</tr>
<tr>
<td>5 mg/mL BSA</td>
<td>0.5</td>
<td>0.1 μg/μL</td>
</tr>
<tr>
<td>Pure water</td>
<td>7.8</td>
<td></td>
</tr>
<tr>
<td>總體積</td>
<td>22.5</td>
<td></td>
</tr>
</tbody>
</table>

10.2.2 分裝 22.5 μL PCR 反應混合液至 0.2 mL 薄壁 PCR 反應管。
10.2.3 每一 PCR 反應管加入 2.5 μL 檢體 DNA。
10.2.4 將 PCR 反應管置入聚合酶鍊鎖反應器進行反應（總體積 25 μL）：

<table>
<thead>
<tr>
<th>PCR 反應期</th>
<th>溫度(℃)</th>
<th>時間(分:秒)</th>
<th>循環數</th>
</tr>
</thead>
<tbody>
<tr>
<td>酵素活化</td>
<td>95</td>
<td>10:00</td>
<td>1</td>
</tr>
<tr>
<td>DNA 解離 Primer 粘合</td>
<td>95</td>
<td>00:15</td>
<td>35</td>
</tr>
<tr>
<td>聚合反應</td>
<td>47</td>
<td>00:15</td>
<td>35</td>
</tr>
<tr>
<td>後聚合反應</td>
<td>72</td>
<td>01:00</td>
<td>1</td>
</tr>
<tr>
<td>停止反應</td>
<td>8</td>
<td>∞</td>
<td>1</td>
</tr>
</tbody>
</table>

10.3 第二階段 PCR：
10.3.1 配置 PCR 反應混合液，每一檢體進行 A、B 兩次反應分別包括以下成分：

<table>
<thead>
<tr>
<th>PCR 試劑</th>
<th>體積(μL)</th>
<th>體積(μL)</th>
<th>濃度(總體積 25 μL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 μM Eh1 primer</td>
<td>1.25</td>
<td>-</td>
<td>0.5 μM</td>
</tr>
<tr>
<td>10 μM Eh2 primer</td>
<td>1.25</td>
<td>-</td>
<td>0.5 μM</td>
</tr>
<tr>
<td>10 μM Ed1 primer</td>
<td>-</td>
<td>1.25</td>
<td>0.5 μM</td>
</tr>
<tr>
<td>10 μM Ed2 primer</td>
<td>-</td>
<td>1.25</td>
<td>0.5 μM</td>
</tr>
<tr>
<td>10X PCR buffer</td>
<td>2.5</td>
<td>2.5</td>
<td>1X</td>
</tr>
</tbody>
</table>
衛生福利部疾病管制署傳染病標準檢驗方法

<table>
<thead>
<tr>
<th>疾病</th>
<th>核準日期</th>
<th>修訂日期</th>
</tr>
</thead>
<tbody>
<tr>
<td>痢疾阿米巴糞便核酸檢測 (兩階段巢式 PCR)</td>
<td>年 月 日</td>
<td>年 月 日</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>預備試劑</th>
<th>用量(mM)</th>
<th>用量(mL)</th>
<th>用量(μL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 mM dNTP</td>
<td>2.5</td>
<td>2.5</td>
<td>200 μM</td>
</tr>
<tr>
<td>10X Dye</td>
<td>2.5</td>
<td>2.5</td>
<td>1X</td>
</tr>
<tr>
<td>25 mM MgCl₂</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5 mM</td>
</tr>
<tr>
<td>Amplicon Gold(5 U/μL)</td>
<td>0.2</td>
<td>0.2</td>
<td>0.04 U/μL</td>
</tr>
<tr>
<td>5 mg/mL BSA</td>
<td>0.5</td>
<td>0.5</td>
<td>0.1 μg/μL</td>
</tr>
<tr>
<td>Pure water</td>
<td>10.8</td>
<td>10.8</td>
<td></td>
</tr>
<tr>
<td>總體積</td>
<td>23.0</td>
<td>23.0</td>
<td></td>
</tr>
</tbody>
</table>

10.3.2 分裝PCR反應混合液23.0 μL至0.2 mL薄壁PCR反應管
10.3.3 每一PCR反應管加入2.0 μL第一階段PCR產物
10.3.4 將PCR反應管置入聚合酶鏈鎖反應器進行反應（總體積25 μL）：

<table>
<thead>
<tr>
<th>PCR反應期</th>
<th>溫度(℃)</th>
<th>時間(分:秒)</th>
<th>循環數</th>
</tr>
</thead>
<tbody>
<tr>
<td>酵素活化</td>
<td>95</td>
<td>10:00</td>
<td>1</td>
</tr>
<tr>
<td>DNA解離</td>
<td>95</td>
<td>00:15</td>
<td>45</td>
</tr>
<tr>
<td>Primer結合</td>
<td>52</td>
<td>00:15</td>
<td>1</td>
</tr>
<tr>
<td>聚合反應</td>
<td>72</td>
<td>01:00</td>
<td>1</td>
</tr>
<tr>
<td>後聚合反應</td>
<td>72</td>
<td>06:00</td>
<td>1</td>
</tr>
<tr>
<td>停止反應</td>
<td>8</td>
<td>∞</td>
<td>1</td>
</tr>
</tbody>
</table>

10.4 PCR產物電泳分析：
10.4.1 配製2%洋菜膠片（含1X TBE電泳緩衝液）。
10.4.2 電泳分析：將第二階段PCR反應A及B管等量混合，取10 μL置於膠片孔洞，與2.5 μL 100 bp ladder marker一併於100伏特電壓下（1X TBE電泳緩衝液），電泳30 min。
10.4.3 膠片染色:將洋菜膠片置於0.5 μg/mL ethidium bromide染色10 min，繼以蒸餾水脫色10 min。
10.4.4 將膠片置於紫外線照相系統，擷取圖片，記錄結果。

11 結果判定
11.1 判讀標準
11.1.1 以第二階段PCR反應(A+B)產物長度與DNA分子量指標比較判讀後，鑑別阿米巴種別。
11.1.2 E. histolytica 陽性：447 bp。
11.1.3 E. dispar 陽性：603 bp。
11.1.4 E. histolytica及E. dispar 陽性：447 bp及603 bp。（附錄15.2）
11.2 報告核發：於傳染病通報系統內輸入檢驗結果：在病原體檢驗方法項目中選擇，聚合酶鏈鎖反應，在檢驗結果項目中輸入陽性(E. histolytica)或其他病原體(E. dispar)或陰性（未分離到病原體）。
11.3 結果登錄：將樣本之檢驗結果登錄於檢體送驗單並加蓋檢驗者印章，送報告簽署人審核及蓋章，並登錄於網路報告系統。

12 品質管制
12.1 每次操作應包含陽性及陰性對照檢體。
12.2 陽性對照檢體：新鮮正常人糞便與 E. histolytica ATCC 蟲株（HM-1: IMSS）100 - 1,000 個細胞混合製成。
12.3 陰性對照：純水。
12.4 每次操作時加以記錄，並定期由寄生蟲實驗室主管審閱。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事務廢棄物，應先以滅菌袋妥密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

15 附錄
15.1 痢疾阿米巴分子生物學確認檢驗所用引子之序列。
15.2 E. histolytica 與 E. dispar 在巢式聚合酶鏈鎖反應之結果。
附錄 15.1 痢疾阿米巴分子生物學確認檢驗所用引子之序列

<table>
<thead>
<tr>
<th>Category</th>
<th>Primer pairs(forward+reverse)</th>
<th>PCR product size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primers for Entamoeba histolytica/dispar SSU-rDNA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 1st step PCR | Outer1: 5’- GAA ATT CAG ATG TAC AAA GA -3’
Outer1R : 5’- CAG AAT CCT AGA ATT TCA C -3’ | 823 bp |
| Primers for *Entamoeba histolytica/dispar* differentiation | | |
| 2nd step PCR | EH1 : 5’- AAG CAT TGT TTC TAG ATC TG -3’
EH2 : 5’- CAC GTT AAA AGA GGT CTA AC -3’
ED1 : 5’- AAA CAT TGT TTC TAA ATC CA -3’
ED2 : 5’- ACC ACT TAC TAT CCC TAC C -3’ | 447 bp
603 bp |
附錄 15.2 E. histolytica 與 E. dispar 在巢式聚合酶鍵鎖反應之結果

Lane M：100 bp Marker；Lane 1-5 使用 Eh1/Eh2 primer，Lane 1 與 2 是檢體中 E. histolytica SSU-rDNA 之 447 bp 的增幅基因片段；Lane 6-10 使用 Ed1/Ed2 primer，Lane 6 與 7 是檢體中 E. dispar SSU-rDNA 之 603 bp 的增幅基因片段；Lane 3、8 是 GuSCN 陰性對照（進行檢體 DNA 抽取時，另取 250 μL 5.35 M GuSCN 進行同步 DNA 及 PCR 反應）；Lane 4、9 是無菌水陰性對照（以 2.5 μL H2O 取代 DNA template 進行兩階段之 PCR 反應）；Lane 5、10 是陽性糞便對照（將 E. histolytica cells 與 E. dispar cells 加入 0.5 g 糞便後進行同步 DNA 抽取及 PCR 反應）。
目的
建立痢疾阿米巴高危险群之大量筛检方法，协助痢疾阿米巴防治工作。本方法不建议作为最后确认诊断之用途。

适用检体种类
直肠拭子，新鲜、冷藏或冷冻粪便。

名词解释
无。

原理概述
以固相酵素免疫分析法，侦测粪便中痢疾阿米巴特异抗原(EHSA)之存在。稀释后之粪便检体，加入已吸附anti-EHSA抗体之微量分析孔盘。若粪便中有EHSA抗原存在，则会被孔盘上之Anti-EHSA抗体捕捉。随后加入标测有Horseradish peroxidase酵素的Anti-EHSA抗体。最后加入受质，受质经酵素催化会呈现黄色。

5 资料耗材
5.1 96孔Microplate(微量分析盘)：每孔附著Anti-EHSA抗体。
5.2 Enzyme conjugate(偶合酵素，绿瓶)：1瓶(25 mL)。
5.3 Positive control(阳性对照)：1瓶(4 mL)。
5.4 Negative control(阴性对照)：1瓶(25 mL)。
5.5 Specimen dilution Buffer(检体稀释液)：1瓶(110 mL)，含Thimerosal。
5.6 Wash buffer(10X清洗液)：1瓶(110 mL)，含Thimerosal。
5.7 Color substrate(呈色受质)：1瓶(25 mL)。
5.8 Stop solution反应终止液(corrosive)：1瓶(6 mL)。
5.9 採检棒(无菌棉棒)。
5.10 採检管(17 × 100 mm)。
5.11 塑胶滴管(1 mL)。
5.12 纸巾。
5.13 Cary Blair运送培養基。
5.14 無菌生理食盐水。

6 儀器設備
6.1 震盪器。
6.2 八爪微量分注吸管。

7 環境设施安全
7.1 部分试剂溶液含Thimerosal，对皮肤、眼睛及黏膜具刺激性，不慎接触时应以大量清水冲洗。
7.2 反应终止液具腐蚀性，特别小心。
7.3 呈色受质对光敏感。若已变色，应丢弃勿用。
8 檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252B8E869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252B8E869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體處理
10.1.1 直腸拭子或新鮮糞便檢體（成型便或軟便：將採檢棒完全覆蓋；水樣便：用三支採檢棒或取 300 μL）置於採檢管。
10.1.2 每一採檢管加 0.5 - 1 mL Specimen dilution buffer，稀釋倍數為 1:10。
10.1.3 震盪混合均勻。
10.1.4 稀釋後之檢體若暫不處理，可置室溫 8 hr 或冷藏達 48 hr。
10.2 試劑與檢體回溫至室溫。
10.3 以蒸餾水稀釋 Wash buffer（10X）為 1X。
10.4 自鋁箔包中取出需要量之 Strip 或 Well，置入 Strip well holder 中。未用之 Strip 或 Well 應重新密封好，存放於冰箱。
10.5 分別取 4 滴（200 μL） Negative control、Positive control 各加入對應之孔中；取 6 滴（200 μL）已稀釋之待測檢體，加於孔中。
10.6 室溫下靜置 60 min。（最後一個檢體加完後開始計時）
10.7 甩掉內容物，以 1X Wash buffer（375 - 400 μL/孔）清洗孔 3 次，可以將孔盤扣住紙巾以吸掉過多的 Wash buffer 但避免孔完全乾掉。
10.8 加 4 滴（200 μL） Enzyme conjugate（綠瓶）。
10.9 室溫下靜置 30 min。
10.10 甩掉內容物，以 1X Wash buffer 清洗 孔 5 次。
10.11 加 4 滴（200 μL）呈色受質。
10.12 室溫下靜置 10 min。
10.13 加 1 滴（50 μL）反應終止液。輕輕敲擊 Strip well holder 邊緣混合至黃色均勻呈現。
10.14 於 10 min 內觀察呈色，對照呈色判讀卡之顏色判讀結果。

11 結果判定
11.1 判讀標準
11.1.1 目測：以肉眼比較孔盤內及呈色判讀卡之顏色判讀。
11.1.2 陽性：黃色（＞1+）。
11.1.3 陰性：無色。
11.1.4 篩檢結果為「陽性」者，必須於 24 hr 內通報轄區衛生單位，
於七日內重新採取三次（每天一次）之新鮮糞便檢體（至少拇指大小之量、勿加任何固定液，4 ℃保存），併同送驗單，於每次採檢後24 hr內冷藏送至疾病管制署進行鑑別診斷。

11.2 報告核發：不適用。
11.3 結果登錄：不適用。

12 品質管制
12.1 操作前確認試劑在有效期限內。
12.2 每次操作應包含陽性及陰性對照檢體。
12.3 陽性對照：黃色（至少呈 2+）。
12.4 陰性對照：無色。
12.5 施測時若對照組呈色結果不符時，應檢視試劑、對照組及清洗步驟，並進行整組重測。
12.6 每次操作時應加以記錄，定期由寄生蟲實驗室主管審閱。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以121 ℃、30 min高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
14.1 ProSpect® Entamoeba histolytica Microplate Assay 試劑組說明書。

15 附錄
15.1 ProSpect® Entamoeba histolytica microplate assay procedure Card(簡易操作流程及呈色判讀卡)。
附錄 15.1 簡易操作流程及呈色判讀卡

Specimen Preparation
1. Remove 100 μl stool (300 μl if dilute) from specimen container using swab or pipette.
2. Suspend stool in Specimen Dilution Buffer.

Test Procedure
3. Add 4 drops (200 μl) Negative Control, Positive Control, or diluted patient specimen into microplate wells.
4. Wash wells 3 times with Wash Buffer.
5. Add 4 drops (200 μl) Enzyme Conjugate.
6. Wash wells 5 times with Wash Buffer.
7. Add 4 drops (200 μl) Color Substrate to each well.
8. Add 1 drop (50 μl) Stop Solution to each well. Mix.
9. Read reactions visually, or on spectrophotometer at 450 nm within 10 minutes.

ProSpect® E. histolytica Microplate Assay
Interpretation of Results

Visual
1. Compare the color in each well with the color panels below.
2. Read control results first. The intensity of color in the Positive Control should be ≥2+ color shown. The Negative Control should be colorless.
3. Positive tests develop color within the range shown below.
 - Negative tests are colorless.

Spectrophotometer
1. Read the Negative Control at 450 nm. The O.D. of the Negative Control should be ≤0.100.
2. Blank the reader on the Negative Control.
3. Read the Positive Control. The O.D. of the Positive Control should be ≥0.300.
4. Read the test results:
 - Positive tests have O.D. values ≥0.050.
 - Negative tests have O.D. values < 0.050.

For customer and technical assistance, call (913) 888-0939 or in the U.S. call (800) 255-6730
目的

以分子生物學檢驗方法確認痢疾阿米巴原蟲(Entamoeba histolytica)感染並與
迪斯帕阿米巴原蟲(E. dispar)區分，彌補兩者型態學無法以染色鏡檢區分的問
題，以利第二類法定傳染病阿米巴性痢疾個案確認及防疫工作之進行。

適用檢體種類

新鮮糞便、潰瘍組織刮除物及膿瘍抽出物。

名詞解釋

Threshold cycle (Ct)：係指PCR產物複製的量，累積到足以被偵測到的第一
個循環點稱之。換句話說，Ct的值越小，表示檢體中初始DNA的含量越多。

原理概述

根據GenBank 資料庫之E. histolytica 和E. dispar 的SSU-rDNA 序列，其基
因庫之索引號碼及其DNA序列長度分別是E. histolytica：110 bp (Genbank
accession no: E. histolytica: X64142, X56991)；E. dispar：111 bp，(Genbank
accession no: E. dispar: Z49256)，利用不同顏色的E. histolytica與E. dispar探針
達成陽性檢體的區分。標記兩種螢光的DNA探針來偵測聚合酶鏈反應的產物。
此DNA探針的5’端標記一報告染劑（reporter dye），3’端則標記一遮蔽染劑
（quencher dye），完整的DNA探針其報告染劑所散發出的螢光會被遮蔽染劑
所掩蓋。當聚合酶進行延伸反應（extension phase）時，具有從5’端DNA切
割活性的DNA聚合酶將探針切割，使得5’端報告染劑與3’端遮蔽染劑分開，
遮蔽效應被破壞，此時即可偵測到螢光反應。

試劑耗材

5.1 檢體保存液：6M GIT(Guanidine isothiocyanate)
5.2 1.5mL 離心管
5.3 核酸萃取試劑組：MagNa Pure LC DNA Isolation Kit III(Bacteria, Fungi)
 5.3.1 清洗緩衝液 I(Wash Buffer I)
 5.3.2 清洗緩衝液 II(Wash Buffer II)
 5.3.3 清洗緩衝液 III(Wash Buffer III)
 5.3.4 溶解/吸附緩衝液(Lysis/Binding Buffer)
 5.3.5 磁性玻璃微粒懸浮液(Magnetic Glass Particles(MGPs)
 Suspension)
 5.3.6 萃取緩衝液(Elution Buffer)
5.4 核酸萃取器(MagNa Pure LC)耗材
 5.4.1 小試劑槽(Reagent Tubs small)
 5.4.2 中試劑槽(Reagent Tubs medium M20)
 5.4.3 大試劑槽(Reagent Tubs large)
 5.4.4 檢體槽(Sample Cartridge)
5.4.5 反應槽 (Processing Cartridge)
5.4.6 吸管保存槽 (Tip Stand)
5.4.7 大微量吸管 (Reaction Tips large)
5.4.8 小微量吸管 (Reaction Tips small)

5.5 Real-time PCR 試劑
5.5.1 10μM EntaTaq-L (5'-GGACACATTCAATTGCCTA-3')
5.5.2 10μM EntaTaq-R (5’-CATCACAGACCTGTTATGCTG-3’)
5.5.3 5μM EntaTaq1463H (5’-YAK-TGTAGTTATCTAATTTCGGTTAGACC-3’)
5.5.4 5μM EntaTaq1465D (5’-FAM-TGTTAGTTATCTAATTTCGATTAGAACTC-3’)
5.5.5 純水 (Pure Water)
5.5.6 Reaction Mix (LightCycler TaqMan Master kit)

5.6 Real-time PCR 儀器 LightCycler 所需之檢體毛細管
5.7 無菌 1.5 mL 微量離心管
5.8 無粉手套

6 儀器設備
6.1 控溫震盪加熱器
6.2 高速離心機
6.3 全自動核酸萃取儀 (MagNA pure 2.0 auto Nuclear acid extraction system)
6.4 即時聚合酶鍊鎖反應器：LightCycler 2.0
6.5 微量吸管 (pipettemen): 10 μL, 100 μL, 200 μL, 1000 μL
6.6 第 II 級生物安全櫃 (class II BSC)
6.7 冰箱：4 °C
6.8 冷凍櫃：-20 °C
6.9 高壓滅菌鍋
6.11 即時核酸定量分析儀離心機 (LightCycler centrifuge System)

7 環境設施安全
7.1 病人檢體應在第 II 級生物安全櫃內處理。
7.2 檢驗操作在生物安全第二等級（BSL-2）實驗室進行。
7.3 應有獨立的操作空間，盡量與操作 DNA 有關的實驗室分開，以避免污染，影響結果。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟

10.1 檢體前處理

10.1.1 實驗室於收到檢體及送驗單後，先行核對檢體種類、姓名、數量等資料正確與否，並依序登錄於紀錄簿。

10.1.2 將送來之糞便檢體刮取約一粒花生米大小的量，置入含有 2 mL 之 6M guanidine thiocyanate (GIT) 小管中，稍微攪拌均勻。

10.2 步驟:

10.2.1 將已處理之檢體，置於控溫震盪加熱器 95℃ 加熱 30 分鐘。

10.2.2 冷卻至室溫，置於高速離心機以 13,000 rpm 離心 3 分鐘。

10.2.3 移取 250μL 上清液至檢體槽(Sample Cartridge)。

10.2.4 將檢體槽置入核酸萃取器(MagNA Pure LC)進行 DNA 萃取。

10.2.5 檢體 DNA 總後溶於 100μL 萃取緩衝液(Elution Buffer)。

10.2.6 移取檢體 DNA 至 1.5mL 離心管，置於 4℃ 冰箱冷藏保存。

10.2.7 Real-time PCR 製備試劑:

10.2.7.1 製備 Primer

以 H2O 將 Primer 溶解，使其濃度為 100 μM，再以 H2O 將 Primer 稀釋到 10 μM。

10.2.7.2 製備 Probe:

以 H2O 將 Probe 溶解，使其濃度為 20 μM，再以 H2O 將 Primer 稀釋到 5 μM。

10.2.8 PCR 反應混合液，每一檢體其反應包括以下成分:

<table>
<thead>
<tr>
<th>PCR 試劑</th>
<th>體積(μL)</th>
<th>濃度(總體積 20μL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10μM EntaTaq-L</td>
<td>2</td>
<td>1μM</td>
</tr>
<tr>
<td>10μM EntaTaq-R</td>
<td>2</td>
<td>1μM</td>
</tr>
<tr>
<td>5μM EntaTaq1463H</td>
<td>1</td>
<td>0.25μM</td>
</tr>
<tr>
<td>5μM EntaTaq1465D</td>
<td>1</td>
<td>0.25μM</td>
</tr>
<tr>
<td>Pure Water</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Reaction Mix</td>
<td>4</td>
<td>1X</td>
</tr>
<tr>
<td>總體積</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

10.2.9 取 15 μL PCR mix 至 LightCycler capillary。

10.2.10 加入 DNA template 各 5 μL。

10.2.11 將各毛細管封上專用蓋子。

10.2.12 離心 700 × g，5 sec。

10.2.13 將毛細管放入檢體轉盤。

10.2.14 將 PCR 反應管置入聚合酶鍵鎖反應器進行反應(總體積 20μL):
衛生福利部疾病管制署傳染病標準檢驗方法

編號：痢疾阿米巴分子生物學確認檢驗

(即時 Real time PCR 法)

核准日期： 年 月 日

修訂日期： 年 月 日

<table>
<thead>
<tr>
<th>PCR 反應期</th>
<th>溫度(℃)</th>
<th>時間(分：秒)</th>
<th>循環數</th>
</tr>
</thead>
<tbody>
<tr>
<td>酵素活化</td>
<td>95</td>
<td>7:00</td>
<td>1</td>
</tr>
<tr>
<td>DNA 解離</td>
<td>95</td>
<td>00:10</td>
<td>50</td>
</tr>
<tr>
<td>Primer 粘合</td>
<td>53</td>
<td>00:25</td>
<td></td>
</tr>
<tr>
<td>聚合反應</td>
<td>72</td>
<td>00:02</td>
<td></td>
</tr>
<tr>
<td>冷卻</td>
<td>40</td>
<td>00:30</td>
<td>1</td>
</tr>
</tbody>
</table>

10.2.15 用 Roche LightCycler 2.0，530nm 560nm 波長預設判讀，並擷取圖片，記錄結果。

11 結果判定

11.1 判讀標準

11.1.1 以 Roche LightCycler 2.0 放大曲線作比較判讀後，鑑別阿米巴種別。

11.1.2 E. histolytica 陽性：560 nm 有螢光曲線產生(Ct 值小於 39 cycles) ，則可判定為陽性。

11.1.3 E. dispar 陽性：530 nm 有螢光曲線產生(Ct 值小於 39cycles)，則可判定為陽性。

11.1.4 E. histolytica 及 E. dispar 陽性：560 nm 及 530 nm 有螢光曲線產生 (Ct 值小於 39 cycles)，則可判定為陽性。

11.2 報告核發：於傳染病通報系統內輸入檢驗結果：在病原體檢驗登入之檢驗方法項目中選擇螢光定量聚合酶連鎖反應(real-time PCR)，在檢驗結果項目中輸入陽性或陰性或其他病原體。最後在檢驗報告之綜合檢驗結果項目輸入陽性或陰性或已結案。

11.3 結果登錄：將檢體之檢驗結果登錄於檢體送驗單並加蓋檢驗者印章，送報告簽署人審核及蓋章，並登錄於網路報告系統。

12 品質管制

12.1 每次進行實驗時皆有對照組，陽性對照組與陰性對照組的 Ct 值需符合設定值。

12.2 陽性對照檢體：新鮮正常人糞便與 E. histolytica ATCC 蟲株(HM-1: IMSS)100~1000 個細胞混合製成。

12.3 陰性對照：純水。

12.4 每次操作時加以紀錄並定期由寄生蟲實驗室室主管審閱。

12.5 實驗過程遵循 SOP 的作業規範與流程，並在個別獨立的操作空間內操作，以避免污染。

12.6 Pipettman 做定期的校正。

12.7 注意檢測套組的使用期限與適當的儲放溫度。

13 廢棄物處理

檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。
14 參考資料
14.2 2010. Evaluation of a new single-tube multiplex real-time PCR for the
diagnosis of E. histolytic and E. dispar. Journal of Parasitology,
14.3 羅氏 LightCycler TaqMan Master kit 使用說明書 (Version 8)

15 附錄
15.1 痢疾阿米巴分子生物學確認檢驗所用引子之序列
15.2 阿米巴病原體檢測（real-time PCR）流程圖
15.1 廢疾阿米巴分子生物學確認檢驗所用引子之序列

<table>
<thead>
<tr>
<th>Category</th>
<th>Primer pairs (forward+reverse)</th>
<th>PCR product size</th>
</tr>
</thead>
</table>
| Primers for *Entamoeba histolytica/dispar* SSU-rDNA | **Real-time PCR**
EnTaq-L: 5' - GGACACATTTCAATTGTCCTA -3'
EnTaq-R: 5' - CATCACAGACCTGTATTGCTG -3' | 110/1110 bp |
| Probes for *Entamoeba histolytica/dispar* differentiation | **2nd step PCR**
Enta1463H: 5' - YAK-TGTAAGTTATCTAATTTCGTTAGACC -3'
Enta1465D: 5' - FAM-TGTTAGTTATCTAATTTTCGATTGAAC -3' |
15.2 阿米巴病原體檢測 (real-time PCR) 流程圖

粪便検體前处理

粪便DNA萃取

Real-time PCR reaction

阳性判定：具有螢光曲線產生，並且 Ct value < 39

未確定判定：螢光曲線 Ct value 介於 39-40，分成兩個步驟。

阴性判定：無螢光曲線產生，或螢光曲線產生過晚超過40個Cycles之後。

如其它兩套檢體有一套具有螢光曲線產生，並且 Ct value < 39 即可判定阳性。

如其他兩套檢體皆為陰性或 Ct value 皆 介於 39-40 者，將原始糞便進行濃縮後再重新萃取DNA重新進行 Real-time PCR reaction
目的
腸病毒分離後，以微量中和試驗方法確認是否為小兒麻痺病毒。

適用檢體種類
適用於咽喉擦拭檢體、肛門擦拭檢體及人體糞便檢體。

名詞解釋
無。

原理概述
許多病毒在組織培養的宿主細胞生長時會產生細胞病變，若於病毒培養時加入抗血清，而導致細胞病變現象消失，則表示血清中的專一性抗病毒抗體可中和病毒，藉此可鑑定出病毒種類。常用的三種病毒中和試驗包括：腸病毒中和試驗、疱疹病毒中和試驗及麻疹病毒中和試驗。

試劑耗材
5.1 I、II 混合型 Poliovirus antiserum (each 20 U/50 μL)。
5.2 I、III 混合型 Poliovirus antiserum (each 20 U/50 μL)。
5.3 II、III 混合型 Poliovirus antiserum (each 20 U/50 μL)。
5.4 I、II、III 混合型 Poliovirus antiserum (each 20 U/50 μL)。
5.5 DMEM。
5.6 平底 96 孔無菌 plate。
5.7 2 mL 的滅菌抗凍小瓶。
5.8 4 mL 的滅菌小瓶。
5.9 小兒麻痹病毒多價單株抗體（Chemicon 3336）Polio Blend。
5.10 小兒麻痹病毒 I 型單株抗體（Chemicon 3331）Polio I。
5.11 小兒麻痹病毒 II 型單株抗體（Chemicon 3332）Polio II。
5.12 小兒麻痹病毒 III 型單株抗體（Chemicon 3335）Polio III。
5.13 二級蛻光抗體（Chemicon 5008）goat anti-mouse IgG (FITC)。
5.14 MEM (high glucose)。
5.15 PBS。
5.16 胎牛血清 (FCS)。
5.17 Tween 20。
5.18 丙酮。
5.19 螢光玻片。
5.20 微量吸管尖 Tip：無菌，200 μL。
5.21 細胞株：RD Cells (Rhabdomyosarcoma)、L20B Cells (mouse L-cells expressing the poliovirus receptor) 及 HEP-2C。
5.22 滅菌蒸餾水。
6 儀器設備
 6.1 倒立顯微鏡。
 6.2 螢光顯微鏡。
 6.3 離心機。
 6.4 36 ℃ CO₂ 培養箱。
 6.5 分注器。
 6.6 Vortex。
 6.7 200 µL Pipette men。
 6.8 4 ℃ 冰箱
 6.9 -20 ℃ 及-80 ℃ 冷凍櫃。

7 環境設施安全
於生物安全第二等級（BSL-2）實驗室之設施內操作。

8 檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及儲存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢驗前處理
 10.1.1 檢體處理
 10.1.1.1 糞便檢體以 PBS(+) 液調成 10 %懸浮液，咽喉或肛門
擦拭檢體，棉棒充分攪拌後於塑膠管壁旋轉擠乾取出。
於 4 ℃，2,100 × g 離心 15 分鐘。
 10.1.1.2 上清液移至耐氯仿的離心管，加 1/10 量冰冷氯仿，振
盪混合 15 分鐘。
 10.1.1.3 於 4 ℃，2,100 × g 離心 15 分鐘，上清液盛於 2 支塑
膠小瓶 (2 mL)，標示號碼及日期，保存於-80 ℃。
 10.1.2 細胞繼代：以 75 cm² 的培養瓶為例。
 10.1.2.1 在生物安全櫃中，使用無菌器具，一次操作一種細胞
株。
 10.1.2.2 在顯微鏡下先觀察確認細胞形態正常，且沒有污染。
 10.1.2.3 移除生長培養基。
加入 5 mL 的 PBS 清洗殘餘之生長培養基，清洗兩次。

加入 5 mL 的 0.25 % trypsin-EDTA（已事先在 37 °C 加溫）作用 1 分鐘。
抽掉 trypsin-EDTA 並靜置 30 秒至 1 分鐘。
以 10 mL 生長培養基由下往上將細胞沖下。
計算細胞數。
稀釋細胞至適當濃度作接種與繼代。
每支培養管種 1 mL, 每支 25T 培養瓶種 5 mL, 每 75T 培養瓶種 10 mL, 每 150T 培養瓶種 20 mL, 瓶上標示細胞種類、代數及日期。
放入 36 °C、5 % CO₂ 保溫箱中培養。
放入 36 °C、5 % CO₂ 保溫箱中培養。

發育完成之 RD、HEp-2C 及 L20B 細胞更換成維持培養基。
每一検體接種 6 支之培養細胞，RD、HEp-2C 及 L20B 各二支每支接種 0.2 mL。另取 2 支培養細胞各接種培養基 0.2 mL 做為對照。
置於 36 °C，5 % CO₂ 培養箱繼續培養。

由翌日起每天以倒立顯微鏡觀察細胞形態。
接種細胞呈顯著病變（CPE 達三價）時，進行間接螢光免疫法鑑定。
接種於細胞若觀察至第 7 天仍如無病變，則經凍結、解凍處理二次，收集細胞及培養液，於 4 °C，2,100 × g 離心 15 分鐘。取上清液再接種一次，觀察至第 7 天，若仍無細胞病變則判定為病毒分離陰性。

將 culture tube 以 4 °C，1,000 × g 離心 15 分鐘，上清液存於 2 mL 的塑膠小瓶。
經離心沉澱之細胞加入 0.5 mL 之 PBS，混合。
分別將各管細胞取 10 μL 加入玻片，待細胞風乾後置入 4 °C 丙酮之玻片槽中，固定 10 分鐘。
取出風乾後以 polio blend 一級抗體滴於每個孔（每滴約 10 μL 左右），將玻片置於 moisture chamber，置於 37 °C 恆溫培養箱 30 分鐘。
以 PBS-0.5 % Tween 20 溶液清洗玻片後風乾。
每個孔加二級螢光標誌抗體（FITC、Goat anti-mouse IgG）。每滴約 10 μL 左右，將玻片置於 Moisture
chamber，置於 36 °C 恆溫培養箱 30 min。

10.2.3.7 以 PBS-0.5% Tween 20 溶液清洗玻片後風乾。
10.2.3.8 以 Mounting fluid 封片後，以螢光顯微鏡鏡檢。
10.2.3.9 小兒麻痺病毒經螢光抗體鑑定為陽性之檢體，則重複 10.2.3.3 步驟，各孔分別滴上 polio 1、polio 2、polio 3 之一級抗體，將玻片置於 Moisture chamber，置於 36 °C 恆溫培養箱 30 min。

10.2.3.10 重複 10.2.3.5 至 10.2.3.10 步驟，以鑑定分離株為 I、II、III 小兒麻痺病毒。
10.2.3.11 小兒麻痺病毒可與 Echo-4 交叉反應，經中和試驗可區分。

10.2.4 病毒血清中和試驗

10.2.4.1 陽性之病毒株 10 倍系列稀釋，由 10\(^1\) 至 10\(^9\)，攻擊病毒 CV1、CV2、CV3 分別為 10\(^4\)、10\(^5\)、10\(^6\) 當作 100 TCID\(_{50}\) ，接著為 back titration 的 10\(^1\) (10 TCID\(_{50}\))、10\(^2\) (1 TCID\(_{50}\))、10\(^3\) (0.1 TCID\(_{50}\))。

10.2.4.2 畫格線 96 孔盤的 1 - 12 行縱向分四等分，II、III 型 Poliovirus antiserum 3 個孔，其餘 I、III 型 Poliovirus antiserum，I、II 型 Poliovirus antiserum 相同也是 3 個孔。A-H 8 列橫向每 3 列為一區，分別為 CV1、CV2、CV3 攻擊病毒。

10.2.4.3 對照組 Back titration 盤子規化，CV1、CV2、CV3、10\(^1\)、10\(^2\)、10\(^3\) 分別縱向作 8 個孔，如附錄 15.5。

10.2.4.4 96 孔平底盤，A 列橫向 1 - 3 孔各加 II、III 型，4 - 6 孔各加 I、III 型，7 - 9 孔各加 I、II 型，10 - 12 孔各加 I、II、III 混合型小兒麻痺病毒的抗血清 50 μL (各型 20 單位)---縱向操作，如附錄 15.6。

10.2.4.5 A 列（1 - 12 孔）加入 CV1 攻擊病毒 50 μL，B 列（1 - 12 孔）加入 CV2 攻擊病毒 50 μL，C 列（1 - 12 孔）加入 CV3 攻擊病毒 50 μL，細胞對照組為 100 μL 的 DMEM - 2% FCS（維持培養基）8 - 10 Well back titration：每個孔加入 50 μL 的 DMEM - 2% FCS，再縱向分別加入 CV1、CV2、CV3、10\(^1\)、10\(^2\)、10\(^3\) 濃度病毒，如附錄 15.6。

10.2.4.6 使其混合均勻，蓋上蓋子置 36 °C，5% CO\(_2\) 培養箱 1 hr。

10.2.4.7 每孔加入 100 μL RD 細胞懸浮液，置 36 °C，5% CO\(_2\) 培養箱。

10.2.4.8 於 3 - 4 天每天以倒立顯微鏡觀察 CPE，以判定型別。
11 結果判定
11.1 判讀標準

11.1.1 在對照細胞形態無異，而攻擊病毒量在 32−1,000 TCID₅₀ 下判
結果。病毒型別之判定如下表。

<table>
<thead>
<tr>
<th>判定 (小兒麻痺 病毒型別)</th>
<th>II、III 型 poliovirus antiserum</th>
<th>I、III 型 poliovirus antiserum</th>
<th>I、II 型 poliovirus antiserum</th>
<th>I、II、III 型 poliovirus antiserum</th>
</tr>
</thead>
<tbody>
<tr>
<td>I 型</td>
<td>++++</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>II 型</td>
<td>—</td>
<td>++++</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>III 型</td>
<td>—</td>
<td>—</td>
<td>++++</td>
<td>—</td>
</tr>
<tr>
<td>I、II 型</td>
<td>++++</td>
<td>++++</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>I、III 型</td>
<td>++++</td>
<td>—</td>
<td>++++</td>
<td>—</td>
</tr>
<tr>
<td>II、III 型</td>
<td>—</td>
<td>++++</td>
<td>++++</td>
<td>—</td>
</tr>
<tr>
<td>I、II、III 型</td>
<td>++++</td>
<td>++++</td>
<td>++++</td>
<td>++++</td>
</tr>
<tr>
<td>不是小兒麻痺病毒</td>
<td>++++</td>
<td>++++</td>
<td>++++</td>
<td>++++</td>
</tr>
</tbody>
</table>

11.1.2 若初次無法鑑定時再重複一次，一般檢體中含有 2−3 種 type 的 poliovirus 時，經過 2 次以上中和才能徹底分開。

11.2 報告核發：病原體分離、鑑定/陰性；病原體分離、鑑定/急性無力肢體 麻痺/病毒型別/陽性。

11.3 結果登錄：結果登錄於急性無力肢體麻痺病例（AFP）檢體送驗單及實
驗室資訊系統。

12 品質管制
12.1 細胞生長培養基依其所用細胞而異，RD 用 DMEM 加 10 % FCS，維持
培養基 DMEM 加 2 % FCS，HEp-2C 用 EMEM 加 10 % FCS，維持培養
基血清減為 2 %，L20B 用 EMEM 加 10 % FCS，維持培養基血清減為 2 %。

12.2 培養基用的胎牛血清（FCS）應事先測試，證明對小兒麻痺病毒沒有任
何抑制作用。

12.3 操作者必須先測定自己的血清中和抗體，無抗體者應接種小兒麻痺疫
苗，以防感染。

12.4 嚴防病原散佈或污染，工作時帶手套。

12.5 除離心及細胞冷凍，溶解步驟外，全程作業都要在第二級生物安全櫃
（class II BSC）內進行。

12.6 操作中病毒務必保持於低溫。
13 廢棄物處理：
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

15 附錄
15.1 Preparation of antiserum for poliovirus typing (stock)。
15.2 Poliovirus antiserum 單一型別稀釋法。
15.3 Poliovirus antiserum 混合型別稀釋法。
15.4 小兒麻痺病毒分離與鑑定流程圖。
15.5 Back titration 盤子圖。
15.6 小兒麻痺病毒中和試驗盤子圖。
15.7 細胞繼代紀錄表。
15.8 小兒麻痺病毒分離紀錄表。
15.9 小兒麻痺病毒感染價測定紀錄表。
15.10 小兒麻痺病毒感染價結果紀錄表。
15.11 小兒麻痺病毒鑑定對照組（back titration）紀錄表。
15.12 小兒麻痺病毒鑑定中和試驗（neutralization）紀錄表。
15.13 小兒麻痺病毒鑑定結果紀錄表。
附錄 15.1 Preparation of antiserum for poliovirus typing (stock) Aug. 9.1996

<table>
<thead>
<tr>
<th>型別</th>
<th>批號</th>
<th>titer</th>
<th>bleeding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>#R-7</td>
<td>4,000 U/ 0.05 mL</td>
<td>4/28/1967</td>
</tr>
<tr>
<td>Type II</td>
<td>#R-11</td>
<td>7,600 U/ 0.05 mL</td>
<td>4/25/1967</td>
</tr>
<tr>
<td>Type III</td>
<td>#R-20</td>
<td>14,000 U/ 0.05 mL</td>
<td>5/3/1967</td>
</tr>
</tbody>
</table>
附錄 15.2 Poliovirus antiserum 單一型別稀釋法

<table>
<thead>
<tr>
<th>型別</th>
<th>單位/50 μL</th>
<th>稀釋比</th>
<th>Antiserum</th>
<th>DMEM-2 % FCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I #R7</td>
<td>40 U</td>
<td>1/99（4,000/40）</td>
<td>0.1 mL</td>
<td>9.9 mL</td>
</tr>
<tr>
<td></td>
<td>60 U</td>
<td>1/65.5（4,000/60）</td>
<td>0.2 mL</td>
<td>13.12 mL</td>
</tr>
<tr>
<td>Type II #R-11</td>
<td>40 U</td>
<td>1/189</td>
<td>0.1 mL</td>
<td>18.9 mL</td>
</tr>
<tr>
<td></td>
<td>60 U</td>
<td>1/125.6</td>
<td>0.1 mL</td>
<td>12.56 mL</td>
</tr>
<tr>
<td>Type III #R-20</td>
<td>40 U</td>
<td>1/349</td>
<td>0.05 mL</td>
<td>17.4 mL</td>
</tr>
<tr>
<td></td>
<td>60 U</td>
<td>1/232</td>
<td>0.05 mL</td>
<td>11.6 mL</td>
</tr>
</tbody>
</table>
附錄 15.3 Poliovirus antiserum 混合型別稀釋法

<table>
<thead>
<tr>
<th>混合型</th>
<th>配置 抗血清</th>
<th>用量</th>
<th>總量</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type II, III</td>
<td>II (40 U)，III (40 U)</td>
<td>各 5 mL</td>
<td>10 mL</td>
</tr>
<tr>
<td>Type I, III</td>
<td>I (40 U)，III (40 U)</td>
<td>各 5 mL</td>
<td>10 mL</td>
</tr>
<tr>
<td>Type I, II</td>
<td>I (40 U)，II (40 U)</td>
<td>各 5 mL</td>
<td>10 mL</td>
</tr>
<tr>
<td>Type I, II, III</td>
<td>I (60 U)，II (60 U)，III (60 U)</td>
<td>各 3.5 mL</td>
<td>10.5 mL</td>
</tr>
</tbody>
</table>
附錄15.4 小兒麻痺病毒分離與鑑定流程圖

檢體收集

咽喉擦拭検體處理
肛門擦拭検體處理

糞便検體處理

接種 RD 及 HEP-2c，L20B 細胞

顯微鏡觀察細胞病變（CPE）

收集 CPE 陽性細胞

免疫螢光染色法鑑定病毒

病毒感染價測定

病毒血清中和試驗（病毒鑑定）

病毒型別判定

收集 CPE 陽性培養液繼代接種於 RD 或 HEP-2c 或 L20B 細胞

收集第 7 天 CPE 陰性之細胞及培養液繼代接種於 RD 或 HEP-2c 或 L20B 細胞

顯微鏡觀察 CPE

至第 7 天仍無 CPE 則判定病毒分離陰性
附錄 15.5 Back titration 盤子圖

（直列 8 個孔，50 μL medium + 病毒 50 μL + RD cell 100 μL）

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CV1</td>
<td>CV2</td>
<td>CV3</td>
<td>10^{-1}</td>
<td>10^{-2}</td>
<td>10^{-3}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>CV1</td>
<td>CV2</td>
<td>CV3</td>
<td>10^{-1}</td>
<td>10^{-2}</td>
<td>10^{-3}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>CV1</td>
<td>CV2</td>
<td>CV3</td>
<td>10^{-1}</td>
<td>10^{-2}</td>
<td>10^{-3}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>CV1</td>
<td>CV2</td>
<td>CV3</td>
<td>10^{-1}</td>
<td>10^{-2}</td>
<td>10^{-3}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>CV1</td>
<td>CV2</td>
<td>CV3</td>
<td>10^{-1}</td>
<td>10^{-2}</td>
<td>10^{-3}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>CV1</td>
<td>CV2</td>
<td>CV3</td>
<td>10^{-1}</td>
<td>10^{-2}</td>
<td>10^{-3}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>CV1</td>
<td>CV2</td>
<td>CV3</td>
<td>10^{-1}</td>
<td>10^{-2}</td>
<td>10^{-3}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>CV1</td>
<td>CV2</td>
<td>CV3</td>
<td>10^{-1}</td>
<td>10^{-2}</td>
<td>10^{-3}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
附錄 15.6 小兒麻痺病毒中和試驗盤子圖

中和試驗盤子（3 個孔放相同中和抗體 50 μL + 病毒 50 μL 混合經 1 hr 培育後加 RD cell 100 μL）

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A CV1</td>
<td>抗血清 II, III</td>
<td>抗血清 I, III</td>
<td>抗血清 I, II</td>
<td>抗血清 I, II, III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B CV2</td>
<td>抗血清 II, III</td>
<td>抗血清 II, III</td>
<td>抗血清 I, III</td>
<td>抗血清 I, II</td>
<td>抗血清 I, II</td>
<td>抗血清 I, II, III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C CV3</td>
<td>抗血清 II, III</td>
<td>抗血清 II, III</td>
<td>抗血清 I, III</td>
<td>抗血清 I, II</td>
<td>抗血清 I, II</td>
<td>抗血清 I, II, III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A CV1</td>
<td>抗血清 II, III</td>
<td>抗血清 I, III</td>
<td>抗血清 I, II</td>
<td>抗血清 I, II, III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B CV2</td>
<td>抗血清 II, III</td>
<td>抗血清 II, III</td>
<td>抗血清 I, III</td>
<td>抗血清 I, II</td>
<td>抗血清 I, II</td>
<td>抗血清 I, II, III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C CV3</td>
<td>抗血清 II, III</td>
<td>抗血清 II, III</td>
<td>抗血清 I, III</td>
<td>抗血清 I, II</td>
<td>抗血清 I, II</td>
<td>抗血清 I, II, III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
附錄 15.7 細胞継代紀錄表

細胞継代紀錄表

<table>
<thead>
<tr>
<th>Cell:</th>
<th>Transfer (CDC):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date:</td>
<td>Person in charge:</td>
</tr>
<tr>
<td>Cell: Seeded on</td>
<td>Container:</td>
</tr>
<tr>
<td>Medium:</td>
<td></td>
</tr>
<tr>
<td>Appearance:</td>
<td></td>
</tr>
<tr>
<td>PBS (-):</td>
<td>Trypsin-EDTA Lot No:</td>
</tr>
<tr>
<td>Medium at this transfer:</td>
<td></td>
</tr>
</tbody>
</table>

Procedures:

- Discard old Growth Medium
- Add the Tryp-EDTA mixture to monolayer
- Trypsinization at RT Temperature for ___ min
- Remove the Tryp-EDTA, add ___ mL of fresh GM.
- Disperse cells by gentle pipetting
- Final cell numbers ___ /mL
- Above suspension of cells was seeded as follows:

<table>
<thead>
<tr>
<th>Flask no.</th>
<th>Container</th>
<th>Flask no.</th>
<th>Container</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Incubated at 36 °C CO₂ incubator</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks:

檢驗者：

實驗室主管：
附錄 15.8 小兒麻痺病毒分離紀錄表

<table>
<thead>
<tr>
<th>Date</th>
<th>Exp.</th>
<th>Date</th>
<th>Exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cell:
GM:
M.M:

檢驗者：
實驗室主管：
附錄15.9 小兒麻痺病毒感染價測定紀錄表

<table>
<thead>
<tr>
<th>Date</th>
<th>Exp.</th>
<th>Date</th>
<th>Exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

1		1	
2		2	
3		3	
4		4	
5		5	
6		6	
7		7	
8		8	
9		9	
10		10	

1		1	
2		2	
3		3	
4		4	
5		5	
6		6	
7		7	
8		8	
9		9	
10		10	

Cell: Generation:
G.M: M.M:
檢驗者： 實驗室主管：
附錄 15.10 小兒麻痺病毒感染實驗結果紀錄表

<table>
<thead>
<tr>
<th>Strain code no.</th>
<th>Test no.</th>
<th>Dilution</th>
<th>Results of titration</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

檢驗者：

實驗室主管：
附錄 15.11 小兒麻痺病毒鑑定對照組（back titration）紀錄表

<table>
<thead>
<tr>
<th>Date</th>
<th>Exp.</th>
<th>Date</th>
<th>Exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

小兒麻痺病毒鑑定對照組紀錄表

<table>
<thead>
<tr>
<th>Exp.</th>
<th>back titration of CV 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exp.</th>
<th>back titration of CV 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exp.</th>
<th>back titration of CV 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exp.</th>
<th>10³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exp.</th>
<th>10²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exp.</th>
<th>50ul/well</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Absorption</td>
</tr>
</tbody>
</table>

檢驗者：
實驗室主管：

Cell：RD
G. M.：
D. M.：
Inoculum：50ul/well
Absorption：
附錄15.12 小兒麻痺病毒鑑定中和試驗（neutralization）紀錄表

<table>
<thead>
<tr>
<th>Date</th>
<th>Exp.</th>
<th>neutralization with trivalent poliovirus antiserum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cell:RD</th>
<th>Generation:N+</th>
<th>Culture:day 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CV1</td>
<td></td>
<td></td>
<td>CV1</td>
<td></td>
<td></td>
<td>CV1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CV2</td>
<td></td>
<td></td>
<td>CV2</td>
<td></td>
<td></td>
<td>CV2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CV3</td>
<td></td>
<td></td>
<td>CV3</td>
<td></td>
<td></td>
<td>CV3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

檢驗者：

實驗室主管：
附錄15.13 小兒麻痺病毒鑑定結果紀錄表

衛生福利部疾病管制署研究檢驗及疫苗研製中心

小兒麻痺病毒鑑定結果紀錄表

<table>
<thead>
<tr>
<th>Strain code no.</th>
<th>Test no.</th>
<th>TCID of challenge virus</th>
<th>Results of identification</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

檢驗者： 實驗室主管：
衛生福利部疾病管制署傳染病標準檢驗方法

<table>
<thead>
<tr>
<th>編號：</th>
<th>瘧原蟲檢測（鏡檢法）</th>
<th>核准日期：年月日</th>
<th>修訂日期：年月日</th>
</tr>
</thead>
</table>

1 目的
藉由血片之製作、染色及顯微鏡檢查進行瘧原蟲檢測，進一步鑑別四種感染人類之瘧原蟲種類及型別，協助確認瘧疾病例，以利防治工作之進行。

2 適用檢體種類
新鮮或添加抗凝血劑的血液。

3 名詞解釋
無。

4 原理概述
以 Giemsa 染色法將血球及瘧原蟲染色，在顯微鏡下觀察其形態，並加以辨識。

5 試劑耗材
5.1 檢測試劑
1. Giemsa 原液：
 - 5.1.1.1 Giemsa 粉末（azure B type）3.0 g。
 - 5.1.1.2 以甘油（glycerol）250 mL 加溫溶解（約 60 ℃）。
 - 5.1.1.3 再加入甲醇 250 mL（60 ℃）。
 - 5.1.1.4 放置 24 hr 後以濾紙濾去雜質，即製成原液，存放於棕色瓶內。
 - 5.1.1.5 Giemsa 原液已商品化，可直接購買使用。
 - 5.1.1.6 每一批 Giemsa 原液在配製完成後，均應測試最佳染色時間，並做成紀錄存查。

5.2 耗材
1. 載玻片：先以酒精除去油污。
2. 油鏡油：使用 100 倍物鏡觀察時，可避免光線因折射而減弱。
3. 鏡頭清潔劑：檢驗完畢後，用以溶解掉物鏡與載玻片上之油鏡油。使用乙醚（ether）與 95 %酒精以 7：3 的比例配製而成。
4. 拭鏡紙：檢驗完畢後，用於擦拭物鏡。
5. 採血針：需消毒完善，每支限用一人。
6. 脫脂棉花。
7. 70 %酒精：用於採血前皮膚消毒。

6 儀器設備
6.1 显微鏡：雙眼光學顯微鏡具 10 X 之目鏡及 100 X 之物鏡。

7 環境設施安全
無。
8 檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體前處理
 10.1.1 將檢體分裝於冷凍保存管，以冷凍標籤依序標示
10.2 步驟
 10.2.1 Giesma 染色法
 10.2.1.1 配製染色液：5%之 Giemsa 染色液，即以 19 mL 磷酸緩衝液加入 1 mL Giemsa 原液，新鮮配製。
 10.2.1.2 染色：以 5%之 Giemsa 染色液覆滿於載玻片，染色約 40 - 50 min。
 10.2.1.3 水洗：將玻片保持平衡，自來水由一端慢慢注入，使染色液漂出玻片外，水洗後將玻片斜立使其自然乾燥。
 10.2.1.4 磷酸緩衝液之 pH 以 7.0 - 7.2 最適宜。
 10.2.1.5 磷酸緩衝液（phosphate buffer, 6.7 mM, pH 7.1）: 0.41g KH₂PO₄
 10.2.1.6 0.65 g Na₂HPO₄·H₂O
 10.2.1.7 Bring to 1 L and pH 7.1
 10.2.1.8 顯微鏡檢驗：使用光學顯微鏡 1,000 倍油鏡鏡檢，薄片檢視至少 300 個視野，每個血片約檢視 5 - 10 min，厚片則全範圍檢視。
 10.2.1.9 記錄鏡檢結果。

11 結果判定
11.1 判讀標準
 11.1.1 血片於顯微鏡下檢視出瘧原蟲者，為陽性確認病例，依其形態需加區分為熱帶瘧、間日瘧、三日瘧及卵形瘧之感染（如附錄 15.3 瘧原蟲鏡檢圖片），偶有不同瘧原蟲混合感染病例發生。
 11.1.2 陽性確認血片應以蓋玻片封膠後，置於乾燥之環境，妥善保存備查。
11.2 報告核發：於傳染病通報系統內輸入檢驗結果：在病原體檢驗方法項目中選擇厚層血片或薄層血片，在檢驗結果項目中輸入陰性或陽性；如果陽性，於病原體大類中選擇蟲體之屬別。並於細類中選擇種別、
衛生福利部疾病管制署傳染病標準檢驗方法

形態。最後厚層血片需於備註欄加註蟲體密度。

11.3 結果登錄：將檢體之檢驗結果登錄於檢體送驗單並加蓋檢驗者印章，
送報告簽署人審核及蓋章，並登錄於網路報告系統。

12 品質管制
12.1 以採取正常人之血液檢體製作抹片標本，染色後觀察白血球、紅血球
及血小板之形態是否可以辨識。
12.2 每一批 Giemsa 原液在泡製完成後，均應測試最佳染色時間，並做成記
錄存查。
12.3 每一次血液檢體製作抹片標本，應加作陽性對照組之品管。
12.4 每次操作時應加以記錄，並定期由寄生蟲實驗室主管審閱。

13 廢棄物處理
 檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋妥
密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
14.2 行政院衛生署疾病管制局。2001。防疫檢驗標準作業程序手冊，瘧疾
檢驗，第 3 之 1 - 5 頁。

15 附錄
15.1 瘧疾血片製作方法。
15.2 瘧原蟲鏡檢流程圖。
15.3 瘧原蟲鏡檢圖片。
附錄 15.1 採血步驟及血片製作

1. 消毒
2. 針血
3. 擠血
4. 刮血
5. 塗抹
6. 完成血片

薄片 約 3 × 2 cm²
厚片 約 1 cm²
附錄 15.2 瘧原蟲鏡檢流程圖

採血
血片製作
厚片
薄片
登記編號

厚片溶血
薄片固定

以清水浸泡 3 - 5 分鐘
以 100% 甲醇固定

乾燥
自然乾燥
染色
使用 5% Giemsa 染液染 40 - 50 分鐘
水洗
以清水緩慢漂洗
乾燥
自然乾燥

Giemsa 染色法

檢驗

使用 500X 或 1000X 油鏡檢驗

檢驗結果報告

附錄 15.3 瘧原蟲鏡檢圖片(略)
1 目的
以分子生物學方法鑑定四種人類瘧原蟲。

2 適用檢體種類
血液。

3 名詞解釋
無

4 原理概述
以四種人類瘧原蟲 Small ribosomal subunit RNA 之特異性序列為標的，進行聚合酶連鎖反應檢測。自受檢者血液抽取 Total DNA，經增幅反應後，分析 Small ribosomal subunit RNA 特異性序列產物之有無、大小，繼而判定瘧原蟲之存在與否及種別。

5 試劑耗材
5.1 檢測試劑
5.1.1 檢體保存剤：5.4 mg K2EDTA/tube
5.1.2 核酸萃取試劑組：QIAamp DNA blood mini kit（Cat. no.51106）
 5.1.2.1 蛋白質水解酵素（protease）
 5.1.2.2 溶解緩衝液 AL（buffer AL）
 5.1.2.3 96 - 100 %乙醇（ethanol）
 5.1.2.4 緩衝液 AW1（buffer AW1）
 5.1.2.5 緩衝液 AW2（buffer AW2）
 5.1.2.6 萃取緩衝液（buffer AE）
5.1.3 萃取濾管（QIAamp spin column）
5.1.3.1 2 mL 收集管（2 mL collection tube）
5.1.4 PCR 試劑
 5.1.4.1 5 μM rPLU1 primer（5’-tcaagatagtctgcaagtga -3’）
 5.1.4.2 5 μM PL1 primer（5’-tttttttggaaagctgtaatgttataaagtga -3’）（附錄14）
 5.1.4.3 5 μM PL2 primer（5’-cctggtgtgtcttaacttacggt -3’）（附錄14）
 5.1.4.4 5 μM PL3 primer（5’-tttttttggaaagctgtaatgttataaagtga -3’）
 5.1.4.5 5 μM PL4 primer（5’-aacacaatcatcactgactc -3’）
 5.1.4.6 5 μM Pf1 primer（5’-tttaactactactcctcttc -3’）
 5.1.4.7 5 μM Pf2 primer（5’-tttaactactactcctcttc -3’）
5.1.4.8 5 μM Pv1 primer(5’-cgcttcagcttaatccacataactgatac -3’)
(附錄14)
5.1.4.9 5 μM Pv2 primer(5’acttccagccgaagcaagaagatcctta-3’)
(附錄14)
5.1.4.10 5 μM Pm1 primer(5’-ataacatagttgcagcataaaacgc -3’)
(附錄14)
5.1.4.11 5 μM Pm2 primer(5’-aaaatccatcataaataacccgca -3’)
(附錄14)
5.1.4.12 5 μM Po1 primer(5’-ctcttttctttctttttctttttcttttctttttgaga -3’)(附
錄14)
5.1.4.13 5 μM Po2 primer(5’-ggaaaagacacataattgtcttggtggtgga -3’)
(附錄14)
5.1.4.14 10X PCR buffer
5.1.4.15 2 mM dNTP（dGTP, dCTP, dTTP, dATP 2 mM each）
5.1.4.16 10X Dye（20 %[w/v] sucrose, 1mM Cresol Red）
5.1.4.17 25 mM MgCl₂
5.1.4.18 AmpliTaq gold DNA polymerase（5 units/μL）
5.1.4.19 5 mg/mL BSA
5.1.4.20 純水（pure water）

5.1.5 電泳分析試劑
5.1.5.1 洋菜膠（agarose）。
5.1.5.2 1 X TBE 電泳緩衝液：1 X TBE (tris-borate-EDTA)
buffer
5.1.5.3 DNA 標準分子量指標：100 bp Ladder marker
5.1.5.4 染色液：0.5 μg/mL Ethidium bromide

5.2 耗材
5.2.1 3-5 mL 採血管

6 儀器設備
6.1 控溫震盪加熱器
6.2 高速離心機
6.3 聚合酶鍊鎖反應器：96 孔 GeneAmp® PCR system 9700（Applied Biosystems, CA, USA）
6.4 電泳槽（Mupid II）
6.5 紫外線照相系統

7 環境設施安全
無。
8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟

10.1 步驟

10.1.1 檢體 DNA 萃取：
10.1.1.1 取 200 μL 檢體，置於 1.5 mL 離心管，並加入 20 μL Protease。
10.1.1.2 加 200 μL Buffer AL，震盪 15 sec，置於 56 °C，10 min。
10.1.1.3 加 200 μL 酒精，震盪 15 sec，吸取全部置入萃取濾管中。
10.1.1.4 以 8,000 rpm 離心 1 min。
10.1.1.5 加 500 μL Buffer AW1，以 8,000 rpm 離心 1 min，換新收集管。
10.1.1.6 加 500 μL Buffer AW2，以 14,000 rpm 離心 3 min，換新收集管。
10.1.1.7 以 14,000 rpm 離心 1 min，將收集管換為 1.5 mL 離心管。
10.1.1.8 加 200 μL Buffer AE，靜置 1 min。
10.1.1.9 以 8,000 rpm 離心 1 min。
10.1.1.10 置於 4 °C 冰箱冷藏保存。

10.1.2 Genus 鑑定第一階段 PCR：
10.1.2.1 配置 PCR 反應混合液，每一檢體其反應包括以下成分：

<table>
<thead>
<tr>
<th>PCR 試劑</th>
<th>體積(μL)</th>
<th>濃度(總體積 20 μL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 μM rPLU1 primer</td>
<td>1</td>
<td>0.25 μM</td>
</tr>
<tr>
<td>5 μM PL1 primer</td>
<td>1</td>
<td>0.25 μM</td>
</tr>
<tr>
<td>10 X PCR buffer</td>
<td>2</td>
<td>1 X</td>
</tr>
<tr>
<td>2 mM dNTP</td>
<td>1.25</td>
<td>125 μM</td>
</tr>
<tr>
<td>25 mM MgCl₂</td>
<td>1.6</td>
<td>2 mM</td>
</tr>
<tr>
<td>AmpliTaq gold(5 U/μL)</td>
<td>0.1</td>
<td>0.025 U/μL</td>
</tr>
<tr>
<td>Pure Water</td>
<td>11.05</td>
<td></td>
</tr>
<tr>
<td>總體積</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>
10.1.2.2 分裝 18 μL PCR 反應混合液至 0.2 mL 薄壁 PCR 反應管。

10.1.2.3 每一 PCR 反應管加入 2 μL 檢體 DNA。

10.1.2.4 將 PCR 反應管置入聚合酶鍊鎖反應器進行反應（總體積 20 μL）：

<table>
<thead>
<tr>
<th>PCR 反應期</th>
<th>溫度(°C)</th>
<th>時間(分:秒)</th>
<th>環循數</th>
</tr>
</thead>
<tbody>
<tr>
<td>酵素活化</td>
<td>95</td>
<td>5:00</td>
<td>1</td>
</tr>
<tr>
<td>DNA 解離 Primer 粘合聚合反應</td>
<td>94</td>
<td>00:30 58</td>
<td>01:00 72</td>
</tr>
<tr>
<td>後聚合反應</td>
<td>72</td>
<td>05:00</td>
<td>1</td>
</tr>
<tr>
<td>停止反應</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

10.1.3 Genus 鑑定第二階段 PCR：

10.1.3.1 配置 PCR 反應混合液，每一檢體其反應包括以下成分：

<table>
<thead>
<tr>
<th>PCR 試劑</th>
<th>體積(μL)</th>
<th>濃度(總體積 20 μL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 μM PL3 primer</td>
<td>1</td>
<td>0.25 μM</td>
</tr>
<tr>
<td>5 μM PL4 primer</td>
<td>1</td>
<td>0.25 μM</td>
</tr>
<tr>
<td>10 X PCR buffer</td>
<td>2</td>
<td>1 X</td>
</tr>
<tr>
<td>2 mM dNTP</td>
<td>1.25</td>
<td>125 μM</td>
</tr>
<tr>
<td>25 mM MgCl₂</td>
<td>1.6</td>
<td>2 mM</td>
</tr>
<tr>
<td>AmpliTaq Gold (5 U/μL)</td>
<td>0.1</td>
<td>0.025 U/μL</td>
</tr>
<tr>
<td>Pure water</td>
<td>12.05</td>
<td></td>
</tr>
<tr>
<td>總體積</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>

10.1.3.2 分裝 PCR 反應混合液 19.0 μL 至 0.2 mL 薄壁 PCR 反應管

10.1.3.3 每一 PCR 反應管加入 1.0 μL 第一階段 PCR 產物

10.1.4 將 PCR 反應管置入聚合酶鍊鎖反應器進行反應（總體積 20 μL）：

<table>
<thead>
<tr>
<th>PCR 反應期</th>
<th>溫度(°C)</th>
<th>時間(分:秒)</th>
<th>環循數</th>
</tr>
</thead>
<tbody>
<tr>
<td>酵素活化</td>
<td>95</td>
<td>5:00</td>
<td>1</td>
</tr>
<tr>
<td>DNA 解離 Primer 粘合聚合反應</td>
<td>94</td>
<td>00:30 62</td>
<td>01:00 72</td>
</tr>
<tr>
<td>後聚合反應</td>
<td>72</td>
<td>06:00</td>
<td>1</td>
</tr>
<tr>
<td>停止反應</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
10.1.5 Species 鑑定第一階段 PCR：
10.1.5.1 配置 PCR 反應混合液，每一檢體其反應包括以下成分：

<table>
<thead>
<tr>
<th>PCR 試劑</th>
<th>體積(μL)</th>
<th>濃度(總體積 20 μL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 μM PL1 primer</td>
<td>1</td>
<td>0.25 μM</td>
</tr>
<tr>
<td>5 μM PL2 primer</td>
<td>1</td>
<td>0.25 μM</td>
</tr>
<tr>
<td>10 X PCR buffer</td>
<td>2</td>
<td>1 X</td>
</tr>
<tr>
<td>2 mM dNTP</td>
<td>1.25</td>
<td>125 μM</td>
</tr>
<tr>
<td>25 mM MgCl₂</td>
<td>1.6</td>
<td>2 mM</td>
</tr>
<tr>
<td>AmpliTaq Gold(5 U/μL)</td>
<td>0.1</td>
<td>0.025 U/μL</td>
</tr>
<tr>
<td>Pure Water</td>
<td>11.05</td>
<td></td>
</tr>
<tr>
<td>總體積</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

10.1.5.2 分裝 18 μL PCR 反應混合液至 0.2 mL 薄壁 PCR 反應管。
10.1.5.3 每一 PCR 反應管加入 2 μL 檢體 DNA。
10.1.5.4 將 PCR 反應管置入聚合酶鏈鎖反應器進行反應(總體積 20 μL)：

<table>
<thead>
<tr>
<th>PCR 反應期</th>
<th>溫度(℃)</th>
<th>時間(分: sec)</th>
<th>循環數</th>
</tr>
</thead>
<tbody>
<tr>
<td>酵素活化</td>
<td>95</td>
<td>5:00</td>
<td>1</td>
</tr>
<tr>
<td>DNA 解離 Primer 粘合聚合作反應</td>
<td>94</td>
<td>00:30 01:00 01:00</td>
<td>32</td>
</tr>
<tr>
<td>後聚合反應</td>
<td>72</td>
<td>05:00</td>
<td>1</td>
</tr>
<tr>
<td>停止反應</td>
<td>4</td>
<td>∞</td>
<td>1</td>
</tr>
</tbody>
</table>

10.1.6 Species 鑑定第二階段 PCR：
10.1.6.1 配置 PCR 反應混合液，每一檢體其反應包括以下成分：

<table>
<thead>
<tr>
<th>PCR 試劑</th>
<th>體積(μL)</th>
<th>濃度(總體積 20 μL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 μM Species primer 1</td>
<td>1</td>
<td>0.25 μM</td>
</tr>
<tr>
<td>5 μM Species primer 2</td>
<td>1</td>
<td>0.25 μM</td>
</tr>
<tr>
<td>10X PCR buffer</td>
<td>2</td>
<td>1X</td>
</tr>
<tr>
<td>2 mM dNTP</td>
<td>1.25</td>
<td>125 μM</td>
</tr>
<tr>
<td>25 mM MgCl₂</td>
<td>1.6</td>
<td>2 mM</td>
</tr>
<tr>
<td>AmpliTaq Gold(5 U/μL)</td>
<td>0.1</td>
<td>0.025 U/μL</td>
</tr>
<tr>
<td>Pure water</td>
<td>12.05</td>
<td></td>
</tr>
<tr>
<td>總體積</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>

10.1.6.2 Plasmodium falciparum species primer 為 Pf1、Pf2
10.1.6.3 Plasmodium vivax species primer 為 Pv1、Pv2
10.1.6.4 Plasmodium malariae species primer 為 Pm1、Pm2
10.1.6.5 Plasmodium ovale species primer 為 Po1、Po2
10.1.7 分裝 PCR 反應混合液: 19.0 μL 至 0.2 mL 薄壁 PCR 反應管
10.1.8 每一 PCR 反應管加入 1.0 μL 第一階段 PCR 產物
10.1.9 將 PCR 反應管置入聚合酶鏈鎖反應器進行反應（總體積 20 μL）:

<table>
<thead>
<tr>
<th>PCR 反應期</th>
<th>溫度(°C)</th>
<th>時間(分:秒)</th>
<th>循環數</th>
</tr>
</thead>
<tbody>
<tr>
<td>酵素活化</td>
<td>95</td>
<td>5:00</td>
<td>1</td>
</tr>
<tr>
<td>DNA 解離 Primer 粘合</td>
<td>94</td>
<td>00:30</td>
<td>32</td>
</tr>
<tr>
<td>聚合反應</td>
<td>62</td>
<td>01:00</td>
<td>1</td>
</tr>
<tr>
<td>後聚合反應</td>
<td>72</td>
<td>01:00</td>
<td>1</td>
</tr>
<tr>
<td>停止反應</td>
<td>4</td>
<td>∞</td>
<td>1</td>
</tr>
</tbody>
</table>

10.1.10 PCR 產物電泳分析:
10.1.10.1 配製 2 %洋菜膠片（含 1X TBE 電泳緩衝液）。
10.1.10.2 電泳分析: 將第二階段 PCR 反應 A 及 B 管等量混合，
取 10 μL 置於膠片孔洞，以 2.5 μL 100 bp Ladder marker 一併於
100 伏特電壓下 (1X TBE 電泳緩衝液)，電泳 30 min。
10.1.10.3 膠片染色: 將洋菜膠片置於 0.5 μg/mL Ethidium bromide 染色 10 min，繼以蒸餾水脫色 10 min。
10.1.10.4 將膠片置於紫外線照相系統，擷取圖片，記錄結果。

11 結果判定
11.1 判讀標準
11.1.1 以 Genus 鑑定第二階段 PCR 反應產物長度與 DNA 分子量指
標比較判讀後，鑑別有無瘧原蟲。
11.1.2 以 Species 鑑定第二階段 PCR 反應產物長度與 DNA 分子量指
標比較判讀後，鑑別瘧原蟲種別。
11.1.3 瘧原蟲陽性: 238 bp。（附錄 14.2）
11.1.4 P. falciparum 陽性: 205 bp。（附錄 14.3）
11.1.5 P. vivax 陽性: 120 bp。（附錄 14.3）
11.1.6 P. malaria 陽性: 144 bp。（附錄 14.3）
11.1.7 P. ovale 陽性: 800 bp。（附錄 14.3）

11.2 報告核發: 於傳染病通報系統內輸入檢驗結果: 在病原體檢驗方法項
目中選擇聚合酶鏈鎖反應，在檢驗結果項目中輸入陽性或陰性；如果
陽性，於病原體大類中選擇蟲體之屬別。並於細類中選擇種別。

11.3 結果登錄: 將檢體之檢驗結果登錄於檢體送驗單並加蓋檢驗者印章，
送報告簽署人審核及蓋章，並登錄於網路報告系統。

12 品質管制
12.1 每次操作應包含陽性及陰性對照樣本。
12.2 陽性對照樣本: 已確定為瘧原蟲陽性 DNA。
12.3 陰性對照: 純水。
12.4 每次操作時加以記錄，定期由寄生蟲實驗室主管審閱。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

15 附錄
15.1 瘧疾分子生物學確認檢驗所用引子之序列。
15.2 *Plasmodium genus* 在巢式聚合酶鏈鎖反應之結果。
15.3 *Plasmodium species* 在巢式聚合酶鏈鎖反應之結果。
瘧疾分子生物學確認檢驗所用引子之序列

<table>
<thead>
<tr>
<th>Category</th>
<th>Primer pairs(forward+reverse)</th>
<th>PCR product size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primers for Genus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outer1: 5’-tcaagattagccagcttag -3’
Outer1R: 5’-ttaaaatttggcagttaaacag -3’

2nd step PCR Inner F: 5’-tttttataaggataactacggaaaagctgt -3’ 238 bp
Inner R: 5’-taaccgtcatacgatggccaataca -3’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primers for Species</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st step PCR PL1: 5’-taaaatttgtggcagttaaacag -3’
PL2: 5’-cctgttgtgccttaaacttc -3’

2nd step PCR Pf1: 5’-taaacttggttgggaaacccatatatt -3’ 205 bp
Pf2: 5’-acacaatgaactcaatcatgactacccgtc -3’
Pv1: 5’-cgttctagcttacataccataactgatac -3’ 120 bp
Pv2: 5’-acttccaagccgaagcaagaaatgctca -3’
PM1: 5’-ataacatat�tgtgtaagaataaccgc -3’ 144 bp
Pm2: 5’-aaaattccccatgcataaaaaatttataa -3’
Po1: 5’-atctcttgttcatatatttagttggaga -3’ 800 bp
Po2: 5’-ggaaaaggacactattattgtcctagt -3’</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
15.2 *Plasmodium genus* 在巢式聚合酶鏈鎖反應之結果

Lane M: 100 bp Marker; Lane 1 是對照組 ddH₂O(以 ddH₂O 取代 DNA template 進行兩階段之 PCR 反應)；Lane 2 為檢驗檢體；Lane 3 為陽性檢體
15.3 *Plasmodium* species 在巢式聚合酶鍊鎖反應之結果

Lane M: 100 bp Marker; Lane 1、4、7 與 10 是對照組 ddH₂O (以 ddH₂O 取代 DNA template 進行兩階段之 PCR 反應); Lane 2、5、8 與 11 為檢驗檢體; Lane 3、6、9 與 12 為陽性檢體; Lane 1, 2, 3 為 *P.falciparum* species primer; Lane 4, 5, 6 為 *P.vivax* species primer; Lane 7, 8, 9 為 *P malaria* species primer; Lane 10, 11, 12 為 *P ovale* species primer。
目的
在疑似受感染個案之採集檢體中，分離與鑑定是否存在麻疹病毒。

適用檢體種類
咽喉拭子、含抗凝劑之全血、尿液。

名詞解釋
無。

原理概述
選擇適當的細胞株（B95a）培養麻疹病毒，觀察細胞病變（CPE）的出現，最後再以抗麻疹病毒單株抗體螢光染色的方法確認。

試劑耗材

5.1 試劑
5.1.1 Growth medium（由含10%FBS與1Xpen-strep solution之DMEM組成）。

5.1.1.1 Dulbecco’s modified eagle medium（DMEM）。
5.1.1.1.1 With 4,500 mg/L D-glucose（high glucose）。
5.1.1.1.2 With L-glutamine。
5.1.1.1.3 Without sodium pyruvate。

5.1.1.2 Fetal bovine serum（FBS）：以56°C heat inactivate後開封，以15mL離心管分裝，-20°C儲存。

5.1.1.3 Pen-strep solution（100X）。

5.1.1.3.1 With 0.05 % trypsin。
5.1.1.3.2 With 0.53 mM EDTA in Hanks’balanced salt solution（HBSS）without Ca²⁺ and Mg²⁺，開封後以15mL離心管分裝，-20°C儲存。

5.1.2 Sample pretreat medium（由含2Xpen-strep solution之DMEM組成）。

5.1.3 Trypsin-EDTA。

5.1.3.1 With 0.05 % trypsin。
5.1.3.2 With 0.53 mM EDTA in Hanks’balanced salt solution（HBSS）without Ca²⁺ and Mg²⁺，開封後以15mL離心管分裝，-20°C儲存。

5.1.4 Hank’s balanced salt solution（HBSS）。

5.1.5 Ficoll-paque™ PLUS：Amersham Biosciences，17-1440-02，Sweden。

5.1.6 Light diagnostics measles IFA Kit：Chemicon，3187，USA，store at 2-8°C。

5.1.6.1 Measles IFA Ab，5030。
5.1.6.2 Gt X Ms IgG FITC，5008。
5.1.6.3 Measles control slide，5031。
5.1.6.4 Mounting fluid，5013。
5.1.6.5 Tween 20/sodium azide,100X，5037。
5.1.6.6 PBS packet，5087。

5.1.7 IFA wash solution：將5.1.6.6 試劑溶於1 L distilled H2O 再加入5.1.6.5 試劑以乾淨密封容器室溫儲放。

5.1.8 B95a 細胞株：由新竹食科所購入之細胞株 B95-8: CCRC 60199 培養而來，將培養基成份由原來的 RPMI 轉換成 DMEM。

5.2 耗材
5.2.1 25-cm² Culture vessels（T-25）。
5.2.2 Pipette：1 mL、5 mL、10 mL、25 mL。
5.2.3 200 μL tip。
5.2.4 3 mL 無菌塑膠吸管。
5.2.5 載玻片、蓋玻片。
5.2.6 無菌螺旋試管：2 mL、4 mL。
5.2.7 無菌離心管：15 mL、50 mL。
5.2.8 5 mL 針筒。
5.2.9 0.45 μM 針頭過濾器。
5.2.10 抗凍標籤紙。
5.2.11 油性細字筆。
5.2.12 可拋棄式無菌塑膠手套、口罩。

6 儀器設備
6.1 第二級生物安全櫃（class II BSC）。
6.2 37 °C 二氧化碳培養箱。
6.3 倒立相差顯微鏡。
6.4 螢光顯微鏡（Zeiss Axioskop 2 plus）。
6.5 水浴槽。
6.6 電動輔助吸管。
6.7 4 °C 冰箱。
6.8 -20 °C、-80 °C 冷凍櫃。
6.9 乾浴器。

7 環境設施安全
於生物安全第二等級（BSL-2）實驗室之設施內操作。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。
檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體編號：收件檢體依通報疾病及種類編號。
10.2 檢驗前處理
10.2.1 開啓第二級生物安全櫃之紫外光照射操作枱面 20 min。
10.2.2 將 5.1.1-5.1.5 試劑先置於 37 °C 回溫或解凍。
10.2.3 檢體前處理
10.2.3.1 全血
10.2.3.1.1 以針筒吸取 3 mL 的 Ficoll-paque 置於 15 mL 離心管下層。
10.2.3.1.2 取 2 mL 血液與 2 mL 的 HBSS 混合後，輕輕的置於 Ficoll-paque 上層。
10.2.3.1.3 400 × g，室溫下離心 40 min。
10.2.3.1.4 以乾淨吸管小心吸去上層液。
10.2.3.1.5 再取另一乾淨吸管吸取 Ficoll-paque 上的淋巴細胞層至另一 15 mL 離心管。
10.2.3.1.6 加入取出淋巴層細胞三倍體積的 HBSS，輕輕以吸管混合均勻。
10.2.3.1.7 100 × g，室溫下離心 10 min 後移除上清液。
10.2.3.1.8 加入 5 mL HBSS，以吸管輕輕上下混合原沉澱細胞，重複 10.2.3.1.6。
10.2.3.1.9 加入 2 mL Sample pretreat medium 後，接種細胞或暫時置於-80 °C 保存。
10.2.3.2 咽喉拭子：加 1.5 mL Sample pretreat medium 至採檢管充分攪拌，將溶液吸出至 4 mL 滅菌塑膠檢體瓶中，以 5 mL 針筒吸取溶液後，拔去針頭，接上 0.45 μm 過濾器過濾後置於 2 mL 無菌試管保存，接種細胞或暫時置於-80 °C 保存。
10.2.3.3 尿液：以 400 × g 置於 4 °C 離心 10 min 後，棄上清液，另加 2 mL Sample pretreat medium 與沉澱物混合均勻後，接種細胞或暫時置於-80 °C 保存。
10.3 檢驗步驟
10.3.1 接種：取長到平面八至九成滿之 B95-a 細胞以 Growth medium passage 於新的 25T 培養瓶（細胞數約原來的 1/3 至 1/4 量），接種檢體 200 μL，混合均勻，置於 37 °C 含 5 % CO₂ 的培養箱培養。
10.3.2 觀察：自翌日起每天以倒立顯微鏡觀察細胞形態，連續觀察 3 天，若細胞培養基酸化（呈現黃色）則需更換培養基。

10.3.3 若有 CPE 出現，但範圍小於 20 %，或沒有觀察到 CPE 則繼續培養至 3 天後，當細胞長滿單層時 passage cell。將 Medium 吸出棄棄，加入 3 mL Trypsin-EDTA 作用 1 min，吸出 Trypsin-EDTA（留少量勿吸到全乾）輕拍後於燈光下觀察細胞脫落狀況，若細胞尚未脫落，可置放於 37 °C 恆溫培養箱數 min，以無菌吸管吸 5 mL Growth medium 將細胞沖下，上下輕輕放數次混合均勻，吸取半量細胞至新的 25T 培養瓶，加入 Growth medium 使達 5 mL 體積，此時即為 Passage 2。

10.3.4 重複步驟 10.3.2-10.3.3，繼續觀察 CPE 至 Passage 3，若細胞仍未產生病變者，則為陰性。

10.3.5 當出現 CPE 但範圍未達 50 – 75 %以前，則繼續培養細胞，必要時需 passage 約 1-2 次，使 CPE 能在細胞長滿前即達 50 - 75%。此時可刮下細胞，取約 1 mL 進行 10.3.6, 其餘則混合均勻後分裝凍於 -80 °C 儲存。

10.3.6 間接熒光免疫法鑑定
10.3.6.1 取 1 mL 受感染細胞的懸浮液於小離心管中，以 3,000 rpm 離心 15 min。
10.3.6.2 取出上清液另存於乾淨試管，沉澱之細胞加入 0.5-1 mL PBS，以 Pipette 上下混合均勻。
10.3.6.3 取 10 μL 點入 21 孔玻片（需含未感染細胞以為陰性對照），待細胞風乾後置入含有 4 °C 丙酮之玻片槽，固定 10 min。
10.3.6.4 取出風乾後滴一滴 5.1.6.1 Measles IFA Ab，將玻片置於 moisture chamber，置於 37 °C 恆溫箱 30 min。
10.3.6.5 以 5.1.7 IFA wash solution 清洗玻片後置於乾浴器晾乾。
10.3.6.6 每個孔加一滴 5.1.6.2 Gt X Ms IgG FITC。將玻片置於 Moisture chamber，置於 37 °C 恆溫箱 30 min。
10.3.6.7 重覆 10.3.6.5。
10.3.6.8 以 5.1.6.4 Mounting fluid 封片後，以螢光顯微鏡鏡檢。細胞呈現紅色為陰性反應，呈現蘋果綠為陽性。

10.4 檢驗後處理：生物安全櫃操作檯面以 75 % 酒精擦拭，並以紫外光照射 20 min。

11 結果判定
11.1 判讀標準：細胞出現融合（syncytial）CPE 且經 Measles IFA kit 測定有綠色熒光反應者，判定為陽性。
11.2 報告核發：麻疹病毒分離陽性，麻疹病毒分離陰性。
11.3 結果登錄：完成檢驗後，將檢驗結果登錄於附錄 15.3 病毒培養觀察紀錄表、附錄 15.4 螢光鑑定紀錄表，檢驗結果填寫於檢體送驗單之“檢驗
結果欄”，並將檢驗結果上網登錄於實驗室資訊管理系統，傳送實驗室主管審核，待審核通過後發佈結果。

12 品質管制
12.1 除離心及熒光鑑定試驗步驟外全程作業都要在第二級生物安全櫃內進行。
12.2 二氧化碳培養箱內壁每月要定期以抗黴菌劑擦拭及水盤添加抑菌劑的無菌水以保持培養箱內溼度。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
14.2 Chemicon measles IFA kit 所附操作說明。

15 附錄
15.1 麻疹病毒分離與鑑定流程圖。
15.2 細胞繼代培養紀錄表。
15.3 病毒培養觀察紀錄表。
15.4 螢光鑑定紀錄表。
15.5 麻疹病毒檢驗判定總流程圖。
附錄 15.1 麻疹病毒分離與鑑定流程圖

咽喉拭子

加 1.5 mL Sample pretreat medium 充分攪拌，0.45 μm 過濾

尿液

400 × g，4 ℃，10 分鐘，沉澱懸浮於 2 mL Sample pretreat medium

全血

3 mL Ficoll-Paque 加 4 mL 稀釋全血，400 × g，室溫，40 分鐘，沉澱以 HBSS wash，100 × g，室溫，10 分鐘，二次，懸浮於 2 mL Sample pretreat medium

接種 B95-a 細胞

細胞融合樣 CPE

否

3 天後繼代培養，二次

是

細胞呈蘋果綠螢光

否

細胞融合樣 CPE

是

螢光免疫法（IFA）鑑定

否

螢光顯微鏡鏡檢

麻疹病毒分離陰性

麻疹病毒分離陽性
附錄 15.2 細胞繼代培養紀錄表

衛生福利部疾病管制署研究檢驗及疫苗研製中心
細胞繼代培養紀錄表

<table>
<thead>
<tr>
<th>Cell</th>
<th>Transfer Date/time</th>
<th>Person in charge</th>
<th>Flask no.</th>
<th>Container</th>
<th>Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

檢驗者：
實驗室主管：
附錄 15.3 病毒培養觀察紀錄表

<table>
<thead>
<tr>
<th>Date</th>
<th>Exp. pass 1</th>
<th>Exp. pass 2</th>
<th>Sample ID.</th>
<th>Cult.:</th>
<th>M. M. I.:</th>
<th>Absorption:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Note: contaminant; medium mixed
* = cell death
附錄 15.4 螢光鑑定紀錄表

衛生福利部疾病管制署研究檢驗及疫苗研製中心

螢光鑑定紀錄表

<table>
<thead>
<tr>
<th>Date：</th>
<th>檢驗者：</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date：</th>
<th>實驗室主管：</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
附錄 15.5 麻疹病毒檢驗判定總流程圖

全血、咽喉拭子、尿液 → 病毒分離與鑑定

接種 B95a 細胞 → 觀察細胞病病變（CPE）

CPE 陽性 → 間接免疫螢光法（IFA）

細胞呈現蘋果綠螢光 → 是

麻疹陽性

CPE 陰性 → 繼代培養二次

無 CPE → 出現 CPE

是

麻疹陰性

血清學檢驗結果與細胞分離結果，有任何
一者為陽性，則判為陽性
衛生福利部疾病管制署傳染病標準檢驗方法

編號：麻疹病毒核酸檢測

核准日期：年 月 日

修訂日期：年 月 日

頁次：第 194 頁/共 1104 頁

1 目的
以分子生物學的技術利用反轉錄酶－巢式聚合酶鍵反應（RT-nested PCR）與即時定量 RT-PCR 來直接檢測檢體中是否有麻疹病毒。

2 適用檢體種類
適用之檢體種類包括咽喉拭子、尿液。

3 名詞解釋
無。

4 原理概述
4.1 RT-PCR：利用分子生物學技術 RT-PCR 高敏感度的方法來檢測檢體中的麻疹病毒 RNA。RT-PCR 之原理為設計專一性之引子（primers），把檢體中的病毒 RNA 反轉錄成 DNA，並將其擴增放大。

4.2 即時定量 RT-PCR：此系統的定量原理是利用一標記兩種熒光的 DNA 探針來偵測聚合酶鍵反應的產物。此 DNA 探針的 5’端標記一報告染劑（reporter dye），3’端則標記一遮蔽染劑（quencher dye），完整的 DNA 探針其報告染劑所散發出的熒光會被遮蔽染劑所掩蓋。當聚合酶進行延伸反應（extension phase）時，具有從 5’端 DNA 切割活性的 DNA 聚合酶將探針切割，使得 5’端報告染劑與 3’端遮蔽染劑分開，遮蔽效應被破壞，此時即可偵測到熒光反應。

5 試劑耗材
5.1 檢測試劑
5.1.1 Viral RNA Extraction Kit。
5.1.2 One-step RT-PCR Kit。
5.1.3 PCR Kit。
5.1.4 One-step qRT-PCR Kit。
5.1.5 TBE buffer（Tris-borate/EDTA electrophoresis buffer）。
5.1.6 陽性對照組(positive control):採用已知麻疹陽性個案檢體作對照；陰性對照組(Negative control):以水作陰性對照。
5.1.7 Agarose。

5.2 耗材
5.2.1 DEPC 水。
5.2.2 無菌 PCR 反應管。
5.2.3 無菌內濾式 10 µl, 20 µl, 100 µl, 200 µl, 1000 µl 微量滴管。
5.2.4 無菌 1.5 ml 微量離心管。
5.2.5 手套。

6 儀器設備
6.1 PCR thermal cycler。
6.2 即時定量偵測儀（如 ABI system, Bio-rad system, LightCycler system 等）。
6.3 電泳槽。
6.4 DNA 電泳膠體觀察設備。
6.5 10 µl, 20 µl, 100 µl, 200 µl, 1000 µl 微量滴管分注器。

7 環境設施安全
採用獨立的操作空間，將 RNA 或 DNA 有關的實驗室分開，以避免污染，影響結果。

8 檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體前處理
10.1.1 檢體編號：核對檢驗單之個案與檢體是否相符，給予疾病編號。
10.1.2 咽喉拭子檢體：棉棒充分攪拌後於塑膠管壁旋轉擠乾取出。
10.1.3 尿液檢體：以 1,500 rpm 離心 10 分鐘，將沉澱物與 1-2 ml 含 2x 抗生素的 DMEM 混合均勻。

10.2 步驟
10.2.1 萃取病毒 RNA (以 QIAGEN QIAamp Viral RNA Mini Kit 為例)
10.2.1.1 吸取 140 µl 的檢體，加入 560 µl Lysis buffer (AVL)，震盪混合，室溫靜置反應 10 分鐘。
10.2.1.2 加入純酒精 560 µl 終止反應。
10.2.1.3 將上述混合液分兩次加入通管柱 (column)，並以離心 (8,000 rpm，1 分鐘) 方式加速混合液通過濾膜，檢體中如有 RNA 存在，會吸附在管柱底部的濾膜上。
10.2.1.4 以清洗液 (AW1) 500 µl，離心 8,000 rpm，1 分鐘，作第一次沖洗，清洗膜上所吸附的雜質。
10.2.1.5 以清洗液 (AW2) 500 µl，離心 14,000 rpm，3 分鐘，作第二次沖洗，清洗膜上剩餘吸附的雜質。
10.2.1.6 離心 14,000 rpm，1 分鐘，以徹底去除膜上殘留酒精。
10.2.1.7 加入萃取液 (AVE) 50 µl，室溫靜置 1 分鐘，在 4℃ 離心 8,000 rpm，1 分鐘，取得 RNA。
10.2.2 反轉錄酶－聚合酶鏈鎖反應 (RT-PCR) (以 Qiagen one-step RT-PCR kit 為例)
10.2.2.1 取 5 μl RNA 為模版，加入引子組（primers 參考附錄 15-2）與 RT-PCR 試劑，反應總體積 25 μl，反應溶
液成分如下:

<table>
<thead>
<tr>
<th>成分</th>
<th>体积</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNase-free H₂O</td>
<td>10.85 μl</td>
</tr>
<tr>
<td>5 X RT-PCR buffer</td>
<td>5.0 μl</td>
</tr>
<tr>
<td>Forward primer MV59（10 μM）</td>
<td>1.0 μl</td>
</tr>
<tr>
<td>Reverse primer MV64（10 μM）</td>
<td>1.0 μl</td>
</tr>
<tr>
<td>RT-PCR enzyme mix</td>
<td>1.0 μl</td>
</tr>
<tr>
<td>dNTP Mix (10 μM)</td>
<td>1.0 μl</td>
</tr>
<tr>
<td>RNase inhibitor 40 U/ul</td>
<td>0.15 μl</td>
</tr>
<tr>
<td>RNA sample</td>
<td>5.0 μl</td>
</tr>
<tr>
<td></td>
<td>25.0 μl</td>
</tr>
</tbody>
</table>

10.2.2.2 使用 PCR thermal cycle，設定反應條件如下:

10.2.2.2.1 R.T.作用, 50℃ 30 分鐘。
10.2.2.2.2 Taq 活化作用, 95℃ 15 分鐘。
10.2.2.2.3 Denaturation, 94℃ 30 秒。
10.2.2.2.4 Annealing, 51℃ 30 秒。
10.2.2.2.5 Extension, 72℃ 60 秒。
10.2.2.2.6 重複 10.2.2.2.3 至 10.2.2.2.5 步驟 30 cycle。
10.2.2.2.7 Final extension, 72℃ 5 分鐘。

10.2.3 巢式聚合酶鏈鎖反應(nested PCR)（以 Qiagen HotStarTaq PCR Kit 為例）

10.2.3.1 取 3 μl 10.2.2 步驟所得的 RT-PCR 反應產物做模版，
加入引子組（primers 參考引子組序列表）與 PCR 試
劑，反應總體積 50 μl，反應溶液成分如下:

<table>
<thead>
<tr>
<th>成分</th>
<th>体积</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNase-free H₂O</td>
<td>20.0 μl</td>
</tr>
<tr>
<td>2 X Master Mix</td>
<td>25.0 μl</td>
</tr>
<tr>
<td>Forward primer MV216（10 μM）</td>
<td>1.0 μl</td>
</tr>
<tr>
<td>Reverse primer MV214（10 μM）</td>
<td>1.0 μl</td>
</tr>
<tr>
<td>DNA sample</td>
<td>3.0 μl</td>
</tr>
<tr>
<td></td>
<td>50.0 μl</td>
</tr>
</tbody>
</table>

10.2.3.2 使用 PCR thermal cycle，設定反應條件如下:

10.2.3.2.1 Taq 活化作用, 95℃ 15 分鐘。
10.2.3.2.2 Denaturation, 94℃ 30 秒。
10.2.3.2.3 Annealing, 60℃ 30 秒。
10.2.3.2.4 Extension, 72℃ 60 秒。
10.2.3.2.5 重複 10.2.3.2.3 至 10.2.3.2.4 步驟 30 cycle。
10.2.3.2.6 Final extension, 72℃ 5 分鐘。

10.2.4 膠片電泳分析

10.2.4.1 置備 1.5% 洋菜膠：1.5 g agarose 溶於 100 ml（1 X）TBE buffer。
10.2.4.2 選擇 100 bp DNA size Marker：5μl（2 ng/μl）。
10.2.4.3 取二次產物 5 μl 及 100 bp Marker，混合 1 μl Safe-Green Nucleic Acid Stain (eg :abm -Cat.No.G108-G)。
10.2.4.4 進行電泳分離：100V，30 min。
10.2.4.5 使用 UV light 視察，並照相紀錄。

10.2.5 即時反轉錄酶-聚合酶鍊鎖反應(real-time RT-PCR)(以 Invitrogen,#11732-020,SuperScript III Platinum One-Step qRT-PCR Kit 為例)
10.2.5.1 取 2.5μl RNA 為模版，加入引子組及探針(primers 及 probe 參考附錄 15-2) 與 qRT-PCR 試劑，反應總體積 25 μl，反應溶液成分如下:

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
<th>Final Conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNase-free H2O</td>
<td>7.2 μl</td>
<td></td>
</tr>
<tr>
<td>2 X Reaction Mix</td>
<td>12.5 μl</td>
<td>1X</td>
</tr>
<tr>
<td>Primer/Probe Mix</td>
<td>2.0 μl</td>
<td>300nM/250nM</td>
</tr>
<tr>
<td>ROX reference</td>
<td>0.05 μl</td>
<td>0.25 U/ul</td>
</tr>
<tr>
<td>RNase inhibitor (40 U/ul)</td>
<td>0.25 μl</td>
<td>0.4 U/ul</td>
</tr>
<tr>
<td>SSIII/Taq Mix</td>
<td>0.5 μl</td>
<td></td>
</tr>
<tr>
<td>RNA sample</td>
<td>2.5 μl</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>25.0 μl</td>
<td></td>
</tr>
</tbody>
</table>

10.2.5.2 使用即時定量偵測儀(eg:Roche LC480)，設定反應條件
10.2.5.2.1 RT reaction：48℃，30 分鐘。
10.2.5.2.2 Taq Activation：95℃，5 分鐘。
10.2.5.2.3 PCR reaction：95℃，15 秒；60℃，1 分钟（40 cycles）。

11 結果判定
11.1 判讀標準
11.1.1 RT-PCR: 取 RT-PCR 產物各 5μL，在 1.5% 洋菜膠進行分析，檢視分析結果。麻疹增幅產物片段約 630 bp，若出現上述 RT-PCR 產物，檢驗結果為陽性。
11.1.2 Real-time RT-PCR: 按下機器分析鈕，選擇絕對定量二次微分最大值分析(Abs Quant/2 nd Derivate Max)，會帶出自動判讀結果，並將陽性檢體以紅色標示，並計算出相對應的 CP 值，在 High Confidence 及 High Sensitivity 分析模式下皆為陽性且 CP 值小於 40 者，判為麻疹病毒陽性。
11.2 報告核發：麻疹病毒 PCR 陽性，麻疹病毒 PCR 陰性。
11.3 結果登錄: 完成檢驗後，將檢驗結果填寫於検體送検單之“検驗結果欄”，並上網登錄於實驗室資訊管理系統，傳送實驗室主管審核，待審核通過後發佈結果。
12 品質管制
 12.1 每次進行實驗時皆有陽性及陰性對照組。
 12.2 實驗過程遵循S.O.P的作業規範與流程，並在個別獨立的操作空間內操作，以避免污染。
 12.3 微量吸管分注器做定期的校正。

13 廢棄物處理
 檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
 14.1 Manual for the laboratory diagnosis of measles and rubella virus infection，Second edition，WHO/IVB/07.01。
 14.2 Measles Real-time RT-PCR Kit distributed by Measles, Mumps, Rubella, and Herpesviruses Laboratory Branch, CDC, USA。
 14.3 Measles Genotyping Kit distributed by Measles, Mumps, Rubella, and Herpesviruses Laboratory Branch, CDC, USA。

15 附錄
 15.1 麻疹病毒鑑定流程圖。
 15.2 麻疹病毒診斷用引子及探針組序列表
附錄 15-1 麻疹病毒鑑定流程圖

咽喉拭子、尿液

病毒 RNA 萃取

Real-time RT-PCR or Nested RT-PCR 檢測

結果判定
附錄 15-2 麻疹病毒診斷用引子及探針組序列表
一、Nested RT-PCR First round RT-PCR primer
 MV59 : 5’-GATATGTGACATTGATACATATAT-3’
 MV64 : 5’-TATAACATGATGGAGGATAG-3’

二、Nested RT-PCR Second round nested-PCR primer
 MV216: 5’-TGGAGCTATGCCATGGGAGT-3’
 MV214: 5’-TAAACATGATGGAGGATAG-3’

三、Real-Time RT-PCR
 Rorward Primer(MVN1139F): 5’-TGGCATCTCAGACTCGGTATCAC-3’
 Reversr Primer(MVN1213R): 5’-TGTCCTCAGTAGGTAGTTCGACAA-3’
 Probe(MVN1163P): 5’FAM-CGAGATTGCCAGGCTTGTTCAGA-BHQ 3’
1 目的
利用間接免疫酵素分析法（indirect ELISA，indirect enzyme-linked immunosorbent assay）檢測人體是否有麻疹專一性 IgM 抗體。

2 適用檢體種類
血清（serum）或血漿（plasma）。

3 名詞解釋
無。

4 原理概述
利用間接酵素免疫分析法。檢體先以 RF Absorbent 吸附，以除去類風濕因子及 IgG，降低對所測試 IgM 反應的干擾。再利用吸附有麻疹病毒抗原的微量盤與待測血清中具有的麻疹專一性 IgM 抗體作用一段時間，清洗掉未結合的物質然後加上 Anti-human IgM/POD Conjugate，再反應一段時間後清洗掉未結合的物質，最後加上無色受質 TMB 作用 30 min，受質經 conjugate 上的酵素催化後，轉換為藍色，最後再加上終止液終止反應，此時有反應的微量盤會變成黃色。以吸光光度計測定 450 nm 波長的吸光值，以 650 nm 為參考波長。

5 試劑耗材
5.1 試劑
5.1.1 「Enzygnost anti-masern-virus/IgM：Dade Behring，OWLI 15，Germany，4 ℃ 貯存」。
5.1.1.1 Anti-measles virus/IgM test plate：2 × 6 Strips。
5.1.1.2 Anti-measles virus reference P/P：0.65 mL。
5.1.1.3 Anti-measles virus reference P/N：0.45 mL。
5.1.1.4 Sample buffer POD：2 × 50 mL。
5.1.1.5 Anti-human IgM/POD conjugate（µ-chain specific）：1 mL。
5.1.1.6 Conjugate buffer microbiol：4 × 12.5 mL。
5.1.1.7 RF sbsorbent：4 × for 5 mL。
5.1.1.8 Polyethylene bag for storing unused test strip。
5.1.1.9 Barcode table of value。
5.1.2 「Supplementary reagents for enzygnost/TMB：Dade Behring，OUVP 17，Germany，4 ℃ 貯存」。
5.1.2.1 Washing solution POD：3 × 100 mL。
5.1.2.2 Colour solution blue for enzygnost：1 × 12.5 mL。
5.1.2.3 Buffer/substrate TMB：4 × 30 mL。
5.1.2.4 Chromogen TMB：4 × 3 mL。
5.1.2.5 Stopping solution POD：2 × 100 mL。
5.1.2.6 Adhesive foils for microtiter plates：24 pcs。
5.1.2.7 Empty bottle for the working Chromogen solution: 1 pcs.

5.1.2.8 Instruction for use: 1 pcs.

5.2 耗材
5.2.1 tips: 200 μL, 1,000 μL。
5.2.2 1.5 mL Eppendorf tube。
5.2.3 4 mL Tube。
5.2.4 2 mL 螺旋試管。
5.2.5 抗凍標籤紙。
5.2.6 油性簽字筆。

6 儀器設備
6.1 單爪 Pipetman: 20 μL, 200 μL, 1,000 μL。
6.2 八爪 Pipetman: 200 μL。
6.3 電動分注器: 50 μL-1,000 μL。
6.4 Microplate washer。
6.5 Microplate reader。
6.6 小型離心機。
6.7 37 °C 溫箱。
6.8 振盪混合器。

7 環境設施安全
於生物安全第二等級 (BSL-2) 實驗室之設施內操作。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowt reeid=6C7C52E7A7D5621A。

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowt reeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體編號: 核對檢驗單之個案與檢體是否相符，給予疾病編號。
10.2 檢驗前處理
10.2.1 將血液分裝於 1.5 mL Eppendorf tube，以小型離心機離心 3 - 5 min，收集血清或血漿於 2 mL 螺旋試管。
10.2.2 記錄檢體於檢驗盤上之相對應位置，如附錄 15.1。
10.2.3 配置 Working RF absorbent: 一瓶 RF absorbent 以 5 mL 蒸餾水溶解。
10.2.4 配置 Working wash solution：用蒸餾水以 1:20 的比例稀釋 5.1.2.1 Washing solution POD。
10.2.5 配置 Working conjugate solution：1 份 5.1.1.5 Anti-human IgM/POD conjugate + 50 份 5.1.1.6 Conjugate buffer microbiol。
10.2.6 配置 Working Chromogen solution：1 份 5.1.2.4 Chromogen TMB + 10 份 5.1.2.3 buffer/substrate TMB。
10.2.7 Microplate washer 先以配置好的 Working wash solution 進行 Prime 指令，使管路充滿 Working wash solution。

10.3 檢驗步驟
10.3.1 血清稀釋至加到微量盤的步驟詳如附錄 15.2。
10.3.2 封上 5.1.2.6 Adhesive foils，置放 37 ℃溫箱培養 60 min。
10.3.3 啓動 Microplate washer 以 Wash solution 清洗三次。
10.3.4 每個細胞格加入 100 μL Working conjugate solution。
10.3.5 置放 37 ℃溫箱培養 60 min。
10.3.6 啟動 Microplate washer 以 Wash solution 清洗三次。
10.3.7 每個孔加入 100 μL Working Chromogen solution。
10.3.8 室溫，避光，培養 30 min。
10.3.9 每個孔加入 100 μL Stopping solution。
10.3.10 用 Microplate reader 測定 450 nm 吸光度，以 650 nm 做為參考波長。

10.4 檢驗後處理
10.4.1 Microplate washer 以蒸餾水進行二次 Prime，以去除殘存之 Wash solution，防止管路結晶阻塞。
10.4.2 使用後的 Tips、Eppendorf、Microplate strip，滅菌後丟棄。
10.4.3 Microplate washer、Microplate reader 關機。

11 結果判定
11.1 判讀標準

<table>
<thead>
<tr>
<th>計算</th>
<th>判定</th>
<th>判定標準</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔA=ΔA_{antigen}−ΔA_{control antigen}</td>
<td>阳性（positive）</td>
<td>ΔA＞0.2</td>
</tr>
<tr>
<td></td>
<td>陰性（negative）</td>
<td>ΔA＜0.1</td>
</tr>
<tr>
<td></td>
<td>未確定（equivocal）</td>
<td>0.1≦ΔA≦0.2</td>
</tr>
</tbody>
</table>

11.1 報告核發：麻疹 IgM 陽性，麻疹 IgM 陰性，麻疹 IgM 未確定。
11.2 結果登錄：完成檢驗後，將檢驗結果登錄於附錄 15.4 麻疹 ELISA 實驗紀錄表，檢驗結果填寫於檢體送驗單之“檢驗結果欄”，並上網登錄於實驗室資訊管理系統，傳送實驗室主管審核，待審核通過後發佈結果。

12 品質管制
12.1 Qualitative evaluation：ΔA_{Reference P/P}≧0.2。
12.2 Quantitative evaluation：
12.2.1 Lower margin $\leq \Delta A_{\text{Ref/P}} \leq$ upper margin。
12.2.2 任一 $\Delta A_{\text{Ref/P}}$ 介於 Reference P/P 平均值 $\pm 20\%$。
12.3 Measurement correction：利用 Reference P/P 來校正實驗值，改善結果的再現性。

計算範例

<table>
<thead>
<tr>
<th></th>
<th>ΔA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference P/P，at start of series</td>
<td>ΔA</td>
<td>0.474</td>
</tr>
<tr>
<td>With margins？</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Reference P/P，at end of series</td>
<td>ΔA</td>
<td>0.388</td>
</tr>
<tr>
<td>With margins？</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Mean value</td>
<td>ΔA</td>
<td>0.431</td>
</tr>
<tr>
<td>Reference P/P,nominal value</td>
<td>ΔA</td>
<td>0.518</td>
</tr>
<tr>
<td>Correction factor 0.518:0.431</td>
<td>ΔA</td>
<td>1.2</td>
</tr>
<tr>
<td>Corrected ΔA</td>
<td>$=1.2 \times \Delta A$</td>
<td></td>
</tr>
</tbody>
</table>

註：upper、lower margin、nominal value 詳見 5.1.1(9) ，為 lot-specific。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121°C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
14.1 Dade Behring 公司操作說明書。

15 附錄
15.1 檢體排列位置圖。
15.2 檢體稀釋至加入微量盤步驟圖。
15.3 麻疹病毒 IgM 抗體試驗（間接酵素免疫分析法）流程圖。
15.4 麻疹 ELISA 實驗紀錄表。
15.5 麻疹 ELISA 血清學檢驗及結果判定流程圖。
附錄 15.1 檢體排列位置圖

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>B</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>C</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>D</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>E</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>F</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>G</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>H</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

Reference P/P

In-house positive

1. 從 C1 開始置放待測檢體
2. Reference P/P 除 A1 位置固定外，另一 Reference P/P 位置視檢體量而定，在最後一個試劑條 H 對應位置
附錄 15.2 檢體稀釋至加入微量盤步驟圖

400 μL Sample Buffer POD
20 μL
Test sample or reference
Predilution tubes or wells (1:21)

Ig

200 μL each Sample Buffer POD
20 μL each (additional 1:11 dilution)

Ag CoAg
Test dilution 1:231
Inside plate

IgM

200 μL
After 15 min at RT, 150 μL each

200 μL RF Absorbent

Ag CoAg
Test dilution 1:42
附錄 15.3 麻疹病毒 IgM 抗體試驗（間接酵素免疫分析法）流程圖

檢體（血清，發病3-28日內）

1:21稀釋

取等量稀釋檢液與RF處理15分鐘

1:42稀釋

加150 μL經RF處理之檢液及稀釋之參考血清P/P及P/N至覆有病毒抗原/細胞對照抗原的一組微量盤

37℃，1小時

Wash後，加入100 μL結合酵素之抗IgM抗體

37℃，1小時

Wash後，加入100 μL酵素受質使之呈色

室溫，30分鐘

加入100 μL反應終止液

1小時內

以Microplate Reader 450 nm測定OD值
以 650 nm 做為參考波長
附錄15.4 麻疹ELISA實驗紀錄表

衛生福利部疾病管制署研究檢驗及疫苗研製中心
麻疹ELISA實驗紀錄表

<table>
<thead>
<tr>
<th>Name</th>
<th>Well</th>
<th>Sample No.</th>
<th>ΔA</th>
<th>Corrected ΔA</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1A</td>
<td>P/P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>in-house P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2A</td>
<td>P/P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Well</th>
<th>Sample No.</th>
<th>ΔA</th>
<th>Corrected ΔA</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>P/P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>in-house P</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Validation Check
1. P/P ≥ 0.2
2. P/P within lower and upper margin
3. Individual P/P within ±20 % mean P/P

Kit Batch:
Expiry:
Lower margin:
Upper margin:
Nominal Value:
Mean P/P:
Correction Factor:

Result Interpretation
(-) Negative < 0.10 (+) POSITIVE > 0.20 (+/-) EQUIVOCAL : 0.10 - 0.20

檢驗者：
實驗室主管：
附錄 15.5 麻疹 ELISA 血清學檢驗及結果判定流程圖

血清

IgM EIA test

IgG EIA test

IgM：+ 未確定，間隔十四日以後再採検
IgG：+或- 未確定，間隔十四日以後再採検

陽性

IgM：- IgG：- 以前曾經感染或接種疫苗
IgM：- IgG：+ 以前曾經感染或接種疫苗
IgM：- IgG：± 以前曾經感染或接種疫苗

1. 第二次檢體仍為IgM及IgG陰性者判為陰性
2. 第二次檢體為IgM陽性或IgG陰轉者判為陰性

1. 第二次檢體IgM為陽性或IgG抗體有顯著上升者判為陰性
2. IgM抗體為陰性或±，而IgG抗體未顯著上升者判為陰性
1 目的
利用間接免疫酵素分析法（indirect ELISA，indirect enzyme-linked immunosorbent Assay）檢測人體是否有麻疹專一性 IgG 抗體。

2 適用檢體種類
血清（serum）或血漿（plasma）。

3 名詞解釋
無。

4 原理概述
利用間接酵素免疫分析法。利用 96 孔微量盤底覆有麻疹病毒抗原的測試盤與待測血清中具有的麻疹專一性 IgG 抗體作用 1 hr，清洗掉未結合的物質然後加上 Anti-human IgG/POD Conjugate，再反應 1 hr，清洗掉未結合的物質，最後加上無色受質 TMB 作用 30 min，經 conjugate 上的酵素催化，轉換為藍色，最後再加上終止液終止反應，此時有反應的位置會變成黃色，以吸光光度計測定 450 nm 波長的吸光值，以 650 nm 為參考波長。

5 試劑耗材
5.1 試劑
5.1.1 「Enzygnost anti-masern-virus/IgG：Dade Behring，OWLN 15，Germany，4 °C 儲存」。
 5.1.1.1 Anti-measles virus/IgG test plate：2 × 6 strips。
 5.1.1.2 Anti-measles virus Reference P/N：0.4 mL。
 5.1.1.3 Sample buffer POD：2 × 50 mL。
 5.1.1.4 Anti-human IgG/POD conjugate：1 mL。
 5.1.1.5 Conjugate buffer microbiol：4 × 12.5 mL。
 5.1.1.6 Polyethylene bag for storing unused test strip。
 5.1.1.7 Barcode table of value。
5.1.2 「Supplementary reagents for enzygnost/TMB：Dade Behring，OUVP 17，Germany，4 °C 儲存」。
 5.1.2.1 Washing solution POD：3 × 100 mL。
 5.1.2.2 Colour solution blue for enzygnost：1 × 12.5 mL。
 5.1.2.3 Buffer/substrate TMB：4 × 30 mL。
 5.1.2.4 Chromogen TMB：4 × 3 mL。
 5.1.2.5 Stopping solution POD：2 × 100 mL。
 5.1.2.6 Adhesive foils for microtiter plates：24 pcs。
 5.1.2.7 Empty bottle for the working Chromogen solution：1 pcs。
 5.1.2.8 Instruction for use：1 pcs。
5.2 耗材
5.2.1 tips：200 μL、1,000 μL。
5.2.2 1.5 mL Eppendorf tube。
5.2.3 4 mL Tube。
5.2.4 2 mL 螺旋試管。
5.2.5 抗凍標籤紙。
5.2.6 油性簽字筆。

6 儀器設備
6.1 單爪 Pipetman：20 μL、200 μL、1,000 μL。
6.2 八爪 Pipetman：200 μL。
6.3 電動分注器：50 μL-1,000 μL。
6.4 Microplate washer。
6.5 Microplate reader。
6.6 小型離心機。
6.7 37 °C 溫箱。
6.8 振盪混合器。

7 環境設施安全
於生物安全第二等級（BSL-2）實驗室之設施內操作。

8 檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體編號：核對檢驗單之個案與檢體是否相符，給予疾病編號。
10.2 檢驗前處理
10.2.1 將血液分裝於 1.5 mL Eppendorf，以小型離心機離心 3-5 min，收集血清或血漿於 2 mL 螺旋試管。
10.2.2 記錄檢體於檢驗盤上之相對應位置，如附錄 15.1。
10.2.3 配置 Working wash solution：用蒸餾水以 1：20 的比例稀釋 5.1.2.1 Washing solution POD。
10.2.4 配置 Working conjugate solution：1 份 5.1.1.5 Anti-human IgG/POD conjugate + 50 份 5.1.1.6 Conjugate buffer microbiol。
10.2.5 配置 Working Chromogen solution：1 份 5.1.2.4 Chromogen TMB + 10 份 5.1.2.3 Buffer/substrate TMB。

麻疹病毒 IgG 抗體檢測
(Indirect ELISA)
10.2.6 Microplate washer 先以配置好的 Working wash solution 進行
Prime 指令，使管路充滿 Working wash solution。

10.3 檢驗步驟
10.3.1 血清稀釋至加到微量盤的步驟詳如附錄 15.2。
10.3.2 封上 5.1.2.6 Adhesive foils, 置放 37 °C 溫箱培養 60 min。
10.3.3 啟動 Microplate washer 以 Wash solution 清洗三次。
10.3.4 每個細胞格加入 100 μL Working conjugate solution。
10.3.5 置放 37 °C 溫箱培養 60 min。
10.3.6 啟動 Microplate washer 以 Wash solution 清洗三次。
10.3.7 每個孔加入 100 μL Working Chromogen solution。
10.3.8 室溫，避光，培養 30 min。
10.3.9 每個孔加入 100 μL Stopping solution。
10.3.10 用 Microplate reader 測定 450 nm 吸光度，以 650 nm 做
為參考波長。

10.4 檢驗後處理
10.4.1 Microplate washer 以蒸餾水進行二次 Prime，以去除殘存之
Wash solution，防止管路結晶阻塞。
10.4.2 使用後的 Tips、Eppendorf、Microplate strip，滅菌後丟棄。
10.4.3 Microplate washer、Microplate reader 關機。

11 結果判定
11.1 判定標準

<table>
<thead>
<tr>
<th>計算</th>
<th>判定</th>
<th>判定標準</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔA=A_{antigen}-A_{control antigen}</td>
<td>陽性（positive）</td>
<td>ΔA＞0.2</td>
</tr>
<tr>
<td></td>
<td>陰性（negative）</td>
<td>ΔA＜0.1</td>
</tr>
<tr>
<td></td>
<td>未確定（equivocal）</td>
<td>0.1≤ΔA≤0.2</td>
</tr>
</tbody>
</table>

11.2 報告核發：麻疹 IgG 陽性，麻疹 IgG 陰性，麻疹 IgG 未確定。
11.3 結果登錄：完成檢驗後，將檢驗結果登錄於附錄 15.4 麻疹 ELISA 實驗
紀錄表，檢驗結果填寫於檢體送驗單之“檢驗結果欄”，並上網登錄於實
驗室資訊管理系統，傳送實驗室主管審核，待審核通過後發佈結果。

12 品質管制
12.1 Quantitative evaluation：ΔA.Reference P/N ≥ 0.5。
12.2 Quantitative evaluation。
12.3 Lower margin ≤ ΔA.Reference P/N ≤ upper margin
12.4 任一 ΔA.Reference P/N 介於 Reference P/N 平均值 ± 20%。
12.5 Measurement correction：利用 Reference P/N 來校正實驗值，改善結果
的再現性。
計算範例

<table>
<thead>
<tr>
<th>計算項目</th>
<th>ΔA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference P/N, at start of series</td>
<td>1.374</td>
</tr>
<tr>
<td>With margins?</td>
<td>yes</td>
</tr>
<tr>
<td>Reference P/N, at end of series</td>
<td>1.188</td>
</tr>
<tr>
<td>With margins?</td>
<td>yes</td>
</tr>
<tr>
<td>Mean value</td>
<td>1.281</td>
</tr>
<tr>
<td>Reference P/P, nominal value</td>
<td>1.024</td>
</tr>
<tr>
<td>Correction factor 1.024:1.281</td>
<td>= 0.8</td>
</tr>
<tr>
<td>Corrected ΔA</td>
<td>0.8 x ΔA</td>
</tr>
</tbody>
</table>

註: upper 、lower margin、nominal value 詳見 5.1.1(7)，為 lot-specific。

13 廢棄物處理

檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

14.1 Dade Behring 公司操作說明書。

15 附錄

15.1 檢體排列位置圖。
15.2 檢體稀釋至加入微量盤步驟圖。
15.3 麻疹病毒 IgG 抗體試驗（間接酵素免疫分析法）流程圖。
15.4 麻疹 ELISA 實驗紀錄表。
15.5 麻疹 ELISA 血清學檢驗及結果判定流程圖。
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>B</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>C</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>D</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>E</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>F</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>G</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>H</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

1. 從 C1 開始置放待測檢體。
2. Reference P/N 除 A1 位置固定外，另一 Reference P/N 位置視檢體量而定，在最後一個試劑條 H 對應位置。
附錄 15.2 檢體稀釋至加入微量盤步驟圖

1. **Test sample or reference**
 - 400 μL sample buffer POD
 - 20 μL

2. **Predilution tubes or wells (1:21)**
 - 200 μL RF Absorbent
 - 200 μL each sample buffer POD

3. **Ag CoAg**
 - 20 μL each (additional 1:11 dilution)
 - Inside plate

4. **Ag CoAg**
 - Test dilution 1:231
 - Outside plate

5. **Ag CoAg**
 - Test dilution 1:42

6. **After 15 min at RT, 150 μL each**
 - 200 μL each

（附圖）麻疹病毒 IgG 抗體檢測 (Indirect ELISA)
附錄 15.3 麻疹病毒 IgG 抗體試驗（間接酵素免疫分析法）流程圖

檢體（血清或血漿）

1:21稀釋後取20μL
加入下列微量盤

覆有病毒抗原/細胞對照抗原的一組微量盤，先加入200μL的稀釋液

37℃，1小時

Wash後，加入100μL結合酵素之抗IgG抗體

37℃，1小時

Wash後，加入100μL酵素受質使之呈色

室溫，30分鐘

加入100μL反應終止液

1小時內

以Spectrophotometer 450 nm測定OD值
以 650 nm 做為參考波長
附錄15.3 麻疹病毒IgG抗體試驗（間接酵素免疫分析法）流程圖(續)

檢體（血清，發病3-28日內）

1:21稀釋

取等量稀釋檢液與RF處理15分鐘

1:42稀釋

加150μL經RF處理之檢體及稀釋之參考血清P/P及P/N至覆有病毒抗原/細胞對照抗原的一組微量盤

37℃，1小時

Wash後，加入100μL結合酵素之抗IgM抗體

37℃，1小時

Wash後，加入100μL酵素受質使之呈色

室溫，30分鐘

加入100μL反應終止液

1小時內

以Microplate Reader 450 nm測定OD值

以650 nm作為參考波長
附錄 15.4 麻疹 ELISA 實驗紀錄表

<table>
<thead>
<tr>
<th>Name</th>
<th>Measles IgM</th>
<th>Measles IgG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Well</td>
<td>ΔA</td>
</tr>
<tr>
<td>1A</td>
<td>P/P</td>
<td>1A</td>
</tr>
<tr>
<td>1B</td>
<td>P/N</td>
<td>B</td>
</tr>
<tr>
<td>1C</td>
<td>D</td>
<td>C</td>
</tr>
<tr>
<td>1D</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>1E</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td>1F</td>
<td>G</td>
<td>H</td>
</tr>
<tr>
<td>1G</td>
<td>H</td>
<td></td>
</tr>
</tbody>
</table>

Validation Check

<table>
<thead>
<tr>
<th>Measles IgM</th>
<th>Measles IgG</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.P/P ≥ 0.2</td>
<td>1.P/N ≥ 0.5</td>
</tr>
<tr>
<td>2.P/P within lower and upper margin</td>
<td>2.P/N within lower and upper margin</td>
</tr>
<tr>
<td>3.Individual P/P within ±20% mean P/P</td>
<td>3.Individual P/N within ±20% mean P/N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kit Batch</th>
<th>Expiry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower margin</td>
<td>Upper margin</td>
</tr>
<tr>
<td>Nominal Value</td>
<td>Mean P/P</td>
</tr>
<tr>
<td>Correction Factor</td>
<td></td>
</tr>
</tbody>
</table>

Result Interpretation

(-)Negative < 0.10 (+)POSITIVE > 0.20 (+/-)EQUIVOCAL : 0.10-0.20

檢驗者：實驗室主管：
附錄 15.5 麻疹血清學檢驗及結果判定流程圖

血清

IgM EIA test IgG EIA test

IgM: + IgM: - IgM: - IgM: ± IgM: -
IgG: +或- IgG: - IgG: + IgG: +或- IgG: ±

陽性

以前曾經感染
或接種疫苗

未確定，間隔七
日以後再採檢

未確定，間隔七
日以後再採檢

1.第二檢體仍為IgM
及IgG陰性者判為陰性
2.第二次檢體為IgM陽性
或IgG陽轉者判為
陽性

1.第二次檢體IgM為陽性
或IgG抗體有顯著上升
者判為陽性
2. Igm抗體為陰性或±，而
IgG抗體未顯著上升者
判為陰性
1 目的
定性測試人體血清及血漿中之抗 A 型肝炎病毒 IgM 抗體 (IgM anti-HAV)。ARCHITECT HAVAb-IgM 分析可用於輔助診斷急性或近期感染之 A 型肝炎。

2 適用檢體種類
適用於血清或血漿檢體。

3 名詞解釋
無。

4 原理概述
ARCHITECT IgM anti-HAV 分析為二步驟免疫分析法，利用化學冷光微粒免疫分析技術，配合彈性式分析過程(亦即 Chemiflex®)，定性測試人體血清及血漿中之 IgM anti-HAV。

在第一步驟中，預先稀釋過之樣本、分析稀釋液和覆被 A 型肝炎病毒(人類)的磁性微粒混合，存於樣本中的 IgM anti-HAV 會與覆被 A 型肝炎病毒(人類)之微粒結合。經清洗後，IgM anti-HAV 會與在第二步驟加入的標示 acridinium 之抗人類 IgM 偶合物結合。經另一次清洗循環後，加入啟動前溶液及啟動溶液至反應混合物中。以相對光線單位 (RLUs) 測量最終的化學冷光反應，樣本中的 IgM anti-HAV 含量與 ARCHITECT i-1000 光學系統所測得之 RLUs 有直接相關性。樣本中的 IgM anti-HAV 存在與否，經由比較反應之化學冷光訊號及由 ARCHITECT HAVAb-IgM 校正液測得之臨界值來判

5 試劑耗材
5.1 試劑：
5.1.1 ARCHITECT HAVAb-IgM 試劑組 (No.6C30)：1 或 4 瓶 (6.6 mL) 覆被 A 型肝炎病毒 (人類) 之微粒於 TRIS 緩衝液中。最小濃度：0.08% 固體。防腐劑：ProClin® 300 及其他抗菌劑。
5.1.2 1 或 4 瓶 (5.9 mL) 標示 acridinium 之抗人類 IgM (小鼠，單株抗體) 偶合物於含蛋白質穩定劑 (牛) 之 MES 緩衝液中。最小濃度：0.01 μg/mL，防腐劑：ProClin 300 及其他抗菌劑。
5.1.3 1 或 4 瓶 (10.0 mL) HAVAb-IgM 分析稀釋液含蛋白質穩定劑 (牛) 於 TRIS 緩衝液中。防腐劑：ProClin 300 及其他抗菌劑。
5.1.4 ARCHITECT i 啟動前溶液 (Pre-Trigger Solution)：含 1.32 % (w/v) 過氧化氫。
5.1.5 ARCHITECT i 啟動溶液 (Trigger Solution)：含 0.35 M 氫氧化鈉。
5.1.6 ARCHITECT i 清洗緩衝液 (Wash Buffer)：含磷酸緩衝食鹽水溶液，防腐劑：抗菌劑。
5.1.7 ARCHITECT i HAVAb-IgM calibrator 校正液 (No. 6C30-01)。
5.1.8 ARCHITECT i HAVAb-IgM control 對照劑（No. 6C30-10）。
5.1.9 ARCHITECT i probe conditioning solution 探針清洗液。
5.1.10 漂白水。
5.2 耗材：
5.2.1 微量吸管尖（tip）：1,000 µL、200 µL、100 µL。
5.2.2 反應容器（Reaction vessels）。
5.2.3 樣本杯（Sample cups）。
5.2.4 試劑軟蓋（Septums）。
5.2.5 可拋棄式無菌塑膠手套。

6 儀器設備
6.1 Architect i-1000 分析儀。
6.2 第二級生物安全操作櫃（Class II BSC）。
6.3 微量吸管（pipettemen）：1,000 µL、200 µL、100 µL。
6.4 離心機（KM-15200），KUBOTA，日本。
6.5 4 ℃冰箱。
6.6 -20 ℃冷凍櫃。
6.7 高壓滅菌鍋。

7 環境設施安全
於生物安全第二等級（BSL-2）實驗室之設施內操作。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

10 檢驗步驟
10.1 待測病患檢體依照檢體 Bar code 編號（由小至大）排序。
10.2 檢體前處理：
10.2.1 待測檢體（血清、血漿）需先震盪混合均勻並以 10,000 × g 離心 10 分鐘去除雜質，取其上清液。
10.2.2 第一次測試最小樣本杯檢體體積為 150 µL，每多一次測試增加檢體 20 µL，將樣本杯依序放置於檢體架上。
1.1 Sample Order：
10.2.3 由 Main Menu 中按 Orders 進入選項 calibration order、control order 依序輸入位置後，各選擇 HAVAB-M 項目，按 Add order。
10.2.4 將已放上校正液和對照劑之検體架放進i-1000 分析儀中，進行品管分析。
10.2.5 點選 Orders 後再點選 Patient order。
10.2.6 輸入 Carrier 號碼。
10.2.7 輸入 C/P（検體放置於検體架上之位置）及 SID（検體編號），亦可輸入 PID（病歷號）。（整批検體輸入請依 Batch Order 方式）
10.2.8 點取測試項目 HAVAB-M。
10.2.9 點取 F3 Add order。
10.2.10 將放有検體之 Carrier 放置於 load queue 上，即可開始分析測試。

10.3 Batch Order：
10.3.1 檢體不含 barcode
Patient orders 畫面中點選 Batch 即進入 Batch order 畫面，只要於 Staring C 及 P:輸入第一支検體 carrier 號碼及位置然後於 Number of samples 輸入検體數目接著點選欲上機之 Assay 項目再點選 F3-Add order 即可。
10.3.2 檢體含 barcode
於 Patient orders 畫面中點選 Batch 並於 Starting SID 輸入第一支検體之 SID 於 Ending SID 輸入最後一支検體 SID 接著點選 Assays 後按 F3-Add order 即可。検驗後處理

10.4.1 完成検驗，HAV 試劑組貯存於 4 ℃冰箱保存。
10.4.2 執行關機前做好保養工作，按 F1 Exit 鍵讓螢幕回到 Main Menu，按 F2 Shutdown 鍵，選擇 OK，等待螢幕告知 Shutdown 完全後，才可關掉電源和印表機。
10.4.3 檢驗後之検體應依序歸回検體盒，放置 -20 ℃冰箱保存。
10.4.4 整理清除實驗工作桌面上之抗污紙墊及使用後拋棄之微量吸管尖、手套包裝於廢棄物滅菌塑膠袋。

11 結果判定
11.1 判讀標準
11.1.1 ARCHITECT i-1000 系統由校正液 1 三次測試結果之平均 RLU 值計算出臨界值 RLU(CO)並儲存結果。
臨界值 RLU = 校正液 1 平均 RLU 值 × 0.375
儲存每一批號試劑校正之臨界值 RLU
11.1.2 ARCHITECT i-1000 系統根據樣本 RLU 與臨界值 RLU 之比率 (S/CO)計算每一個検體及對照劑之分析結果。
S/CO = 樣本 RLU / 臨界值 RLU
例如：若樣本 RLU = 2161 且臨界值 RLU = 512.25
則 S/CO = 2161 / 512.25 = 4.22
衛生福利部疾病管制署傳染病標準檢驗方法

編號：A 型肝炎病毒 IgM 抗體檢測
（化學冷光微粒免疫分析法）

核准日期：年 月 日
修訂日期：年 月 日

頁次：第 223 頁/共 1104 頁

11.1.3 生物參考區間：

<table>
<thead>
<tr>
<th>測試結果(S/CO)</th>
<th>視為 IgM anti-HAV</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.8</td>
<td>無反應性（陰性）</td>
</tr>
<tr>
<td>0.80~1.20</td>
<td>灰色區域有反應性（GZ）</td>
</tr>
<tr>
<td>> 1.2</td>
<td>有反應性（陽性）</td>
</tr>
</tbody>
</table>

檢體之訊號與臨界值比率(S/CO)大於 1.20，視為 IgM anti-HAV 有反應性；檢體之 S/CO 值介於 0.8 至 1.20 之間，視為灰色區域有反應性；檢體之 S/CO 值小於 0.8，則視為無反應性。

11.1.4 結果確認：由檢驗儀器傳回電腦再列印出檢驗數據結果，並於列印紙上蓋章。

11.2 報告核發：IgM-anti-HAV（陽性）、IgM-anti-HAV（陰性）。

11.3 結果登錄：將檢驗結果填寫於檢體送驗單之“檢驗結果欄”並於送驗單背面蓋章，相關檢驗紀錄及檢體送驗單由檢疫實驗室主管審核，由本署內部之網站應用系統進入傳染病通報系統輸入檢驗結果並以電子传真輸送。

11.3.1 檢體送驗單及原始列印檢驗結果自行歸檔。

11.3.2 臨床意義：
IgM anti-HAV 分析可測定人體血清或血漿中是否有抗 A 型肝炎病毒 IgM 抗體(IgM anti-HAV)的存在。A 型肝炎為一自限性疾病，且通常為次臨床性，尤其是在孩童身上。因為有症狀之 A 型肝炎病毒(HAV)感染在臨床上無法與 B 型或 C 型肝炎病毒感染區別，為達到適當診斷，血清學測試是一重要工具。在 HAV 感染的急性期，IgM anti-HAV 會出現在患者血清中，且大多在症狀開始即可偵測到。在大多數案例中，IgM anti-HAV 反應通常在發病後的第一個月達到尖峰，並可持續長達 6 個月。

12 品質管制

12.1 應於有效期限內使用，不同批號試劑組，其試劑不可混合使用。

12.2 每個月或更換試劑批號時都需做校正，此外亦需根據每日對照劑的測試結果，決定是否重新校正。校正液與對照劑使用前要上下均勻混合，動作和避免氣泡。為得到建議所需之 ARCHITECT HAV Ab-IgM 校正液及對照劑時，垂直握住瓶子，滴 4 滴校正液與陰性、陽性對照劑各 4 滴於各自樣本杯中。

12.3 每次進行檢測試驗皆須加入陰性、陽性對照劑進行測定：
- 陰性對照劑(SCO)≦0.65
- 陽性對照劑(SCO)1.22-2.53

當其測定值落在可接受區間內，就可以繼續進行檢體的測定。若對照劑的測定值超出可接受區間，必須進一步檢視問題，並一一予以確認和排除，然後再重新以對照劑完成品管檢測作業，最後才進行檢體的測定。
13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
ARCHITECT HAVAB-IgM 原廠試劑說明書。

15 註釋
15.1 急性 A 型肝炎病毒感染鑑定總流程圖。
15.2 A 型肝炎病毒 IgM 抗體試驗（化學冷光微粒免疫分析法）流程圖。
附錄 15.1 急性 A 型肝炎病毒感染鑑定總流程圖

A 型肝炎病毒檢驗
血清/血漿體檢離心
IgG anti-HAV Test

檢驗判定
陰
陽

記錄
複測兩次

陽
陰

檢驗判定
介於臨界值

陰

陰

記 錄

記 錄

陽

陽

陰

記 錄

記 錄

報告
附錄 15.2 A 型肝炎病毒 IgM 抗體試驗（化學冷光微粒免疫分析法）流程圖

血清檢體離心 10,000 xg，10 分鐘

HAVA-IgM 試劑組放入 Architect i-1000 分析儀

指數校正液 (calibrator) 5 drops、HAVA-IgM 阳性、陰性對照劑各 5 drops 依序加入檢體杯，置放於檢體架上

確定 RV 輪架上裝有反應器 (RVs) , 必要時可多加 RVs

由 Main Menu 中按 Orders 進入選項 calibration order、control order 依序輸入位置後，各選擇 HAVA-IgM 項目，按 Add order。

將已放上校正液和對照劑之檢體架放進 i-1000 分析儀中，進行品管分析。

按 Orders 進入選項 patient order 依序輸入位置後，選擇 HAVA-IgM 項目，按 Add order。

將已放上檢體之檢體架放進 i-1000 分析儀中處理待測檢體。

結果顯示由檢測儀器傳回電腦再列印出檢測數據結果。
1 目的
以反轉錄－聚合酶鍊鎖反應（RT-PCR）分子診斷方法檢測疑似病患的血液、體液或組織檢體是否含有漢他病毒核酸。

2 適用檢體種類
適用於病人血液、體液或組織檢體。

3 名詞解釋
Threshold cycle (Ct)：係指 PCR 產物複製的量, 累積到足以被偵測到的第一個循環點稱之。換句話說, Ct 的值越小, 表示檢體中初始 DNA/RNA 的含量越多。

4 原理概述
利用對漢他病毒（hantavirus）具有專一性之引子（primers）與檢體中之病毒核酸分子結合配對, 並利用 RT-PCR 的複製過程及特殊的螢光定量化學方法偵測 RT-PCR 產物, 以決定檢體中是否含有漢他病毒核酸序列, 所用之引子選自於漢他病毒之保守性序列（conserved sequences）。

5 試劑耗材
5.1 檢測試劑
5.1.1 病毒 RNA 萃取試劑套組。
5.1.2 SYBR green 定量反轉錄－聚合酶鍊鎖反應單步驟試劑套組。
5.2 耗材
5.2.1 檢體瓶。
5.2.2 無菌吸管。
5.2.3 定量 PCR 專用八連排反應管及蓋。
5.2.4 無菌過濾型 10 μL, 20 μL, 100 μL, 200 μL, 1,000 μL 吸管尖。
5.2.5 無菌 1.5 mL 微量離心管。
5.2.6 無粉手套。

6 儀器設備
6.1 第 II 級生物安全櫃。
6.2 即時多重定量 PCR 偵測系統。
6.3 10 μL、20 μL、40 μL、100 μL、200 μL、1,000 μL 微量滴管分注器。
6.4 高速離心機。
6.5 真空抽氣機。
6.6 冰箱：4°C。
6.7 冷凍櫃：-20°C。
6.8 高壓滅菌鍋。

7 環境設施安全
7.1 病人血清檢體應在第 II 級生物安全櫃內處理。
7.2 檢驗操作在生物安全第二等級（BSL-2）實驗室進行。
7.3 應有獨立的操作空間，盡量與操作 DNA 有關的實驗室分開，以避免污染，影響結果。

8 檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體前處理
10.1.1 裝有靜脈血的無菌真空試管以 2,000 轉離心 10 分鐘，以無菌吸管將血清吸入檢體瓶內旋緊瓶蓋。
10.1.2 檢體瓶上標註檢體標號。
10.1.3 檢體處理好後置 2-8°C 冰箱冷藏。
10.2 步驟
10.2.1 萃取病毒 RNA，依據所使用試劑製造業者的操作手冊進行。
10.2.2 單步驟即時定量反轉錄－聚合酶鍊鎖反應，取 5 μL RNA 做模板，加入漢他病毒專一性引子組（參考附錄 15.1），並依據所使用試劑製造業者的操作手冊，加入其他所需試劑，調整反應總體積至 25 μL。
10.2.3 單步驟即時定量反轉錄－聚合酶鍊鎖反應程式設定：
10.2.4 RT 作用：50 °C，30 min。
10.2.4.1 Taq polymerase activation：95 °C，15 min。
10.2.4.2 Denaturation：95°C，15 sec。
10.2.4.3 Annealing：55 °C，30 sec。
10.2.4.4 Extension：72 °C，20 sec。
10.2.4.5 77 °C，30 sec，收集螢光值。
10.2.4.6 重複 10.2.4.3 至 10.2.4.6 步驟 45 Cycle。
10.2.4.7 95 °C，1 min。
10.2.4.8 以 0.2°C/秒速率降溫至 68°C，收集螢光值。

11 結果判定
11.1 判讀標準
11.1.1 陽性對照組的 Ct 值需小於或等於 30，Tm 值需大於或等於 79°C。
衛生福利部疾病管制署傳染病標準檢驗方法

編號： 漢他病毒核酸檢測（Real-time RT-PCR）

頁次：第 229 頁/共 1104 頁

核准日期：年 月 日
修訂日期：年 月 日

11.1.2 陰性對照組的 Ct 值需大於或等於 40，Tm 值需小於 79℃，Ct 值或 Tm 值有一項符合上述要求即可。
11.1.3 陽性對照組或陰性對照組其中之一不符合設定值時，則重新實驗。
11.1.4 在陽性對照與陰性對照組符合設定值下，Ct 值小於 35、Tm 值大於或等於 79℃者，判為漢他病毒陽性，反之則判為漢他病毒陰性。

11.2 報告核發：
11.2.1 漢他病毒核酸檢測方法：螢光定量聚合酶連鎖反應（real-time PCR）。
11.2.2 結果：陽性。
11.2.3 結果：陰性。

11.3 結果登錄：將檢體檢驗數據結果登錄於檢驗紀錄表，送請實驗室主管檢討確認，再依實驗室資訊管理系統（LIMS）之操作步驟，將檢驗結果登錄於系統，陳送指定之實驗室主管審核複校，發出正式檢測報告。

12 品質管制
12.1 每次進行實驗時皆有對照組，陽性對照組與陰性對照組的 Ct 值需符合設定值。
12.2 實驗過程遵循標準檢驗方法的作業規範與流程，並在個別獨立的操作空間內操作，以避免污染。
12.3 即時多重定量 PCR 偵測系統定時作檢測與校正。
12.4 微量滴管分注器定期校正。
12.5 注意試劑套組的使用期限與適當的儲放溫度。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

15 附錄
15.1 漢他病毒診斷用引子組序列表。
附錄 15.1 漢他病毒診斷用引子組序列表

<table>
<thead>
<tr>
<th>Hantavirus specific primer</th>
<th>參與反應的濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTN-S4 GAI IGI TGT CCA CCA ACA TG</td>
<td>300nM</td>
</tr>
<tr>
<td>HTN-S6 AGC TCI GGA TCC ATI TCA TC</td>
<td>300nM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hantavirus specific primer</th>
<th>參與反應的濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>RH-20 CAG AAG GTC AAG GAT GCA GAA AA</td>
<td>300nM</td>
</tr>
<tr>
<td>RH-21 GTC TGT CCT GTA GGT TCA TCA AT</td>
<td>300nM</td>
</tr>
</tbody>
</table>
1 目的
検測漢他病毒(Hantavirus) IgM 及 IgG 抗體，可用於漢他病毒出血熱的血清學診斷。

2 適用檢體種類
適用於人體血清檢體。

3 名詞解釋
間接酵素結合免疫吸附法(indirect ELISA)，以標有酵素的抗免疫球蛋白之抗體間接抗特定的抗原，主要目的在偵測待測物中抗體反應的量或強度。

4 原理概述
酵素結合免疫吸附法是以酵素作標識，結合吸附抗體—抗原複合體，再以呈色劑顯色而來定量的一種方法。此為利用免疫血清中，抗原與抗體之交互作用來探測檢體中是否存在目標病毒抗體。

5 試劑耗材
5.1 檢測試劑:
5.1.1 漢他病毒出血熱酵素免疫吸附分析法檢測套組
5.1.1.1 陽性對照組（positive control）
5.1.1.2 陰性對照組（negative control）
5.1.1.3 Cut-Off calibrator
5.1.1.4 檢體稀釋液（sample diluent）
5.1.1.5 清洗液（10 X washing buffer）
5.1.1.6 96 孔微量滴定盤（coating recombinant antigen of hantavirus）
5.1.2 GaH IgG/IgM-AP(山羊抗人 IgG/IgM 抗體-鹼性磷酸酶結合體)
5.2 耗材
5.2.1 p-nitrophenyl-phosphate（pNPP）。
5.2.2 透明 250 μL、1,000 μL 吸管尖。
5.2.3 無菌 1.5 mL 微量離心管。
5.2.4 手套。
5.2.5 水質：25 °C，RO 逆滲透去離子可達 18M Ω-CM 以上
5.2.6 之無菌水 (去離子水)。
5.2.7 八連排稀釋管。

6 儀器設備
6.1 免疫酵素分析自動清洗機（automated EIA plate washing device）（操作方法參見文件編號：CDC-LAB-000）。
6.2 恆溫培養箱。
6.3 免疫酵素分析儀（ELISA plate spectrophotometer）（操作方法參見文件編號：CDC-LAB-000）。
衛生福利部疾病管制署傳染病標準檢驗方法

編號：\(\text{漢他病毒抗體檢測} \)（ELISA）

核准日期：年 月 日

修訂日期：年 月 日

6.4 2 μL、20 μL、100 μL、200 μL、1,000 μL 微量滴管分注器（pipettors）。
6.5 震盪器。
6.6 冰箱：4 ℃。
6.7 冷凍櫃：-20 ℃。
6.8 高壓滅菌鍋。
6.9 第 II 級生物安全櫃（class II BSC）。

7 環境設施安全
7.1 病人血清檢體應在第 II 級生物安全櫃內處理。
7.2 血清處理之後，先放入 56 ℃水浴 30 min，以降低病毒活性。
7.3 檢驗操作在生物安全第二等級（BSL-2）實驗室進行。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢驗前處理
10.1.1 檢體以 2000 rpm 離心 10 分鐘，分離出血清備用
10.2 步驟
10.2.1 檢體編號登錄。
10.2.2 取 250 μL/孔 1X PBS 浸潤 96 孔真空乾燥微量滴定盤 5 min。
10.2.3 取待測血清 2 μL 加入檢體稀釋液（sample diluent）200 μL 稀釋 100 倍。
10.2.4 取 100 μL/孔待測血清及陰性、陽性對照血清，分別加入 Coating recombinant protein 抗原的 96 孔微量滴定盤中。
10.2.5 放置於溫度設定為 37 ℃的恆溫培養箱中 1 hr，之後清洗 4 次，拍乾。
10.2.6 取 100 μL/孔山羊抗人 IgG/IgM 抗體-鹼性磷酸酶結合體稀釋液加入 96 孔微量滴定盤。
10.2.7 放置於溫度設定為 37 ℃的恆溫培養箱中 30 min，之後清洗 4 次，拍乾。
10.2.8 取 100 μL/孔 呈色劑（pNPP）加入 96 孔微量滴定盤中呈色。
10.2.9 室溫下搖盪 30 min。
10.2.10 置微量滴定盤於波長設定為 405/620 nm 的分光儀中讀取吸光度 (OD)。
結果判定

11.1 判讀標準

11.1.1 陽性對照組 (positive control) > 0.9；陰性對照組 (negative control) < 0.2。O.D. 值 > Cut-Off calibrator 值，判為陽性。

11.2 報告核發

11.2.1 漢他 IgM 抗體陽性，漢他 IgG 抗體陽性，陰性，無法判定。

11.3 結果登錄

11.3.1 將檢體檢驗數據結果登錄於檢驗紀錄表，送請實驗室主管檢討確認，再依實驗室資訊管理系統 (LIMS) 之操作步驟，將檢驗結果登錄於系統，陳送指定之實驗室主管審核複校，發出正式檢測報告。

品質管制

12.1 應於有效期內使用，同一批號試劑，第一次使用時取一組進行試驗，之後每隔 3 - 6 個月再取一組進行試驗。

12.2 每次檢驗應加入陽性及陰性控制組血清。

12.3 遵循 S.O.P 的作業規範與流程，並在個別獨立的操作空間內操作，以避免污染。

12.4 微量滴管分注器定期做校正。

廢棄物處理

檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

參考資料

附錄

15.1 漢他病毒 IgM 及 IgG 抗體試驗（酵素免疫分析法）流程圖。
附件 15.1 漢他病毒 IgM 及 IgG 抗體試驗流程圖

漢他 Recombinant antigen coated 96 孔
真空乾燥盤

待測血清及陰性、陽性對照血清 1：100 稀釋

100 μL/孔，1 hr，洗 4 次
山羊抗人 IgG/IgM 抗體-鹼性磷酸酶結
合體 1:5,000 / 1:1,000 稀釋

50 μL/孔，30 min，洗 4 次
PNPP（呈色劑）

A 及 B 溶液各 100 μL/孔，室溫，30 min（shaking）

微量滴定盤分光儀測 405/630nm 之吸光度
(OD)

結果判定
目的
出血性大腸桿菌之分離與鑑定。

適用
2. 適用檢體種類
適用於人體糞便、直腸拭子、菌株、組織拭子。

名詞解釋
3. 名詞解釋
無。

原理概述
4. 原理概述
以特定培養基分離可疑菌株，並利用生化代謝特性及血清學方法鑑定菌株。

試劑耗材
5. 試劑耗材
5.1 培養基
5.1.1 SMAC（sorbitol MacConkey agar）。
5.1.2 CHROM-STECK。
5.1.3 TSIA（triple sugar iron agar）。
5.1.4 LIA（lysine iron agar）。
5.1.5 SIM（sulfide-indole-mobility medium）。
5.1.6 mEC（modified Escherichia coli）broth。
5.1.7 H-semi agar。
5.1.8 BHI broth（brain heart infusion broth）。
5.1.9 TSA（tryptase soy agar）。
5.2 氧化酶試紙（oxidase strips）：MAST·UK 或氧化酶試劑（oxidase reagent）：BioMérieux，法國。
5.3 API 20 E 生化鑑定套組：BioMerieux，法國。
5.4 VITEK 2 革蘭氏陰性菌鑑定卡（VITEK 2 GN）：BioMerieux，法國。
5.5 鑑定血清 O 多價、O157、H7 血清：生研，日本。
5.6 無菌生理食鹽水：0.85 % NaCl。
5.7 載玻片。
5.8 馬克法藍氏濁度標準組（McFarland nephelometer standard units）。
5.9 微量吸管尖（tip）：1,000 μL、200 μL。。
5.10 無菌吸管：3 mL。
5.11 接種針（環）。

儀器設備
6. 儀器設備
6.1 第二級生物安全櫃（class II BSC）。
6.2 Pipetman。
6.3 37 ℃ 培養箱（incubator）。
6.4 水浴槽。
7 環境設施安全
於生物安全第二等級（BSL-2）實驗室之設施內操作。

8 檢體採集
人體糞便、直腸拭子檢體、菌株，參照本署出版之「傳染病檢體採檢手冊」，
第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
低溫運送及保存，參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 分離培養
10.1.1 檢體接種：
10.1.1.1 糞便檢體：以棉棒沾取少許糞便塗抹於 SMAC 或 CHROM-STEC 培養基。
10.1.1.2 直腸拭子：直接塗抹於 SMAC 或 CHROM-STEC 培養基。
10.1.1.3 醫院送驗之菌株：次培養於 SMAC 或 CHROM-STEC 培養基。
10.1.2 培養：37 ℃培養。
10.1.3 觀察：18 - 20 hr 後，挑選可疑菌落次接種於 TSIA、LIA、SIM 和 TSA 培養基上，37 ℃培養 18 - 20 hr。

10.2 鑑定
10.2.1 生化鑑定：
10.2.1.1 三管生化反應：TSIA·A/A·Gas(＋或－)·H₂S(－); LIA，K/K；SIM，Indole（＋），Motility（＋或－），IPA（－）則為疑似大腸桿菌。
10.2.1.2 Oxidase test（氧化酶試驗）：挑選 TSA 培養基上菌落進行試驗。
10.2.1.3 API 20 E 生化鑑定套組試驗：依照原廠 API 20 E（腸內菌鑑定組）操作步驟執行。
10.2.1.4 VITEK 2 革蘭氏陰性菌鑑定卡（VITEK 2 GN）：依照原廠全自動微生物分析儀 VITEK 2 標準操作流程執行。

10.2.2 血清凝集反應：
10.2.2.1 O 抗原血清型別鑑定：取菌落於 1.5 mL Eppendorf tube 中，加入生理食鹽水製成高濃度之懸浮液，在 100 ℃乾浴加熱 1 hr 後，經過 900 g 20 min 離心後，移去上
清液，再加入 0.5 mL 的生理食鹽水製成菌液，作玻片凝集步驟，若有凝集者則為陽性。

10.2.2

H 抗原血清型別鑑定：於 SIM 試驗中，運動性陽性之菌落，次培養於 H-semi agar 中之內管，於 37 °C 培養約 18 hr（視該菌運動快慢而定），待該菌游至外管之表面，挑選外管表面之菌液次培養於 BHI Broth 中，於 37°C 下，培養 4 - 6 hr 後（採用試管凝集法），加入等量含 1%福馬林之無菌生理食鹽水（0.85 % NaCl）作為抗原液，取 0.5 mL 抗原液於無菌試管中，並加入 H7 抗血清二滴或 50 μL, 放置於 50 – 52 °C 水浴槽反應，0.5 - 1 hr 內觀察有否出現雲絮狀凝集；若無明顯或弱凝集反應，再次培養於另一支 H-semi agar 中之內管中於 37 °C 培養，約 18 hr 後重覆 H 抗原血清型別鑑定。

10.2.3 出血性大腸桿菌之毒素檢驗：

10.2.3.1 出血性大腸桿菌毒素檢測：

依照本署「出血性大腸桿菌毒素檢測（乳膠凝集反應法）」檢驗標準方法。

10.2.3.2 出血性大腸桿菌毒素基因鑑定

依照本署「出血性大腸桿菌毒素基因鑑定（聚合酶鏈鎖反應法）」檢驗標準方法。

11 結果判定

11.1 陽性判定標準（附錄 15.3）：

Oxidase 反應、生化反應、PCR 毒性基因鑑定、毒素試驗皆符合者，即判定為出血性大腸桿菌陽性，並進行 O 抗原血清型別分型：O157 凝集者則為 O157 型陽性（若有運動性則加作 H7 血清型別）；非 O157 凝集者則為非 O157 型陽性：若現有血清型均無法凝集，則為無法分型陽性。除以上敘述外，不符合者，皆判定為陰性。

11.2 報告核發（附錄 15.4）：出血性大腸桿菌 O157：H7 陽性、出血性大腸桿菌 O157：NM 陽性、出血性大腸桿菌非 O157 陽性、無法分型出血性大腸桿菌陽性及出血性大腸桿菌陰性。

11.3 結果登錄：將檢體之檢驗結果登錄於實驗室資訊系統，經 PI 核准報告後發佈。

12 品質管制

用 E.coli O157: H7 ATCC 35150 作為 O157 及 H7 血清之陽性反應標準菌株；用 E.coli ATCC 25922 為陰性反應標準菌株，進行試驗。
13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以121°C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
14.2 蔡文城。2000。實用臨床微生物診斷學，第九版。九州圖書文物有限公公司，臺灣。第 695-699 頁。
14.3 日本大阪府立公眾衛生研究所感染症檢查手冊，第 II 集。2001。

15 附錄
15.1 出血性大腸桿菌分離與鑑定流程圖。
15.2 出血性大腸桿菌分離與鑑定紀錄表。
15.3 出血性大腸桿菌結果判定表。
15.4 出血性大腸桿菌報告核發之判定標準及結果登錄表。
附錄 15.1 出血性大腸桿菌分離與鑑定流程圖

糞便
菌株
直腸拭子
組織拭子

mEC broth 於 43℃增菌 6-15hr

接種 SMAC 或 CHROM-STEC 培養基
37℃，18-20hr

可疑菌落

Nutrient Agar 或 TSA 及 TSIA・LIA・SIM

Oxidase test

三管生化反應

陽性

陰性

符合

不符合

API 20E 或 VITEK 2GN

符合

不符合

出血性大腸桿菌毒素檢驗

符合

不符合

出血性大腸桿菌
陽性判定

O抗原血清凝集反應

不凝集

凝集

無法
分型

O157 型

非 O157

陰性判定
出血性大腸桿菌分離與鑑定紀錄表

<table>
<thead>
<tr>
<th>檢體編號</th>
<th>收件日期</th>
<th>檢驗日期</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>檢體採檢運送狀況適當</th>
<th>是</th>
<th>否</th>
<th>是</th>
<th>否</th>
<th>是</th>
<th>否</th>
<th>是</th>
<th>否</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SMAC 或 CHROM 培養基生長型態</th>
<th>培養/觀察</th>
<th>24 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>是</td>
<td>否</td>
</tr>
<tr>
<td>Oxidase test：陽性藍色或藍紫色，陰性不變色</td>
<td>陽性</td>
<td>陰性</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>生化三管（名稱及反應）：</th>
<th>符合</th>
<th>不符合</th>
<th>符合</th>
<th>不符合</th>
<th>符合</th>
<th>不符合</th>
<th>符合</th>
<th>不符合</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSIA（A/A、GAS +或-、H₂S -）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIA（K/K）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIM（Motility+或-、H₂S -、Indole+、IPA -）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>API 20 E 或 VITEK 2 GN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCR 毒素基因</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPLA 毒素試驗</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>血清凝集試驗：</th>
<th>凝集</th>
<th>無</th>
<th>凝集</th>
<th>無</th>
<th>凝集</th>
<th>無</th>
<th>凝集</th>
<th>無</th>
</tr>
</thead>
<tbody>
<tr>
<td>O 多價抗血清：</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O 抗血清：</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H 抗血清：</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>附註</th>
<th>綜合結果</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

報告日期

檢驗者：

實驗室主管：
附錄 15.3 出血性大腸桿菌結果判定表

<table>
<thead>
<tr>
<th>試驗</th>
<th>正反應</th>
<th>負反應</th>
<th>腸道出血性大腸桿菌反應</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSIA AS</td>
<td>黃色（斜面酸化）。指利用 Lactose 及 Sucrose 之能力。</td>
<td>紅色或不變色。指不利用 Lactose。</td>
<td>正反應</td>
</tr>
<tr>
<td>TSIA AB</td>
<td>黃色（基底酸化）或黑色（由於產硫化氫將黃色掩蓋）。指利用 Glucose 之能力。</td>
<td>紅色或不變色。指不利用 Glucose。</td>
<td>正反應</td>
</tr>
<tr>
<td>Gas</td>
<td>任何氣泡產生。指產生 CO₂ 及 H₂ 之能力。</td>
<td>無任何氣泡產生。</td>
<td>多數屬正反應</td>
</tr>
<tr>
<td>H₂S</td>
<td>產生黑色沉澱。</td>
<td>無黑色沉澱。</td>
<td>負反應</td>
</tr>
<tr>
<td>SIM IND</td>
<td>加入 Kovacs indole 試劑 5 滴後，培養基上層呈紅色。</td>
<td>不呈紅色（呈銅色）</td>
<td>正反應</td>
</tr>
<tr>
<td>MOT</td>
<td>細菌生長遠離接種線，培養基呈混濁。</td>
<td>只生長於接種線上。</td>
<td>多數屬正反應</td>
</tr>
<tr>
<td>IPA</td>
<td>培養基出現棕褐色環。</td>
<td>不出現棕褐色環。</td>
<td>負反應</td>
</tr>
<tr>
<td>LIA</td>
<td>全管為紫色</td>
<td>Slant：紫、But：黃</td>
<td>正反應</td>
</tr>
<tr>
<td>Oxidase test</td>
<td>紫色</td>
<td>無色（不變色）</td>
<td>負反應</td>
</tr>
<tr>
<td>O 抗原及 H 抗原血清凝集反應</td>
<td>與抗血清反應呈棉絮狀凝集，而生理食鹽水不凝集現象。</td>
<td>與抗血清反應後呈均勻細微粉末狀</td>
<td>正反應</td>
</tr>
<tr>
<td>API 20E 生化測驗或 VITEK 2 GN</td>
<td>依根據廠商提供判讀表判讀，比對電腦碼資料庫</td>
<td></td>
<td></td>
</tr>
<tr>
<td>毒素試驗</td>
<td>利用 RPLA 凝集方式測試 VT I 及 VT II，於 V 型盤底呈均勻薄膜。</td>
<td>僅凝聚成集中一點</td>
<td>正反應</td>
</tr>
</tbody>
</table>
出血性大腸桿菌報告核發之判定標準及結果登錄表

<table>
<thead>
<tr>
<th>判定標準</th>
<th>菌落型態</th>
<th>生化反應</th>
<th>氧化酶試驗</th>
<th>Vitek2GN 或 API20E</th>
<th>毒素基因 (PCR)</th>
<th>毒素試驗 (RPLA)</th>
<th>O 抗原血清凝集反應</th>
<th>運動性</th>
<th>H 抗原血清凝集反應</th>
<th>病原體分離、鑑定</th>
<th>次分型</th>
<th>綜合研判</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>任一項不符合</td>
<td>符合</td>
<td>符合</td>
<td>符合</td>
<td>符合</td>
<td></td>
<td>O157 凝集</td>
<td>無</td>
<td>H7 凝集</td>
<td>出血性大腸桿菌 陰性</td>
<td>O157:NM</td>
<td>陰性</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O157 凝集</td>
<td></td>
<td></td>
<td>出血性大腸桿菌 陽性</td>
<td>O157:H7</td>
<td>陽性</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>非 O157 凝集</td>
<td></td>
<td></td>
<td>出血性大腸桿菌 陽性</td>
<td>非 O157</td>
<td>陽性</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>不凝集</td>
<td></td>
<td></td>
<td>出血性大腸桿菌 陽性</td>
<td>無法分型</td>
<td>陽性</td>
</tr>
</tbody>
</table>

附錄 15.4 出血性大腸桿菌報告核發之判定標準及結果登錄表。
1 目的
利用反轉被動乳膠凝集試驗（RPLA）檢測出血性大腸桿菌是否會產生verotoxin。

2 適用檢體種類
適用於出血性大腸桿菌菌株。

3 名詞解釋
無。

4 原理概述
利用已結合verotoxin type 1（VT1）及verotoxin type 2（VT2）抗體之乳膠顆粒與VT1、VT2反應，產生肉眼可見之凝集。

5 試劑耗材
5.1 培養基 配製 效期 保存
 5.1.1 BHI agar。
 5.1.2 TSA（Trypticase soy agar）。
5.2 VTEC-RPLA Latex agglutination test kit：生研，日本。
5.3 96孔V型塑膠微量滴滴盤：必須使用無污染、無傷痕製品。
5.4 無菌微量吸管尖tip：1000 μL、200 μL二種。
5.5 無菌吸管：3 mL。
5.6 接種針（環）。
5.7 1.5 mL eppendorf無菌管。

6 儀器設備
6.1 37 ℃溫箱。
6.2 離心機：3,000 rpm以上。
6.3 搖盪器（shaker）。
6.4 微量吸管（pipetman）：需1000 μL、200 μL、50 μL等規格。

7 環境設施安全
於生物安全第二等級（BSL-2）實驗室之設施內操作。

8 檢體採集
無。

9 檢體運送及保存
無。

10 檢驗步驟
10.1 將於TSA培養基之新鮮菌株接種於BHI培養基，於37 ℃下培養16~20
小時，自 BHI 培養基取 3 個 loop 體積的菌落放入 1 ml 含 5000U polymyxin B 之生理食塩水中混合均勻，置於 37 ℃ 下培養 30 分鐘，每隔 10 分鐘取出輕搖一下。

10.2 再以 900 g 離心 15 min，取上清液作為毒素測定用標本。

10.3 取 96 孔 V 型塑膠微量滴盤，每個檢體 3 排 8 孔，各孔各放 25 μL 稀釋液。

10.4 陽性對照組（Control VT1 及 VT2）取 2 排 8 孔，各孔各放 25 μL 稀釋液。

10.5 檢體第一孔放 25 μL 檢體，由第一孔取 25 μL 檢體至第二孔，使充份混合，移 25 μL 至第三孔混合，以此進行兩倍稀釋至第 7 孔，留下最後一孔當作 diluent control。

10.6 以相同方式處理陽性對照組。

10.7 檢體第一排各孔加入 25 μL 敏感化乳膠 VT1（sensitized latex VT1），第二排各孔加入 25 μL 敏感化乳膠 VT2（sensitized latex VT2），第三排各孔加入 25 μL 未敏感化乳膠（control latex）。

10.8 同樣的，在陽性對照組的第一排各孔加入 25 μL 敏感化乳膠 VT1，第二排各孔加入 25 μL 敏感化乳膠 VT2。

10.9 利用微量盤振盪器振盪，使孔內之液體混合均勻，放入潮濕盒中，室溫靜置 18-20 hr 後觀察。

11 結果判定

11.1 陽性判定標準：將 96 孔 V 型塑膠微量滴盤放在光亮平坦之黑紙上，從上面以肉眼觀察各孔中 Latex 沉降來判定其是否有凝集現象，如有擴散粗粒即為陽性，只要 VT1 或 VT2 任一種毒素為陽性，即判定為出血性大腸桿菌產毒素陽性，若 VT1 或 VT2 兩種毒素皆為集中呈圓形沉底即為出血性大腸桿菌産毒素陰性。

11.2 報告核發：出血性大腸桿菌産毒素陰性，出血性大腸桿菌産毒素陰性。

11.3 結果登錄：將檢體之檢驗結果登錄於實驗室資訊系統，經 PI 核准報告後發佈。

12 品質管制

每次操作使用套組所附腸毒素做陽性對照及陰性對照。

13 廢棄物處理

檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃，30min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

14.1 FDA, 2004 MAY, Diarrheagenic Escherichia coli, Chapter 4a, Bacteriological Analytical Manual online, U.S.

http://www.foodinfonet.com/publication/fdaBAM.htm

14.2 Karmali, M.A.: Sporadic cases of haemolytic uremic syndrome associated
with faecal cytotoxin and cytotoxin-producing \emph{Escherchia coli} in stool.

14.3 Karmali, M. A.: Infection by Verotoxin-producing \emph{Escherchia coli},

14.4 Denka Seiken Co. LTD. Bacteriology product information. 1990.

15 附錄

15.1 出血性大腸桿菌毒素測定流程圖。

15.2 出血性大腸桿菌毒素測定工作紀錄簿。
附錄 15.1 出血性大腸桿菌毒素測定流程圖

TSA培養基上之新鮮大腸桿菌（從人體檢體分離培養之菌株）

接種於BHI agar

37℃培養16-20 hr

取3個loop之菌落至1 ml含5000U polymyxin B之生理食鹽水

37℃培養30 min

900g，10min

取上清液做為毒素測定用檢體

V型96孔微量滴盤：每個檢體三排八孔，除第一孔外，其餘各孔各放25 μL稀釋液

第一孔放50 μL樣體，由第一孔取25 μL至第二孔，充份混合後，取25 μL至第三孔，以此進行二倍稀釋至第七孔並移除25 μL

以相同方式處理陽性對照組（Verotoxin type1 & Verotoxin type2）

第一排各孔加入25 μL敏感化乳膠VT1（Sensitized Latex VT1）
第二排各孔加入25 μL敏感化乳膠VT2（Sensitized Latex VT2）
第三排各孔加入25 μL對照乳膠（Control Latex）

V型96孔微量滴盤以微量盤振盪器震盪，使孔內液體混合均勻後，再置入潮濕盒中

室溫靜置，18-20 hr

結果判讀

出血性大腸桿菌毒素測定（乳膠凝集試驗RPLA）流程圖
<table>
<thead>
<tr>
<th>檢體編號</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>收件日期</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>檢驗日期</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>檢體採檢運送狀況適當</td>
<td>是</td>
<td>否</td>
<td>是</td>
<td>否</td>
<td>是</td>
<td>否</td>
<td>是</td>
<td>否</td>
<td>是</td>
</tr>
<tr>
<td>VTEC-RPLA 毒素測定：</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT1</td>
<td>陽性</td>
<td>陰性</td>
<td>陽性</td>
<td>陰性</td>
<td>陽性</td>
<td>陰性</td>
<td>陽性</td>
<td>陰性</td>
<td></td>
</tr>
<tr>
<td>VT2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>附註</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>綜合結果</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>報告日期</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

檢驗者：

實驗室主管：
目的

利用聚合酶链锁反应（PCR）对已分离之疑似出血性大肠桿菌（EHEC）进行毒素基因检測。

适用検体種類

適用於已分离培养之 EHEC 疑似菌株。

名詞解释

無。

原理概述

針對出血性大腸桿菌之兩種 verotoxin 毒素基因（stx1、stx2）設計 2 對引子，利用聚合酶链锁反应合成放大兩基因之特定片段。其中 verotoxin 1 利用 Stx1F/Stx1R 增殖出 180 bp 之片段，verotoxin 2 利用 Stx2F/Stx2R 增殖出 255 bp 片段。

試劑耗材

5.1 無菌水：滅菌 121 °C，15 min。
5.2 PCR 反應試劑：Roche 德國。成分含 Taq DNA polymerase（5 U/µL）、10 X Buffer、10 mM dNTP。
5.3 無菌微量吸管尖（tip）：需有 Filter，1,000 µL、200 µL、40 µL 與 10 µL 四種。
5.4 接種針（環）。
5.5 可拋棄式塑膠手套。
5.6 0.2 mL、1.5 mL Eppendorf 無菌管。
5.7 10 X TBE 緩衝液。
5.8 Ethidium bromide。
5.9 陽性対照菌株 Escherichia coli ATCC 15376。
5.10 PCR 引子（primer）-毒素基因。
Stx1F 5’-ATGATCGACGGTATTCGTTGACTAC-3’
Stx1R 5’-GAAGCCGCCCCTGACATCAT-3’
Stx2F 5’-GGCAGTACGTGAAACTGCTCC-3’
Stx2R 5’-TCGCCGTTATCGTGATCATCAG-3’
5.11 PCR 引子（primer）-Internal control。
ECP79F 5’-GAAGCTTTGGCTTCTTTGCT-3’
ECR620R 5’-GAGCTGGGATTTTCACAT-3’

仪器設備

6.1 生物安全櫃。
6.2 桌上型离心機。
6.3 4 °C 冰箱。
6.4 -20 °C 冷凍櫃。
6.5 水浴槽。
6.6 電泳槽。
6.7 微量吸管 Pipetman：1,000 μL、200 μL、2 μL 三種規格。
6.8 核酸增幅儀。

7 環境設施安全
7.1 菌株處理須於生物安全第二等級（BSL-2）實驗室之設施內操作。
7.2 菌株處理、PCR 反應混合物配製、PCR 反應進行、電泳皆需於獨立區域操作。

8 檢體採集
無。

9 檢體運送及保存
無。

10 檢驗步驟
10.1 檢體處理
已分離的菌株：接種針點取 3 個新鮮菌落，放入含 150 μL 無菌水的 1.5 mL Eppendroff 中，以 100 °C 煮沸 15 min，放入離心機 10,000 rpm 離心 5 min，取上清液當作 DNA template。
10.2 PCR（Stx1、Stx2）反應混合物配製如下：

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA template</td>
<td>3 μL</td>
</tr>
<tr>
<td>10 X buffer</td>
<td>5 μL</td>
</tr>
<tr>
<td>10 mM dNTP</td>
<td>1 μL</td>
</tr>
<tr>
<td>Each primer（10 μM）</td>
<td>0.5 μL</td>
</tr>
<tr>
<td>Taq polymerase（5 U/ μL）</td>
<td>0.4 μL</td>
</tr>
<tr>
<td>無菌水</td>
<td>39.6 μL</td>
</tr>
<tr>
<td>Total volume</td>
<td>50 μL</td>
</tr>
</tbody>
</table>

10.3 Internal control 反應混合物配製如下：

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA template</td>
<td>3 μL</td>
</tr>
<tr>
<td>10 X buffer</td>
<td>5 μL</td>
</tr>
<tr>
<td>10 mM dNTP</td>
<td>1 μL</td>
</tr>
<tr>
<td>Each primer（10 μM）</td>
<td>0.5 μL</td>
</tr>
<tr>
<td>Taq polymerase（5 U/μL）</td>
<td>0.4 μL</td>
</tr>
</tbody>
</table>
無菌水 39.6 μL
Total volume 50 μL

10.4 PCR 反應條件設定
10.4.1 95 °C 5 min，1 cycle。
10.4.2 95 °C 30 sec，50 °C 30 sec，72 °C 50 sec，30 cycles。
10.4.3 72 °C 7 min，1 cycle。

10.5 電泳法分析產物
10.5.1 膠片配製：1.5％ Agarose in 1X TBE。
10.5.2 取 5 PCR mixture 跑電泳，電泳條件：100 Voltage，30 min。
10.5.3 膠片染色：0.5 μg/mL Ethidium bromide 染色 20 min。

10.6 陽性與陰性對照
10.6.1 試驗陽性對照：以具 stx1、stx2 之 E. coli O157 ATCC 15376 菌株的 DNA template 作為 PCR 反應之陽性對照。反應條件與分析方法參照 10.2 至 10.5。
10.6.2 試驗陰性對照：Template 以無菌水取代。參照 10.2 至 10.5。

11 結果判定
11.1 依據產物片段結果分析
11.1.1 stx1：180 bp，若出現此大小片段則可判定大腸桿菌 stx1 陽性。
11.1.2 stx2：255 bp，若出現此大小片段則可判定大腸桿菌 stx2 陽性。
11.1.3 若無上述預期片段，且陽性對照與 Internal control（541 bp）仍 有產物，則可判定大腸桿菌 stx 陰性。

11.2 報告核發
將檢體之檢驗結果登錄於實驗室資訊系統，經 PI 核准報告後發佈。

12 品質管制
所使用試劑及生化套組皆應於有效期內用完。

13 廢棄物處理
13.1 檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以減菌袋裝妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。
13.2 Ethidium bromide 為 Carcinogen 倒掉前，請加入分解藥劑後再作處理。

14 參考資料

15 附錄
15.1 出血性大腸桿菌毒素基因檢測（聚合酶鏈鎖反應法）流程圖。
附錄 15.1 出血性大腸桿菌毒素基因檢測（聚合酶鏈鎖反應法）流程圖

檢體（培養後已分離之培養菌）

接種針點取3個新鮮菌落，放入含150 μL無菌水的1.5 mL eppendorf中，以100℃熱煮15分鐘，放入離心機10,000 rpm，離心5分鐘，取上清液當作DNA template。

PCR (stx1, stx2)反應混和物配製

放入PCR機器中進行反應

電泳法分析產物

stx1: 180bp
stx2: 255bp
internal control: 541bp

具有180bp片段產物

stx1陽性結果判定

具有255bp片段產物

stx2陽性結果判定

否，僅陽性

對照有產物

陰性結果判定

出血性大腸桿菌毒素基因檢測（聚合酶鏈鎖反應法）流程圖
目的
在疑似受感染个案之採集檢體中，分離與鑑定是否存在德國麻疹病毒。

適用檢體種類
咽喉拭子、含抗凝劑之全血、尿液（針對先天性德國麻疹個案）。

名詞解釋
無。

原理概述
選擇適當的細胞株（Vero）培養德國麻疹病毒，經三次繼代培養後，最後再以德國麻疹病毒專一性抗體螢光染色的方法確認。

試劑耗材

5.1 試劑

5.1.1 Growth medium（由含 10 ％ FBS 與 1 X pen-strep solution 之 DMEM 組成）。

5.1.1.1 Dulbecco’s modified eagle medium（DMEM）。

5.1.1.1.1 With 4,500 mg/L D-glucose（high glucose）。

5.1.1.1.2 With L-glutamine。

5.1.1.1.3 Without sodium pyruvate。

5.1.1.2 Fetal bovine serum（FBS）: 以 56 °C Heat inactivate 後開封，以 15 mL 離心管分裝，-20 °C 儲存。

5.1.1.3 Pen-strep solution（100 X）。

5.1.1.3.4 With 10,000 units/mL penicillin G。

5.1.1.3.5 With 10,000 μg/mL streptomycin sulfate in 0.85 ％ saline，開封後以 15 mL 離心管分裝，-20 °C 儲存。

5.1.2 Sample pretreat medium（由含 2 X pen-strep solution 之 DMEM 組成）。

5.1.3 Maintain Medium（由含 2 ％ FBS 與 1 X pen-strep solution 之 DMEM 組成）。

5.1.4 Trypsin-EDTA。

5.1.4.1 With 0.05 ％ trypsin。

5.1.4.2 With 0.53 mM EDTA in Hanks’ balanced salt solution（HBSS）without Ca ++ and Mg ++ ，開封後以 15 mL 離心管分裝，-20 °C 儲存。

5.1.5 Hank’s balanced salt solution（HBSS）。

5.1.6 Ficoll-Paque™ PLUS：Amersham Biosciences，17-1440-02，Sweden。

5.1.7 Rubella, E1, clone E1-20：Chemicon，MAB925，USA，store at 2-8℃。
5.1.8 Gt X Ms IgG FITC：Chemicon，5008，USA，store at 2 - 8 °C。
5.1.9 Mounting fluid：Chemicon，5013，USA，store at 2 - 8 °C。
5.1.10 Tween 20/sodium azide,100 X：Chemicon，5037，USA，store at 2 - 8 °C。
5.1.11 PBS packet：Chemicon，5087，USA，store at 2 - 8 °C。
5.1.12 IFA wash solution：將 5.1.11 試劑溶於 1 L distilled H₂O 再加入 5.1.10 試劑以乾淨密封容器室溫儲放。
5.1.13 Vero 細胞株：由 ATCC 所購入之細胞株 Vero：CCL-81。

5.2 耗材：
5.2.1 25-cm² Culture vessels（T-25）。
5.2.2 24 well Plate。
5.2.3 Pipette：1 mL、5 mL、10 mL、25 mL。
5.2.4 200 μL Tip。
5.2.5 3 mL 無菌塑膠吸管。
5.2.6 1.5 mL Eppendorf tube。
5.2.7 載玻片、蓋玻片。
5.2.8 無菌螺旋試管：2 mL、4 mL。
5.2.9 無菌離心管：15 mL、50 mL。
5.2.10 5 mL 針筒。
5.2.11 0.45 μM 針頭過濾器。
5.2.12 抗凍標籤紙。
5.2.13 油性細字筆。

6 儀器設備
6.1 第二級生物安全櫃（class II BSC）。
6.2 37 °C 二氧化碳培養箱。
6.3 倒立相差顯微鏡。
6.4 螢光顯微鏡（Zeiss Axioskop 2 plus）。
6.5 水浴槽。
6.6 電動輔助吸管。
6.7 4 °C 冰箱。
6.8 -20 °C、-80 °C 冷凍櫃。
6.9 乾浴器。

7 環境設施安全
於生物安全第二等級（BSL-2）實驗室之設施內操作。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。
9 檢體運送及保存
 參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
 10.1 檢體編號：收件檢體依通報疾病及種類編號。
 10.2 檢驗前處理
 10.2.1 開啓第二級生物安全櫃之紫外光照射操作枱面 20 min。
 10.2.2 將 5.1.1-5.1.5 試劑先置於 37 °C 回溫或解凍。
 10.2.3 檢體前處理
 10.2.3.1 全血
 10.2.3.1.1 以針筒吸取 3 mL 的 Ficoll-paque 置於 15 mL 離心管下層。
 10.2.3.1.2 取 2 mL 血液與 2 mL 的 HBSS 混合後，輕輕的置於 Ficoll-paque 上層。
 10.2.3.1.3 400 xg, 室溫下離心 40 min。
 10.2.3.1.4 以乾淨吸管小心吸去上層液。
 10.2.3.1.5 再取另一乾淨吸管吸取 Ficoll-paque 上的淋巴細胞層至另一 15 mL 離心管。
 10.2.3.1.6 加入取出淋巴層細胞三倍體積的 HBSS，輕輕以吸管混合均勻。
 10.2.3.1.7 100 × g, 室溫下離心 10 min 後移除上清液。
 10.2.3.1.8 加入 5 mL HBSS，以吸管輕輕上下混合原沉澱細胞，重複 10.2.3.1.6。
 10.2.3.1.9 加入 2 mL Sample pretreat medium 後，接種細胞或暫時置於-80 °C 保存。
 10.2.3.2 咽喉拭子：加 1.5 mL Sample pretreat medium 至採檢管充分攪拌，將溶液吸出至 4 mL 滅菌塑膠檢體瓶中，
 以 5 mL 針筒吸取溶液後，拔去針頭，接上 0.45 μm 過濾器過濾後置於 2 mL 無菌試管保存，接種細胞或
 暫時置於-80°C 保存。
 10.2.3.3 尿液：以 400 × g 於 4 °C 離心 10 min 後，棄去上清液，
 另加 2 mL Sample pretreat medium 與沉澱物混合均勻後，接種細胞或暫時置於-80°C 保存。

10.3 檢驗步驟：
 10.3.1 接種：取 24 well plate 長滿單層之 Vero 細胞，吸出 Growth medium，接種檢體 100 μL，輕輕搖動使檢體佈滿細胞層，置于
 37 °C 含 5 % CO₂ 的培養箱培養，其間約隔間 15 min，即輕輕搖動 plate，使檢體能均勻散佈於細胞層並防止細胞層乾燥。1 hr
 後加入 1 mL Maintain medium，置於 37 °C 含 5 % CO₂ 的培養
箱培養。

10.3.2 培養至 7 天後，收集檢體液繼代培養。步驟如下：以 3 mL 無菌吸管刮取細胞層後同培養液一起收集於 1.5 mL Eppendorf，置於-80°C 冰箱 10-15 min，取出溶解後，以 3,000 rpm 離心 15 min，再將上清液取 100 µL 接種於新的 24 well plate 的單層 Vero Cell，此即為 Passage 1。

10.3.3 重複步驟 10.3.2，此即為 Passage 2。

10.3.4 再繼續培養 7 天後進行 IFA 鑑定。

10.3.5 間接螢光免疫法鑑定

10.3.5.1 取 1 mL 受感染細胞的懸浮液於小離心管中，以 3,000 rpm 離心 15 min。

10.3.5.2 取出上清液另存於乾浄試管，沉澱之細胞加入 0.5 - 1 mL PBS，以 Pipette 上下混合均勻。

10.3.5.3 取 10 µL 點入 21 孔玻片（需含未感染細胞以為陰性對照），待細胞風乾後置入含有 4 °C 丙酮之玻片槽，固定 10 min。

10.3.5.4 用無菌水以 1:100 稀釋 5.1.7 Rubella,E1,clone EI-20。

10.3.5.5 取出風乾後滴一滴 10.3.5.4Rubella Ab，將玻片置於 moisture chamber，置於 37 °C 恆溫箱 30 min。

10.3.5.6 以 5.1.12 IFA wash solution 清洗玻片後置於乾浴器晾乾。

10.3.5.7 每個孔加一滴 5.1.8 Gt X Ms IgG FITC。將玻片置於 Moisture chamber，置於 37 °C 恆溫箱 30 min。

10.3.5.8 重覆 10.3.5.6。

10.3.5.9 以 5.1.9 Mounting fluid 封片後，以螢光顯微鏡鏡檢。細胞呈現紅色為陰性反應，呈現蘋果綠為陽性。

10.4 檢驗後處理：生物安全櫃操作檯面以 75 % 酒精擦拭，並以紫外光照射 20 min。

11 結果判定

11.1 判讀標準：經 Rubella IFA 測定有綠色螢光反應細胞者，判定為陽性。

11.2 報告核發：德國麻疹病毒分離陽性，德國麻疹病毒分離陰性。

11.3 結果登錄：完成檢驗後，將檢驗結果登錄於附錄 15.3 病毒培養觀察紀錄表，附錄 15.4 營光鑑定紀錄表，檢驗結果填寫於檢體送驗單之“檢驗結果欄”，並在背面蓋章，相關檢驗記錄及檢體送實驗室主管審核，俟實驗室主管核章後，再上網登錄於傳染病通報系統。

12 品質管制

12.1 除離心及營光鑑定試驗步驟外全程作業都要在生物安全櫃（class II BSC）內進行。

12.2 二氧化碳培養箱內壁每月要定期以抗黴菌劑擦拭及水盤添加抑菌劑的無菌水以保持培養箱內溼度。
13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

15 附錄
15.1 德國麻疹病毒分離與鑑定流程圖。
15.2 細胞繼代培養紀錄表。
15.3 病毒培養觀察紀錄表。
15.4 螢光鑑定紀錄表。
15.5 德國麻疹病毒檢驗判定總流程圖。
附錄 15.1 德國麻疹病毒分離與鑑定流程圖

咽喉拭子 → 尿液 → 全血

加 1.5 mL Sample pretreat medium 充分攪拌，0.45 μm 過濾

400 xg，4°C，10 分鐘，沉澱懸浮於 2 mL Sample pretreat medium

3 mL Ficoll-paque 加 4 mL 稀釋全血，400 xg，室溫，40 分鐘，取淋巴球沉澱以 HBSS wash，100 xg，室溫，10 分鐘，二次，

接種 Vero 細胞

7 天後繼代培養，二次

螢光免疫法（IFA）鑑定

螢光顯微鏡鏡檢

細胞呈現蘋果綠螢光

否 → 德國麻疹病毒分離陰性

是

德國麻疹病毒分離陽性
附錄 15.2 細胞繼代培養紀錄表

衛生福利部疾病管制署研究檢驗及疫苗研製中心
細胞繼代培養紀錄表

<table>
<thead>
<tr>
<th>Cell</th>
<th>Transfer</th>
<th>Date/time</th>
<th>Person in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Flask no</td>
<td>Container</td>
<td>Medium</td>
</tr>
</tbody>
</table>

| | Transfer | Date/time | Person in charge |
| | Flask no | Container | Medium |

| | Transfer | Date/time | Person in charge |
| | Flask no | Container | Medium |

| | Transfer | Date/time | Person in charge |
| | Flask no | Container | Medium |

| | Transfer | Date/time | Person in charge |
| | Flask no | Container | Medium |

檢驗者：
實驗室主管：
附錄 15.3 病毒培養觀察紀錄表

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Date</th>
<th>Exp. no.</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exp. para. 1</th>
<th>Exp. para. 2</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Exp. no.</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cell</th>
<th>Generation</th>
<th>Culture</th>
<th>M.M.</th>
<th>Inoculum</th>
<th>Absorption</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[附錄 15.3 病毒培養觀察紀錄表](#)
附錄 15.4 螢光鑑定紀錄表

衛生福利部疾病管制署研究檢驗及疫苗研製中心

螢光鑑定紀錄表

<table>
<thead>
<tr>
<th>Date：</th>
<th>檢驗者：</th>
<th>實驗室主管：</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
附錄 15.5 德國麻疹病毒檢驗判定總流程圖

全血、咽喉拭子、尿液 → 病毒分離與鑑定 → 接種 Vero 細胞 → 間接免疫蛍光法（IFA）

每隔 7 天繼代培養，共繼代二次

細胞呈現蘋果綠蛍光

是 → 德國麻疹陽性

否 → 德國麻疹陰性

血清學檢驗結果與細胞分離結果，有任何一者為陽性，則判為陽性
1 目的
以分子生物學的技術利用反轉錄酶一巢式聚合酶鍊反應（RT-nested PCR）與即時定量 RT-PCR 來直接檢測檢體中是否有德國麻疹病毒。

2 適用檢體種類
適用之檢體種類包括咽喉拭子、尿液。

3 名詞解釋
無。

4 原理概述
RT-PCR：利用分子生物學技術 RT-PCR 高敏感度的方法來檢測検體中的麻疹病毒 RNA。RT-PCR 之原理為設計專一性之引子（primers），把檢體中的病毒 RNA 反轉錄成 DNA，並將其擴增放大。

5 試劑耗材
5.1 檢測試劑
5.1.1 Viral RNA Extraction Kit。
5.1.2 One-step RT-PCR Kit。
5.1.3 PCR Kit。
5.1.4 TBE buffer（Tris-borate/EDTA electrophoresis buffer）。
5.1.5 陽性對照組（positive control）：採用德國麻疹培養之病毒株作為對照；陰性對照組（negative control）：以水作陰性對照。Agarose。

5.2 耗材
5.2.1 DEPC 水。
5.2.2 無菌 PCR 反應管。
5.2.3 無菌內濾式 10 µl, 20 µl, 100 µl, 200 µl, 1000 µl 微量滴管。
5.2.4 無菌 1.5 ml 微量離心管。
5.2.5 手套。

6 儀器設備
6.1 PCR thermal cycler。
6.2 電泳槽。
6.3 DNA 電泳膠體觀察設備。
6.4 10 µl, 20 µl, 100 µl, 200 µl, 1000 µl 微量滴管分注器。

7 環境設施安全
採用獨立的操作空間，將 RNA 或 DNA 有關的實驗室分開，以避免污染，影響結果。
8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體前處理
10.1.1 檢體編號：核對檢驗單之個案與檢體是否相符，給予疾病編號。
10.1.2 咽喉拭子檢體：棉棒充分攪拌後於塑膠管壁旋轉擠乾取出。
10.1.3 尿液檢體：以 1,500 rpm 離心 10 分鐘，將沉澱物與 1-2 ml 含 2x 抗生素的 DMEM 混合均勻。

10.2 步驟
10.2.1 萃取病毒 RNA (以 QIAGEN QIAamp Viral RNA Mini Kit 為例)
10.2.1.1 吸取 140 µl 的檢體，加入 560 µl Lysis buffer (AVL)，震盪混合，室溫靜置反應 10 分鐘。
10.2.1.2 加入純酒精 560 µl 終止反應。
10.2.1.3 將上述混合液分兩次加入通管柱（column），並以離心 (8,000 rpm，1 分鐘) 方式加速混合液通過濾膜，檢體中如有 RNA 存在，會吸附在管柱底部的濾膜上。
10.2.1.4 以清洗液（AW1）500 µl，離心 8,000 rpm，1 分鐘，作第一次沖洗，清洗膜上所吸附的雜質。
10.2.1.5 以清洗液（AW2）500 µl，離心 14,000 rpm，3 分鐘，作第二次沖洗，清洗膜上剩餘吸附的雜質。
10.2.1.6 離心 14,000 rpm，1 分鐘，以徹底去除膜上殘留酒精。
10.2.1.7 加入萃取液(AVE) 50µl，室溫靜置 1 分鐘，在 4℃離心 8,000 rpm，1 分鐘，取得 RNA。

10.2.2 反轉錄酶－聚合酶鏈鎖反應（RT-PCR）(以 Promega access quick RT-PCR system 為例)
10.2.2.1 取 5µl RNA 為模版，加入引子組（primers 參考附錄 15-2）與 RT-PCR 試劑，反應總體積 50 µl，反應溶液成分如下：

RNase-free H2O	7.0 µl
2 X Master Mix	25.0 µl
Forward primer 1100F	10 µM

Reverse primer 1100R (10 µM) 1.0 µl
5X Betain 10.0 µl
AMV RT (5U/µl) 1.0 µl
RNA sample 5.0 µl

50.0 µl

10.2.2 使用 PCR thermal cycle，設定反應條件如下
10.2.2.1 R.T.作用，45°C 45 分鐘。
10.2.2.2 Taq 活化作用，94°C 2 分鐘。
10.2.2.3 Denaturation, 94°C 30 秒。
10.2.2.4 Annealing, 60°C 30 秒。
10.2.2.5 Extension, 68°C 60 秒。
10.2.2.6 重複10.2.2.3至10.2.2.5步驟40 cycle。
10.2.2.7 Final extension, 68°C 5 分鐘。

10.2.3 巢式聚合酶鍊鎖反應(nested PCR)（以 Fermentas DreamTaq 2X Master Mix 為例）

10.2.3.1 取 3 µl 10.2.2 步驟所得的 RT-PCR 反應產物做模板，加入引子組（primers 參考引子組序列表）與 PCR 試劑，反應總體積 50 µl，反應溶液成分如下:
RNase-free H2O 12.0 µl
2 X Master Mix 25.0 µl
5X Betain 10.0 µl
Forward primer 875F（10 µM） 1.0 µl
Reverse primer 875R（10 µM） 1.0 µl
DNA sample 1.0 µl

50.0 µl

10.2.3.2 使用 PCR thermal cycle，設定反應條件如下:
10.2.3.2.1 Taq 活化作用，94°C 2 分鐘。
10.2.3.2.2 Denaturation, 94°C 30 秒。
10.2.3.2.3 Annealing, 60°C 30 秒。
10.2.3.2.4 Extension, 68°C 60 秒。
10.2.3.2.5 重複10.2.3.2.3至10.2.3.2.5步驟40 cycle。
10.2.3.2.6 Final extension, 72°C 5 分鐘。

10.2.4 膠片電泳分析
10.2.4.1 製備 1.5% 洋菜膠：1.5 g agarose 溶於 100 ml（1 X）TBE buffer。
10.2.4.2 選擇 100 bp DNA size Marker：5µl（2 ng/µl）。
10.2.4.3 取二次產物 5 µl 及 100 bp Marker，混合 1 µl Safe-Green Nucleic Acid Stain(eg:abm-Cat.No.G108-G)。
10.2.4.4 進行電泳分離：100V，30 min。
10.2.4.5 使用 UV light 視察，並照相紀錄。
11 結果判定
11.1 判讀標準
 RT-PCR: 取 RT-PCR 產物各 5μL，在 1.5% 洋菜膠進行分析，檢視分析結果。德國麻疹增幅產物片段約 875 bp，若出現上述 RT-PCR 產物，檢驗結果為陽性。
11.2 報告核發：德國麻疹病毒 PCR 陽性，德國麻疹病毒 PCR 陰性。
11.3 結果登錄: 完成檢驗後, 將檢驗結果填寫於檢體送驗單之”檢驗結果欄”，並上網登錄於實驗室資訊管理系統，傳送實驗室主管審核，待審核通過後發佈結果。

12 品質管制
12.1 每次進行實驗時皆有陽性及陰性對照組。
12.2 實驗過程遵循 S.O.P 的作業規範與流程, 並在個別獨立的操作空間內操作, 以避免污染。
12.3 微量吸管分注器做定期的校對。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

15 附錄
15.1 德國麻疹病毒鑑定流程圖。
15.2 德國麻疹病毒診斷用引子及探針組序列表
附錄 15-1 德國麻疹病毒鑑定流程圖

咽喉拭子、尿液

病毒 RNA 萃取

Nested RT-PCR 檢測

結果判定
附錄 15-2 德國麻疹病毒診斷用引子及探針組序列表

一、First round RT-PCR primer

1100F : 5’-CCCCACCGACACCGTGATGAG-3’
1100R : 5’-TTTTTTTTTTTTTTTTTTCTATACAGCAACAGGTGC-3’

二、Second round nested-PCR primer

875F: 5’-GTGATGAGCGTGTCGCCTT-3’
875R: 5’-TGGTGTGTGTCGCCATAC-3’
1 目的
利用間接免疫酵素分析法（indirect ELISA，indirect enzyme-linked immunosorbent assay）檢測人體是否有德國麻疹專一性 IgM 抗體。

2 適用檢體種類
血清（serum）或血漿（plasma）。

3 名詞解釋
無。

4 原理概述
利用間接酵素免疫分析法。檢體先以 RF absorbent 吸附，以除去類風濕因子及 IgG，降低對所測試 IgM 反應的干擾。再利用吸附有德國麻疹病毒抗原的微量盤與待測血清中具有的德國麻疹專一性 IgM 抗體作用一段時間，清洗掉未結合的物質然後加上 Anti-human IgM/POD conjugate，再反應一段時間後清洗掉未結合的物質，最後加上無色受質 TMB 作用 30 min，受質經 Conjugate 上的酵素催化後，轉換為藍色，最後再加上終止液終止反應，此時有反應的微量盤會變成黃色。以吸光光度計測定 450 nm 波長的吸光值，以 650 nm 為參考波長。

5 試劑耗材
5.1 試劑
5.1.1 「Enzygnost anti-Rubella-virus/IgM：Dade Behring，OWBO 15，Germany，4 ℃ 儲存」。
5.1.1.1 Anti-Rubella virus/IgM test plate：2 × 6 strips。
5.1.1.2 Anti-Rubella virus reference P/P：0.65 mL。
5.1.1.3 Anti-Rubella virus reference P/N：0.45 mL。
5.1.1.4 Sample buffer POD：2 × 50 mL。
5.1.1.5 Anti-human IgM/POD conjugate（μ-chain specific）：1 mL。
5.1.1.6 Conjugate buffer microbiol：4 × 12.5 mL。
5.1.1.7 RF absorbent：4 × for 5 mL。
5.1.1.8 Polyethylene bag for storing unused test strip。
5.1.1.9 Barcode table of value。
5.1.2 「Supplementary reagents for enzygnost/TMB：Dade Behring，OUVP 17，Germany，4 ℃ 儲存」。
5.1.2.1 Washing solution POD：3 × 100 mL。
5.1.2.2 Colour solution blue for enzygnost：1 × 12.5 mL。
5.1.2.3 Buffer/substrate TMB：4 × 30 mL。
5.1.2.4 Chromogen TMB：4 x 3 mL。
5.1.2.5 Stopping solution POD：2 × 100 mL。
5.1.2.6 Adhesive foils for microtiter plates：24 pcs。
5.1.2.7 Empty bottle for the working Chromogen solution: 1 pcs.

5.1.2.8 Instruction for use: 1 pcs.

5.2 耗材
5.2.1 Tips: 200 μL, 1,000 μL。
5.2.2 1.5 mL Eppendorf。
5.2.3 4 mL Tube。
5.2.4 2 mL 螺旋試管。
5.2.5 抗凍標籤紙。
5.2.6 油性簽字筆。

6 儀器設備
6.1 單爪 Pipetman: 20 μL, 200 μL, 1,000 μL。
6.2 八爪 Pipetman: 200 μL。
6.3 電動分注器: 50 - 1,000 μL。
6.4 Microplate washer。
6.5 Microplate reader。
6.6 小型離心機。
6.7 37 ℃ 溫箱。
6.8 振盪混合器。

7 環境設施安全
於生物安全第二等級（BSL-2）實驗室之設施內操作。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體編號：核對檢驗單之個案與檢體是否相符，給予疾病編號。
10.2 檢驗前處理
10.2.1 將血液分裝於 1.5 mL Eppendorf，以小型離心機離心 3 - 5 min，收集血清或血漿於 2 mL 螺旋試管。
10.2.2 記錄檢體於檢驗盤上之相對應位置，如附錄 15.1。
10.2.3 配置 Working RF Absorbent：一瓶 RF Absorbent 以 5 mL 蒸餾水溶解。
10.2.4 配置 Working wash solution：用蒸餾水以 1:20 的比例稀釋 5.1.2.1 Washing solution POD。

10.2.5 配置 Working conjugate solution：1 份 5.1.1.5 Anti-human IgM/POD conjugate + 50 份 5.1.1.6 Conjugate buffer microbiol。

10.2.6 配置 Working Chromogen solution：1 份 5.1.2.4 Chromogen TMB + 10 份 5.1.2.3 Buffer/substrate TMB。

10.2.7 Microplate washer 先以配置好的 Working wash solution 進行 Prime 指令，使管路充滿 Working wash solution。

10.3 檢驗步驟
10.3.1 血清稀釋至加到微量盤的步驟詳如附錄 15.2。
10.3.2 封上 5.1.2.6 Adhesive foils，置放 37 °C 溫箱培養 60 min。
10.3.3 啟動 Microplate washer 以 Wash solution 清洗三次。
10.3.4 每個孔加入 100 μL Working conjugate solution。
10.3.5 置放 37 °C 溫箱培養 60 min。
10.3.6 啟動 Microplate washer 以 Wash solution 清洗三次。
10.3.7 每個孔加入 100 μL Working Chromogen solution。
10.3.8 室溫，避光，培養 30 min。
10.3.9 每個孔加入 100 μL Stopping solution。
10.3.10 用 Microplate reader 測定 450 nm 吸光度，以 650 nm 做為參考波長。

10.4 檢驗後處理
10.4.1 Microplate washer 以蒸餾水進行二次 Prime，以去除殘存之 Wash solution，防止管路結晶阻塞。
10.4.2 使用後的 Tips、Eppendorf、Microplate strip，滅菌後丟棄。
10.4.3 Microplate washer、Microplate reader 關機。

11 結果判定
11.1 判讀標準

<table>
<thead>
<tr>
<th>計算</th>
<th>判定</th>
<th>判定標準</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔA = A_{antigen} - A_{control antigen}</td>
<td>陽性（positive）</td>
<td>ΔA ≥ 0.2</td>
</tr>
<tr>
<td></td>
<td>陰性（negative）</td>
<td>ΔA < 0.1</td>
</tr>
<tr>
<td></td>
<td>未確定（equivocal）</td>
<td>0.1 ≤ ΔA ≤ 0.2</td>
</tr>
</tbody>
</table>

11.2 報告核發：德國麻疹 IgM 陽性，德國麻疹 IgM 陰性，德國麻疹 IgM 未確定。

11.3 結果登錄：完成檢驗後，將檢驗結果登錄於附錄 15.4 德國麻疹 ELISA 實驗紀錄表，檢驗結果填寫於檢體送驗單之“檢驗結果欄”，並上網登錄於實驗室資訊管理系統，傳送實驗室主管審核，待審核通過後發佈結果。

12 品質管制
12.1 Qualitative evaluation：ΔA_{Reference P/P} ≥ 0.2。
12.2 Quantitative evaluation。
12.2.1 Lower margin \(\leq \Delta A_{\text{Reference P/P}} \leq \) upper margin。
12.2.2 任一 \(\Delta A_{\text{Reference P/P}} \) 介於 Reference P/P 平均值 ± 20%。

12.3 Measurement correction：利用 Reference P/P 來校正實驗值，改善結果的再現性。

計算範例

<table>
<thead>
<tr>
<th>參考值 P/P，開始</th>
<th>(\Delta A)</th>
<th>0.474</th>
</tr>
</thead>
<tbody>
<tr>
<td>With margins？</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>參考值 P/P，結束</td>
<td>(\Delta A)</td>
<td>0.388</td>
</tr>
<tr>
<td>With margins？</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>平均值</td>
<td>(\Delta A)</td>
<td>0.431</td>
</tr>
<tr>
<td>參考值 P/P，名稱</td>
<td>(\Delta A)</td>
<td>0.518</td>
</tr>
<tr>
<td>調整因子 0.518:0.431 =</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>調整 (\Delta A) 待測血清 = 1.2 x (\Delta A) 待測血清</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

註：upper、lower margin、nominal value 詳見 5.1.1.9，為 lot-specific。

13 廢棄物處理

檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

14.1 Dade Behring 公司操作說明書。

15 附錄

15.1 檢體排列位置圖。
15.2 檢體稀釋至加入微量盤步驟圖。
15.3 德國麻疹病毒 IgM 抗體試驗（間接酵素免疫分析法）流程圖。
15.4 德國麻疹 ELISA 紀錄表。
15.5 德國麻疹病毒血清學檢驗及結果判定流程圖。
附錄 15.1 檢體排列位置圖

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>B</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>C</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>D</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>E</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>F</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>G</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>H</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

1. 從 C1 開始放置待測檢體
2. Reference P/P 除 A1 位置固定外，另一 Reference P/P 位置視檢體量而定，在最後一個試劑條 H 對應位置
附錄 15.2 檢體稀釋至加入微量盤步驟圖

400 µL Sample Buffer POD

20 µL

Ig

Predilution tubes or wells (1:21)

Test sample or reference

outside plate

IgM

200 µL

200 µL each Sample Buffer POD

Test dilution 1:231

Inside plate

After 15 min at RT, 150 µL each

200 µL RF Absorbent

Ag CoAg

Test dilution 1:42
附錄 15.3 德國麻疹病毒 IgM 抗體試驗（間接酵素免疫分析法）流程圖

檢體（血清，發病3-28日內）

1:21稀釋

取等量稀釋檢液與RF處理15分鐘

1:42稀釋

加150 μL經RF處理之檢體及稀釋之參考血清P/P及P/N至覆有病毒抗原/細胞對照抗原的一組微量盤

Wash後，加入100 μL結合酵素之抗IgM抗體

37℃，1小時

Wash後，加入100 μL酵素受質使之呈色

室溫，30分鐘

加入100 μL反應終止液

1小時內

以Microplate Reader 450 nm測定OD值

以 650 nm 做為參考波長
附錄 15.4 德國麻疹 ELISA 紀錄表

衛生福利部疾病管制署研究檢驗及疫苗研製中心
德國麻疹ELISA實驗紀錄表

<table>
<thead>
<tr>
<th>Date:</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Well</th>
<th>Sample No.</th>
<th>Δ A</th>
<th>Corrected Δ A</th>
<th>Result</th>
<th>Well</th>
<th>Sample No.</th>
<th>Δ A</th>
<th>Corrected Δ A</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1A</td>
<td>P/P</td>
<td></td>
<td></td>
<td></td>
<td>1A</td>
<td>P/N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>in-house P</td>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>in-house P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Validation Check</th>
<th>Validation Check</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. P/P ≥ 0.2</td>
<td>1. P/N ≥ 0.5</td>
</tr>
<tr>
<td>2. P/P within lower and upper margin</td>
<td>2. P/N within lower and upper margin</td>
</tr>
<tr>
<td>3. Individual P/P within ± 20 % mean P/P</td>
<td>3. Individual P/N within ± 20 % mean P/N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kit Batch：</th>
<th>Kit Batch：</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expiry：</td>
<td>Expiry：</td>
</tr>
<tr>
<td>Lower margin：</td>
<td>Lower margin：</td>
</tr>
<tr>
<td>Upper margin：</td>
<td>Upper margin：</td>
</tr>
<tr>
<td>Nominal Value：</td>
<td>Nominal Value：</td>
</tr>
<tr>
<td>Mean P/P：</td>
<td>Mean P/N：</td>
</tr>
<tr>
<td>Correction Factor：</td>
<td>Correction Factor：</td>
</tr>
</tbody>
</table>

Result Interpretation

(-)Negative < 0.10 (+)POSITIVE > 0.20 (+/-)EQUIVOCAL：0.10-0.20

檢驗者：實驗室主管：
附錄 15.5 德國麻疹血清學檢驗及結果判定流程圖

血清

IgM EIA test

IgM : +
IgG : +或–

陽性

IgG : –

未確定，間隔七日以後再採檢

IgM : –
IgG : +

未確定，間隔七日以後再採檢

IgM : –
IgG : ±

IgM : ±
IgG : +或–

IgM : –
IgG : ±

IgM : –
IgG : +

IgM : +
IgG : –

以前曾經感染或接種疫苗

1. 第二次檢體仍為 IgM 及 IgG 陰性者判為陰性
2. 第二次檢體為 IgM 陽性或 IgG 陽轉者判為陽性

1. 第二次檢體 IgM 為陽性或 IgG 抗體有顯著上升者判為陽性
2. IgM 抗體為陰性或±，而 IgG 抗體未顯著上升者判為陰性
目的
利用間接免疫酵素分析法（indirect ELISA，indirect enzyme-linked immunosorbent assay）檢測人體是否有德國麻疹專一性IgG抗體。

適用檢體種類
血清（serum）或血漿（plasma）。

名詞解釋
無。

原理概述
利用間接酵素免疫分析法。利用96孔微量盤底覆有德國麻疹病毒抗原的測試盤與待測血清中具有的德國麻疹專一性IgG抗體作用1 hr，清洗掉未結合的物質然後加上Anti-human IgG/POD Conjugate，再反應1 hr，清洗掉未結合的物質，最後加上無色受質TMB作用30 min，經conjugate上的酵素催化，轉換為藍色，最後再加上終止液終止反應，此時有反應的位置會變成黃色。以吸光光度計測定450 nm波長的吸光值，以650 nm為參考波長。

試劑耗材
5.1 試劑
5.1.1 「Enzygnost anti-Rubella-virus/IgG：Dade Behring，OWBF 15，Germany，4 ℃儲存」
5.1.1.1 Anti-Rubella virus/IgG test plate：2 × 6 strips。
5.1.1.2 Anti-Rubella virus reference P/N：0.4 mL。
5.1.1.3 Sample buffer POD：2 × 50 mL。
5.1.1.4 Anti-human IgG/POD conjugate：1 mL。
5.1.1.5 Conjugate buffer microbiol：4 × 12.5 mL。
5.1.1.6 Polyethylene bag for storing unused test strip。
5.1.1.7 Barcode table of value。
5.1.2 「Supplementary reagents for enzygnost/TMB：Dade Behring，OUVP 17，Germany，4 ℃儲存」。
5.1.2.1 Washing solution POD：3 × 100 mL。
5.1.2.2 Colour solution blue for enzygnost：1 × 12.5 mL。
5.1.2.3 Buffer/substrate TMB：4 × 30 mL。
5.1.2.4 Chromogen TMB：4 × 3 mL。
5.1.2.5 Stopping solution POD：2 × 100 mL。
5.1.2.6 Adhesive foils for microtiter plates：24 pcs。。
5.1.2.7 Empty bottle for the working Chromogen solution：1 pcs。。
5.1.2.8 Instruction for use：1 pcs。。
5.2 耗材
5.2.1 Tips：200 μL、1,000 μL。
衛生福利部疾病管制署傳染病標準檢驗方法

<table>
<thead>
<tr>
<th>編號：</th>
<th>德國麻疹病毒 IgG 抗體檢測 (Indirect ELISA)</th>
<th>核准日期：年 月 日</th>
</tr>
</thead>
</table>

頁次：第 279 頁/共 1099 頁 修訂日期：年 月 日

5.2.2 1.5 mL Eppendorf。
5.2.3 4 mL Tube。
5.2.4 2 mL 螺旋試管。
5.2.5 抗凍標籤紙。
5.2.6 油性簽字筆。

6 儀器設備
6.1 單爪 Pipetman：20 μL、200 μL、1,000 μL。
6.2 八爪 Pipetman：200 μL。
6.3 電動分注器：50 μL - 1,000 μL。
6.4 Microplate washer。
6.5 Microplate reader。
6.6 小型離心機。
6.7 37°C 溫箱。
6.8 振盪混合器。

7 環境設施安全
於生物安全第二等級 (BSL-2) 實驗室之設施內操作。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體編號：核對檢驗單之個案與檢體是否相符，給予疾病編號。
10.2 檢驗前處理
10.2.1 將血液分裝於 1.5 mL Eppendorf，以小型離心機離心 3 - 5 min，收集血清或血漿於 2 mL 螺旋試管。
10.2.2 記錄檢體於檢驗盤上之相對應位置，如附錄 15.1。
10.2.3 配置 Working wash solution：用蒸餾水以 1：20 的比例稀釋 5.1.2.1 Washing solution POD。
10.2.4 配置 Working conjugate solution：1 份 5.1.1.5 Anti-human IgG/POD conjugate + 50 份 5.1.1.6 Conjugate buffer microbiol。
10.2.5 配置 Working Chromogen solution：1 份 5.1.2.4 Chromogen TMB + 10 份 5.1.2.3 Buffer/substrate TMB。
10.2.6 Microplate washer 先以配置好的 Working wash solution 進行 Prime 指令，使管路充滿 Working wash solution。

10.3 檢驗步驟
10.3.1 血清稀釋至加到微量盤的步驟詳如附錄 15.2。
10.3.2 封上 5.1.2.6 Adhesive foils，置放 37°C 溫箱培養 60 min。
10.3.3 啟動 Microplate washer 以 Wash solution 清洗三次。
10.3.4 每個孔加入 100 μL Working conjugate solution。
10.3.5 置放 37 °C 溫箱培養 60 min。
10.3.6 啟動 Microplate washer 以 Wash solution 清洗三次。
10.3.7 每個孔加入 100 μL Working Chromogen solution。
10.3.8 室溫，避光，培養 30 min。
10.3.9 每個孔加入 100 μL Stopping solution。
10.3.10 用 Microplate reader 測定 450 nm 吸光度，以 650 nm 做為參考波長。

10.4 檢驗後處理
10.4.1 Microplate washer 以蒸餾水進行二次 Prime，以去除殘存之 Wash solution，防止管路結晶阻塞。
10.4.2 使用後的 Tips、Eppendorf、Microplate strip，滅菌後丟棄。
10.4.3 Microplate washer、Microplate reader 關機。

11 結果判定
11.1 判讀標準

<table>
<thead>
<tr>
<th>計算</th>
<th>判定</th>
<th>判定標準</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔA=Δ antigen−Δ control antigen</td>
<td>陽性（positive）</td>
<td>ΔA＞0.2</td>
</tr>
<tr>
<td></td>
<td>陰性（negative）</td>
<td>ΔA＜0.1</td>
</tr>
<tr>
<td></td>
<td>未確定（equivocal）</td>
<td>0.1≦ΔA≦0.2</td>
</tr>
</tbody>
</table>

11.2 報告核發：德國麻疹 IgG 陽性，德國麻疹 IgG 陰性，德國麻疹 IgG 未確定。
11.3 結果登錄：完成檢驗後，將檢驗結果登錄於附錄 15.4 德國麻疹 ELISA 實驗紀錄表，檢驗結果填寫於檢體送驗單之“檢驗結果欄”，並上網登錄於實驗室資訊管理系統，傳送實驗室主管審核，待審核通過後發佈結果。

12 品質管制
12.1 Qualitative evaluation：ΔA Reference P/N □ 0.5。
12.2 Quantitative evaluation
12.3 Lower margin □ ΔA Reference P/N □ upper margin。
12.4 任一 ΔA Reference P/N 介於 Reference P/N 平均值 ± 20%。
12.5 Measurement correction：利用 Reference P/N 來校正實驗值，改善結果的再現性。
計算範例
Reference P/N, at start of ΔA series 1.374
With margins? yes
Reference P/N, at end of series ΔA 1.188
With margins? yes
Mean value ΔA 1.281
Reference P/P, nominal value ΔA 1.024
Correction factor 1.024:1.281 = 0.8
Corrected ΔA 待測血清 = 0.8 x ΔA 待測血清

註：upper、lower margin、nominal value 詳見 5.1.1 (7)，為 lot-specific。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃, 30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
Dade Behring 公司操作說明書。

15 附錄
15.1 檢體排列位置圖。
15.2 檢體稀釋至加入微量盤步驟圖。
15.3 德國麻疹病毒 IgG 抗體試驗（間接酵素免疫分析法）流程圖。
15.4 德國麻疹 ELISA 實驗紀錄表。
15.5 德國麻疹 ELISA 血清學檢驗及結果判定流程圖。
附錄 15.1 檢體排列位置圖

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>B</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>C</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>D</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>E</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>F</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>G</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>H</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

1. 從 C1 開始置放待測檢體。
2. Reference P/N 除 A1 位置固定外，另一 Reference P/N 位置視檢體量而定，在最後一個試劑條 H 對應位置。
附錄 15.2 檢體稀釋至加入微量盤步驟圖

衛生福利部疾病管制署傳染病標準檢驗方法

編號：

德國麻疹病毒 IgG 抗體檢測

(Indirect ELISA)

核準日期：年 月 日

修訂日期：年 月 日

頁次：第 283 頁/共 1099 頁

400 μL Sample Buffer POD

Test sample or reference

Predilution tubes or wells (1:21)

IgG

IgM

20 μL each Sample Buffer POD

20 μL each (additional 1:11 dilution)

Ag CoAg

Test dilution 1:231

Inside plate

After 15 min at RT, 150 μL each

200 μL RF Absorbent

Ag CoAg

Test dilution 1:42

200 μL

outside plate
附錄 15.3 德國麻疹病毒 IgG 抗體試驗（間接酵素免疫分析法）流程

檢體（血清或血漿）

1:21稀釋後取20 μL
加入下列微量盤

覆有病毒抗原/細胞對照抗原的一組微量盤，先加入200 μL的稀釋液

37℃,1小時

Wash後，加入100 μL結合酵素之抗IgG抗體

37℃,1小時

Wash後，加入100 μL酵素受質使之呈色

室溫,30分鐘

加入100 μL反應終止液

1小時內

以Spectrophotometer 450 nm測定OD值
以650 nm 做為參考波長
附錄 15.4 德國麻疹 ELISA 實驗紀錄表

衛生福利部疾病管制署研究檢驗及疫苗研製中心
德國麻疹 ELISA 實驗紀錄表

<table>
<thead>
<tr>
<th>Name</th>
<th>Well</th>
<th>Sample No.</th>
<th>ΔA</th>
<th>Corrected ΔA</th>
<th>Result</th>
<th>Well</th>
<th>Sample No.</th>
<th>ΔA</th>
<th>Corrected ΔA</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>P/P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1A</td>
<td>P/N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>in-house P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>in-house P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
</tr>
</tbody>
</table>

Validation Check:
1. P/P ≥ 0.2
2. P/P within lower and upper margin
3. Individual P/P within ±20 % mean P/P

Kit Batch:
Expiry:
Lower margin:
Upper margin:
Nominal Value:
Mean P/P:
Correction Factor:

Validation Check:
1. P/N ≥ 0.5
2. P/N within lower and upper margin
3. Individual P/N within ±20 % mean P/N

Kit Batch:
Expiry:
Lower margin:
Upper margin:
Nominal Value:
Mean P/N:
Correction Factor:

Result Interpretation
(-) Negative < 0.10 (+) Positive > 0.20 (+/-) Equivocal: 0.10-0.20

檢驗者：
實驗室主管：
附錄 15.5 德國麻疹血清學檢驗及結果判定流程圖

血清

IgM EIA test

IgG EIA test

IgM：++或–
IgG：++

陽性

以前曾經感染
或接種疫苗

未確定，間隔七
日以後再採檢

IgM：–
IgG：+

未確定，間隔七
日以後再採檢

1. 第二次檢體仍為
IgM 及 IgG 陰性者
判為陰性
2. 第二次檢體為 IgM
陽性或 IgG 陽轉者
判為陽性

IgM：±
IgG：+

1. 第二次檢體 IgM 為陽性
或 IgG 抗體有顯著上升
者判為陽性
2. IgM 抗體為陰性或±，而
IgG 抗體未顯著上升者
判為陰性
1. 目的
檢測疑似病患的血液或組織中是否含有屈公病毒。

2. 適用檢體種類
適用於急性期發病病患七病日內血液檢體或組織檢體。

3. 名詞解釋
無

4. 原理概述
利用白線斑蚊細胞株於細胞培養盤中接種病患血清或組織研磨液，於28℃培養箱中培養3~4日，取其細胞於24孔玻璃片上，加入抗屈公病毒抗體及螢光標記的山羊抗鼠抗體，於螢光顯微鏡下檢查，測定是否有屈公病毒。

5. 試劑耗材
5.1 檢測試劑
5.1.1 RPMI 細胞培養液（RPMI 1640，含1%胎牛血清【FCS】及1%三合一抗生素【PSA】）。
5.1.2 白線斑蚊細胞株（C6/36，前美國海軍醫院第二研究所）。
5.1.3 屈公病毒（台灣境外株當控制組）：屈公病毒以Vero細胞培養2~3天，取上清液，當屈公病毒來源。（CK9500004）
5.1.4 抗屈公病毒抗體【Chikungunya（ATCC VR64）Mouse Hyperimmune Ascitic Fluid】
5.1.5 FITC-goat anti-mouse IgG。
5.1.6 丙酮。
5.1.7 磷酸鹽緩衝液。
5.1.8 甘油緩衝液。
5.2 耗材
5.2.1 96孔培養盤。
5.2.2 50 mL的離心管。
5.2.3 24孔玻璃片。
5.2.4 蓋玻片。
5.2.5 無菌 250 μL、1,250 μL 之吸管尖。

6. 儀器設備
6.1 28℃ CO₂培養箱。
6.2 37℃ CO₂培養箱。
6.3 第II級生物安全櫃。
6.4 螢光顯微鏡。
6.5 吹風機。
6.6 5～40 ul Pipette及40 - 200 ul Pipette。
6.7 -20℃及-80℃冷凍櫃。
7 環境設施安全
7.1 檢驗操作在生物安全第二等級（BSL-2）以上之負壓實驗室進行。
7.2 水質: 25 ℃蒸餾水或 RO 逆滲透去離子可達 18 MΩ-CM 以上超純水。

8 檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體前處理
10.1.1 於 4 ℃ ×2,100 g 離心 15 分鐘，上清液盛於塑膠小瓶 (1.8mL)，標示號碼及日期，保存於 -80 ℃。

10.2 步驟
10.2.1 在 96 孔細胞培養盤中將患者血清 5ul 以細胞培養液做 20、40、80、160 倍連續稀釋，每孔加入 50ul 之 2 倍連續稀釋血清。每一孔中再加入 100ul C6/36 細胞懸浮液【C6/36 cell 培養於 flask 75T，加 15 ml 培養液（RPMI 1640，含 5% FCS 及 1% PSA）培養約 3-4 天，以細胞括笆括下細胞→以血球計數器計算細胞量。配製成 1×10^6/ml 細胞懸浮液】。
10.2.2 置 28 ℃ 5 % CO2 培養箱培養 3-4 天。
10.2.3 將每一孔中培養液移至另一無菌盤中，置於 -80 ℃ 保存。
10.2.4 取 20 µL PBS 刮下培養盤中之細胞，在 24 孔玻璃片上做抹片。
10.2.5 於室溫中風乾後，置於-20 ℃ 丙酮固定 10 min。
10.2.6 取出 24 孔玻璃片陰乾。
10.2.7 此檢體抹片可保存於-20 ℃ 冰箱中或直接染色。
10.2.8 在抹片上加上 25 µL 抗屈公病毒單株抗體。
10.2.9 將抹片放置在潮濕的培養皿中，置於 37 ℃ 溫箱 30 min。
10.2.10 將抹片取出並以磷酸鹽緩衝液（換三次）洗去多餘之抗體。
10.2.11 以蒸餾水沖洗。
10.2.12 在室溫中將玻璃片以冷風吹乾或陰乾。
10.2.13 將抹片加上 25 µL 螢光標記之山羊抗鼠抗體（FITC-goat anti-mouse IgG）。
10.2.14 重複 10.2.9 至 10.2.12。
10.2.15 滴上甘油緩衝液，然後以蓋玻片覆蓋。
10.2.16 以螢光顯微鏡檢查。
11 結果判定
11.1 判讀標準
 11.1.1 在螢光顯微鏡下將檢測體與 Positive control 及 Negative control 比對判讀。
 11.1.2 當檢體呈現陽性時在螢光顯微鏡下可見黃綠色之細胞；當檢體呈現陰性時在螢光顯微鏡下無綠色細胞僅可見到細胞陰影。
11.2 報告核發：無，內部登錄處理。
11.3 結果登錄：無，內部登錄處理。

12 品質管制
12.1 嚴防病原散佈或污染，工作時帶手套。
12.2 實驗過程遵循 S.O.P 的作業規範與流程，並在生物安全第二等級以上之負壓實驗室內操作，以避免污染。
12.3 生物安全櫃及培養箱定期做校正及維護。
12.4 置於 37℃溫箱染色時應注意保持溼度。
12.5 C6/36 培養體不可超過 32℃。
12.6 必須要有未感染病毒之細胞及感染病毒之細胞分別做為陽性與陰性對照組。

13 廢棄物處理
13.1 檢驗過程之物品、廢液及剩餘體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

15 附錄
15.1 屈公病毒分離與鑑定流程圖。
附錄 15.1 屌公病毒分離與鑑定流程圖。

患者發病七日內血清

病毒分離細胞培養

血清稀釋 20 倍
2 倍連續稀釋至 160 倍
接種 C6/36 細胞株

28 ℃ CO₂ 培養箱培養 3~4 天

屈公病毒熒光抗體檢驗

陰性

陽性

重複接種一次

分型

判定

陰性
1 目的
以反轉錄-聚合酶鍵鎖反應（RT-PCR）分子診斷方法檢測疑似病患的血清檢體是否含有屈公病毒核酸。

2 適用檢體種類
血清。

3 名詞解釋
Threshold cycle (Ct): 係指 PCR 產物複製的量，累積到足以被偵測到的第一個循環點稱之。換句話說，Ct 的值越小，表示檢體中初始 DNA/RNA 的含量越多。

4 原理概述
利用對屈公病毒（chikungunya virus）具有專一性之引子（primers）與檢體中之病毒核酸分子結合配對，並利用 RT-PCR 的複製過程及特殊的螢光定量化學方法偵測 RT-PCR 產物，以決定檢體中是否含有屈公病毒核酸序列，所用之引子選自於屈公病毒之保守性序列（conserved sequences）。

5 試劑耗材
5.1 檢測試劑
 5.1.1 病毒 RNA 萃取試劑套組。
 5.1.2 SYBR green 定量反轉錄－聚合酶鍵鎖反應單步驟試劑套組。
5.2 耗材
 5.2.1 檢體瓶。
 5.2.2 無菌吸管。
 5.2.3 定量 PCR 專用八連排反應管及蓋。
 5.2.4 無菌過濾器 10 μL, 20 μL, 100 μL, 200 μL, 1,000 μL 吸管尖。
 5.2.5 無菌 1.5 mL 微量離心管。
 5.2.6 無粉手套。

6 儀器設備
6.1 第 II 級生化安全櫃。
6.2 即時多重定量 PCR 偵測系統。
6.3 10 μL, 20 μL, 40 μL, 100 μL, 200 μL, 1,000 μL 微量滴管分注器。
6.4 高速離心機。
6.5 真空抽氣機。
6.6 冰箱：4℃。
6.7 冷凍櫃：-20 ℃。
6.8 高壓滅菌鍋。

7 環境設施安全
7.1 病人血清檢體應在第 II 級生物安全櫃（BSL-2）內處理。
7.2 檢驗操作在生物安全第二等級（BSL-2）實驗室進行。
7.3 應有獨立的操作空間，盡量與操作 DNA 有關的實驗室分開，以避免污染，影響結果。

8 檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體前處理
10.1.1 裝有靜脈血的無菌真空試管以 2,000 轉離心 10 分鐘，以無菌吸管將血清吸入檢體瓶內旋緊瓶蓋。
10.1.2 檢體瓶上標註檢體標號。
10.1.3 檢體處理好後置 2-8°C 冰箱冷藏。

10.2 步驟
10.2.1 萃取病毒 RNA，依據所使用試劑製造業者的操作手冊進行。
10.2.2 單步驟即時定量反轉錄－聚合酶鍊鎖反應，取 5 μL RNA 做模版，加入漢他病毒專一性引子組（參考附錄 15.1），並依據所使用試劑製造業者的操作手冊，加入其他所需試劑，調整反應總體積至 25 μL。
10.2.3 單步驟即時定量反轉錄－聚合酶鍊鎖反應程式設定：
10.2.3.1 RT 作用：50 °C，30 min。
10.2.3.2 Taq polymerase activation：95 °C，15 min。
10.2.3.3 Denaturation：95°C，15 sec。
10.2.3.4 Annealing：55 °C，30 sec。
10.2.3.5 Extension：72 °C，20 sec。
10.2.3.6 77 °C，30 sec, 收集螢光值。
10.2.3.7 重複 10.2.3.3 至 10.2.3.6 步驟 45 Cycle。

10.2.4 Melting curve analysis：
10.2.4.1 95 °C，1 min。
10.2.4.2 以 0.2°C /秒速率降溫至 68°C，收集螢光值。

11 結果判定
11.1 判讀標準
11.1.1 陽性對照組的 Ct 值需小於或等於 30，Tm 值需大於或等於 79°C。
11.1.2 陰性對照組的 Ct 值需大於或等於 40，Tm 值需小於 79℃，Ct 值或 Tm 值有一項符合上述要求即可。
11.1.3 陽性對照組或陰性對照組其中之一不符合設定值時，則重新實驗。
11.1.4 在陽性對照與陰性對照組符合設定值下，Ct 值小於 35、Tm 值大於或等於 79℃者，判為屈公病毒陽性，反之則判為屈公病毒陰性。

11.2 報告核發
11.2.1 屈公病原體檢驗方法：熒光定量聚合酶-連鎖反應（real-time PCR）
11.2.2 結果：陽性。
11.2.3 結果：陰性。
11.3 結果登錄：將檢體檢驗數據結果登錄於檢驗紀錄表，送請實驗室主管檢討確認，再依實驗室資訊管理系統（LIMS）之操作步驟，將檢驗結果登錄於系統，陳送指定之實驗室主管審核複校，發出正式檢測報告。

12 品質管制
12.1 每次進行實驗時皆有對照組，陽性對照組與陰性對照組的 Ct 值需符合設定值。
12.2 實驗過程遵循標準檢驗方法的作業規範與流程，並在個別獨立的操作空間內操作，以避免污染。
12.3 即時多重定量 PCR 偵測系統定期作檢測與校正。
12.4 微量滴管分注器定期校正。
12.5 注意試劑套組的使用期限與適當的儲放溫度。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121°C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

15 附錄
15.1 屈公病毒診斷用引子組序列表。
附錄 15.1 屈公病毒診斷用引子組序列表

<table>
<thead>
<tr>
<th>Chikungunya virus specific primer</th>
<th>參與反應的濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChikV-F AAG CTY CGC GTC CTT TAC CAA G</td>
<td>200nM</td>
</tr>
<tr>
<td>ChikV-R CCA AAT TGT CCY GGT CTT CTT</td>
<td>200nM</td>
</tr>
</tbody>
</table>
1. 目的
百强病毒(chikungunya virus)IgM和IgG抗體檢測。

2. 適用檢體種類
適用於人體血清檢體。

3. 名詞解釋
無。

4. 原理概述
利用Capture IgM與IgG酵素免疫分析法，測定病人血清中之百强病毒特異性抗體。

5. 試劑耗材
5.1 Dilution buffer：Casein blocking buffer（Sigma, Product no. C7594, USA）
+ 2.5 % Normal rabbit serum+ 4% Normal goat serum + 0.05 % Tween-20，
Ph 7.2。
5.2 Washing buffer（1.5X PBS+0.05 % Tween-20，pH 7.2）。
5.8.2 Anti-human IgG 真空乾燥盤（ELISA plate coated with goat
anti-human IgG）。

5.9 八連排稀釋管。
5.10 丟棄式 250 μL、1,000 μL 吸管尖。
5.11 手套。

6 儀器設備
6.1 第 II 級生物安全櫃（class II BSC）。
6.2 全自動酵素免疫分析儀（Tecan, Genesis workstation 150, Germany）。
6.3 微量滴管分注器 2 μL、20 μL、100 μL、200 μL、1,000 μL（pipettors）。
6.4 震盪器。
6.5 冰箱：4 ºC。
6.6 冷凍櫃：-20 ºC。
6.7 高壓滅菌鍋。

7 環境設施安全
7.1 病人血清檢體應在第 II 級生物安全櫃內處理。
7.2 檢驗操作在生物安全第二等級（BSL-2）實驗室進行。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
reeid=6C7C52E7A7D5621A。

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
reeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體編號登錄。
10.2 檢體量須大於 0.5 mL。
10.3 屈公病毒細胞培養液以 Dilution buffer 二點五倍稀釋後，加入 1：100
之抗 Alpha 屬單株抗體 α-3581。（屈公病毒加喚測抗體混合液）及羅
斯河病毒 (Ross River virus) 細胞培養液以 Dilution buffer 四倍稀釋後，
加入 1：100 之抗 Alpha 屬單株抗體單株抗體 α-3581（羅斯河病毒加喚
測抗體混合液）。
10.3.1 CK1.B.01-AP (5.5.1) 與病毒稀釋液以 1:2,000 比例混合，即可
配製屈公病毒加直接喚測抗體混合液及羅斯河病毒加直接喚測
抗體混合液，以此混合液進行測定，則可省略步驟 10.4、10.10
及 10.11。
10.4 山羊抗小鼠 IgG 抗體-唾液磷酸酶結合力以 Dilution buffer 1：2,000 稀釋。

10.5 取待測血清 7 μL 加入 Dilution buffer 0.7 mL 稀釋 100 倍。若是腦脊髓液檢體，則取 70 μL 加入 Dilution buffer 0.7 mL 稀釋 11 倍。

10.6 取 0.1 mL 待測血清（步驟 10.5）及陰性、陽性對照血清（試劑耗材 5.3），加入 anti-human IgM 及 anti-human IgG 之 96 孔真空乾燥盤。

10.7 置於 37 ℃ 溫箱，搖盪 30 min，然後以 Washing buffer 清洗 4 次。

10.8 取 0.1 mL 屈公病毒加偵測抗體混合液及羅斯河病毒加偵測抗體混合液（步驟 10.3）分別加入 96 孔真空乾燥盤。

10.9 置於 37 ℃ 溫箱，搖盪 30 min，然後以 Washing buffer 清洗 4 次。

10.10 取 0.1 mL 山羊抗小鼠 IgG 抗體-唾液磷酸酶結合體稀釋液（步驟 10.4）加入 96 孔真空乾燥盤。

10.11 置於 37 ℃ 溫箱，搖盪 30 min，然後以 Washing buffer 清洗 4 次。

10.12 取 0.1 mL/孔 呈色劑（p-NPP）加入 96 孔微量滴定盤中呈色。

10.13 置於 37 ℃ 溫箱，搖盪 40 min。

10.14 取微量滴定盤於酵素免疫分析儀裡，以雙波長 405、630 nm 測定吸光度（OD405-630）。

11 結果判斷

11.1 判讀標準

11.1.1 若血清檢體之屈公病毒特異性 IgM 抗體之 OD 值大於 0.5，且屈公病毒 IgM OD 值/羅斯河病毒 IgM OD 值大於或等於 2，判為屈公病 IgM 陽性。

11.1.2 若血清檢體之屈公病毒特異性 IgG 抗體之 OD 值大於 0.5，判為屈公病 IgG 陽性。

11.1.3 屈公病 Positive control serum 應符合 IgM OD 值＞1.0，IgG OD 值＞0.5。

11.1.4 羅斯河病 Positive control serum 應符合 IgM OD 值＞1.0·IgG OD 值＞0.5。

11.1.5 Negative control serum 應符合 IgM OD 值＜0.2，IgG OD 值＜0.2。

11.2 報告核發

11.2.1 檢驗方法：屈公病毒 IgM 和 IgG 抗體檢測

11.2.2 結果：陽性。

11.2.3 結果：陰性。

11.3 結果登錄：結果登錄：將檢體檢驗數據結果登錄於檢驗紀錄表，送請實驗室主管管核校確認，再依實驗室資訊管理系統（LIMS）之操作步驟，將檢驗結果登錄於系統，陳送指定之實驗室主管審核複校，發出正式檢測報告。
12 品質管制
12.1 應於有效期內使用，同一批號試劑，第一次使用時取一組進行試驗，
之後每隔 3 - 6 個月再取一組進行試驗。
12.2 每次檢驗應加入陽性及陰性控制組血清。
12.3 遵循 S.O.P 的作業規範與流程，並在個別獨立的操作空間內操作，以避
免污染。
12.4 微量滴管分注器定時做校正。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥
密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
14.1 Shu PY, Chen LK, Chang SF, Yueh YY, Chow L, Chien LJ, Chin C, Lin TH,
Huang JH. 2003. Comparison of capture immunoglobulin M (IgM) and IgG
enzyme-linked immunosorbent assay (ELISA) and nonstructural protein
NS1 serotype-specific IgG ELISA for differentiation of primary and
622-630.
Immunoglobulin M antibody capture enzime-linked immunosorbent assays
for diagnosis of St. Louis encephalitis. J Clin Microbiol 20: 784-790。
14.3 Innis BL, Nissalak A, Nimmannitya S, Kusalerdchariya S, Chongswasdi V,
immunosorbent assay to characterize dengue infections where dengue and

15 附錄
屈公病毒 IgM 及 IgG 抗體試驗（酵素免疫分析法）流程圖。
附錄 15.1 屈公病毒 IgM 及 IgG 抗體試驗（酵素免疫分析法）流程圖。

96 孔微量真空乾燥盤 Coated with anti-human IgM
96 孔微量真空乾燥盤 Coated with anti-human IgG

待測血清及陰性、陽性對照血清 1：100 稀釋
0.1 mL/孔・37 ℃・30 min (shaking)，洗 4 次
取 0.1 mL 屈公病毒加偵測抗體混合液及羅斯河病毒加偵測抗體混合液，分別加入
96 孔真空乾燥盤
0.1 mL/孔・37 ℃・30 min (shaking)，洗 4 次
山羊抗小鼠 IgG 抗體-鹼性磷酸酶結合體 1：2,000 稀釋
0.1 mL/孔・37 ℃・30 min (shaking)，洗 4 次
p-NPP 呈色劑
0.1 mL/孔・37 ℃・40 min (shaking)
以酵素免疫分析儀，測定雙波長 405、630 nm 之吸光度
(OD_{405-630})

列印結果
1. 目的
霍亂弧菌的分離鑑定與血清分型。

2. 適用檢體種類
適用於人體糞便、直腸拭子、環境檢體（水）。

3. 名詞解釋
無。

4. 原理概述
以特定培養基分離霍亂弧菌，並利用生化代謝特性及血清學方法鑑定霍亂弧菌與血清型別。

5. 試劑耗材
5.1 培養基試劑配製
5.1.1 含 1 % NaCl 之 Alkaline Peptone Water pH 8.6。
5.1.2 含 1 % NaCl 之 10 倍濃度 Alkaline peptone water pH 9.2。
5.1.3 TCBS（thiosulfate citrate bile salt sucrose）培養基。
5.1.4 PMT 培養基。
5.1.5 Nutrient agar plate。
5.1.6 TSA（tryptic soy agar） plate。
5.1.7 TSIA（triple sugar iron agar）。
5.1.8 LIA（lysine iron agar）。
5.1.9 SIM（sulfide indole motility agar）。
5.2 API 20E 生化鑑定套組：BioMérieux，法國。
5.3 VITEK 2 革蘭氏陰性菌鑑定卡（VITEK 2 GN）：BioMerieux，法國。
5.4 氧化酶試紙（oxidase strips）：MAST，英國或氧化酶試劑（oxidase reagent） BioMérieux，法國。
5.5 無菌生理食鹽水：0.85 % NaCl。
5.6 O1 型霍亂多價抗血清，Inaba 抗血清，Ogawa 抗血清，O139 抗血清：SEIKEN，日本。
5.7 載玻片。
5.8 無菌吸管：3 mL。
5.9 接種針（環）。
5.10 馬克法藍氏濁度標準組（McFarland nephelometer standard units）。

6. 儀器設備
6.1 37 °C 培養箱。
6.2 立體解剖顯微鏡：有變焦功能，至少可放大 4.5X。

7. 環境設施安全
於生物安全第二等級（BSL-2）實驗室之設施內操作。
8 椅體採取
8.1 人體糞便、直腸拭子，參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treid=4C19A0252BBEF869&nowtreid=6C7C52E7A7D5621A。
8.2 環境檢體，則依下述 10.1.1 方法，將檢體置于適當培養液（alkaline peptone water），常溫下，於 6 - 18 hr 內送至實驗室處理。

9 椅體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treid=4C19A0252BBEF869&nowtreid=6C7C52E7A7D5621A。

10 椅驗步驟
10.1 分離培養
10.1.1 椅體接種：
10.1.1.1 糞便、直腸拭子：直接塗抹於 TCBS、PMT 培養基上。
10.1.1.2 糞便、直腸拭子：除了直接分離培養外，應將糞便、直腸拭子放入 Alkaline peptone water pH 8.6 內，於 37 °C 經 6 - 15 hr 之增菌培養後，再塗抹在 TCBS、PMT 培養基上。
10.1.1.3 環境檢體（水）180 mL 加上 20 mL 之 10 倍濃度 Alkaline peptone water (pH 9.2) 稀釋成 1 倍液體，充分搖盪混合成檢液，將檢液置於 37 °C 經 6 - 15 hr 之增菌培養後，塗抹在 TCBS、PMT 培養基上。
10.1.2 培養：37 °C 培養箱培養。
10.1.3 觀察：18 - 24 hr 後，觀察有無可疑菌落，如有則進行鑑定。

10.2 鑑定
10.2.1 菌落型態：於 TCBS 培養基上呈黃色扁平透明菌落，於 PMT 培養基上呈鵝黃色菌落如荷包蛋周圍透明，挑取可疑菌落接種於 Nutrient agar 或 TSA agar 及罐別培養基 TSIA、SIM、LIA 上，37 °C 培養箱培養 18 - 24 hr 後執行生化鑑定。
10.2.2 生化鑑定（生化反應判定參照附錄 15.2）
10.2.2.1 三管生化反應常見的結果為 TSIA 呈現 A/A 反應，Gas (-)，H2S (-)，LIA K/K，IND (+)，IPA (-)，運動性（+）時則可能為霍亂弧菌。
10.2.2.2 氧化酶試驗 (Oxidase test)：挑選 TSA 培養基上菌落進行試驗，霍亂弧菌反應為陽性。
10.2.2.3 API 20 E 生化鑑定套組試驗：依照原廠 API 20 E（腸內菌鑑定組）操作步驟執行。
10.2.2.4 VITEK 2 菌株氏陰性菌鑑定卡（VITEK 2 GN）：依照
原廠全自動微生物分析儀 VITEK 2 標準操作流程執行。

10.2.3 血清凝集反應
10.2.3.1 以霍亂弧菌 O1 型多價血清作玻片凝集反應，若 O1 型多價為陽性，次以 Ogawa 或 Inaba 因子血清作玻片凝集反應以決定其菌型。
10.2.3.2 若 O1 型多價血清陽性時，再以 O139 型血清作凝集反應。

10.2.4 霍亂弧菌毒素試驗
10.2.4.1 霍亂弧菌毒素檢測
依照本署「霍亂弧菌毒素檢測(乳膠凝集反應法)」檢驗標準方法。
10.2.4.2 霍亂弧菌毒素基因鑑定
依照本署「霍亂弧菌毒素基因鑑定(聚合酶鍊鎖反應法)」檢驗標準方法。

11 結果判定
11.1 判定標準（附錄 15.3）：
11.1.1 生化鑑定符合霍亂弧菌：
11.1.1.1 血清型別符合 O1 或 O139 且毒素陽性
病原檢驗登入：檢驗結果陽性。
綜合檢驗結果：陽性。
11.1.1.2 血清型別符合 O1 或 O139，毒素陰性
病原檢驗登入：檢驗結果陽性。
綜合檢驗結果：陽性，非法定傳染病
11.1.1.3 血清型別不符合 O1 或 O139
病原檢驗登入：檢驗結果陽性。
綜合檢驗結果：陽性，非法定傳染病
11.1.2 生化鑑定不符合霍亂弧菌：
病原檢驗登入：檢驗結果陰性
綜合檢驗結果：陰性。

11.2 結果登錄：將檢體之檢驗結果登錄實驗室資訊系統，經 PI 核准報告後發佈。

12 品質管制
12.1 血清凝集鑑定之品質管制
12.1.1 應於有效期內使用，同一批號試劑，第一次使用時取一組進行試驗，之後每隔 6 個月再取一組進行試驗。
12.1.2 使用 陽性 應 標準菌 株 V.cholerae El Tor ATCC 14033 (O1-Inaba, nontoxigenic)；陰性反應標準菌株 E.coli ATCC 25922，進行試驗。
12.1.3 試驗結果必須符合陽性反應及陰性反應，始可使用。
12.2 全部的培養基及試劑應保存於 4 - 6 °C，並於有效期限內使用。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘樣本等感染性事務廢棄物，應先以滅菌袋妥密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
14.2 蔡文城。2000。實用臨床微生物診斷學，第九版。九州圖書文物有限公司，臺灣。第 737-751 頁。

15 附錄
15.1 霍亂弧菌分離與鑑定流程圖。
15.2 生化反應判定表。
15.3 霍亂弧菌分離與鑑定紀錄表。
15.4 霍亂弧菌報告核發之判定標準及結果登錄表。
附錄 15.1 霍亂弧菌分離與鑑定流程圖

箭便 直腸拭子

→ APW

→ 環境檢體（水）

37℃增菌6-15hr

接種TCBS & PMT agar plate

37℃，18-24hr

TCBS ：黃色扁平透明菌落
PMT ：鵝黃色菌落如荷包蛋周圍透明

Nutrient Agar或TSA 及TSIA、LIA、SIM

→ Oxidase test

→ 三管生化反應

陰性

陽性

符合 不符合

→ API 20E 或VITEK 2 GN

不 符 合 符 合

→ 霍亂弧菌O1型多價血清抗血清凝集試驗

霍亂弧菌毒素試驗陽性 → 阳性非法定

霍亂弧菌毒素試驗陰性 → 阴性

→ Inaba型抗血清凝集試驗

→ Ogawa型抗血清凝集試驗

→ O139型抗血清凝集試驗

凝集 凝集 凝集 不凝集
附錄 15.2 生化反應判定表

<table>
<thead>
<tr>
<th>試驗</th>
<th>正反應</th>
<th>負反應</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSIA AS</td>
<td>黃色（斜面酸化）。指利用 Lactose 及 Sucrose 之能力。</td>
<td>紅色或不變色。指不利用 Lactose。</td>
</tr>
<tr>
<td>AB</td>
<td>黃色（基底酸化）或黑色（由於產硫化氫將黃色掩蓋）。指利用 Glucose 之能力。</td>
<td>紅色或不變色。指不利用 Glucose。</td>
</tr>
<tr>
<td>Gas</td>
<td>任何氣泡產生。指產生 CO₂ 及 H₂ 之能力。</td>
<td>無任何氣泡產生。</td>
</tr>
<tr>
<td>H₂S</td>
<td>產生黑色沉澱。</td>
<td>無黑色沉澱。</td>
</tr>
<tr>
<td>LIA</td>
<td>全管為紫色</td>
<td>Slant：紫；But：黃</td>
</tr>
<tr>
<td>SIM IND</td>
<td>加入 Kovacs indole 試劑 5 滴後，培養基上層呈紅色。</td>
<td>不呈紅色（呈銅色）。</td>
</tr>
<tr>
<td>MOT</td>
<td>細菌生長遠離接種線，培養基呈混濁。</td>
<td>只生長於接種線上。</td>
</tr>
<tr>
<td>IPA</td>
<td>培養基出現棕褐色環。</td>
<td>不出現棕褐色環。</td>
</tr>
<tr>
<td>Oxidase test</td>
<td>紫色</td>
<td>無色（不變色）。</td>
</tr>
</tbody>
</table>
附錄 15.3 霍亂弧菌分離與鑑定紀錄表

霍亂弧菌分離與鑑定紀錄表

<table>
<thead>
<tr>
<th>檢體編號</th>
<th>收件日期</th>
<th>檢驗日期</th>
<th>檢體採檢運送狀況適當</th>
<th>TCBS agar plate 生長型態: 黃色扁平透明菌落</th>
<th>PMT agar plate 生長型態: 鵝黃色菌落如荷包蛋周圍透明</th>
<th>Oxidase test：陽性藍色或藍紫色，陰性不變色</th>
<th>生化三管（名稱及反應）：</th>
<th>血清凝集試驗：</th>
<th>PCR</th>
<th>毒素試驗</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>是/否</td>
<td>是/否</td>
<td>是/否</td>
<td>是/否</td>
<td>合符/不符</td>
<td>符合/不符</td>
<td>合符/不符</td>
<td>符合/不符</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>否/是</td>
<td>是/否</td>
<td>是/否</td>
<td>是/否</td>
<td>符合/不符</td>
<td>符合/不符</td>
<td>合符/不符</td>
<td>符合/不符</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>否/是</td>
<td>否/是</td>
<td>否/是</td>
<td>否/是</td>
<td>符合/不符</td>
<td>合符/不符</td>
<td>合符/不符</td>
<td>符合/不符</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>否/是</td>
<td>否/是</td>
<td>否/是</td>
<td>否/是</td>
<td>符合/不符</td>
<td>合符/不符</td>
<td>合符/不符</td>
<td>符合/不符</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>否/是</td>
<td>否/是</td>
<td>否/是</td>
<td>否/是</td>
<td>符合/不符</td>
<td>合符/不符</td>
<td>合符/不符</td>
<td>符合/不符</td>
</tr>
</tbody>
</table>

注：
- **TCBS agar plate** 生長型態: 黃色扁平透明菌落
- **PMT agar plate** 生長型態: 鵝黃色菌落如荷包蛋周圍透明
- **Oxidase test**：陽性藍色或藍紫色，陰性不變色
- **生化三管（名稱及反應）**：符合/不符
- **血清凝集試驗**：凝集/無
- **Vibrio cholerae O1 poly antiserum**
- **Inaba type antiserum**
- **Ogawa type antiserum**
- **Vibrio cholerae O139 antiserum**
- **API 20E 或 VITEK 2 GN**
- **PCR**
- **毒素試驗**
- **附註**
- **綜合結果**

報告日期：

檢驗者：

實驗室主管：
附錄 15.4 霍亂弧菌報告核發之判定標準及結果登錄表

<table>
<thead>
<tr>
<th>判定標準</th>
<th>菌落型態</th>
<th>任一項不符合</th>
<th>符合</th>
<th>符合</th>
<th>符合</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>生化反應</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>氧化酶試驗</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>血清凝集反應</td>
<td></td>
<td>不符合</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>毒素試驗</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>結果登</td>
<td>病原體分離、</td>
<td>霍亂弧菌</td>
<td>霍亂弧菌</td>
<td>霍亂弧菌</td>
<td>霍亂弧菌</td>
</tr>
<tr>
<td>錄</td>
<td>鑑定</td>
<td>陰性</td>
<td>陽性</td>
<td>陽性</td>
<td>陽性</td>
</tr>
<tr>
<td>次分型</td>
<td>Non-O1 &</td>
<td>O1-Ogawa</td>
<td>O1-Ogawa</td>
<td>O1-Ogawa</td>
<td>O1-Ogawa</td>
</tr>
<tr>
<td></td>
<td>Non-O139</td>
<td>O1-Inaba</td>
<td>O1-Inaba</td>
<td>O1-Inaba</td>
<td>O1-Inaba</td>
</tr>
<tr>
<td></td>
<td>O139</td>
<td>O139</td>
<td>O139</td>
<td>O139</td>
<td>O139</td>
</tr>
<tr>
<td>綜合研判</td>
<td>陰性</td>
<td>陽性</td>
<td>非法定傳染病</td>
<td>陽性</td>
<td>非法定傳染病</td>
</tr>
<tr>
<td></td>
<td>非法定傳染病</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>陽性</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1 目的
利用聚合酶链锁反应（PCR）对已分離之法定传染病霍乱弧菌做霍乱毒素基因検測。

2 適用検体種類
適用於霍乱弧菌 O1 型及非 O1 型之菌株。

3 名詞解釋
無。

4 原理概述
針對霍乱弧菌之兩種霍乱毒素基因（ctxA、ctxB）設計 2 對引子，利用聚合酶链锁反应合成放大兩基因之特定片段。其中 Cholera toxin A 利用 CtxA-1/ctxA-2 增殖出 380 bp 之片段，Cholera toxin B 利用 ctxB-1/ctxB-2 增殖出 548 bp 片段。

5 試剤耗材
5.1 無菌水：滅菌 121 ℃，15 min。
5.2 PCR 反应試剤：Roche，德國。成分含 Taq DNA polymerase （5 U/μL）、10 X Buffer、10 mM dNTP。
5.3 無菌微量吸管尖（tip）：1,000 μL、200 μL、40 μL 與 10 μL 四種。
5.4 接種針（環）。
5.5 可拋棄式塑膠手套。
5.6 0.2 mL、1.5 mL Eppendorf 無菌管。
5.7 10 X TBE 緩衝液。
5.8 Ethidium bromide。
5.9 PCR 引子（primer）-毒素基因。
 Cholera toxin A
 ctxA-1 5'-TCAAACTATATTGCTGTC-3'
 ctxA-2 5'-CGCAAGTATTACATCGA-3'（Product size 380 bp）
 Cholera toxin B
 ctxB-1 5'-CCCAAAATCAGGTGAAAAT-3'
 ctxB-2 5'-AAAAACGTTGGCTTCTCAT-3'（Product size 548 bp）

6 儀器設備
6.1 生物安全櫃。
6.2 桌上型離心機。
6.3 4 ℃冰箱。
6.4 -20 ℃冷凍櫃。
6.5 水浴槽。
6.6 電泳槽。
6.7 微量吸管 Pipetman：1,000 μL、200 μL、2 μL 三种规格。
6.8 GeneAmp PCR system 9600/9700：Perkin Elmer，USA。

7 環境設施安全
7.1 於生物安全第二等級（BSL-2）實驗室之設施內操作。
7.2 菌株處理、PCR 反應混和物配製、PCR 反應進行、電泳皆需於獨立區域操作。

8 檢體採集
請參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
請參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體處理
已分離的菌株：接種針點取 3 個新鮮菌落，放入含 150 μL 無菌水的 1.5 mL Eppendorf tube 中，以 100 °C 煮沸 15 min，放入離心機 10,000 rpm，離心 5 min，取上清液（含 DNA template）至另一新 Eppendorf tube，上清液保存至 -20 °C 直到測試。
10.2 PCR（ctxA、ctxB）反應混和物配製如下：

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA template</td>
<td>1 μL</td>
</tr>
<tr>
<td>10X buffer (15 mM)</td>
<td>5 μL</td>
</tr>
<tr>
<td>MgCl₂</td>
<td></td>
</tr>
<tr>
<td>10 mM dNTP</td>
<td>1 μL</td>
</tr>
<tr>
<td>Primer-1 (100 μM)</td>
<td>0.5 μL</td>
</tr>
<tr>
<td>Primer-2 (100 μM)</td>
<td>0.5 μL</td>
</tr>
<tr>
<td>Taq polymerase (5 U/μL)</td>
<td>0.25 μL</td>
</tr>
<tr>
<td>無菌水</td>
<td>41.75 μL</td>
</tr>
<tr>
<td>Total volume</td>
<td>50 μL</td>
</tr>
</tbody>
</table>

10.3 PCR 反應條件設定
10.3.1 94 °C 5 min，1 cycle。
10.3.2 94 °C 30 sec，53 °C 30 sec，72 °C 50 sec，30 cycles。
10.3.3 72 °C 7 min，1 cycle。
10.3.4 4 °C，∞。
10.4 電泳法分析產物
10.4.1 膠片配製：1.5 % agarose in 1X TBE。
10.4.2 取 10 µL PCR mixture 跑電泳，電泳條件：於 0.5 X TBE，100
voltage，40 min。
10.4.3 膠片染色：0.5 μg/mL ethidium bromide 染色 15 min，水洗 10 min
後觀察。

10.5 陽性與陰性對照
10.5.1 試驗陽性對照：以具 ctxA、ctxB 之霍亂弧菌分離菌株的 DNA
template 作為 PCR 反應之陽性對照。反應條件與分析方法參照
10.3 至 10.4。
10.5.2 試驗陰性對照：Template 以無菌水取代。參照 10.3 至 10.4。

11 結果判定
11.1 依據產物片段結果分析
11.1.1 ctxA：380 bp，若出現此大小片段則可判定霍亂弧菌 ctxA 陽性。
11.1.2 ctxB：548 bp，若出現此大小片段則可判定霍亂弧菌 ctxB 陽性。
11.1.3 若無上述預期片段，且陽性對照仍有產物，則可判定霍亂弧菌
ctx 陰性。
11.1.4 菌源應為隔夜培養新鮮 colony，且注意 template 量是否足夠，
因根據以往實驗經驗其敏感度約為 5 × 10^5 至 10^6 CFU/mL，
template 量不足會造成偽陰性，故此時 template 量可調高至 10.0
μL 重測一次。
11.2 結果登錄：將檢體之檢驗結果登錄於實驗室資訊系統，經 PI 核准報告
後發佈。

12 品質管制
所使用試劑應於有效期內用完。

13 廢棄物處理
13.1 檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌
袋裝妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作
業程序處理。
13.2 ethidium bromide 為 carcinogen 倒掉前請加入分解藥劑後再作處理。

14 參考資料
chain reaction to detect toxigenic Vibrio cholerae and to biotype Vibrio
Vibrio cholerae using polymerase chain reaction for amplifying the cholera
identification of toxigenic Vibrio cholerae O1 strains by a simplified
附錄 15.1 霍亂弧菌毒素基因檢測（聚合酶鍊鎖反應法）流程圖

霍亂弧菌毒素基因檢測（聚合酶鍊鎖反應法）流程圖

檢體（培養後已分離之培養菌）

接種針點取3個新鮮菌落，放入含150 μL無菌水的1.5 mL eppendorf中，以100℃熱煮15分鐘，放入離心機10,000 rpm，離心5分鐘，取上清液當作DNA template。

PCR（ctxA、ctxB）反應液配製

放入PCR機器中進行反應

電泳法分析產物
ctxA：380bp
ctxB：548bp

具有380bp片段產物

ctxA陽性
結果判定

具有548bp片段產物

ctxB陽性
結果判定

陰性
結果判定

否，僅陽性對照有產物
衛生福利部疾病管制署傳染病標準檢驗方法

編號：霍亂弧菌毒素檢測（RPLA）

頁次：第 313 頁/共 1099 頁

<table>
<thead>
<tr>
<th>核准日期：</th>
<th>年 月 日</th>
</tr>
</thead>
<tbody>
<tr>
<td>修訂日期：</td>
<td>年 月 日</td>
</tr>
</tbody>
</table>

1 目的
利用反轉被動乳膠凝集試驗（RPLA）檢測霍亂弧菌是否會產生霍亂毒素。

2 適用檢體種類
適用於霍亂弧菌 O1 型及 O139 型菌株。

3 名詞解釋
無。

4 原理概述
利用已結合霍亂毒素抗體之乳膠顆粒與霍亂毒素反應，產生肉眼可見之凝集。

5 試劑耗材
5.1 培養基
 5.1.1 CAYE medium：CMP，台灣。
 5.1.2 TSA（Trypticase soy agar）：CMP，臺灣。
5.2 VET-RPLA Latex agglutination test kit：生研，日本。
5.3 96 孔 V 型塑膠微量滴盤：必須使用無污染、無傷痕製品。
5.4 無菌微量吸管尖 tip：1,000 μL、200 μL 二種。
5.5 無菌吸管：3 mL。
5.6 接種針（環）。
5.7 1.5 mL eppendorf 無菌管。

6 儀器設備
6.1 37 ℃ 溫箱。
6.2 30 ℃ 溫箱。
6.3 離心機：3,000 rpm 以上。
6.4 搖盪器（shaker）。
6.5 微量吸管（Pipetman）：需 1,000 μL、200 μL、50 μL 等規格。

7 環境設施安全
於生物安全第二等級（BSL-2）實驗室之設施內操作。

8 檢體採集
請參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowt reeid=6C7C52E7A7D5621A。

9 檢體運送及保存
請參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowt reeid=6C7C52E7A7D5621A。
10 檢驗步驟
10.1 將於 TSA 培養基之新鮮菌株接種於 10 mL CAYE broth 培養基，置 30 ℃下振盪培養（120 - 150 轉/分）16 - 20 hr。
10.2 隔天取 1 接種環（10 μL）培養於無菌培養皿內含 10 mL CAYE-L broth 培養基，置 30 ℃培養 18 - 20 hr 後。
10.3 加 Polymyxin B 20,000 unit/mL，於 37 ℃放置 2 hr。
10.4 取 1 mL 培養液至 1.5 mL eppendorf 無菌管，再以 3000 rpm 離心機離心 20 min，取上清液作為毒素測定用標本。
10.5 取 96 孔 V 型塑膠微量滴盤，每個檢體兩排 8 孔，除第一孔外，其餘各孔各放 25 μL 稀釋液。
10.6 第一孔放 50 μL 檢體，由第一孔取 25 μL 檢體至第二孔，充份混合後，移 25 μL 至第三孔混合，以此進行兩倍稀釋，最後由最後一孔移除 25 μL。
10.7 第一排各孔加入 25 μL 敏感化乳膠 Sensitized latex（latex 表面附有抗霍亂毒素之兔子 IgG），第二排各孔加入 25 μL 未敏感化乳膠 Control latex（latex 表面附著的是未免疫之兔子 IgG）。
10.8 取 25 μL 溶解之腸毒素與 25 μL 敏感化乳膠 Sensitized latex 混合作陽性對照組。
10.9 取 25 μL 溶解之腸毒素與 25 μL 未敏感化乳膠 Control latex 混合作陰性對照。
10.10 96 孔 V 型塑膠微量滴盤（microplate）以微量盤振盪器振盪，使孔內之液體混合均勻，放入潮濕盒中，室溫靜置 16 - 20 hr 後觀察。

11 結果判定
11.1 陽性判定標準：將 96 孔 V 型塑膠微量滴盤放在光亮平坦之黑紙上，從上面以肉眼觀察各孔中 Latex 沉降來判定其是否有凝集現象，如有擴散粗糙即為霍亂毒素陽性。若是集中呈圓形沉底即為霍亂毒素陰性。
11.2 報告核發：霍亂毒素陽性，霍亂毒素陰性。
11.3 結果登錄：將檢體之檢驗結果登錄於霍亂毒素紀錄表及檢體送驗單並加蓋檢驗者印章，送實驗室主管審核及蓋章，並登錄於網路報告系統。

12 品質管制
使用套組所附腸毒素做陽性對照及陰性對照。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
14.2 Clements JD, Finkelstein RA. 1978. Demonstration of Shared and Unique

15 附錄
15.1 霍亂弧菌毒素測定流程圖。
15.2 霍亂弧菌檢驗工作紀錄簿。
附錄 15.1 霍亂弧菌毒素測定流程圖

TSA培養基上之新鮮霍亂弧菌（從人體檢體分離培養之菌株）

接種於10 mL CAYE Broth

30℃震盪培養，16-20hr

取1 mL至1.5mL無菌管

3000rpm，20min

取上清液做為毒素測定用檢體

V型96孔微量滴盤：每個檢體二排八孔，除第一孔外，其餘各孔各放25 μL稀釋液

第一孔放50 μL檢體，由第一孔取25 μL至第二孔，充分混合後，取25 μL至第三孔，以此進行二倍稀釋，再由最後一孔移除25 μL

第一排各孔加入25 μL敏感化乳膠（Sensitized Latex）
第二排各孔加入25 μL對照乳膠（Control Latex）

取25 μL陽性腸毒素與25 μL敏感化乳膠（Sensitized Latex）混合為陽性對照組
取25 μL陽性腸毒素與25 μL對照乳膠（Control Latex）混合為陰性對照組

V型96孔微量滴盤以微量盤振盪器震盪，使孔內液體混合均勻後，再置入潮濕盒中

室溫靜置，18-20hr

結果判讀

霍亂弧菌毒素測定（乳膠凝集試驗RPLA）流程圖
附錄 15.2 霍亂弧菌毒素檢驗工作紀錄簿

<table>
<thead>
<tr>
<th>檢體編號</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>收件日期</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>檢驗日期</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>檢體採檢運送狀況適當</td>
<td>是</td>
<td>否</td>
<td>是</td>
<td>否</td>
<td>是</td>
<td>否</td>
<td>是</td>
<td>否</td>
</tr>
<tr>
<td>VET-RPLA 霍亂毒素測定：</td>
<td>陽性</td>
<td>陰性</td>
<td>陽性</td>
<td>陰性</td>
<td>陽性</td>
<td>陰性</td>
<td>陽性</td>
<td>陰性</td>
</tr>
</tbody>
</table>

附註

綜合結果

報告日期

檢驗者：

實驗室主管：
1 目的
結核桿菌群的藥物感受性試驗，主要有三個目的：(1) 決定最初的用藥選擇。(2) 確定抗藥性的發生，而選擇進一步的用藥。(3) 協助流行病學之調查。

2 檢體種類與採檢容器
2.1 由病人檢體初次分離或繼代培養的菌株。
2.2 穩定性：繼代培養菌株於-80℃永久保存。

3 原理概述
3.1 比例法 (proportion method)：含藥物培養基和不含藥物培養基所生長之菌落數目加以比較，若含藥物培養基上菌株生長數目大於 1%，判定該菌株對該藥物有抗藥性 (resistance)。
3.2 比例法的抗藥性定義為大於1%的細菌出現在抗結核桿菌群的藥物臨界濃度下。當用來測試的臨床分離菌株暴露在藥物臨界濃度下，菌株生長超過1%，則該藥物即不適合繼續當做抗結核治療藥物。

4 檢驗性能特徵
參加 College of American Oathologists (CAP) 藥敏試驗能力試驗，自 2008 至 2013 年，每年 2 株，共計 12 株，一線藥瓊脂平板法測試藥敏結果與 CAP 結果一致率 100%。參加世界衛生組織(WHO) Quality Assurance Programme For Drug Susceptibility Testing Of Mycobacterium Tuberculosis In The Network Of Supranational Tuberculosis Laboratories (SRLN) 藥敏試驗能力試驗，自 2007 至 2012 年，共計 170 株，一線藥瓊脂平板法測試藥敏結果 INH 及 RMP 與 WHO 結果一致率 100%；SM 與 WHO 結果一致率 99.3%；再現性 100%；EMB 與 WHO 結果一致率 99.3%；再現性 98.3%；二線藥瓊脂平板法測試藥敏結果 KM、CAP 及 OFX 與 WHO 結果一致率 100%，AM 與 WHO 結果一致率 99.0%；再現性 98.3%。

5 病人準備
無

6 試劑耗材
6.1 試劑
6.1.1 一線藥瓊脂平板法 (一組)：使用兩片四分格盤之 7H10 培養基。
(1) 一片含：不含藥培養基 (control)。
 0.2 μg/mL Isoniazid (INH)。
 1.0 μg/mL Isoniazid (INH)。
1.0 μg/mL Rifampin (RMP)。

(2) 一片含：2.0 μg/mL Streptomycin (SM)。
10.0 μg/mL Streptomycin (SM)。
5.0 μg/mL Ethambutol (EMB)。
10.0 μg/mL Ethambutol (EMB)。

6.1.2 二線藥瓊脂平板法（一組）：使用3片四分格盤之7H11培養基及1片四分格盤之7H10培養基。
(1) 一片含：不含藥培養基（control）。7H11培養基
10.0 μg/mL Ethionamide (ETA)。
0.5 μg/mL Rifabutin (RBU)。
8.0 μg/mL Para-aminosalicylic acid (PAS)。
(2) 一片含：不含藥培養基（control）。7H11培養基
6.0 μg/mL Kanamycin (KM)。
6.0 μg/mL Amikacin (AM)。
10.0 μg/mL Capreomycin (CAP)。
(3) 一片含：不含藥培養基（control）。7H11培養基
1 μg/mL Clofazimine (CFZ)。
2 μg/mL Isoniazid (INH)。
60.0 μg/mL Cycloserine (CS)。
(4) 一片含：不含藥培養基（control）。7H10培養基
1.0 μg/mL Levofloxacin (LEVO)。
0.5 μg/mL Moxifloxacin (MOXI)。
2.0 μg/mL Moxifloxacin (MOXI)。

6.2 耗材
6.2.1 含約20顆直徑3 mm玻璃珠及2 mL 7H9 broth之無菌平底玻璃小瓶。
6.2.2 含4.5 mL生理食鹽水之無菌15 mL離心管。
6.2.3 塑膠滴管。
6.2.4 生物危害廢棄物袋（Biohazard bag）。
6.2.5 防潑濺容器（無菌培養皿）。

6.3 個人防護耗材
6.3.1 依循RDC-SOP-B3-B01「分枝桿菌實驗室BSL-3工作人員進出及個人防護裝配穿脫程序」作業所需之防護衣、袖套及手套等。
6.3.2 生物安全櫃內使用之外層乳膠手套。
6.3.3 外層手套盛裝盒。

7 儀器設備
7.1 第二級生物安全櫃。
7.1.1 使用前確認具年度合格標籤。
7.2 比濁儀及McFarland 1.0標準液。
7.3 振盪器。
7.4 35 ℃-37 ℃，5%-10% CO₂ 溫箱。
7.5 高壓滅菌鍋
 7.5.1 使用前確認具合格檢測標籤。

8 環境與設施安全
8.1 實驗應於生物安全第三等級(Biosafety level 3, BSL-3)實驗室內進行。
8.2 調整菌液濃度與菌液接種必須於第二級生物安全櫃中操作。
8.3 稀釋菌液時，鎖緊瓶蓋後方可進行混合菌液。
8.4 實驗人員需依據 RDC-SOP-B3-B01 「分枝桿菌實驗室 BSL-3 工作人員進出及個人防護裝配穿脫程序」作業進行個人防護，且遵守第二級生物安全櫃操作規範。
8.5 實驗完畢須將生物安全櫃內所有廢棄物清除，且以消毒劑完成操作面清潔，並開啟紫外線燈以維護生物安全櫃之潔淨。
8.6 離開生物安全第三等級(BSL-3)實驗室須將實驗室紫外線燈開啟以維護實驗室內之潔淨。

9 校正程序
無

10 品質管制
10.1 內部品質
 10.1.1 商品化的培養基每一批號均附有廠商出廠時的品管文件，培養基應在效期內使用，使用前檢查完整性。
 10.1.2 品管執行
 （1）品管菌株及結果
 H37Rv—一線藥全敏感 (ATCC 27294)。
 Vertulo strain—一線藥全抗藥。
 W108 WHO round 16 Proficiency testing — fluoroquinolone 類抗藥。
 紀錄於 RDC-SOP-B3-E04-02 表單。
 （2）參考菌株應在每批號培養基進行試驗時與測試菌株以相同方法一起進行試驗。
 10.1.3 品管判定
 10.1.3.1 參考菌株試驗結果符合，表示培養基品質符合要求，方可進行測試菌株之藥物感受性試驗之結果判讀。
 10.1.3.2 不含藥培養基 10⁻² 稀釋倍數生長需 200-400 菌落數；10⁴
衛生福利部疾病管制署傳染病標準檢驗方法

結核菌群間接接藥物感受性試驗

編號：

結核菌群間接接藥物感受性試驗

核准日期：年月日

修訂日期：年月日

稀釋倍數生長需20-40菌落数。结果判定时，如果10^-2不含药培养基生长菌落数低于100，显示生長菌量过低，無法確定抗药比例，應重作藥敏試驗。

10.2 外部品管
10.2.1 每年進行二次CAP檢體能力實驗，確保實驗人員操作及相關藥品、耗材的穩定性。
10.2.2 每年進行一次WHO檢體能力實驗，確保實驗人員操作及相關藥品、耗材的穩定性。
10.3 所有品管結果及矯正措施應詳實記錄，並交給實驗室主管定期審核。

11 檢驗步驟
11.1 檢體前處理(需在第二級生物安全櫥操作)
11.1.1 接種菌液濃度調整至McFarland 1.0。
11.1.1.1 在含7H9 broth及玻璃珠平底玻璃小瓶上，標示品管菌株及測試菌株之編號，一菌株使用一玻璃瓶。
11.1.1.2 刮取數個接種環之新鮮且生長茂盛之菌落或陽性MGIT培養管菌液2mL於玻璃小瓶中。
11.1.1.3 將菌落或菌液以振盪器強力振盪1分鐘。
11.1.1.4 靜置至少5分鐘，使大團塊之菌塊沉澱。
11.1.1.5 取上方液體並以7H9 broth將菌液調整成McFarland 1.0。
11.1.2 稀釋菌液至10^-2及10^-4。
11.1.2.1 取含9.9 mL生理食鹽水之15 mL離心管，加入1.1mL之McFarland 1.0之菌液，混合均勻成10^-1稀釋菌液。
11.1.2.2 重複上述步驟，取10^-1稀釋菌液調整成10^-2稀釋菌液。
11.1.2.3 以同樣步驟，依次10倍稀釋調整成10^-4稀釋菌液。
11.2 菌液接種(需在第二級生物安全櫥操作)
11.2.1 以塑膠吸管吸取10^-2稀釋菌液，於四分盤上每小格滴3滴，包含不含藥培養基。
11.2.2 同上述方法將10^-4稀釋菌液接種到培養基上。
11.3 培養觀察
將接種完畢之培養基置入含5%CO₂之37℃溫箱培養，於接種3天後觀察培養基是否遭受其他細菌污染。於接種21天後，發完整抗藥性報告。
11.4 檢驗後處理
檢驗過程之物品、微生物及剩餘檢體等感染性事業廢棄物，應先以標有生物危險標誌之專用紅色廢棄袋裝妥密封，貼上化學指示劑，再以121℃，每平方公分1.06公斤以上壓力，60分鐘高壓滅菌後，由合約清理廠商處理。處理過程須符合RDC-SOP-B3-B03「分枝桿菌BSL3實驗室生物性及化學性廢棄物之儲存、隔離與清除程序」之原則。
12 干擾與交互反應
無

13 結果判定
13.1 判讀標準
比較含藥培養基和不含藥對照組所生長的菌落數，將含藥培養基上之菌落數除以不含藥培養基上之菌落數，若抗藥性菌落數目大於1%，判定為抗藥性（resistant, R）；若不含藥培養基生長3倍（200-500 colonies）至4倍（＞500, confluent growth），含藥培養基未生長，則判定為感受性（susceptible, S）。

13.2 結果登錄
由發報告者依實驗判讀結果輸入 LIMS 系統，並經發報告者外第二人確認結果輸入無誤後完成結果登入。

13.3 報告核發
敘明「agar proportion method」、各項藥物名稱、濃度及試驗結果。記錄於 RDC-SOP-B3-E04-01 表單。經操作者外第二人之分別二次判讀為相同結果後，於 LIMS 系統完成結果登入完成報告核發。

14 生物參考區間/臨床決策值
無

15 檢驗結果的可報告區間
無

16 結果超出量測區間之操作說明
二種情況需重新操作藥敏試驗：
16.1 不含藥物控制組培養基生長菌落數少於100個菌落數。
16.2 含藥培養基生長量過多（通常大於200個菌落數）致無法正確計數抗藥比率。

17 危急值/異常值
無

18 臨床意義
當用來測試的臨床分離菌株暴露在藥物臨界濃度下，菌株生長超過1%，則該藥物不適合繼續當做抗結核治療藥物。
19 變異的潛在來源
無

20 參考資料
20.1 RDC-QP-1601 安全衛生作業程序。
20.2 Centers for Disease Control, Atlanta, Georgia 30333, Isolation and identification of Mycobacterium tuberculosis: A guide for the level II laboratory, 1981.
20.3 The National Committee for Clinical Laboratory Standards, Susceptibility testing of mycobacteria, nocardia, and other aerobic actinomycetes; tentative standard – second edition, 2000.

21 附錄
21.1 RDC-SOP-B3-E04-01。
21.2 RDC-SOP-B3-E04-02
編號：
頁次：第 324 頁/共 1099 頁
結核菌群間接藥物感受性試驗
（瓊脂平板法）
核准日期：年 月 日
修訂日期：年 月 日

<table>
<thead>
<tr>
<th>藥物</th>
<th>藥物</th>
<th>藥物</th>
<th>藥物</th>
<th>藥物</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
</tr>
<tr>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
</tr>
<tr>
<td>P</td>
<td>Q</td>
<td>R</td>
<td>S</td>
<td>T</td>
</tr>
<tr>
<td>U</td>
<td>V</td>
<td>W</td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>Z</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

RDC-SOP-B3-EU-01
衛生福利部疾病管制署傳染病標準檢驗方法
編號：

結核菌群間接藥物感受性試驗 核准日期：
頁次：第 326 頁/共 1099 頁
修訂日期：
（瓊脂平板法）

年

月

日

年

月

日


1 目的
結核菌群的藥物感受性試驗，主要有三個目的：(1) 決定最初的用藥選擇。
(2) 確定抗藥性的發生，而選擇進一步的用藥。(3) 協助流行病學之調查。

2 檢體種類與採檢容器
2.1 由病人檢體初次分離或繼代培養的菌株。
2.2 穩定性：繼代培養菌株於-80°C 永久保存。

3 原理概述
3.1 比例法 (proportion method)：含藥物培養基和不含藥物培養基所生長之菌落數目加以比較，若含藥物培養基上菌株生長數目大於 1%，判定該菌株對該藥物有抗藥性 (resistance)。
3.2 比例法的抗藥性定義為大於 1% 的細菌出現在抗結核菌群的藥物臨界濃度下。當用來測試的臨床分離菌株暴露在藥物臨界濃度下，菌株生長超過 1%，則該藥物即不適合繼續當做抗結核治療藥物。BACTECTM MGITTM960 儀器則藉由連續自動偵測含藥物培養基和不含藥物培養基，因細菌生長耗氧所伴隨的培養管內螢光值的改變，電腦程式自動分析並報告藥物感受性試驗結果為感受性(susceptible)或抗藥性(resistant)。

4 檢驗性能特徵
參加 College of American Oathologists (CAP) 藥敏試驗能力試驗，自 2013 至 2014 年第 1 次，共計 3 株，PZA 測試藥敏結果與 CAP 結果一致性 100%。參加世界衛生組織 2013 年(WHO) Quality Assurance Programme For Drug Susceptibility Testing Of Mycobacterium Tuberculosis In The Network Of Supranational Tuberculosis Laboratories (SRLN) 藥敏試驗能力試驗，共計 19 株，PZA 藥敏結果與 WHO 結果一致性 100%。

5 病人準備
無

6 試劑耗材
6.1 試劑
6.1.1 MGIT™960 培養管 8 支，Pyrazinamide 專用培養管 2 支。
6.1.2 BACTECTM MGITTM 960 SIRE Supplement，MGITTM 960 PZA Supplement。
6.1.3 各種抗藥性試驗所需藥物 (Isoniazid, INH; Streptomycin, STR; Ethambutol, EMB; Rifampin, RIF; Pyrazinamide, PZA; Linezolid, LNZ)。
6.1.4 試劑配製
(1) 高濃度試藥每小瓶加 2 mL 無菌蒸餾水混合均勻。
(2) 低濃度試藥每小瓶加 4 mL 無菌蒸餾水混合均勻。
(3) PZA 小瓶加 2.5 mL 無菌蒸餾水混合均勻。
(4) Linezolid 試劑粉末與 DMSO 及二次水溶劑配製 1mg/mL 之高濃度試劑，0.22 μ濾膜過濾；再取 336 μL 高濃度試劑加入 3664 μL 無菌蒸餾水混合均勻。
(5) 取 MGITTM 960 培養管 8 支，各加 0.8 mL BACTECTM MGITTM 960 SIRE Supplement，將每支試管標示各種藥物名稱，加入(1)、(2) 各種藥物溶液 100 μL，生長控制組試管則不加任何藥物，配製成藥物濃度為 INH0.4、STR4.0、EMB10.0(μg/mL) 及配製成藥物濃度為 INH0.1、STR1.0、EMB5.0、RF1.0(μg/mL)。
(6) 取 2 支 PZA 培養管各加 0.8 mL BACTECTM MGITTM 960 PZA Supplement，將試管標示藥物名稱，加入(3) PZA 藥物溶液 100 μL，但生長控制組試管不加任何藥物，配製成藥物濃度為 PZA100 μg/mL。
(7) 取 MGITTM 960 培養管 2 支，各加 0.8 mL BACTECTM MGITTM 960 SIRE Supplement，將試管標示 Linezolid 藥物名稱，加入(4) 藥物溶液 100 μL，生長控制組試管則不加任何藥物，配製成藥物濃度為 Linezolid 1.0μg/mL。

6.2 耗材
6.2.1 稀釋用無菌 15mL 離心管。
6.2.2 7H9 培養液（調菌液用）。
6.2.3 無菌生理食鹽水（稀釋用）。
6.2.4 直徑 3 mm 磨菌用玻璃珠。
6.2.5 5mL pipette 及 1mL pipette。
6.2.6 塑膠滴管。
6.2.7 生物危害廢棄物袋 (Biohazard bag)。
6.2.8 防潑濺容器（無菌培養皿）。

6.3 個人防護耗材
6.3.1 依據 RDC-SOP-B3-B01「分枝桿菌實驗室 BSL-3 工作人員進出及個人防護裝配穿脫程序」作業所需之防護衣、袖套及手套等。
6.3.2 生物安全櫃內使用之外層乳膠手套。
6.3.3 外層手套盛裝盒。

7 儀器設備
7.1 BD BACTECTM MGITTM 960 system。
7.2 機器條碼試管架（2 個孔洞及 8 個孔洞）及試管架。
7.3 第二級生物安全櫃。
7.3.1 使用前確認具年度合格標籤。

7.4 振盪器。

7.5 高壓滅菌鍋

7.5.1 使用前確認具合格檢測標籤。

8 環境與設施安全

8.1 實驗應於生物安全第三等級(Biosafety level 3, BSL-3)實驗室內進行。

8.2 調整菌液濃度與菌液接種必須於第二級生物安全櫃中進行。

8.3 稀釋菌液時，鎖緊瓶蓋後方可進行混合菌液。

8.4 實驗人員需依據 RDC-SOP-B3-B01「分枝桿菌實驗室 BSL-3 工作人員進出及個人防護裝配穿脫程序」作業進行個人防護，且遵守第二級生物安全櫃操作規範。

8.5 實驗完畢須將生物安全櫃內所有廢棄物清除，且以消毒劑完成操作面清潔，並開啟紫外線燈以維護生物安全櫃之潔淨。

8.6 離開生物安全第三等級(BSL-3)實驗室須將實驗室紫外線燈開啟以維護實驗室內之潔淨。

9 校正程序

無

10 品質管制

10.1 內部品管

10.1.1 商品化的培養基每一批號均附有廠商出廠時的品管文件，培養基應在效期內使用，使用前檢查完整性。

10.1.2 品管執行

（1） 品管菌株及結果

H37Rv — 一线藥全敏感 (ATCC 27294)。
Vertulo strain — 一线藥全抗藥。
W108 WHO round 16 Proficiency testing – fluoroquinolone 類抗藥。
紀錄於 RDC-SOP-B3-E04-02 表單。

（2） 參考菌株應在每批號培養基進行試驗時與測試菌株以相同方法一起進行試驗。

10.1.3 品管判定

參考菌株試驗結果符合，表示培養基品質符合要求，方可進行測試菌株之藥物感受性試驗之結果判讀。

10.2 外部品管

10.2.1 每年進行二次 CAP 檢體能力實驗，確保實驗人員操作及相關藥品、耗材的穩定性。
10.2.2 每年進行一次 WHO 檢體能力實驗，確保實驗人員操作及相關藥品、耗材的穩定性。

10.3 所有品管結果及矯正措施應詳實記錄，並交給實驗室負責人定期審核。

11 檢驗步驟

11.1 檢體前處理(需在第二級生物安全櫃操作)

11.1.1 接種菌液濃度調整至 McFarland 1.0。

(1) 在含 7H9 broth 及玻璃珠平底玻璃小瓶上，標示品管菌株及測試菌株之編號，一菌株使用一玻璃瓶。

(2) 剖取數個接種環之新鮮且生長茂盛之菌落或陽性 MGIT 培養管菌液 2mL 於玻璃小瓶中。

(3) 將菌落或菌液以振盪器強力振盪 1 分鐘。

(4) 靜置至少 5 分鐘，使大團塊之菌塊沉澱。

(5) 取上方液體並以 7H9 broth 將菌液調整成 McFarland 1.0。

11.1.2 稀釋菌液至 10⁻² 及 10⁻³。

(1) 取含 9.9 mL 生理食鹽水之 15 mL 離心管，加入 1.1mL 之 McFarland 1.0 之菌液，混合均勻成 10⁻¹ 稀釋菌液。

(2) 重複上述步驟，取 10⁻¹ 稀釋菌液調整成 10⁻² 稀釋菌液。

(3) 以同樣步驟，依次 10 倍稀釋調整成 10⁻³ 稀釋菌液。

11.2 菌液接種(需在第二級生物安全櫃操作)

11.2.1 取 6.1.1 及 6.1.4 預先準備好的試管，生長控制組試管加入 0.5 mL 10⁻³ 稀釋菌液，另外於已加入各種藥物的 7 支試管中各加 0.5 mL 10⁻¹ 稀釋菌液。

11.2.2 取 6.1.1 及 6.1.4 預先準備好的試管，生長控制組試管加入 0.5 mL 10⁻² 稀釋菌液，另外 1 支已加入 PZA 藥物的試管中加 0.5 mL 10⁻¹ 稀釋菌液。

11.2.3 取 6.1.1 及 6.1.4 預先準備好的試管，生長控制組試管加入 0.5 mL 10⁻³ 稀釋菌液，另外 1 支已加入 linezolid 藥物的試管中加 0.5 mL 10⁻¹ 稀釋菌液。

11.2.4 接種完成的各培養管鎮緊，輕輕上下倒置 5-10 次使培養管內的藥物與接種菌液混合均勻。

11.2.5 SIRE 及 linezolid 機器設定培養時間 14 天，PZA 機器設定培養時間 21 天。

11.2.6 取 8 孔機器條碼試管架，由左至右依序排列：SIRE 生長控制組、STR (低)、STR (高)、INH (低)、INH (高)、RIF、EMB (低)、EMB (高)，電腦輸入資料，掃描條碼後放置入機器培養。

11.2.7 取 2 孔機器條碼試管架，由左至右依序排列：PZA 生長控制組、PZA 藥物試管及 linezolid 生長控制組、linezolid 藥物試管電腦輸入資料，掃描條碼後放置入機器培養。
11.3 培養觀察
 機器結果判讀完成，發出完整抗藥性報告。

11.4 檢驗後處理
 檢驗過程之物品、微生物及剩餘體等感染性事業廢棄物，應先以標有生物危險標誌的專用紅色廢棄袋裝妥密封，貼上化學指示劑，再以121°C，每平方分公1.06公斤以上壓力，60 分鐘高壓滅菌後，由合約清理廠商處理。處理過程須符合RDC-SOP-B3-B03「分枝桿菌 BSL3 實驗室生物性及化學性廢棄物之儲存、隔離與清除程序」之原則。

12 干擾與交互反應
 無

13 結果判定
 13.1 判讀標準(機器自動判讀結果如下)
 13.1.1 R：抗藥性(resistant)。
 13.1.2 S：感受性(susceptible)
 13.1.3 (X)：錯誤(invalid)，試驗失敗，無結果報告，需重做。

13.2 結果登錄
 由發報告者依實驗判讀結果輸入LIMS系統，並經發報告者外第二人確認結果輸入無誤後完成結果登入。

13.3 報告核發
 敘明「MGITTM960 AST tested」、各項藥物名稱，濃度及試驗結果。經操作者外第二人之分別二次確認機器判讀結果後，於LIMS系統完成結
果登入完成報告核發。

14 生物參考區間/臨床決策值
 無

15 檢驗結果的可報告區間
 無

16 結果超出量測區間之操作說明
 無
17 危急值/異常值
無

18 臨床意義
當用來測試的臨床分離菌株暴露在藥物臨界濃度下，菌株生長超過 1%，則該藥物即不適合繼續當做抗結核治療藥物。

19 變異的潛在來源
無

20 參考資料
20.1 RDC-QP-1601 安全衛生作業程序。
20.2 Centers for Disease Control，Atlanta, Georgia 30333，Isolation and identification of Mycobacterium tuberculosis：A guide for the level II Laboratory，1981.
20.5 BD BACTECTM MGITTM 960 kits 產品試藥說明書。

21 附錄
21.1 RDC-SOP-B3-E04-01。
21.2 RDC-SOP-B3-E12-01。
<table>
<thead>
<tr>
<th>編號：</th>
<th>結核菌群間接藥物感受性試驗 (液態快速培養系統)</th>
</tr>
</thead>
<tbody>
<tr>
<td>頁次：第 333 頁/共 1099 頁</td>
<td>核准日期：年 月 日</td>
</tr>
<tr>
<td>修訂日期：年 月 日</td>
<td></td>
</tr>
<tr>
<td>菌株</td>
<td>药物</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>1</td>
<td>S</td>
</tr>
<tr>
<td>2</td>
<td>R</td>
</tr>
<tr>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>5</td>
<td>S</td>
</tr>
</tbody>
</table>

修訂日期：年月日
<table>
<thead>
<tr>
<th>工作階段</th>
<th>薬物</th>
<th>薬物濃度 (μg/ml)</th>
<th>結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>0.0</td>
<td>S</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>0.5</td>
<td>S</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1.0</td>
<td>R</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>2.0</td>
<td>R</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>4.0</td>
<td>R</td>
</tr>
</tbody>
</table>

欄位說明
- **A**: 薬物A
- **B**: 薬物B
- **C**: 薬物C
- **D**: 薬物D
- **E**: 薬物E
- **S**: 資料
- **R**: 資料

註釋
- 本工作階段共進行了五輪測試，結果如下：
 - 薬物A為敏感
 - 薬物B為敏感
 - 薬物C為耐藥
 - 薬物D為耐藥
 - 薬物E為耐藥

修訂日期： 年 月 日
1 目的
利用 GenoTypeMTBDRplus VER 2.0 試劑組，進行多重抗藥性結核菌抗藥性基因檢測。

2 檢體種類與採檢容器
2.1 適用於固態或液態培養基培養之結核菌群菌株，收集於 2 mL 之微量離心管，以 95 ℃，20 分鐘進行去活化反應。
2.2 適用已完成消化去汙染的呼吸道痰液陽性及陰性檢體，以 95 ℃，20 分鐘進行去活化反應。

3 原理概述
利用核酸線性探針反向雜交測定技術，針對結核菌群菌株於立複黴（Rifampin, RMP）及異菸鹼醯（Isoniazid, INH）作用藥物之抗藥性基因位點之偵測。

4 檢驗性能特徵
多重抗藥性結核菌抗藥性基因之定性分析。

5 病人準備
無。

6 試劑耗材
6.1 試劑：GenoTypeMTBDRplus 試劑組 VER2.0，包含：
 6.1.1 AM-A
 6.1.2 AM-B
 6.1.3 Denaturation Solution（DEN）
 6.1.4 GenoTypeMTBDRplus 試劑組 VER2.0 核酸線性探針反向雜交紙片
 6.1.5 Hybridization Buffer（HYB）
 6.1.6 Stringent Wash Solution（STR）
 6.1.7 Rinse Solution（RIN）
 6.1.8 Conjugate concentrate（CON-C）
 6.1.9 Conjugate Buffer（CON-D）
 6.1.10 CON 溶液（1：100 之 CON-C 加 CON-D 配製）
 6.1.11 Substrate Concentrate（SUB-C）
 6.1.12 Substrate Buffer（SUB-D）
 6.1.13 SUB 溶液（1：100 之 SUB-C 加 SUB-D 配製）
6.2 耗材
 6.2.1 10 µL 具過濾塞之微量吸管尖。
 6.2.2 100 µL 具過濾塞之微量吸管尖。
 6.2.3 200 µL 具過濾塞之微量吸管尖。
6.2.4 1000 μL 具過濾塞之微量吸管尖。
6.2.5 2 mL 微量離心管。
6.2.6 核酸聚合酶微量反應管。

6.3 個人防護耗材
6.3.1 手套。

7 儀器設備
7.1 核酸聚合酶機器。
7.2 微量離心機。
7.3 核酸雜交反應槽（TwinCubator®）
7.4 1-10 μL 微量吸管分注器。
7.5 10-100 μL 微量吸管分注器。
7.6 10-200 μL 微量吸管分注器。
7.7 10-1000 μL 微量吸管分注器。
7.8 高壓滅菌鍋
7.8.1 使用前確認具合格檢測標籤。

8 環境與設施安全
8.1 於生物安全第一等級（BSL-1）實驗室之設施內操作。
8.2 依行政院國科會「基因重組實驗守則」。

9 校正程序
無

10 品質管制
10.1 內部品管
10.1.1 注意各檢驗試劑之有效效期，避免使用過期試劑。過期試劑需評估後使用，效期半年。
10.1.2 冷凍保存的試劑（聚合酶、引子）需進行分裝，避免反覆冷凍解凍。
10.1.3 PCR 試劑配製與操作檢體空間需分開。
10.1.4 操作檢體需在隔離乾淨的操作櫃內，於使用前以紫外燈照射至少 15 分鐘，並於操作前以 70 % 酒精將桌面擦拭乾淨。
10.1.5 操作時需戴乾淨手套，取用檢體需避免可能產生的交叉污染。
10.1.6 檢體污染桌面時需以漂白水清潔。
10.2 外部品管
CAP MTBR 測試組，每年二次。
11 檢驗步驟

11.1 檢體前處理：無。

11.2 挑選進行實驗之檢體，依序排列，並填寫實驗紀錄表。操作前，以 70% 酒精擦拭桌面，準備所需之實驗用品。先將 PCR 室之壓克力操作檯開啟 UV 照射 15 分鐘。

11.3 進入 Pre-PCR 室前，於緩衝區更換實驗衣再進入 Pre-PCR 室，按下無菌操作台前馬達鈕及電燈開關，並將拉門拉起 10-15 公分，以 70 %酒精擦拭檯面，並待操作台馬達運轉至少 7-15 分鐘，確保操作台內空氣層流穩定，才可進行 11.4 試劑配製。

11.4 配製核酸聚合酶液，單一檢體之核酸聚合酶液含以下配方：

<table>
<thead>
<tr>
<th>試劑</th>
<th>體積 (μL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM-A</td>
<td>10.0</td>
</tr>
<tr>
<td>AM-B</td>
<td>35.0</td>
</tr>
<tr>
<td>檢體</td>
<td>5.0</td>
</tr>
</tbody>
</table>

總體積為 50 μL

11.5 置於冰上之 2 mL 微量離心管內依序加入 AM-A，AM-B 溶液，以維持 DNA 聚合酶活性。

11.6 最後加入檢體 5 μL。

11.7 執行 PCR

<table>
<thead>
<tr>
<th>階段</th>
<th>温度</th>
<th>時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Enzyme Activation</td>
<td>95 ℃</td>
<td>15 分鐘</td>
</tr>
<tr>
<td>2. Denature</td>
<td>95 ℃</td>
<td>30 秒</td>
</tr>
<tr>
<td>3. Annealing</td>
<td>65 ℃</td>
<td>2 分鐘</td>
</tr>
<tr>
<td>4. Extension</td>
<td>95 ℃</td>
<td>25 秒</td>
</tr>
<tr>
<td></td>
<td>50 ℃</td>
<td>40 秒</td>
</tr>
<tr>
<td></td>
<td>70 ℃</td>
<td>40 秒</td>
</tr>
</tbody>
</table>

步骤 2.至步骤 3.循环重複 10 次（菌液），20 次（呼吸道检体）

<table>
<thead>
<tr>
<th>隱段</th>
<th>温度</th>
<th>時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Final extension</td>
<td>70 ℃</td>
<td>8 分鐘</td>
</tr>
<tr>
<td>6. Store for o/n</td>
<td>16 ℃</td>
<td>∞</td>
</tr>
</tbody>
</table>

11.8 雜交

11.8.1 預熱核酸雜交反應槽至 45 ℃

11.8.2 將 HYB 和 STR 預熱至 45 ℃。

11.8.3 在室溫下，將 20 μL 之 DEN 加入反應盤中之專用溝槽。

11.8.4 加入 20 μL 之核酸聚合酶產物與 DEN 混和均勻，反應 5 分鐘。

11.8.5 將 1 mL 之 HYB Buffer 加入含有混合物之溝槽中，加入時要避免濺入其他之溝槽中。
11.8.6 依序放入標示編號之 GenoTypeMBDRplus 試劑組 VER2.0 核酸線性探針反向雜交紙片，並將反應盤置入核酸雜交反應槽反應 45 ℃，30 分鐘。

11.8.7 將 HYB Buffer 完全吸出（例如使用 pipette），加入 1 mL STR Buffer 至含有核酸線性探針反向雜交紙片之溝槽中，置入核酸雜交反應槽反應 45 ℃，15 分鐘，此步驟之後續步驟皆在室溫下進行。

11.8.8 將 STR Buffer 完全吸出，加入 1 mL RIN Buffer 至含有核酸線性探針

11.8.9 反向雜交紙片之溝槽中，擺動清洗 1 分鐘。

11.8.10 倒掉 RIN Buffer，加入 1 mL CON 溶液 (10 μL CON-C 加 1 mL CON-D)，擺動反應 30 分鐘。

11.8.11 移除 CON 溶液並使用 1 mL 之 RIN Buffer 擺動清洗 1 分鐘 2 次，再加入無菌水 1 mL 擺動清洗 1 分鐘。

11.8.12 倒掉無菌水，加入 SUB 溶液 (10 μL SUB-C 加 1 mL SUB-D)，避光靜置 3 至 20 分鐘，直到核酸線性探針反向雜交紙片呈色完成。

11.8.13 加入無菌水 1 mL 擺動清洗 1 分鐘 2 次停止顯色。

11.9 檢驗後處理

11.9.1 廢棄物處理：檢驗過程之物品、微生物及剩餘檢體等感染性事業廢棄物，應先以標有生物危險標誌的專用紅色廢棄袋裝妥密封，貼上化學指示劑，再以 121 ℃，每平方公分 1.06 公斤以上壓力，60 分鐘高壓滅菌後，由合約清理廠商處理。

12 干擾及交互反應

無。

13 結果判定：

13.1 判讀標準

13.1.1 將核酸線性探針反向雜交紙片對齊貼在 GenoTypeMBDRplus 試劑組 VER2.0 評估表 (附錄一)，依核酸線性探針反向雜交紙片之顯色位點與比對表 (附錄二) 對照，得到檢體之抗藥性結果。

13.1.2 雜交紙片需同時出現 Conjugate control (CC) 、Amplification control (AC) 、M.tuberculosis complex (TUB) 三種陽性反應時，抗藥結果判定始為可信。

13.1.3 若僅有 Rifampin 檢測結果為抗藥，而 Isoniazid 檢測結果為敏感時，判定為 Rifampin 抗藥；反之若僅 Isoniazid 檢測結果為抗藥，則判定為 Isoniazid 抗藥；若 Rifampin 及 Isoniazid 檢測結果均為抗藥時，則判定為 MDR。

13.1.4 此項判定結果是依據抗藥基因分析，即仍有菌株抗藥基因未在此分析區域內，仍需依藥物試驗結果做最終判定。
13.1.5 備註:

13.1.5.1 當 rpoB gene WT1-WT8 全部顯色且無任何抗藥位點顯色，
即判為對 Rifampin 藥物敏感。

13.1.5.2 當 rpoB gene WT1-WT8 有基因突變時，即特定 WT 位點不
顯色，同時在雜交紙片上相對應基因突變處，觀察到突變
位點顯色，則判定為對 Rifampin 藥物具有抗藥。

13.1.5.3 當 rpoB gene WT1-WT8 有基因突變時，即特定 WT 位點不
顯色，此時可能因為雜交紙片上抗藥基因探針之設計考量，
只設計常出現突變之核酸序列，因此突變位點並未顯色，
此結果同樣可判定對 Rifampin 藥物具有抗藥。

13.1.5.4 當 katG 及 inhA gene 之 WT 同時顯色且無任何抗藥位點顯
色，此時判定為對 Isoniazid 藥物敏感。

13.1.5.5 當 katG 或 inhA gene 兩者之中或同時發生基因突變時，即
特定 WT 位點不顯色，同時在雜交紙片上相對應基因突變
處，觀察到突變位點顯色，則判定為對 Isoniazid 藥物具有
抗藥。

13.1.5.6 當 katG 或 inhA gene 兩者之中或兩者同時發生基因突變時，
即特定 WT 位點不顯色，此時可能因為雜交紙片上抗藥基
因探針之設計考量，只設計常出現突變之核酸序列，因此
突變位點並未顯色，此結果同樣可判定對 Isoniazid 藥物具
有抗藥。

13.2 結果登錄

LIMS 系統登錄檢驗結果。

13.3 報告核發

LIMS 系統由非操作者第二人覆核檢驗結果後，核發報告。

14 生物參考區間/臨床決策值

依據 13.1 判定結果，得到檢體之 Rifampin 與 Isoniazid 抗藥性結果。

15 檢驗結果的可報告區間

抗藥基因突變位點須位於該抗藥基因區域內。

16 結果超出量測區間之操作說明

當抗藥基因發生突變位點超出試劑抗藥基因區域時，此項測試將無法檢出。

17 危急值/異常值

無。

18 臨床意義

代表個案所感染結核菌群之菌株可能對 Rifampin 或 Isoniazid 產生抗藥性。
19 变异的潜在来源
可能在同一位置上出现变种及敏感两种信号，代表为不同菌株核酸所致结果。

20 参考文件
20.1 RDC-QP-1601 安全卫生作業程序。
20.2 GenoType MTBDRplus VER 2.0 操作手册。

21 附錄
21.1 附錄一（GenoType MTBDRplus VER 2.0 操作手册）

21.2 附錄二 GenoType MTBDRplus VER 2.0
21.3 GenoType MTBDRplus 試驗紀錄與實驗結果表單 (RDC-QR-B3-E18-01)。

<table>
<thead>
<tr>
<th>Lot-PNM</th>
<th>GenoType® MTBDRplus 試驗紀錄與實驗結果</th>
<th>實驗結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>編號</td>
<td>GTMDR14001</td>
<td></td>
</tr>
<tr>
<td>頁數</td>
<td>1/1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>no</th>
<th>菌株編號</th>
<th>送驗機關</th>
<th>姓名</th>
<th>TUB</th>
<th>RMP</th>
<th>INH</th>
<th>MDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

備註 PCR cycle (__,__)：SUB：__ min *
目的
利用 GenoTypeMTBDRsl/VER 2.0 試劑組，進行多重抗藥性結核菌抗藥基因檢測。

檢體種類與採檢容器
2.1 適用於固態或液態培養基培養之結核菌群菌株，收集於 2 mL 之微量離心管，以 95 ℃，20 分鐘進行去活化反應。
2.2 適用已完成消化去汙染的呼吸道痰抹片陽性及陰性檢體，收集於 2 mL 之微量離心管，以 95 ℃，20 分鐘進行去活化反應。

原理概述
利用核酸線性探針反向雜交測定技術，針對結核菌群菌株於氟喹諾酮類（Fluoroquinolones, FLQ）及胺基醣苷類（Aminoglycosides/Cyclic Peptides）作用藥物之抗藥性基因位點之偵測。

檢驗性能特徵
多重抗藥性結核菌抗藥基因之定性分析。

病人準備
無。

試劑耗材
6.1 試劑：GenoTypeMTBDRsl 試劑組 VER2.0，包含：
6.1.1 Amplification Mix A（AM-A）
6.1.2 Amplification Mix B（AM-B）
6.1.3 Denaturation Solution（DEN）
6.1.4 GenoTypeMTBDRsl 試劑組 VER2.0 核酸線性探針反向雜交紙片
6.1.5 Hybridization Buffer（HYB）
6.1.6 Stringent Wash Solution（STR）
6.1.7 Rinse Solution（RIN）
6.1.8 Conjugate Concentrate（CON-C）
6.1.9 Conjugate Buffer（CON-D）
6.1.10 CON 溶液（1：100 之 CON-C 加 CON-D 配製）
6.1.11 Substrate Concentrate（SUB-C）
6.1.12 Substrate Buffer（SUB-D）
6.1.13 SUB 溶液（1：100 之 SUB-C 加 SUB-D 配製）

6.2 藥材
6.2.1 10 μL 具過濾塞之微量吸管尖。
6.2.2 100 μL 具過濾塞之微量吸管尖。
6.2.3 200 μL 具過濾塞之微量吸管尖。
6.2.4 1000 μL 具過濾塞之微量吸管尖。
6.2.5 2 mL 微量離心管。
6.2.6 核酸聚合酶微量反應管。

6.3 個人防護耗材
6.3.1 手套。

7 儀器設備
7.1 核酸聚合酶機器。
7.2 微量離心機。
7.3 核酸雜交反應槽（TwinCubator®）
7.4 1-10 μL 微量吸管分注器。
7.5 10-100 μL 微量吸管分注器。
7.6 10-200 μL 微量吸管分注器。
7.7 10-1000 μL 微量吸管分注器。
7.8 高壓滅菌鍋
7.8.1 使用前確認具合格檢測標籤。

8 環境與設施安全
8.1 於生物安全第一等級（BSL-1）實驗室之設施內操作。
8.2 依行政院國科會「基因重組實驗守則」。

9 校正程序
無。

10 品質管制
10.1 內部品管
10.1.1 注意各檢驗試劑之有效期，避免使用過期試劑。過期試劑需評估後使用，效期半年。
10.1.2 冷凍保存的試劑（聚合酶、引子）需進行分裝，避免反覆冷凍解凍。
10.1.3 PCR 試劑配製與操作檢查空間需分開。
10.1.4 操作檢查需在隔離乾淨的操作櫃內，於使用前以紫外燈照射至少 15 分鐘，並於操作前以 70% 酒精將桌面擦拭乾淨。
10.1.5 操作時需戴乾淨手套，取用檢查需避免可能產生的交叉污染。
10.1.6 檢查污染桌面時需以漂白水清潔。
10.2 外部品管
無。
11 檢驗步驟

11.1 配製核酸聚合酶液，單一檢體之核酸聚合酶液含以下配方：

<table>
<thead>
<tr>
<th>試劑</th>
<th>體積（μL）</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM-A</td>
<td>10.0</td>
</tr>
<tr>
<td>AM-B</td>
<td>35.0</td>
</tr>
<tr>
<td>檢體</td>
<td>5.0</td>
</tr>
</tbody>
</table>

總體積為 50 μl

11.2 2 mL 微量離心管內依序加入 AM-A，AM-B 溶液，若超過一管檢測量，則配置 1.5 倍之混合液總量，均勻混合後於各核酸聚合酶微量反應管分別加入 45 μL 混合液。

11.3 最後加入檢體 5 μL。

11.4 執行 PCR

<table>
<thead>
<tr>
<th>步驟</th>
<th>溫度</th>
<th>時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Enzyme Activation</td>
<td>95 ºC</td>
<td>15 分鐘</td>
</tr>
<tr>
<td>2. Denature</td>
<td>95 ºC</td>
<td>30 秒</td>
</tr>
<tr>
<td>3. Annealing</td>
<td>65 ºC</td>
<td>2 分鐘</td>
</tr>
</tbody>
</table>

步驟 2.至步驟 3.循環重複 10 次（菌液），20 次（呼吸道検體）

<table>
<thead>
<tr>
<th>步驟</th>
<th>溫度</th>
<th>時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Extension</td>
<td>95 ºC</td>
<td>25 秒</td>
</tr>
<tr>
<td></td>
<td>50 ºC</td>
<td>40 秒</td>
</tr>
<tr>
<td></td>
<td>70 ºC</td>
<td>40 秒</td>
</tr>
</tbody>
</table>

步驟 4.循環重複 20 次（菌液），30 次（呼吸道検體）

<table>
<thead>
<tr>
<th>步驟</th>
<th>溫度</th>
<th>時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Final extension</td>
<td>70 ºC</td>
<td>8 分鐘</td>
</tr>
<tr>
<td>6. Store for o/n</td>
<td>16 ºC</td>
<td>∞</td>
</tr>
</tbody>
</table>

11.5 雜交

11.5.1 預熱核酸雜交反應槽至 45 ºC

11.5.2 將 HYB 和 STR 預熱至 45 ºC。

11.5.3 在室溫下，將 20 μL 之 DEN 加入反應盤中之專用溝槽。

11.5.4 加入 20 μL 之核酸聚合酶產物與 DEN 混和均勻，反應 5 分鐘。

11.5.5 將 1 mL 之 HYB Buffer 加入含有混合物之溝槽中，加入時要避免濺入其他之溝槽中。

11.5.6 依序放入標示編號之 GenoTypeMTBDRsl 試劑組 VER2.0 核酸線性探針反向雜交紙片，並將反應盤置入核酸雜交反應槽反應 45 ºC，30 分鐘。

11.5.7 將 HYB Buffer 完全吸出，加入 1 mL STR Buffer 至含有核酸線性探針反向雜交紙片之溝槽中，置入核酸雜交反應槽反應 45 ºC，15 分鐘，此步驟之後續步驟皆在室溫下進行。
11.5.8 將 STR Buffer 完全吸出，加入 1 mL RIN Buffer 至含有核酸線性探針反向雜交紙片之溝槽中，擺動清洗 1 分鐘。

11.5.9 倒掉 RIN Buffer，加入 1 mL CON 溶液 (10 μL CON-C 加 1 mL CON-D)，懸浮反應 30 分鐘。

11.5.10 移除 CON 溶液並使用 1 mL之 RIN Buffer 擺動清洗 1 分鐘 2 次，再加入無菌水 1 mL 擺動清洗 1 分鐘。

11.5.11 倒掉無菌水，加入 SUB 溶液 (10 μL SUB-C 加 1 mL SUB-D)，避光靜置 3 至 20 分鐘，直到核酸線性探針反向雜交紙片呈色完成。

11.5.12 加入無菌水 1 mL 擺動清洗 1 分鐘 2 次停止顯色。

11.6 檢驗後處理

11.6.1 廢棄物處理：檢驗過程之物品、微生物及剩餘檢體等感染性事業廢棄物，應先以標有生物危險標誌的專用紅色廢棄袋妥善密封，貼上化學指示劑，再以 121 ℃，每平方公分 1.06 公斤以上壓力，60 分鐘高壓滅菌後，由合約清理廠商處理。

12 干擾與交互反應

無

13 結果判定

13.1 判讀標準

13.1.1 將核酸線性探針反向雜交紙片對齊貼在 GenoTypeMTBDRsl 試劑組 VER2.0 評估表 (附錄一)，依核酸線性探針反向雜交紙片之顯色位點與比較表 (附錄二) 對照，得到檢體之抗藥性結果。

13.1.2 雜交紙片需同時出現 Conjugate control (CC)、Amplification control (AC)、M.tuberculosis complex (TUB) 三種陽性反應時，抗藥結果判定始為可信。

13.1.3 此項判定結果是依據抗藥基因分析，即仍有菌株抗藥基因未在此分析區域內，仍需依藥物試驗結果做最終判定。

13.1.4 備註：

13.1.4.1 當 gyrA 及 gyrB gene 之 WT 同時顯色且無任何抗藥位點顯色，此時判定為對 Fluoroquinolones 類藥物敏感。

13.1.4.2 當 gyrA 或 gyrB gene 兩者任一或同時發生基因突變時，即特定 WT 位點不顯色，同時在雜交紙片上相對應基因突變處，觀察到突變位點顯色時，則判定為此檢體核酸對 Fluoroquinolones 類藥物具抗藥性。

13.1.4.3 當 rrs gene WT1-WT2 全部顯色且無任何抗藥位點顯色，即判定為對 Aminoglycosides 類藥物敏感。

13.1.4.4 當 rrs gene WT1-WT2 有基因突變時，即特定 WT 位點不顯色，同時在雜交紙片上相對應基因突變處，觀察到突變位點顯色，則判定為對 Aminoglycosides 類藥物具抗藥性。
13.1.4.5 當 eis gene WT1-WT3 全部顯色且無任何抗藥位點顯色，
即判為對低濃度 Kanamycin 藥物敏感。
13.1.4.6 當 rrs gene WT1-WT2 有基因突變時，即特定 WT 位點不
顯色，同時在雜交紙片上相對應基因突變處，觀察到突變位
點顯色，則判定為對低濃度 Kanamycin 類藥物具有抗藥。

13.2 結果登錄
LIMS 系統登錄檢驗結果。

13.3 報告核發
LIMS 系統由非操作者第二人覆核檢驗結果後，核發報告。

14 生物參考區間/臨床決策值
依據 13.1 判定結果，得到檢體之 Fluoroquinolones 與 Aminoglycosides 類藥物抗
藥性結果。

15 檢驗結果的可報告區間
抗藥基因突變位點須位於該抗藥基因區域內。

16 結果超出量測區間之操作說明
當抗藥基因發生突變位點超出抗藥基因區域時，此項測試將無法檢出。

17 危急值/異常值
無。

18 臨床意義
代表個案感染結核菌群菌株可能對治療藥物產生抗藥性。

19 變異的潛在來源
可能在同一位點上出現突變及敏感兩種訊號，代表為不同菌株核酸所致結果。

20 參考文件
20.1 RDC-QP-1601 安全衛生作業程序。
20.2 GenoTypeMTBDRsl VER 2.0 操作手冊。
21附錄

20.3 21.1 附錄一（GenoType MTBDRsl VER 2.0 操作手冊）

21.2 附錄二
附錄三 GenoType MTBDRsl 試驗紀錄與實驗結果表單 (RDC-QR-B3-E25-02)

<table>
<thead>
<tr>
<th>no</th>
<th>繁體字編號</th>
<th>送驗機關</th>
<th>姓名</th>
<th>繁體字實験結果</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>標準抗藥性結核菌 FLQ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FLQ</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>R</td>
</tr>
</tbody>
</table>

備註：PCR cycle (___x, ___x)；SUB：___ min。
1 目的
利用聚合酶链锁反应法（PCR），针对结核分枝杆菌分子检测
(RDC-SOP-B3-E13)
试验结果为阳性之菌株核酸检体进行其抗药基因定序。

2 检体种类与采检容器
2.1 適用於經核酸萃取之陽性結核菌群菌株之 DNA。
2.2 適用於固態或為液態培養基培養之結核桿菌，收集於 2 mL 之微量離心
管，以 95 ℃，20 分鐘進行去活化反應。

3 原理概述
针对文献已知的立複黴（Rifampin）抗药基因 rpoB 及異菸鹼醯（Isoniazid）
相關抗药基因 katG, inhA, inhA locus 及 oxyR-ahpC 进行聚合酶链锁反应，进一步分析其产物序列与野生型（wild-type）菌株之差異，排除已知与抗药无关联
之突变位点，可进一步了解检体对 Rifampin 及 Isoniazid 抗药结果。
对 Fluoroquinolones（FLQ）类药物已知抗药基因 gyrA 及氨基糖苷类
（Aminoglycosides/cyclic peptides, AG/CP）类药物抗药基因 eis 及 rrs 进行
聚合酶链锁反应，Aminoglycosides类药物包含卡納黴素（Kanamycin）、艾
米康丝菌素（Amikacin）及纏霉素（Capreomycin）等；另针对吡嗪醯胺
（Pyrazinamide, PZA）类药物抗药基因 pncA，进一步分析其产物序列与野生
型（wild-type）菌株之差異，排除已知与抗药无关联之突变位点，可进一步
了解检体对 FLQ 类药物、AG/CP 类药物及 PZA 抗药结果。

4 检验性能特徵
菌株抗药基因之定性分析。

5 病人准备
无。

6 資料耗材
6.1 試劑
6.1.1 2 倍聚合酶链锁反应試剂。
6.1.2 核酸定序引子（primer）

rpoB:
- rpoB-F 引子 5'-TCG GCG AGC CCA TCA CGT CG-3'
- rpoB-R 引子 5'-GCG TAC ACC GAC AGC GAG CC-3'
katG:
katG-F 引子 5'-GTC ACA CTT TCG GTA AGA C-3'
katG-R 引子 5'-TTG TCG CTA CCACGG AAC G-3'

inhA:
inhA 1713-F 引子 5'-CCG AGG ATG CGA GCT ATA TC-3'
inhA 1713-R 引子 5'-GGC TCG GGT CGA AGT CCA TG-3'
inhA 2194-F 引子 5'-AGG CGC TGC TGC CGA TCA TG-3'
inhA 2194-R 引子 5'-CCG AACGAC AGC AGC AGG AC-3'

inhA locus:
inhA locus-F 引子 5'-AAT TGC GCG GTC AGTTCC AC-3'
inhA locus-R 引子 5'-GTC GGT GAC GTC ACA TTC GA-3'

oxyR-ahpC:
oxoR-ahpC-F 引子 5'-GCT TGA TGT CGG AGA GCA TCG-3'
oxoR-ahpC-R 引子 5'-GGTGC GTA GGC AGT GCC CC-3'

gyrA:
gyrA-F 引子 5'-GAT GAC AGA CAC GAC GTT GC-3'
gyrA-R 引子 5'-AGC ATC TCC ATC GCC AAC G-3'

rrs:
TBrrs1250 引子 5'-TTA AAA GCC GGT CTC AGT GC-3'
TBrrs1258 引子 5'-TAC GCC CCA CCA GTT GGG GC-3'
TBrrs0406R 引子 5'-ACC AGT TGG GGC GTT TTC GT-3'

eis:
eis-F 引子 5'-ATT CAG GGC CGA TGA AAT C-3'
eis-R 引子 5'-GAT GAT CGA CCG GGT TTG -3'
eis_122001-F 引子 5'-GGG CCG A TG AAA TCG GT-3'

pncA:
pncA-F-20084075 引子 5'-GCT GGT CAT GTT CGC GAT CG -3'
pncA-R-20084075 引子 5'-CGC TTG CGG CGA GCG CTC CA-3'

加無菌水調整濃度為100 μM，儲存於-20 ℃冰箱為保存濃度。

6.1.3 LE agarose powder

6.2 耗材
6.2.1 10 μL 具過濾塞之微量吸管尖。
6.2.2 100 μL 具過濾塞之微量吸管尖。
6.2.3 200 μL 具過濾塞之微量吸管尖。
6.2.4 1000 μL 具過濾塞之微量吸管尖。
6.2.5 2 mL 微量離心管。
6.2.6 PCR 8 連排反應管。

6.3 個人防護耗材
6.3.1 手套。

7 儀器設備
7.1 聚合酶鍊鎖反應器 PCR machine。
7.2 振盪器。
7.3 微量離心機。
7.4 0.1-2.5 μL 微量吸管分注器。
7.5 0.5-10 μL 微量吸管分注器。
7.6 2-20 μL 微量吸管分注器。
7.7 10-100 μL 微量吸管分注器。
7.8 20-200 μL 微量吸管分注器。
7.9 100-1000 μL 微量吸管分注器。
7.10 高壓滅菌鍋
7.10.1 使用前確認具合格檢測標籤。

8 環境與設施安全
8.1 於生物安全第一等級 (BSL-1) 實驗室之設施內操作。
8.2 依行政院國科會「基因重組實驗守則」。

9 校正程序
無。

10 品質管制
10.1 內部品管
10.1.1 冷凍保存的試劑（聚合酶、引子）需進行分裝，避免反覆冷凍解凍。
10.1.2 注意各檢驗試劑之有效期限，避免使用過期試劑。
10.1.3 PCR 試劑配製與操作檢體空間需分開。
10.1.4 操作檢體需在隔離乾淨的操作櫃內，於使用前以紫外燈照射至少 15
分鐘，並於操作前以 70 % 酒精將桌面擦拭乾淨。
10.1.5 PCR 需放置 H37Rv DNA 陽性對照組及 ddH₂O 陰性對照組。
10.1.6 操作時需戴乾淨手套，取用檢體需避免可能產生的交叉污染。
10.1.7 檢體污染桌面時需以漂白水清潔。
10.2 外部品管
無。
11 檢驗步驟
11.1 檢體前處理：無。
11.2 挑選進行定序之檢體，依序排列，並填寫實驗記錄表。操作前，以 70 % 酒精擦拭桌面，準備所需之實驗用品。先將 PCR 室之壓克力操作櫥開啟 UV 照射 15 分鐘。
11.3 進入 Pre-PCR 室前，於緩衝區更換實驗衣再進入 Pre-PCR 室，按下無菌操作台前馬達鈕及電燈開關，並將拉門拉起 10-15 公分，以 70 % 酒精擦拭檯面，並待操作台馬達運轉至少 7-15 分鐘，確保操作台內空氣層流穩定，才可進行 11.4 試劑配製。
11.4 配製聚合酶反應液，單一管反應液含以下配方：

<table>
<thead>
<tr>
<th>試劑</th>
<th>體積 (μL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>無菌水（實驗組/對照組）</td>
<td>9.5</td>
</tr>
<tr>
<td>F 端引子（10 μM）</td>
<td>0.5</td>
</tr>
<tr>
<td>R 端引子（10 μM）</td>
<td>0.5</td>
</tr>
<tr>
<td>HotStarTaq Master Mix</td>
<td>12.5</td>
</tr>
<tr>
<td>檢體（實驗組/對照組）</td>
<td>2.0/2.0</td>
</tr>
<tr>
<td>總體積為 25 μL</td>
<td></td>
</tr>
</tbody>
</table>

11.5 計算各試劑實驗所需總體積，總體積為檢體數加 3 管（1 管陽性對照組、1 管陰性對照組及 1 管預留量）。
11.6 取濃度為 100 μM 定序基因之 F 端以及 R 端引子各 2 μL，加入 18 μL 無菌水中，配製成實驗引子濃度（10 μM）。視所需總體積調整引子配製量。
11.7 置於冰寶上之 2 mL 微量離心管內依序加入無菌水、引子、HotStarTaq Master Mix，振盪混合均勻後分別於 PCR 反應管內加入 23 μL 試劑混合液（視檢體數量可選擇單反應管或是八連排），操作時均在冰寶上操作，以維持核酸聚合酶活性。
11.8 離開 Pre-PCR 室前，確實以 70 % 酒精擦拭檯面，並將檯面實驗用品歸定位及拿出配置反應試劑及塑膠耗材垃圾袋後，關閉無菌操作台前馬達及電燈開關，開啟 UV 電燈開關，並將拉門拉下。
11.9 離開 Pre-PCR 室於緩衝區更換 PCR 專用實驗衣。
11.10 將反應管移至 PCR 室，各反應管最後加入 2 μL（實驗組）/2 μL（陰性對照組）檢體。陽性對照組為 M. tuberculosis H37Rv 核酸，濃度 10 ng/μL，取 2 μL；陰性對照組取 2 μL 無菌水。
11.11 反應管置於微量離心機旋轉離心（spin down）。
11.12 將反應管置於 PCR 機器反應座上，執行 PCR Sequencing 程式，檢體體積為 25 μL。
11.13 執行 PCR

<table>
<thead>
<tr>
<th>Stage</th>
<th>Temperature</th>
<th>PCR cycle</th>
<th>Time</th>
</tr>
</thead>
</table>

11.13 執行 PCR

衛生福利部疾病管制署傳染病標準檢驗方法

編號：結核菌群抗藥基因定序

核准日期：年 月 日

頁次：第 354 頁/共 1104 頁

修訂日期：年 月 日
11.14 以70%酒精擦拭壓克力操作檯桌面，並開啟UV照射30分鐘消毒。

11.15 LE agarose gel膠體電泳分析

11.15.1 配置2% LE agarose膠體。
11.15.2 取1μL 100 bp的DNA標準物（Marker）以及PCR產物每管取2μL跟DNA染劑混和之後以微量分注器注入膠體之空格（well）當中。
11.15.3 以100伏特的電壓跑40分鐘之後，觀察染劑是否到倒數第二條線，如果尚未到達則加長電泳時間使得染劑電泳至目標區域。
11.15.4 電泳結束後將膠體放置於溴化乙酚（EtBr）中染色3分鐘，而後置於清水當中褪染15分鐘。
11.15.5 開啟照膠系統電腦以及照膠系統後將膠體放置於照膠平面上，將位置對正關上照膠系統的門並開啟UV，看到膠體的圖之後按下Freeze按鍵，存檔後列印兩份分別貼於實驗表單以及定序送檢單上。

11.16 核酸定序送驗

11.16.1 填寫廠商送驗單，經由網頁上傳之後列印送驗表單下來後，貼上膠圖並註記檢體資訊，管理人核章之後即可送驗。

11.16.2 取濃度為100 μM的核酸定序引子F端以及R端引子各1 μL，加入9 μL無菌水中，配製成定序引子濃度（10 μM）。視所需總體積調整引子配製量。rsr基因需配製TBrss1250與TBrss0406R引子定序，eis基因需配製eis_122001-F與eis-R引子定序。

11.16.3 將PCR反應管上標上易於辨識的檢體編號以及目標增幅基因名稱後，和定序引子以及送驗單裝包在封口袋中，等待廠商收取進行後續定序實驗。

11.17 檢驗後處理

11.17.1 廢棄物處理：檢驗過程之物品、微生物及剩餘檢體等感染性事業廢棄物，應先以標有生物危險標誌的專用紅色廢棄袋裝妥密封，貼上化學指示劑，再以121℃，每平方公分1.06公斤以上壓力，60分鐘高壓滅菌後，由合約清理廠商處理。
12 干擾與交互反應
無。

13 結果判定
13.1 判讀標準
檢體定序結果與標準品 H37Rv 核酸於定序軟體進行分析，確認突變位點差異。
13.2 結果登錄
LIMS 系統登錄檢驗結果。
13.3 報告核發
LIMS 系統由非操作者第二人覆核檢驗結果後，核發報告。

14 生物參考區間/臨床決策值
依據 13.1 判定結果，得到檢體之 Rifampin 與 Isoniazid，二線藥物及 PZA 抗藥性結果。

15 檢驗結果的可報告區間
抗藥基因位點須同時具兩端一致結果才能判定為發生序列突變，且突變位點須位於該抗藥基因區域內。

16 結果超出量測區間之操作說明
當抗藥基因發生突變位點超出抗藥基因檢測區域時，結果為無法判定。

17 危急值/異常值
無。

18 臨床意義
抗藥基因突變代表個案所感染之結核菌群菌株可能產生抗藥性。

19 變異的潛在來源
可能在同一位置上出現突變及敏感兩種訊號，代表為不同菌株核酸所致結果。

20 參考文件
20.1 RDC-QP-1601 安全衛生作業程序。

21 附錄

21.1 *rpoB* 基因（粉紅色區域為 *rpoB* hot spot region）

<table>
<thead>
<tr>
<th>GCATGAAGTGCTGGAAGGATGCATTGCGAAGTTCCTCCGGCCAGAAGCAAAA</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAGCCGCATGAGTACTGATCAGTCTCCGGCCAGAAGCAAAA</td>
</tr>
</tbody>
</table>

rpoB start codon

<table>
<thead>
<tr>
<th>GCCCGCAAAGGAGTTCCTCGAATAACTCCTCCGTAACCCGGAGCGCAAAACCCGGGTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCCTTCGCTAAGCTGCGGAACCACCTTTGAGGTTCCCGGAACCTCCTTGACGT</td>
</tr>
</tbody>
</table>

*CGAGTTTGACGTCGACAAAGCCGACACCAGTCGCCGTCCGCCGACGAGCCCA |

*aacGCGCCGCAACCCGGTACCTCCGCTGCACGTGCTGTGAGCAGCCACTGACG |

<table>
<thead>
<tr>
<th>GAGACGATTGTCGACGGTGTTCTCCGAGATCAGTCGATCGACGAGCTG</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAGAAGGAAACAACCAGGCCGACCGAGGCGCTGTGGAGACATCTACCC</td>
</tr>
</tbody>
</table>

*CAAGCTGCGTCCGGCGAGCCCCAAGGACGACGACGACGACGACGACGACGACG |

<table>
<thead>
<tr>
<th>GCCAAGACGTCCGACGACGAGTTGGATCCGCCGACGACGAGTTGGATCCGCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CACCCGGCAACCCGGTACCTCCGCTGCACGTGCTGTGAGCAGCCACTGACG</td>
</tr>
</tbody>
</table>

*TGGAAAACTTGTTCTTCAAGGAGAAGCGCTACGACCTGGCCCGCGTCGGTCG |

<table>
<thead>
<tr>
<th>CGCTAAAGGTCGCAACAAAGAGCTCGGGGCTGACGCTGACGCTGACGCTG</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCGGCTGACGCTGACGCTGACGCTGACGCTGACGCTGACGCTGACGCTG</td>
</tr>
</tbody>
</table>

*CTGACGCTGACGCTGACGCTGACGCTGACGCTGACGCTGACGCTGACGCTG |

*GGAGCGGGTGGTCCGGGAGCGGA TGACCACCCAGGACGTGGAGGCGA TC
21.2 *katG* 基因

CCGACTTTGTGGTGAGAGCCGATGCCACCCGTGTCGCCGACTCGT

| ACACCGCAGAGGTTGATCAACATCCGAGCGGTGTCGCCGCGATCAAGGATTGCTCGGCCAGG
| TGTGGCACCAGCCGCTGAGCCCAATCTCATGGGACCAGAACAAACCCGGCTG
| CTGTCACGTAGCTGGCCGCTGGATCGAGCTGCGACGTGGCCGCTGG
| CTGTCACGTAGCTGGCCGCTGGATCGAGCTGCGACGTGGCTG
| GATCAGTCGCTGTGGTGCAGCCTGGGTCACCCGTGTCGCTTCATCGA
| AACGGCTACGGAAGGGTGGTGGCAGTCGCAGGTTGAGATCGAGATCGTGT
| ACCTGACCGCCGACGGAGAGGACC

21.3 *inhA locus* 基因

| CGGTCCATACGAGCTCTTCTCAAGCAAGCCATGCTGCTCAGGAGACAG
| CCTCGGGTTCCGGCCGCAACAGATCGGCGCCGGCCCGCCCATGCTCTTA
| CGCAGGAAGGTGAATCGTCTTACCGGTTCCTCCCGACTTCCAGCCACG

| S315T |
| CGGTGCCA TACGAGCTCTTCCAGCCCAAGCCCA TCTGCTCCAGCGGAGCAG |
| CCGAAAGTGTGACCGCCGACGATCAGC |
TTGCACGC\textcolor{red}{AATGCGCGGTCAGTCTCCAC}ACCCTGCGGCACGTACACGTTTT
TATGTA\textcolor{red}{GC}CCACATACTCGTCGCAATTCGTAGGGCGTCAATACACC\textcolor{red}{GCG}
AGGCCAGG\textcolor{red}{CG}CTCGCTGCCCAAGAAGGGGATCGCTCATG\textcolor{red}{G}AAGTGTGCT
GAGTC\textcolor{red}{CAC}CACC\textcolor{red}{GACAAAC}GTCACGAGCGTAACCCCAGTGC\textcolor{red}{GAAAGTTCCC}
CGGG\textcolor{red}{AAT}CGC\textcolor{red}{AGCCACACG}

\textbf{C-15T}

\textit{\textbf{\textbf{fabG1}} start codon}
TACGCTCGTGGAC\textcolor{red}{ATACCGGATTTT}CCGGCCGCGC\textcolor{red}{GACGAGGATAGGCT}
GTCG\textcolor{red}{GGG}GT\textcolor{red}{GACTGCCCCACAGCCAC}

\textbf{A-16G} \hspace{1cm} \textbf{T-8C, T-8A}
TGAAGGGGGCCA\textcolor{red}{AACC}CCTCGAT\textcolor{red}{ACCGGCTTACCGGAGG}
AACC\textcolor{red}{GGG}GATCGGCTGCGGATCGCACAGCGCGCTGCGGACGCGC
ACAAGTGGGCGCT\textcolor{red}{ACCCG}TCCGGGAGCGGCAACAAGGGGCTGT
GGCG\textcolor{red}{TCGAATGTGACGTCA}CGACGACG

21.4 \textit{oxyR-ahpC} 基因

\textbf{TGGTCGCGTAGGCGATGC\textcolor{red}{G}}CTC\textcolor{red}{TT}\textcolor{red}{tt}
CAGCGCCGGTGCA\textcolor{red}{CGGCAACC}CGTGGCTTCCGGG AAAGACATGCGGCTGCGG
TGAC\textcolor{red}{CC}GAGACGGG\textcolor{red}{GCTTCCGACACGCACGCTGCGGCAACGTCGACTGCGC}
ATATCG\textcolor{red}{GA}GATGCTTCCGGCACTGCTG\textcolor{red}{AACC}C\textcolor{red}{ACTGCTTCTGCGGCAACCGC}
GCG\textcolor{red}{AA}CGCCG\textcolor{red}{CGGAAGCCCGGACGCGCGTGACACTCTCTTGGCGGCGAT}
GCC\textcolor{red}{GATAAAATATGGTGATATATACACCTTTGCGACG}
\begin{tabular}{ll}
\textbf{\textit{oxyR}} start codon & \textbf{transcriptional start site} \textbf{translational start site -10} \\
\textbf{\textit{base G/T}} & \textbf{\textit{transcriptional start site -10 base C/T}} & \textbf{\textit{ahpC start codon}}
\end{tabular}

\textbf{\textit{base G/T}}
TCACCG\textcolor{red}{G}G\textcolor{red}{G}GCAAT\textcolor{red}{AGGC\textcolor{red}{G}}ATG\textcolor{red}{C}G\textcolor{red}{CGA}
AGGAGAGGT\textcolor{red}{GATGC\textcolor{red}{G}}CACTGCTACCGG

\textbf{\textit{base C/T}}
CATGG\textcolor{red}{GATC\textcolor{red}{AATTCCC\textcolor{red}{GCCCTACCGGCTC}}ACCCGCTG
CCTG\textcolor{red}{T\textcolor{red}{C}}\textcolor{red}{AAGGTCGTGAGCA\textcolor{red}{AGGCGCGCGCGCA}}CTACTTTTACCCATACTAC
CAGTGA\textcolor{red}{CGA\textcolor{red}{ACCAAC\textcolor{red}{GCCAGG\textcolor{red}{TTG}}GGGGTTGTTTTTTTGGCGGAAAG}
ACTTC\textcolor{red}{ACGTTCG\textcolor{red}{TGCGGCTT}\textcolor{red}{CCACCGAGAGCTACGACATG}}
21.5 *gyrA* 基因 codon18~120 為定序可判讀區域（底線表示）

```
ATGACAGACACGACGTTGCGCCTGAGACTCGCTCGACCGGATCGAACCG
GGTTGACATCGAGCAGAG
ATGCAGCGCAGCTACATCGACTATGCGATGAGCGTCTCGGACCGGC
GCTGCCCAGGCTGCGGAGAC
GGGTCTAACGCCCCGTCGCTCTATGCAATGGC

A90V
CACGCAAAGTCCGGCCCGTGCTGTCGAGGACCAGTGGGAAGTTCCG
GCACGCACCGTGCAGT
G88A、G88C、S91P
TACGACAGCTGTTCTGCAGATACGCCTGGCCCTGC

D94A、D94N、D94Y、D94G、D94H
TTCGGCTCGCCAGGCAATGACCGCAGGGGCAGGAGGTACCGAACGG

D1402T
CCTTGTACAGCAGAGTCTGCGAAGTCCG

A1401G
GGGAGCTTGAGGATGGGACGAGGAGGAGGACAGTCGATTTCATCCCTAA
CTACGACGCGCGGTGCAA
```

21.6 *rrs* 基因 codon1360~1490 為定序可判讀區域（底線表示）

```
AAGGGCTTGAGTGCGAGGGTATTAGCGAATCTTTAAAAGCCGGTCTCAG
TTCCGATCGGCTCGCAACTCTCGACCGCTGGAGTAGCTCGTCTAGTA
TCGAGATCAACCGCTCGGTGAATACGTTCCCGG

C1402T

AGTGGCCTAACCCTCGGGA

A1401G
GGGAGCTTGAGGATGGGACGAGGAGGAGGACAGTCGATTTCATCCCTAA
CTACGACGCGCGGTGCAA
```
21.7 *eis* 基因 codon+28~302 為定序可判讀區域（底線表示）

```
GTCGACGACGGAAAAACTTGGTTTCTGCTCCAACGGGTTTCGCACTGTGAGCAA
CGCGACGGCGGTGATGATCGACCAGGGTATTGCCAGCTTGTCCGCGACCACC
CGCCCGCTCTCGCGGACTCACTCGCGACCACCAGCTGCGAAGACGC
GGCGTA
```
疾病管制署

分枝桿菌實驗室

<table>
<thead>
<tr>
<th>File</th>
<th>SD140101001</th>
</tr>
</thead>
<tbody>
<tr>
<td>編號</td>
<td>mSEQ14001</td>
</tr>
<tr>
<td>頁數</td>
<td>1/1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>no</th>
<th>種株編號</th>
<th>送驗機關</th>
<th>姓名</th>
<th>實驗結果</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RMP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mutation site

<table>
<thead>
<tr>
<th>no</th>
<th>種株編號</th>
<th>katG</th>
<th>inhA</th>
<th>inhAR</th>
<th>OxyR-alpC</th>
<th>rpoB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>codon</td>
<td>codon</td>
<td>codon</td>
<td>-10</td>
<td>codon</td>
</tr>
<tr>
<td>1</td>
<td>150200001</td>
<td>AAA→CCC</td>
<td>AAA→CC</td>
<td>AAA→CC</td>
<td>C→T</td>
<td>AAA→CCC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arg→Leu</td>
<td>Arg→Leu</td>
<td>Arg→Leu</td>
<td></td>
<td>Arg→Leu</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

備註

RDC-QR-B3-E26-01
Second-line/PZA DR Sequencing

設備紀錄與實驗結果

<table>
<thead>
<tr>
<th>菌株編號</th>
<th>送驗機關</th>
<th>姓名</th>
<th>實驗結果</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>FLQ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S</td>
</tr>
</tbody>
</table>

Mutation site

<table>
<thead>
<tr>
<th>no</th>
<th>菌株編號</th>
<th>gyrA</th>
<th>gyrB</th>
<th>rrs</th>
<th>eis</th>
<th>pncA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>150200001</td>
<td>codon 94</td>
<td>codon</td>
<td>codon</td>
<td>-12</td>
<td>codon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AAA→CCC</td>
<td>AAA→CCC</td>
<td>AAA→CCC</td>
<td>C→A</td>
<td>AAA→CCC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arg→Leu</td>
<td>Arg→Leu</td>
<td>Arg→Leu</td>
<td></td>
<td>Arg→Leu</td>
</tr>
</tbody>
</table>

2		wt	wt	wt	wt	wt
3						
4						
5						

備註

版本 RDC-QR-B3-E26-02
1 目的
以反轉錄－聚合酶鏈鎖反應（RT-PCR）分子診斷方法檢測疑似病患的腦脊髓液或血清檢體是否含有西尼羅病毒核酸。

2 適用檢體種類
腦脊髓液或血清。

3 名詞解釋
Threshold cycle (Ct)：係指 PCR 產物複製的量，累積到足以被偵測到的第一個循環點稱之。換句話說，Ct 的值越小，表示檢體中初始 DNA/RNA 的含量越多。

4 原理概述
利用對西尼羅病毒具有專一性之引子（primers）與檢體中之病毒核酸分子結合配對，並利用 RT-PCR 的複製過程及特殊的螢光定量化學方法偵測 RT-PCR 產物，以決定檢體中是否含有西尼羅病毒核酸序列，所用之引子選自於西尼羅病毒之保守性序列（conserved sequences）。

5 試劑耗材
5.1 檢測試劑
5.1.1 病毒 RNA 萃取試劑套組。
5.1.2 SYBR green 定量反轉錄－聚合酶鏈鎖反應單步驟試劑套組。
5.2 耗材
5.2.1 檢體瓶。
5.2.2 無菌吸管。
5.2.3 定量 PCR 專用八連排反應管及蓋。
5.2.4 無菌過濾器 10 μL, 20 μL, 100 μL, 200 μL, 1,000 μL 吸管尖。
5.2.5 無菌 1.5 mL 微量離心管。
5.2.6 無粉手套。

6 儀器設備
6.1 第 II 級生物安全櫃。
6.2 即時多重定量 PCR 偵測系統。
6.3 10 μL, 20 μL, 40 μL, 100 μL, 200 μL, 1,000 μL 微量滴管分注器。
6.4 高速離心機。
6.5 真空抽氣機。
6.6 冰箱：4 ℃。
6.7 冷凍櫃：-20 ℃。
6.8 高壓滅菌鍋。

7 環境設施安全
7.1 病人血清檢體應在第 II 級生物安全櫃（BSL-2）內處理。
7.2 檢驗操作在生物安全第二等級 (BSL-2) 實驗室進行。
7.3 應有獨立的操作空間，盡量與操作 DNA 有關的實驗室分開，以避免污染，影響結果。

8 檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體前處理
10.1.1 裝有靜脈血的無菌真空試管以 2,000 轉離心 10 分鐘，以無菌吸管將血清吸入檢體瓶內旋緊瓶蓋。
10.1.2 檢體瓶上標註檢體標號。
10.1.3 檢體處理好後置 2-8°C 冰箱冷藏。
10.2 步驟
10.2.1 萃取病毒 RNA，依據所使用試劑製造業者的操作手冊進行。
10.2.2 單步驟即時定量反轉錄－聚合酶鏈鎖反應，取 5 μL RNA 做模版，加入與他病毒專一性引子組（參考附錄 15.1），並依據所使用試劑製造業者的操作手冊，加入其他所需試劑，調整反應總體積至 25 μL。
10.2.3 單步驟即時定量反轉錄－聚合酶鏈鎖反應程式設定：
10.2.3.1 RT 作用：50 °C，30 min。
10.2.3.2 Taq polymerase activation：95 °C，15 min。
10.2.3.3 Denaturation：95°C，15 sec。
10.2.3.4 Annealing：55 °C，30 sec。
10.2.3.5 Extension：72 °C，20 sec。
10.2.3.6 77 °C，30 sec，收集熒光值。
10.2.3.7 重複 10.2.3.3 至 10.2.3.6 步驟 45 Cycle。
10.2.4 Melting curve analysis：
10.2.4.1 95 °C，1 min。
10.2.4.2 以 0.2°C/秒速率降溫至 68°C，收集熒光值。

11 結果判定
11.1 判讀標準
11.1.1 陽性對照組的 Ct 值需小於或等於 30，Tm 值需大於或等於 79°C。
11.1.2 陰性對照組的 Ct 值需大於或等於 40，Tm 值需小於 79℃，Ct 值或 Tm 值有一項符合上述要求即可。
11.1.3 陽性對照組或陰性對照組其中之一不符合設定值時，則重新實驗。
11.1.4 在陽性對照與陰性對照組符合設定值下， Ct 值小於 35，Tm 值大於或等於 79℃者，判為西尼羅病毒陽性，反之則判為西尼羅病毒陰性。

11.2 報告核發
11.2.1 西尼羅病原體檢驗方法：即時多重定量聚合酶連鎖反應（real-time PCR）
11.2.2 結果：陽性。
11.2.3 結果：陰性。
11.3 結果登錄：將檢體檢驗數據結果登錄於檢驗紀錄表，送請實驗室主管檢討確認，再依實驗室資訊管理系統（LIMS）之操作步驟，將檢驗結果登錄於系統，陳送指定之實驗室主管審核複校，發出正式檢測報告。由本署內部網站進入實驗室資訊管理統輸入檢驗結果。

12 品質管制
12.1 每次進行實驗時皆有對照組，陽性對照組與陰性對照組的 Ct 值需符合設定值。
12.2 實驗過程遵循標準檢驗方法的作業規範與流程，並在個別獨立的操作空間內操作，以避免污染。
12.3 即時多重定量 PCR 偵測系統定時作檢測與校正。
12.4 微量滴管分注器定期校正。
12.5 注意試劑套組的使用期限與適當的儲放溫度。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

15 附錄
15.1 西尼羅病毒診斷用引子組序列表。
附錄 15.1 西尼羅病毒診斷用引子組序列表

<table>
<thead>
<tr>
<th>West Nile virus specific primer</th>
<th>參與反應的濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>WN212 TTG TGT TGG CTC TCT TGG CGT TCT T</td>
<td>300nM</td>
</tr>
<tr>
<td>WN619 CAG CCG ACA GCA CTG GAC ATT CAT A</td>
<td>300nM</td>
</tr>
<tr>
<td>WN3111 GGC AGT TCT GGG TGA AGT CAA</td>
<td>300nM</td>
</tr>
<tr>
<td>WN3239 CTC CGA TTG TGA TTG CTT CGT</td>
<td>300nM</td>
</tr>
</tbody>
</table>
1 目的
西尼羅病毒 IgM 和 IgG 抗體檢測。

2 適用檢體種類
適用於人體血清或腦脊髓液之檢體。

3 名詞解釋
無。

4 原理概述
利用 Capture IgM 與 IgG 酶素免疫分析法，測定病人血清或腦脊髓液中之西尼羅病毒特異性抗體。

5 試劑耗材
5.1 Dilution buffer：Casein blocking buffer（Sigma, Product no. C7594, USA）
-5 % Normal rabbit serum（Equitech-Bio, Inc, Cat. no. SR-0500, USA）
-0.05 % Tween-20（Amresco, Cat. no. 0777, USA）, pH 7.2。
5.2 Washing buffer：PBS - 0.05 % Tween-20, pH 7.2。
5.3 Human positive and negative control sera
5.3.1 西尼羅 (West Nile, WN) Positive control（以 dilution buffer 1:100 稀釋）。
5.3.2 登革病毒 1-4 血清型（dengue virus, DENV）Positive control（以 dilution buffer 1:100 稀釋）。
5.3.3 日本腦炎（Japanese encephalitis, JE）Positive control（以 dilution buffer 1:100 稀釋）。
5.3.4 黃熱病（Yellow fever, YF）Positive control（以 dilution buffer 1:100 稀釋）。
5.3.5 Negative control（以 dilution buffer 1:100 稀釋）。
5.4 去活化病毒細胞培養液（病毒經 Vero 細胞培養 5-7 天，收集上清液，
經 UV 照射 1 hr，分裝後保存於-80°C 冷凍櫃）
5.4.1 DENV-1, strain 8700828 Taiwan。
5.4.2 DENV-2, strain 454009 Taiwan。
5.4.3 DENV-3, strain 8700829 Taiwan。
5.4.4 DENV-4, strain s9201818 Taiwan。
5.4.5 JEV, strain JaGAR。
5.4.6 WNV, strain 1510。
5.4.7 YFV, strain 17D。
5.4.8 Vero cell culture medium。
5.5 抗黃病毒屬外套抗原（envelope）單株抗體腹水（Glyconex, Cat. no.
FL0232, Taiwan）。
5.6 山羊抗小鼠 IgG 抗體-鹼性磷酸酶結合體。（goat anti-mouse IgG-AP
conjugate, Jackson, Code no. 115-006-071, USA）
5.7 Substrate reagent, p-Nitrophenyl-phosphate (p-NPP) (Chemicon, USA, Cat. no. ES009-500 mL).
5.8 96 孔微量滴定盤
5.8.1 Anti-human IgM 真空乾燥盤（coated with goat anti-human IgM，台灣尖端公司）。
5.8.2 Anti-human IgG 真空乾燥盤（coated with goat anti-human IgG，台灣尖端公司）。
5.9 八連排稀釋管。
5.10 吸棄式 250 μL、1,000 μL 吸管尖。
5.11 手套。

6 儀器設備
6.1 第 II 級生物安全櫃（class II BSC）。
6.2 全自動酵素免疫分析儀（Tecan, Genesis workstation 150, Germany）。
6.3 微量滴管分注器 2 μL、20 μL、100 μL、200 μL、1,000 μL（pipettors）。
6.4 震盪器。
6.5 冰箱：4 ºC。
6.6 冷凍櫃：-20 ºC。
6.7 高壓滅菌鍋。

7 環境設施安全
7.1 病人血清檢體應在第 II 級生物安全櫃內處理。
7.2 檢驗操作在生物安全第二等級（BSL-2）實驗室進行。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體編號登記。
10.2 西尼羅、登革病毒 1-4 型、日本腦炎與黃熱病病毒的細胞培養液分別以 Dilution buffer 不同倍稀釋後，各取等量混合加入 1：1,000 之抗黃病毒屬抗原單株抗體腹水 FL0232。
10.3 山羊抗小鼠 IgG 抗體-鹼性磷酸酶結合體以 Dilution buffer 1：2000 稀釋。
10.4 取得測血清 7 μL 加入 Dilution buffer 0.7 mL 稀釋 100 倍。
10.5 取 0.1 mL 待測血清(步驟10.4)及陰性、陽性對照血清(試劑耗材5.3)，加入 Coated goat anti-human IgM 及 Coating goat anti-human IgG 之 96 孔真空乾燥盤。

10.6 置於 37℃ 溫箱，搖盪 30 min，然後以 Washing buffer 清洗 4 次。

10.7 取 0.1 mL 含抗黃病毒屬抗原單株抗體腹水 FL0232 之西尼羅病毒細胞培養稀釋液及日本腦炎、黃熱病、登革病毒細胞培養稀釋液(步驟10.2)分別加入 96 孔真空乾燥盤。

10.8 置於 37℃ 溫箱，搖盪 30 min，然後以 Washing buffer 清洗 4 次。

10.9 取 0.1 mL 山羊抗小鼠 IgG 抗體-鹼性磷酸酶結合體稀釋液(步驟10.3)加入 96 孔真空乾燥盤。

10.10 置於 37℃ 溫箱，搖盪 30 min，然後以 Washing buffer 清洗 4 次。

10.11 取 0.1 mL/孔 呈色劑 (p-NPP) 加入 96 孔微量滴定盤中呈色。

10.12 置於 37℃ 溫箱，搖盪 40 min。

10.13 置微量滴定盤於酵素免疫分析儀裡，以雙波長 405、630 nm 測定吸光度 (OD₄₀₅₋₆₃₀)。

11 結果判定

11.1 判讀標準

11.1.1 若血清檢體之西尼羅病毒特異性 IgM 抗體之 OD 值大於 0.5，且西尼羅病毒 IgM OD 值/日本腦炎病毒 IgM OD 值大於或等於 2，判為西尼羅 IgM 陽性。

11.1.2 若血清檢體之西尼羅病毒特異性 IgG 抗體之 OD 值大於 0.5，判為西尼羅 IgG 陽性。

11.1.3 WN positive control serum 應符合 IgM OD 值 > 1.0, IgG OD 值 > 0.5。

11.1.4 JE positive control serum 應符合 IgM OD 值 > 1.0, IgG OD 值 > 0.5。

11.1.5 Negative control serum 應符合 IgM OD 值 < 0.2, IgG OD 值 < 0.2。

11.2 報告核發：

11.2.1 西尼羅病毒 IgM 和 IgG 抗體檢測

11.2.2 結果：陽性。

11.2.3 結果：陰性。

11.3 結果登錄：將檢體檢驗數據結果登錄於檢驗紀錄表，送請實驗室主管檢討確認，再依實驗室資訊管理系統 (LIMS) 之操作步驟，將檢驗結果登錄於系統，陳送指定之實驗室主管審核複校，發出正式檢測報告。

12 品質管制

12.1 應於有效期內使用，同一批號試劑，第一次使用時取一組進行試驗，之後每隔 3 - 6 個月再取一組進行試驗。

12.2 每次檢驗應加入陽性及陰性控制組血清。
12.3 遵循S.O.P的作業規範與流程，並在個別獨立的操作空間內操作，以避免污染。
12.4 微量滴管分注器定期做校正。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘検體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

15 附錄
15.1 西尼羅病毒 IgM 及 IgG 抗體試驗（酵素免疫分析法）流程圖
附錄15.1 西尼羅病毒IgM及IgG抗體試驗（酵素免疫分析法）流程圖。

96 孔微量真空乾燥盤 Coated with anti-human IgM
96 孔微量真空乾燥盤 Coated with anti-human IgG

待測血清及陰性、陽性對照血清 1：100 稀釋
0.1 mL/孔，37 ℃, 30 min (shaking)，
洗 4 次

取含抗黃病毒屬抗原單株抗體腹水 FL0232 之西尼羅病毒細胞培養稀釋液及日本腦炎、黃熱病、登革病毒細胞培養稀釋液，分別加入 96 孔真空乾燥盤
0.1 mL/孔，37 ℃, 30 min (shaking)，
洗 4 次

山羊抗小鼠 IgG 抗體-鹼性磷酸酶結合體 1：2000 稀釋
0.1 mL/孔，37 ℃, 30 min (shaking)，
洗 4 次

p-NPP 呈色劑
0.1 mL/孔，37 ℃, 40 min (shaking)

以酵素免疫分析儀，測定雙波長 405、630 nm 之吸光度
(OD_{405-630})

列印結果

結果判定
1 目的
以即時定量聚合酶鍊鎖反應（real-time PCR）分子診斷方法檢測疑似病患的血液、體液或組織檢體中是否含有恙蟲病、流行性及地方性斑疹傷寒立克次體核酸。

2 適用檢體種類
適用於病人血液、體液或組織檢體。

3 名詞解釋
Threshold cycle（Ct）：係指 PCR 產物複製的量，累積到足以被偵測到的第一個循環點稱之。換句話說，Ct 的值越小，表示檢體中初始核酸的含量越多。

4 原理概述
利用恙蟲病及斑疹傷寒立克次體專一性之引子（primers），與檢體中之立克次體核酸分子結合配對，並利用 PCR 的複製過程及特殊的熒光定量化學方法偵測 PCR 產物，以決定檢體中是否含有立克次體核酸序列。檢體先以立克次體 16S rRNA 基因、恙蟲病立克次體 56 kDa 外膜蛋白基因以及斑疹傷寒立克次體 17 kDa 基因之引子混合進行篩檢，當檢體呈陽性時，再以不同立克次體基因專一性引子做立克次體種類的鑑定。

5 試劑耗材
5.1 檢測試劑
5.1.1 病毒 DNA 萃取試劑套組。
5.1.2 SYBR green 定量反轉錄－聚合酶鍊鎖反應單步驟試劑套組。
5.2 陽性對照組（positive control DNA）：各種立克次體以 L929 細胞培養 14 天，收取細胞並抽取其 DNA，做為 PCR 陽性對照來源。
5.2.1 Rickettsia typhi（970432）。
5.2.2 R. sibrica。
5.2.3 R. japonica。
5.2.4 R. kato。
5.2.5 R. karp。
5.3 陰性對照組（negative control RNA）：
5.3.1 DNase，RNase-free H2O。
5.4 水質：25 ℃蒸餾水或 RO 逆滲透去離子可達 18 MΩ·CM 以上超純水。
5.5 定量 PCR 專用八連排反應管（QPCR 8-strip tubes）（Stratagene, USA Cat. no.410022）。
5.6 定量 PCR 專用八連排反應蓋（QPCR 8-strip caps）（Stratagene, USA Cat. no.410024）。
5.7 無菌 2 μL、20 μL、100 μL、200 μL、1,000 μL Tips。
5.8 無菌 1.5 mL 微量離心管。
5.9 無粉手套。
6 儀器設備
 6.1 第二級生物安全櫃。
 6.2 即時多重定量 PCR 偵測系統。
 6.3 微量滴管分注器 2 μL、20 μL、100 μL、200 μL、1,000 μL。
 6.4 高速離心機。
 6.5 4 ℃冰箱。
 6.6 -20 ℃冷凍櫃。
 6.7 高壓滅菌鍋。

7 環境設施安全
 7.1 病人血清檢體應在第二級生物安全櫃內處理。
 7.2 檢驗操作在生物安全第二等級（BSL-2）實驗室進行。
 7.3 應有獨立的操作空間，儘量與操作核酸相關的實驗室分開，以避免污染，影響結果。

8 檢體採集
 參照本署出版之「傳染病檢體採檢手冊」第二版。
 http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
 參照本署出版之「傳染病檢體採檢手冊」第二版。
 http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
 10.1 萃取立克次體 DNA
 10.1.1 先吸取 20 μL Protease（or proteinase K）與 200 μL Lysis buffer (AL) 放入 1.5 mL Microtube，再加入 200 μL 的抗凝固全血檢
 體，震盪混合，56 ℃下靜置反應 10 min。
 10.1.2 加入 200 μL 酒精 (96–100 %) 後，震盪混合以抽氣方式 (1 min)
 通過管柱 (column)，檢體中的 DNA 會吸附在管柱底部的膜
 上。
 10.1.3 加清洗液 750 μL，抽氣 1 min，清洗膜上所吸附的雜質。重覆
 本動作三次，將膜上雜質徹底清洗乾淨。
 10.1.4 以清洗液 750 μL，抽氣 1 min，作第二次沖洗，清洗膜上剩餘
 吸附的雜質。抽氣後再抽氣 1 min，兩次，以徹底去除膜上殘
 留酒精。
 10.1.5 加入萃取液 75 μL，室溫靜置 5 min，抽氣 1 min，取得 DNA。
 10.2 即時定量聚合酶鍵鎖反應 (real-time PCR)
 10.2.1 取 5 μL DNA 做模板，加入 (A) 立克次體 16S rRNA 基因、(B)
 蝨蟲病立克次體 56 kDa 外膜蛋白基因、(C) 斑點熱立克次體 17
kDa 基因引子組及(D)斑疹傷寒立克次體 17 kDa 基因引子組(參考附錄 15.2)，置於冰上。

10.2.2 檢體先進行 PCR 篩選，篩選時用兩個反應管，一反應管加入引子(A+B)，另一反應管加入引子(C+D)。若其中有任何反應管為陽性時，則再重新萃取立克次體 DNA 進行 Real-time PCR 確認其陽性反應。若篩選結果疑似為恙蟲病立克次體（僅(A+B)反應陽性），則確認時用兩個反應管，一反應管加入引子 (A)，另一反應管加入(B)，兩個反應管皆為陽性時，即確認為恙蟲病立克次體 PCR 陽性。若篩選結果疑似為斑疹傷寒或斑點熱立克次體(篩選時 (A+B)，(C+D)皆為陽性反應)，則確認時用兩個反應管，一反應管加入引子(C)，另一反應管加入(D)，以區分其為斑點熱或斑疹傷寒立克次體之感染。

10.2.3 加入反應溶液（成分如下表），調整反應總體積至 50 μL。

<table>
<thead>
<tr>
<th>初始濃度</th>
<th>加入體積</th>
<th>終止濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>2X QuantiTect SYBR green PCR master mix PCR buffer</td>
<td>25 μL</td>
<td>1X</td>
</tr>
<tr>
<td>Primer</td>
<td>Variable</td>
<td>參考附錄 15.2</td>
</tr>
<tr>
<td>RNase-free H₂O</td>
<td>Variable</td>
<td></td>
</tr>
</tbody>
</table>

10.2.4 即時定量聚合酶鍵鎖反應:
10.2.4.1 Taq polymerase activation：95 ℃，15 min。
10.2.4.2 Denaturation：94 ℃，15 sec。
10.2.4.3 Annealing：55 ℃，30 sec。
10.2.4.4 Extension：72 ℃，20 sec。
10.2.4.5 77 ℃，30 sec。收集熒光值。
10.2.4.6 重複 10.2.4.3 至 10.2.4.6 步驟 45 cycle。

10.2.5 Melting curve analysis：
10.2.5.1 95 ℃，1 min。
10.2.5.2 68 ℃→90 ℃ + 1 ℃ /30 sec/cycle。
10.2.5.3 重複 10.2.5.2 步驟 45 cycles。

11 結果判定
11.1 判讀標準
11.1.1 以 MxPro 軟體分析結果，可以從 Amplification plots 與 Tm 值作判斷，結果是陽性或陰性。
11.1.2 在陽性對照與陰性對照組的 Ct 值符合設定值下，凡樣品經恙蟲病或斑疹傷寒立克次體專一性引子之 Ct 值小於 40 者，判為恙蟲病或斑疹傷寒陽性。
11.1.3 觀看 Melting curve 時，一般來說，須 Tm 值＞80 ℃ 的 PCR 產物，才為具專一性之產物，而＜75 ℃之 PCR 產物，通常為非專一性的產物。
11.2 報告核發：
 11.2.1 檢驗方法：螢光定量聚合酶-連鎖反應（real-time PCR）
 11.2.2 結果：陽性。
 11.2.3 結果：陰性。

11.3 結果登錄：將檢體檢驗數據結果登錄於檢驗紀錄表，送請實驗室主管
檢討確認，再依實驗室資訊管理系統（LIMS）之操作步驟，將檢驗結
果登錄於系統，陳送指定之實驗室主管審核複校，發出正式檢測報告。

12 品質管制
 12.1 每次進行實驗時皆有對照組，陽性對照組與陰性對照組的 Ct 值需符合
設定值。
 12.2 實驗過程遵循 S.O.P 的作業規範與流程，並在個別獨立的操作空間內操
作，以避免污染。
 12.3 Mx3000P 機器定時作檢測與校正。
 12.4 Pipetman 做定期的校正。
 12.5 注意檢測套組的使用期限與適當的儲放溫度。

13 廢棄物處理
 檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥
密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
 14.1 Shu PY, S Chang SF, Kuo YC, Yueh YY, Chien LJ, Sue CL, Lin TH, Huang
 green I-based real-time reverse transcription-PCR assay for dengue virus. J.
 14.2 Tsai KH, Lu HY, Tsai JJ, Yu SK, Huang JH, Shu PY. 2008. Human case of

15 附錄
 15.1 立克次體鑑定（即時定量聚合酶連鎖反應）流程圖。
 15.2 立克次體診斷用引子組序列表。
附錄 15.1 立克次體鑑定（即時定量聚合酶鏈鎖反應）流程圖

抗凝固全血

立克次體 DNA 萃取

Real-time PCR 篩選陽性檢體

結果判定

PCR 結果為陰性：則判定立克次體核酸陰性

PCR 結果為陽性

立克次體 DNA 萃取

Real-time PCR 區分恙蟲病或斑疹傷寒立克次體

恙蟲病立克次體核酸陽性

斑疹傷寒立克次體核酸陽性
附錄 15.2 立克次體診斷用引子組序列表

<table>
<thead>
<tr>
<th></th>
<th>立克次體 16S rRNA gene consensus primers</th>
<th>參與反應的濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>16sRNAOTF7 5’- CCA GYG GGT RAT GCC GGG AAC TAT -3’</td>
<td>300 nM</td>
</tr>
<tr>
<td></td>
<td>16sRNAOTR6 5’- GGC AGT GTG TAC AAG GCC CGA GAA -3’</td>
<td>300 nM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>感藝術(ST)立克次體 56 kDa 外膜蛋白 gene specific primers</th>
<th>參與反應的濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.</td>
<td>RST-14F 5’- CCA TTT GGT GGT ACA TTA GCT GCA GGT -3’</td>
<td>300 nM</td>
</tr>
<tr>
<td></td>
<td>RST-6R 5’- TCA CGA TCA GCT ATA CTT ATA GGC A -3’</td>
<td>300 nM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>斑點熱(SFG)立克次體 17 kDa gene specific primers</th>
<th>參與反應的濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.</td>
<td>17kDa 142F 5’- GGT ATG AAT AAA CAA GGT ACA GGA AC -3’</td>
<td>300 nM</td>
</tr>
<tr>
<td></td>
<td>17kDa 447R 5’- ATA TTG ACC AGT GCT ATT TCT ATA AG -3’</td>
<td>300 nM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>斑疹傷寒(TG)立克次體 17 kDa gene specific primers</th>
<th>參與反應的濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.</td>
<td>17kDa 139F 5’- GGG TGG TAT GAA CAA ACA AGG GAC TG -3’</td>
<td>300 nM</td>
</tr>
<tr>
<td></td>
<td>17kDa 133F 5’- TGG TCA GAG TGG TAT GAA CAA ACA AG -3’</td>
<td>300 nM</td>
</tr>
<tr>
<td></td>
<td>17kDa 378R 5’- CGC CAT TCT ATG TTA CTA CCG CTA GG -3’</td>
<td>300 nM</td>
</tr>
</tbody>
</table>
1 目的
以間接免疫螢光法檢測流行性斑疹傷寒立克次體（Rickettsia prowazekii）抗體
以確定病人感染流行性斑疹傷寒。

2 適用檢體種類
適用於人體血清檢體。

3 名詞解釋
無。

4 原理概述
利用抗原與抗體之專一性結合的免疫反應，加上二級螢光標誌抗體將此反應
轉成螢光訊號，而可以透過螢光顯微鏡觀察結果。

5 試劑耗材
5.1 檢測試劑
5.1.1 PBS（10 X stock solution）0.1 M pH 7.4。
5.1.2 螢光標誌抗體 FITC-goat anti-human IgG +A + M （H+L
chain）。
5.1.3 螢光標誌抗體 FITC-goat anti-human IgM。
5.1.4 螢光標誌抗體 FITC-goat anti-human IgG。
5.1.5 流行性斑疹傷寒螢光抗原玻片（R prowazekii IFA slide）。
5.1.6 IgG 去除劑。
5.1.7 R. prowazekii positive control serum：2 - 8 ℃ 保存、直接使用不
需稀釋。
5.1.8 Rickettsiae Universal Negative Control：2 - 8 ℃ 保存、直接使用
不需稀釋。
5.1.9 水質：25 ℃ 蒸餾水或 RO 逆滲去離子透可達 18 MΩ-CM 以上
超純水。

5.2 耗材
5.2.1 96-well U 型盤。
5.2.2 50 mL 儲液槽。

6 儀器設備
6.1 螢光顯微鏡。
6.2 37 ℃ 溫箱。

7 環境設施安全
7.1 避免接觸傳染，所以病人的血清檢體，應在第二級生物安全櫃（class II
BSC）內處理。
7.2 檢驗操作在生物安全第二等級（BSL-2）實驗室進行。
8 檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體前處理
10.1.1 將抗原玻片取出並風乾。
10.1.2 試藥回溫。
10.1.3 做 IgM 力價測定時，血清須事先使用 IgG 去除劑處理，以避免 IgG 干擾螢光免疫結果：取 10 μL 待測 IgM 力價之檢體，加入 70 μL IgG 去除劑，以 1:8 稀釋比例混和後，靜置 5 min 備用。

10.2 步驟
初步篩選（screening）：以 IFA- anti-human IgG＋A＋M 篩選 1：40 倍之稀釋血清。
10.2.1 將患者血清以 pH 7.4 之 0.01 M PBS 做 1：40 倍稀釋。
10.2.2 將稀釋血清及陽性、陰性對照組血清各取 50 μL 點入 12 孔抗原玻片上。
10.2.3 將玻片置於保濕盒（moisture chamber），並於 37 °C 恆溫箱作用 30 min。
10.2.4 以 PBS 溶液沖洗玻片後，將玻片浸於 PBS 中，5 min 後再換一次 PBS，並浸泡 5 min。
10.2.5 以蒸餾水沖洗玻片，風乾。
10.2.6 每個孔加二級螢光標幟抗體（FITC-goat anti-human IgG＋A＋M），每滴約 50 μL。
10.2.7 將玻片置於保濕盒，並於 37 °C 恆溫箱作用 30 min。
10.2.8 以 PBS 溶液沖洗玻片後，將玻片浸於 PBS 中，5 min 後再換一次 PBS，並浸泡 5 min。
10.2.9 以蒸餾水沖洗玻片，風乾。
10.2.10 加封存劑（配方為 PBS：甘油＝1：1）封片後，以螢光顯微鏡 400 倍鏡檢。
10.2.11 結果判定：有螢光反應者為疑似陽性病例，需再做進一步測定力價確認（即進行 IgM & IgG 抗體力價測定）。

IgM & IgG 抗體力價測定：
10.2.12 血清稀釋
10.2.12.1 IgM 測定：
將已去除 IgG 之血清檢體以 pH 7.4·0.01 M PBS 自 1：40 起做 2 倍稀釋至 1：160 或以上。
10.2.12.2 IgG 測定：
将血清檢體以 pH 7.4, 0.01 M PBS 自 1:40 起做 2 倍稀釋至 1:640 或以上。

10.2.13 將稀釋血清及陽性、陰性對照組血清各取 50 μL 點入 12 孔抗原玻片上。

10.2.14 將玻片置於保濕盒，並於 37°C 恆溫箱作用 30 min。

10.2.15 以 PBS 溶液沖洗玻片後，將玻片浸於 PBS 中，5 min 後再換一次 PBS，並浸泡 5 min。

10.2.16 以蒸餾水冲洗玻片，風乾。

10.2.17 每孔內加二級螢光標幟抗體 (FITC-goat anti-human IgM 或 IgG)，每滴約 50 μL。

10.2.18 將玻片置於保濕盒，並於 37°C 恆溫箱作用 30 min。

10.2.19 以 PBS 溶液沖洗玻片後，將玻片浸於 PBS 中，5 min 後再換一次 PBS，並浸泡 5 min。

10.2.20 以蒸餾水沖洗玻片，風乾。

10.2.21 加封存劑封片後，以螢光顯微鏡 400 倍鏡檢。

10.2.22 判定抗體力價。

11 結果判定

11.1 判讀標準

11.1.1 陽性的判定：若單支血清 IgM 有 1:80 以上，且 IgG 有 1:320 以上，可判為陽性。或配對血清 IgG 力價有 4 倍以上上升者，可判為陽性。

11.1.2 陰性的判定：配對血清 IgM 及 IgG 力價皆低於 1:40 者，可判為陰性。

11.1.3 未確定需再採檢：若單支血清 1:40 倍稀釋之 IFA- anti-human IgG+A+M 初步篩選 (screening) 結果為陰性，或結果為陽性，但血清 IgM 力價低於 1:80，則判為未確定，需再採檢。

11.1.4 不明 (無法確定)：配對血清 IgG 力價無 4 倍以上上升者，判為不明 (無法確定)。

11.2 報告核發

11.2.1 普氏立克次體抗體：陰性。

11.2.2 普氏立克次體抗體：未確定需再採檢。

11.2.3 普氏立克次體抗體：不明（無法確定）。

11.2.4 普氏立克次體抗體：陽性。

11.3 結果登錄

將檢體檢驗數據結果登錄於檢驗紀錄表，送請實驗室主管檢討確認，再依實驗室資訊管理系統 (LIMS) 之操作步驟，將檢驗結果登錄於系統，陳送指定之實驗室主管審核複校，發出正式檢測報告。
12 品質管制
 12.1 嚴防病原散佈或污染，工作時帶手套。
 12.2 除螢光鑑定試驗步驟外全程作業都要在第二級生物安全操作箱內進行。
 12.3 使用過之器材必須加以消毒處理。
 12.4 每次檢驗應加入陽性、陰性控制組血清。
 12.5 遵循 S.O.P 的作業規範與流程，並在個別獨立的操作空間內操作，以避免污染。
 12.6 微量滴管分注器定期做校正。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
 14.1 財團法人日本公眾衛生協會。1987。Virus、Chlamydia、Rickettsia 檢查，第三版第三分冊。

15 附錄
 15.1 普氏立克次體檢驗流程圖。
 15.2 普氏立克次體抗體試驗（免疫螢光抗體法）流程圖。
附錄 15.1 普氏立克次體檢驗流程圖。

普氏立克次體檢驗

分子診斷
（real-time PCR）

IgM/IgG
抗體試驗
附錄 15.2 普氏立克次體抗體試驗（免疫螢光抗體法）流程圖。

血清

以 PBS 稀釋

滴至抗原玻片上

置 37°C 保濕盒中作用 30 分鐘

以 PBS 浸洗

加 FITC conjugated goat anti-human IgM/G/A 二級抗體

置 37 ℃，30 分鐘後以 PBS 浸洗

以螢光顯微鏡鏡檢

判定抗體力價
1 目的
百日咳通報病例所採檢的鼻咽検體中百日咳菌與副百日咳菌的分離與鑑定。

2 適用檢體種類
適用於人體鼻咽分泌物検體。

3 名詞解釋
無。

4 原理概述
以特定培養基分離百日咳菌與副百日咳菌，並利用生化代謝，血清學特性鑑定。

5 試劑耗材
5.1 B-G 培養基（Bordet-Gengou agar plate）。
5.2 革蘭氏染色液（Gram's stain solution）：Difco，美國，武藤化學，日本或其它具相同鑑別力之試劑。
5.3 氧化酶試劑（oxidase strips）：MAST，英國，BioMérieux，法國或其它具相同鑑別力之試劑。
5.4 無菌滴管（dropper）：1 mL。
5.5 接種針（環）。
5.6 載玻片。
5.7 無菌塑膠手套。
5.8 抗血清：Bacto-Bordetella pertussis Antiserum, Difco，美國或其它具相同鑑別力之試劑。
5.9 抗血清：Bacto-Bordetella parapertussis Antiserum, Difco，美國或其它具相同鑑別力之試劑。
5.10 標準菌株：Neisseria meningitides BCRC10714=ATCC13090。
5.11 標準菌株：Escherichia coli BCRC11509=ATCC25922。
5.12 標準菌株：Bordetella pertussis Tohama。
5.13 標準菌株：Bordetella parapertussis ATCC15311。

6 儀器設備
6.1 35 ℃ 培養箱。
6.2 高壓滅菌鍋。
6.3 光學顯微鏡：能放大至 1,000 X 油鏡。
6.4 第二級生物安全櫃（class II BSC）。

7 環境設施安全
7.1 於生物安全第二等級（BSL-2）實驗室之設施內操作。
7.2 處理検體、接種時於生物安全櫃內操作。
8 檢體採集
請參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
請參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 分離培養
10.1.1 檢體接種：將百日咳輸送培養基中之鼻咽拭子取出旋轉接種在 B-G 培養基上。
10.1.2 培養：培養基放入塑膠袋中，再置入已添加無菌水保溼的鐵盒中保持溼度，35 °C 培養箱培養。
10.1.3 觀察：16 - 18 hr 後，開始觀察，有可疑菌落則進行鑑定，一般百日咳菌在培養基上培養大約 3 - 4 天後，肉眼可見其菌落，如無，則繼續培養及隔日觀察，至少需培養 7 天。

10.2 鑑定
10.2.1 菌落型態及染色：小、突起、平滑、灰白色有珍珠光澤、似水銀滴，若僅有少數幾個菌落時，溶血性不易觀察，但若有一大群菌落，則可看到溶血現象。挑選可疑菌落作 Gram's stain，符合 Gram-negative coccobacilli（short slender）。
10.2.2 生化鑑定 Oxidase test：以接種環挑取單一菌落直接塗於 strip 上，觀察顏色變化，10 sec 內變為藍色，為陽性反應。B. pertussis and B. bronchiseptica 陽性呈現藍色或藍紫色，B. parapertussis 陰性不變色。
10.2.3 血清凝集試驗（玻片凝集法）：
10.2.3.1 將載玻片用蠟筆分格，測試位置如圖說明：

<table>
<thead>
<tr>
<th>P</th>
<th>Pa</th>
<th>N</th>
</tr>
</thead>
</table>

P：Bordetella pertussis 測試。
Pa：Bordetella parapertussis 測試。
N：陰性對照（無菌食鹽水）。

10.2.3.2 在每一格分別滴入 1 滴（約 40 μL）無菌 0.85 %食鹽水，以 1 μL 接種環，挑 1/2 Loop 量的新鮮菌落於各分格中與無菌生理食鹽水混合均勻，個別加入相對應之抗血清（1：10 稀釋使用，稀釋後血清只能使用 1 天）或無菌 0.85 %食鹽水，均勻搖晃玻片約 1 min，觀察並記錄凝集情形。
10.2.3.3 凝集結果紀錄

4 價	100% 凝集，背景完全清透。
3 價	75% 凝集，背景輕微混濁。
2 價	50% 凝集，背景中度混濁。
1 價	25% 凝集，背景混濁。
-	沒有凝集。

11 結果判定

11.1 判讀標準

11.1.1 百日咳菌陽性判定標準：符合百日咳菌於 B-G 培養基的菌落型態、菌落小、突起、平滑、灰白色有珍珠光澤、似水銀滴，Gram's stain 革蘭氏陰性菌，球桿（細短桿）菌，Oxidase test 陽性呈現藍色或藍紫色，Bordetella pertussis antiserum 血清凝集試驗、凝集 3 價以上即可判為百日咳菌陽性。凝集未達 3 價需加做 PCR，PCR 為百日咳菌陽性結果，判定為百日咳菌陽性；若 PCR 陰性則百日咳菌判定標準為陰性。

11.1.2 副百日咳菌陽性判定標準：菌落型態、Gram's stain 結果與前面描述相同，Oxidase test 不變色，Bordetella parapertussis antiserum 血清凝集試驗、凝集 3 價以上即可判為副百日咳菌陽性。凝集未達 3 價需加做 PCR，PCR 為副百日咳菌陽性結果，判定為副百日咳菌陽性；若 PCR 陰性則副百日咳菌判定標準為陰性。

11.2 報告核發：百日咳菌陽性或百日咳菌陰性。

11.3 結果登錄：將檢體之檢驗結果登錄於百日咳菌分離與鑑定紀錄表及檢體送驗單並加蓋檢驗者印章，送實驗室主管審核及蓋章，並登錄於網路報告系統。

11.3.1 結果的可報告區間

陽性：Bordetella pertussis

陰性：Bordetella parapertussis，non-Bordetella pertussis，

non-Bordetella parapertussis，No growth。

11.3.2 緊急通報

無

11.3.3 干擾因素

11.3.3.1 病人因素：病程發展階段、抗生素使用。

11.3.3.2 採樣運送時：採檢部位、採檢使用之輸送器材、運送時間和溫度。

11.3.3.3 培養溼度、溫度。

11.3.4 潛在變異的來源

11.3.4.1 接種剖接技術。

11.3.4.2 菌落型態辨識。

11.3.5 檢驗性能之規格
衛生福利部疾病管制署傳染病標準檢驗方法

第388頁/共1104頁

12 品質管制
12.1 Oxidase 試驗：
12.1.1 測試時間：同一批號試劑，於第一次使用時進行試驗。
12.1.2 測試菌株：陽性品管菌株，Neisseria meningitides
BCRC10714=ATCC13090，陰性品管菌株，Escherichia coli
BCRC11509=ATCC25922。
12.1.3 測試方法：（依 10.2.2 節）。
12.1.4 觀察結果紀錄：結果要符合預期結果，陽性品管菌株試驗結果需陽性，陰性品管菌株試驗結果需陰性。

12.2 B-G 培養基的品質管制：
12.2.1 測試時間：每一批號由廠商提供品質管制文件，實驗室每年進行一次品質測試。
12.2.2 測試菌株：Bordetella pertussis Tohama。
12.2.3 測試方法：使用新鮮的測試菌，生長於固體營養培養基一天的菌，挑菌懸浮於 2 mL 無菌水中，調菌液濁度 0.5 McFarland，以 1 μL 的 loop 取菌液依四區畫線接種於測試培養基上，35 °C 培養箱培養。
12.2.4 觀察結果紀錄：預期結果 3-4 天後，可見 0.5-1 mm 菌落，菌落至少生長至第三區。

12.3 抗血清：
12.3.1 测試時間：於第一次使用時。
12.3.2 測試菌株：Bordetella pertussis Tohama，Bordetella parapertussis ATCC15311。
12.3.3 測試方法（依 10.2.3 節）。
12.3.4 觀察結果紀錄：抗血清與相對應抗原凝集應該具有 3 價或 3 價以上，方可使用。

12.4 能力試驗

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
14.1 蔡文城。2002。實用臨床微生物診斷學，第九版。九州圖書文物有限公司，臺灣。第 864-868 頁。
附錄 15.1 百日咳菌分離與鑑定流程圖

鼻咽分泌物

接種 B-G 培養基

35 °C，3 - 7 天

突起、平滑、灰白色有珍珠光澤、似水銀滴之可疑菌落

無可疑菌落

革蘭氏染色

陰性

短桿菌

陽性

Oxidase test

陰性

陽性

與副百日咳菌抗血清有 3 倍以上凝集

與百日咳菌抗血清有 3 倍以上凝集

沒有 3 倍以上凝集

菌體抗血清凝集試驗

副百日咳菌陽性判定

百日咳菌陽性判定

PCR 診斷

陰性判定
百日咳菌分離與鑑定紀錄表

衛生福利部疾病管制署研究檢驗及疫苗研製中心

<table>
<thead>
<tr>
<th>檢體編號</th>
<th>收件日期</th>
<th>檢驗日期</th>
<th>檢體採檢運送狀況適當</th>
<th>是</th>
<th>否</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B-G agar plate 生長型態: 灰白色有珍珠光澤、似水銀滴</th>
<th>培養/觀察</th>
<th>是</th>
<th>否</th>
<th>是</th>
<th>否</th>
<th>是</th>
<th>否</th>
<th>是</th>
<th>否</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>第2天</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>第3天</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>第4天</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>第5天</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>第6天</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>第7天</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>第8天</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>菌體抗血清凝集試驗: B. pertussis antiserum</th>
<th>陽性</th>
<th>陰性</th>
<th>陽性</th>
<th>陰性</th>
<th>陽性</th>
<th>陰性</th>
<th>陽性</th>
<th>陰性</th>
<th>陽性</th>
<th>陰性</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 價</td>
<td>未及</td>
</tr>
<tr>
<td></td>
<td>凝集</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>菌體抗血清凝集試驗: B. parapertussis antiserum</th>
<th>陽性</th>
<th>陰性</th>
<th>陽性</th>
<th>陰性</th>
<th>陽性</th>
<th>陰性</th>
<th>陽性</th>
<th>陰性</th>
<th>陽性</th>
<th>陰性</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 價</td>
<td>未及</td>
</tr>
<tr>
<td></td>
<td>凝集</td>
</tr>
</tbody>
</table>

附註: 未及3價凝集需加做PCR確認

綜合結果

報告日期

檢驗者：

實驗室主管：
附錄 15.3 Plate 品質管制紀錄表

衛生福利部疾病管制署研究檢驗及疫苗研製中心

________ Plate 品質管制紀錄表

培養基名稱：
廠牌：Cat no.：
批號：有效期：

交貨日期： 年 月 日 交貨數量：
試驗日期： 年 月 日

品管（查驗）紀錄

<table>
<thead>
<tr>
<th>項目</th>
<th>結果</th>
<th>判定</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>無菌性試驗</td>
<td>□ No growth</td>
<td>□ 合格</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ Contamination</td>
<td>□ 不合格</td>
<td></td>
</tr>
<tr>
<td>有效性試驗</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. 試驗菌：生長描述：</td>
<td></td>
<td>□ 合格</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>□ 不合格</td>
<td></td>
</tr>
<tr>
<td>2. 試驗菌：生長描述：</td>
<td></td>
<td>□ 合格</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>□ 不合格</td>
<td></td>
</tr>
<tr>
<td>3. 試驗菌：生長描述：</td>
<td></td>
<td>□ 合格</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>□ 不合格</td>
<td></td>
</tr>
<tr>
<td>包裝</td>
<td>□ 完整 □ 破損</td>
<td>□ 合格</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ 其它：</td>
<td>□ 不合格</td>
<td></td>
</tr>
<tr>
<td>水分</td>
<td>□ 正常 □ 太乾</td>
<td>□ 合格</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ 其它：</td>
<td>□ 不合格</td>
<td></td>
</tr>
<tr>
<td>其它</td>
<td></td>
<td>□ 合格</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>□ 不合格</td>
<td></td>
</tr>
</tbody>
</table>

實驗室 PI： 品管技術人員：
一. 目的
利用聚合酶链锁反应（PCR）对分离出之培养菌进行百日咳菌及副百日咳菌鉴定。

二. 隻用検体種類
適用於從病患已分离之培养菌。

三. 名詞解釋
無。

四. 原理概述
针对百日咳菌及副百日咳菌的Porin gene設計3條 primer，利用 PCR 放大2种特定大小的片段，Bordetella pertussis 由 P1/P2 夾出 159 bp 対段，Bordetella parapertussis 由 P1/P3 夾出 121 bp 対段。利用 16S rRNA gene 當 Internal control 由 8AU/519B 夾出 512 bp 対段。

五. 試剤耗材
5.1 無菌水：用電阻可達 18 MΩ-CM 超純水，滅菌 121 °C，15 min。
5.2 PCR 反應管：LTK，台灣。成分 Taq DNA polymerase 2 U，dNTP 1 mM，Buffer salt，Stabilizer，或功能相同之分生混合试剂。
5.3 微量吸管尖 tip：無菌、需有 filter，需 1,000 µL、200 µL、40 µL 與 10 µL 四種。
5.4 接種針（環）。
5.5 可拋棄式塑膠手套。
5.6 1.5 mL Eppendorf 無菌管。
5.7 TBE 緩衝液。
5.8 Ethidium bromide。
5.9 Primer
P1 5’-TGCAACATCCTGTCCCTTAATCC -3’。
P2 5’-ATGCTTATGGTGTTCATCCGGG -3’。
P3 5’-CGTCCACCAGGGGTGGTAGGAG -3’。
8AU 5’-AGAGTTTATCCTGGCTCAG-3’。
519B 5’-ATTACCGCGCTGCTCG-3’。

六. 儀器設備
6.1 生物安全櫃。
6.2 桌上型離心機。
6.3 4°C 冰箱。
6.4 -20°C 冷凍櫃。
6.5 水浴槽。
6.6 電泳槽。
6.7 微量吸管 Pipetman：需 1,000 µL、200 µL、2 µL 等三種規格。
6.8 核酸增幅儀：Biometra。
6.9 DNA 電泳膠體觀察照相設備。

7 環境設施安全
7.1 菌株處理於於生物安全第二等級（BSL-2）實驗室之設施內操作。
7.2 PCR 反應混和物配製、PCR 反應進行、電泳皆需於獨立區域操作。

8 檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體處理
10.1.1 分離的菌體：以 1 μL 接種環挑取 1/2 Loop 的新鮮菌落，放入含 100 μL 無菌水的 1.5 mL eppendorf 無菌管中，以 100℃ 熱煮 10 min，放入離心機 5,000 x g (12,000 rpm) 離心 5 min，取上清液當作 Template。

10.2 PCR
10.2.1 PCR (P1/P2/P3) 反應混和物配製如下：
<table>
<thead>
<tr>
<th>Component</th>
<th>Final conc. or volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template（陽性 DNA、水、檢體）</td>
<td>1 μL</td>
</tr>
<tr>
<td>Each primer（5 μM）</td>
<td>1 μL</td>
</tr>
<tr>
<td>PCR 反應管商品內含（Taq DNA polymerase、dNTP、Buffer salts、Stabilizer）</td>
<td></td>
</tr>
<tr>
<td>Total volume（加無菌水）</td>
<td>20 μL</td>
</tr>
</tbody>
</table>

10.2.2 放入儀器中進行反應，反應條件設定：
94 ℃/5 min，1 cycle。
94 ℃/30 s，65 ℃/30 s，72 ℃/30 s，30 cycles。
72 ℃/10 min，1 cycle。

10.3 Internal control：如果檢體沒有 PCR 產物時需加做
10.3.1 Internal control PCR（8AU/519B）反應混和物配製如下：
<table>
<thead>
<tr>
<th>Component</th>
<th>Final conc. or volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template（水、檢體）</td>
<td>1 μL</td>
</tr>
<tr>
<td>Each primer（5 μM）</td>
<td>1 μL</td>
</tr>
<tr>
<td>PCR 反應管商品內含（Taq DNA polymerase、dNTP、Buffer salts、Stabilizer）</td>
<td></td>
</tr>
<tr>
<td>Total volume（加無菌水）</td>
<td>20 μL</td>
</tr>
</tbody>
</table>
10.3.2 放入儀器中進行反應，反應條件設定：
94 °C /5 min，1 cycle。
94 °C /20s，57 °C /30s，72 °C /40s，30 cycles。
72 °C /10 min，1 cycle。

10.4 PCR 電泳分析。

11 結果判定
11.1 判讀標準：
11.1.1 Bordetella pertussis：159 bp，百日咳菌陽性。
11.1.2 Bordetella parapertussis：121 bp，副百日咳菌陽性。
11.1.3 陰性結果需加作 Internal control：確有 512 bp 產物，則可做陰性判定。

11.2 報告核發：百日咳菌陽性或百日咳菌陰性。
11.3 結果登錄：將檢體之檢驗結果登錄於百日咳菌分子生物學鑑定（PCR）紀錄表及檢體送驗單並加蓋檢驗者印章，送實驗室主管審核及蓋章，並登錄於網路報告系統。
11.3.1 結果的可報告區間
陰性：Bordetella pertussis：159 bp。
陰性：Bordetella parapertussis：121 bp，non- Bordetella pertussis，non- Bordetella parapertussis：512 bp。

11.3.2 緊急通報
無。

11.3.3 干擾因素
培養基上物質。

11.3.4 潛在變異的來源
環境中核酸污染。

11.3.5 檢驗性能之規格
11.3.5.1 Sensitivity ：Bordetella pertussis limited DNA concentration 39 pg，Bordetella parapertussis limited DNA concentration 156 pg。

11.3.5.2 Specificity 100 %。

12 品質管制
PCR反應管：
12.1 品管測試時間：每一批號開封使用時。

12.2 陽性對照菌株：Bordetella pertussis Tohama，Bordetella parapertussis ATCC15311。

12.3 陽性對照：Template 加入陽性菌株 Bordetella pertussis Tohama，Bordetella parapertussis ATCC15311 的 DNA。陰性對照：Template 體積以無菌水取代，與預期結果相符。
13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

15 附錄
15.1 百日咳菌分子生物學鑑定（PCR）流程圖。
15.2 百日咳菌分子生物學鑑定（PCR）紀錄表-1。
15.3 百日咳菌分子生物學鑑定（PCR）紀錄表-2。
附錄 15.1 百日咳菌分子生物學鑑定 (PCR) 流程圖

以 1 μL 接種環挑取 1/2 loop 的新鮮菌落，放入含 100 μL 無菌水的 1.5 mL eppendorf 無菌管中，以 100 ℃ 熱煮 10 分鐘，放入離心機 5,000 × g (12,000 rpm) 離心 5 分鐘，取上清液當作 template

PCR (P1/P2/P3) 反應混和物配製，放入 PCR 機器中進行反應

PCR 電泳分析

產物片段
121 bp
副百日咳菌陽性

產物片段
159 bp
百日咳菌陽性

沒有產物片段

PCR (8AU/519B) 反應混和物配製，放入 PCR 機器中進行反應

PCR 電泳分析

產物片段
512 bp
陰性

沒有產物片段
結果不合理
重新進行實驗
百日咳菌分子生物學鑑定 (PCR) 紀錄表-1

<table>
<thead>
<tr>
<th>聚合酶鍵鎖反應</th>
<th>是</th>
<th>否</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR反應管管面標記</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA template (1 µL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Each primer (5 µM) 1 µL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total volume（加無菌水）20 µL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCR反應：94°C / 5 min.，1 cycle；94°C / 30s，65°C / 30s；72°C / 30s，30 cycles；72°C / 10 min.，1 cycle。</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>檢體編號</th>
<th>陽性對照百日咳菌</th>
<th>陽性對照副百日咳菌</th>
<th>陰性對照(無菌水)</th>
</tr>
</thead>
<tbody>
<tr>
<td>收件日期</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>檢驗日期</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCR產物：B. pertussis 159 bp B. parapertussis 121 bp</td>
<td>159 bp 121 bp 無</td>
<td>159 bp 121 bp 無</td>
<td>159 bp 121 bp 無</td>
</tr>
</tbody>
</table>

附註：無PCR產物時，需繼續進行Internal control實驗。

報告日期

檢驗者：實驗室主管：
附錄 15.3 百日咳菌分子生物學鑑定（PCR）紀錄表-2

<table>
<thead>
<tr>
<th>聚合酶鍊鎖反應</th>
<th>是</th>
<th>否</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR反應管管面標記</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA template (1μL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Each primer (5 μM) 1 μL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total volume（加無菌水） 20 μL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCR反應：94°C/5 min, 1 cycle；94°C / 30s, 57°C / 30s, 72°C / 30s, 30 cycles；72°C / 10 min, 1 cycle。</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>檢體編號</th>
<th>陽性</th>
<th>對照</th>
<th>陰性</th>
<th>對照副百日咳菌（無菌水）</th>
</tr>
</thead>
<tbody>
<tr>
<td>陽性對照</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>百日咳菌</td>
<td>512 bp無</td>
<td>512 bp無</td>
<td>512 bp無</td>
<td>512 bp無</td>
</tr>
<tr>
<td>陽性對照副百日咳菌（無菌水）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

綜合結果

附註

報告日期

<table>
<thead>
<tr>
<th>檢驗者</th>
<th>實驗室主管</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
目的
利用新型恒温式环形核酸增幅法（LAMP）对有症状之百日咳通报个案检
验，进行百日咳菌核酸鉴定。

适用检体种类
适用於病患鼻咽拭子检体。

名词解释
LAMP：Loop-Mediated Isothermal Amplification Method 為恒温、具 loop 形式的 DNA 增幅法。

原理概述
针对百日咳菌的 PT promoter 部位设计 6 條 primer，利用 LAMP 法於恒温下
进行快速反应。最大的特點在於：(1) 使用作用温度 60–65 °C 和具高 DNA
strand 置換能力的 DNA 聚合酶（DNA polymerase）；(2) 使用 Inner primers
（FIP，BIP）和 Outer primers（F3，B3）再加上 Loop primers（LF，LB）。Inner primers 與 Outer primers 為反應所必須，在增幅的過程中分別扮演了啟
始引發與後續「self-priming」的角色，而 loop primers 則是互補於 DNA 序列
F1、F2 中間的片段，這個位置在 LAMP 的 DNA product 上，為 Stem-loop
結構的 Loop 位置，有助於提升整個反應的效率；這三對引子在設計之時，
Tm 值要控制在 60 - 65 °C，以利 DNA 聚合時可達最佳效能，也因此提升了
在温度调控上的便利性及專一性。

试剂耗材
5.1 PCR 反应管
5.2 微量吸管尖 tip：無菌、需有 filter，1,000 μL、200 μL、10 μL 與 2 μL
四種。
5.3 可拋棄式鼻咽拭子及採集管 Eswab。
5.4 拋棄式塑膠手套。
5.5 1.5 mL Eppendorf 無菌管。
5.6 QIAamp DNA micro kit（50 rxn Qiagen Cat no.56304）。
5.7 Eiken DNA amplification kit。
5.8 Eiken fluorescent detection reagent
5.9 Primer set（5 μL）含
BP-F3 5’- CCGCATACGTGTGTGGCA -3’（5pmole）。
BP-B3 5’-TGCGTTTTGATGTTGCT-3’（5pmole）。
BP-FIP （40pmole）
5’-TTGGATTGCAGTAGCGGGATGTGCATGCGTGCAGATTCGTC-3’。
BP-BIP（40pmole）
5’-CGCAAAAGTCCGGCGATGGAACGGGATCAGACCACCATGGCA-3’。
BP-LF 5’-ACGGAAAGATCGAGGGGTTTTTGTAC-3’（20pmole）。
BP-LB 5’-GTCACCGTGCCCGGACCCTG-3’（20pmole）。
儀器設備
6.1 生物安全櫃。
6.2 桌上型離心機。
6.3 4°C冰箱。
6.4 -20°C冷凍櫃。
6.5 水浴槽。
6.6 溫度調控混合器（thermomixer）。
6.7 微量吸管 Pipetman：需 1,000 μL、200 μL、2 μL 等三種規格。
6.8 核酸增幅儀：Biometra 或 LA-320C (Eiken)。
6.9 波長 254 nm紫外光燈。
6.10 震盪器（vortex）

環境設施安全
7.1 檢體處理於生物安全第二等級（BSL-2）實驗室之設施內操作。
7.2 PCR 反應混和物配製、PCR 反應進行皆於獨立區域操作。

檢體採集
8 請参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

檢體採集
9 請参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

檢驗步驟
10.1 檢體處理
10.1.1 在生物安全櫃內將 Eswab 拭子內 Liquid Amies Medium 取 0.5 mL 至 1.5 mL離心管，剩下的溶液置-20°C冷凍櫃，留樣備用。
10.2 DNA 萃取
10.2.1 離心（15,000 rpm 10 min 或 12,000 rpm 15 min）後，去上清液，沉澱物作 DNA 抽取（使用 QIAamp DNA micro kit）。
10.2.2 室溫（15 - 25°C）下加入 180 μL ATL buffer。
10.2.3 加 20 μL Protease K，震盪（vortex）混勻 15 sec，放置於 56°C 的 Thermomixer 上，轉速 400 rpm，震盪至隔日。
10.2.4 次日加入 200 μL AL buffer 及 1 μL Carrier RNA (1 μg /μL)，震盪（vortex）混勻 15 sec。
10.2.5 加 200 μL酒精（96 - 100 %），震盪（vortex）混勻 15 sec，室溫放置 5 min。
10.2.6 上清液移入 QIAamp MinElute column，離心 1 min （8,000 rpm）並將 Column 换至新的 Collection tube。
10.2.7 加入 500 μL AW1 buffer，離心 1 min (8,000 rpm)，更換新的 Collection tube。

10.2.8 加入 500 μL AW2 buffer，離心 1 min (8,000 rpm)，更換新的 Collection tube。

10.2.9 全速離心 3 min (14,000 rpm)。

10.2.10 將 QIAamp MinElute Column 移至新的 1.5 mL 離心管後，加入 25 μL Buffer AE，直接滴在中央過濾膜上，於室溫 (15 – 25 ℃) 靜置 1 min。

10.2.11 全速離心 1 min (14,000 rpm)，完成 DNA 萃取。

10.3 LAMP 反應

10.3.1 煮沸前述步驟之萃取 DNA 5 min 後，立刻置於冰上（pre-denature）。

10.3.2 配製 LAMP 反應組成物如下：Total 25 μL

- 2 X Reaction Mixture 12.5 μL
- Primer set 5 μL
- Bst DNA polymerase 1 μL
- FD (fluorescent detection reagent) 1 μL ※
- 滅菌水 4.5 μL
- 萃取之 DNA 1 μL

※使用 LA-320C 偵測的場合，不添加 FD，滅菌水加入量改為 5.5 μL。

10.3.3 配製完成後放入核酸增幅儀，溫度條件如下：

10.3.4 65 ℃ 40 min → 80 ℃ 3 min。

10.3.5 於波長 254 nm 紫外光燈下觀察螢光反應或 LA-320C 偵測濁度。

11 結果判定

11.1 判讀標準：

於波長 254 nm 紫外光燈下呈現螢光反應或 LA-320C 有偵測到濁度變化為百日咳菌 PCR 陽性。

11.2 報告核發：百日咳菌 PCR 陽性，百日咳菌 PCR 陰性。

11.3 結果登錄：將檢體之檢驗結果登錄於百日咳菌 PCR 鑑定 (LAMP 法) 紀錄表及檢體送驗單並加蓋檢驗者印章，送實驗室主管審核及蓋章，並登錄於網路報告系統。

11.3.1 結果的可報告區間

於波長 254 nm 紫外光燈下呈現螢光反應或 LA-320C 有偵測到濁度變化為百日咳菌 PCR 陽性。

於波長 254 nm 紫外光燈下反應管不呈現螢光反應或 LA-320C 沒有偵測到濁度變化為百日咳菌 PCR 陰性。

11.3.2 緊急通報

無。
11.3.3 干擾因素
拭子檢體內物質。

11.3.4 潛在變異的來源
環境中核酸污染。

11.3.5 檢驗性能之規格
11.3.5.1 Sensitivity：Bordetella pertussis 10 copies。
11.3.5.2 Specificity 100%。

12 品質管制
LAMP反應試劑：
12.1 品管測試時間：每一批號開封使用時。
12.2 陽性對照菌株：Bordetella pertussis Tohama。
12.3 陽性對照：Template 加入 Bordetella pertussis Tohama 的 DNA，DNA 濃度 100 pg。
12.4 陰性對照：Template 體積以無菌水，抽 DNA 過程的陰性對照組及 B.parapertussis ATCC15311 的 DNA，DNA 濃度 100 pg 取代，與預期結果相符。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋妥密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
14.2 林于勤，李淑英，陳豪勇，林鼎翔。2004。新型恆溫式環形核酸增幅法簡介與應用。疫情報導 20：323-332。

15 附錄
15.1 百日咳菌分子生物學鑑定（LAMP）流程圖。
15.2 百日咳菌分子生物學鑑定（LAMP）紀錄表-1。
15.3 百日咳菌分子生物學鑑定（LAMP）紀錄表-2。
附錄 15.1 百日咳菌分子生物學鑑定（LAMP）流程圖

1. 檢體（鼻咽拭子）

 Eswab 震盪混勻（Vortex）10 秒後，在生物安全櫃內將 Eswab 拭子內 Liquid Amies Medium 取 0.5 mL 至 1.5 mL 離心管。

2. 使用 QIAamp DNA Micro Kit 進行 DNA 萃取

3. LAMP 反應 65°C 40 分鐘 → 80°C 3 分鐘，於波長 254 nm 紫外光燈下觀察樣本螢光反應或於 LA-320C 下讀取濁度變化。

 - 於波長 254 nm 紫外光燈下樣本呈現螢光反應或 LA-320C 有偵測到濁度變化。
 - 於波長 254 nm 紫外光燈下樣本沒有螢光反應或 LA-320C 沒有偵測到濁度變化。

4. 百日咳菌 PCR 陽性

5. 百日咳菌 PCR 陰性
附錄 15.2 百日咳菌分子生物學鑑定（LAMP）紀錄表-1

<table>
<thead>
<tr>
<th>檢體編號</th>
<th>陽性對照百日咳菌 DNA濃度 100pg</th>
<th>陰性對照百日咳菌 DNA濃度 100pg</th>
<th>陰性對照(無菌水)</th>
<th>抽取 DNA 過程的陰性對照組</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>有</td>
<td>有</td>
<td>有</td>
<td>有</td>
</tr>
<tr>
<td></td>
<td>陰性</td>
<td>陰性</td>
<td>陰性</td>
<td>陰性</td>
</tr>
</tbody>
</table>

檢體編號

收件日期

檢驗日期

LAMP 產物：紫外燈波長 254 nm 下觀察螢光反應

綜合結果

報告日期

附註：

檢驗者：實驗室主管：
<table>
<thead>
<tr>
<th>順序</th>
<th>步驟描述</th>
<th>是</th>
<th>否</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>在生物安全櫃內將 Eswab 拭子內 Liquid Amies medium 取 0.5 mL 至 1.5 mL 離心管</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>離心（15,000 rpm 10 min 或 12,000 rpm 15 min）後去上清液，沉澱物作 DNA 抽取</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>室溫（15-25°C）下加入 180 μL ATL Buffer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>加 20 μL Protease K，震盪（vortex）混勻 15 sec，放置於 56°C 的 thermomixer 上，轉速 400 rpm，震盪至隔日。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>加入 200 μL AL buffer 及 1 μL Carrier RNA (1 μg/μL)，震盪（vortex）混勻 15 sec。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>加 200 μL 酒精 (96-100%)，震盪（vortex）混勻 15 sec，室溫放置 5 min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>上清液移入 QIAamp MinElute column，離心 1 min (8,000 rpm) 並將 Column 換至新的 Collection tube</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>加入 500 μL AW1 buffer，離心 1 min (8,000 rpm)，更換新的 Collection tube</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>加入 500 μL AW2 buffer，離心 1 min (8,000 rpm)，更換新的 Collection tube</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>全速離心 3 min (14,000rpm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>將 QIAamp MinElute column 移至新的 1.5 mL 離心管後，加入 25 μL Buffer AE，於室溫（15-25°C）靜置 1 min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>全速離心 1 min (14000 rpm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>萃取 DNA 煮沸 5 min 後，立刻置冰上 (pre-denature)，預備 LAMP 反應</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

附註事項

報告日期

檢驗者：實驗室主管：
1 目的
利用特定基因放大技术经核酸定序，对百日咳 PCR 阳性之核酸和分离出之百日咳菌进行基因抗原分析。

2 適用検体種類
適用於從病患已分离之培養菌和百日咳 PCR 陽性之核酸検体。

3 名詞解釋
無。

4 原理概述
百日咳菌具多形性的重要抗原基因型(ptxA、prn、fim3)分析，依基因具多形性的特定片段，選取適當引子進行 PCR 放大特定片段，產物經定序取得核酸序列資料，進行序列比對分型。

5 試剤耗材
5.1 分生用水。
5.2 HotStarTaq Master Mix Kit (QIAGEN) 或功能相同之分生混合試劑。
5.3 微量吸管尖：無菌、需有 filter，需 1,000 μL、200 μL、40 μL 與 10 μL 四種。
5.4 接種針 (環)。
5.5 可拋棄式塑膠手套。
5.6 1.5 mL Eppendorf 無菌管。
5.7 TBE 缓衝液。
5.8 Ethidium bromide。
5.9 Primer
ptxA 基因引子序列 Sequence (5'-3')
S1F- TAGGCACCATCAAACGCGAG
S1R- TCAATTACCGAGTGGCG
prn 基因引子序列 Sequence (5'-3')，AF/AR 放大 prn region1，BF/BR 放大
prn region2
AF-GCCAATGTCACGTCACAA
AR-GCAAGGTGATCGACAGGG
BF-AGCTGGCGGTCAAGGT
BR-CCGGATTCAAGCCGCAACTC
fim3 基因引子序列 Sequence (5'-3')
fim3F- CCCCCGGACCTGATATTCTGTAG
fim3R- GCTGAGCGTGCTAAGGACAAGAT
百日咳菌 ptx 启动子(ptxP)基因型分析
ptx 启动子基因(ptxP)引子序列 Sequence (5'-3')。
forward primer: AATCGTCCTGCTCAACCGCC
reverse primer: GGTATACGGTGCGGGAGG
6 儀器設備
6.1 生物安全櫃。
6.2 桌上型離心機。
6.3 4°C 冰箱。
6.4 -20°C 冷凍櫃。
6.5 電泳槽。
6.6 微量吸管 Pipetman：需 1,000 μL、200 μL、2 μL 等三種規格。
6.7 核酸增幅儀：Biometra。
6.8 DNA 電泳膠體觀察照相設備。

7 環境設施安全
7.1 菌株處理於於生物安全第二等級（BSL-2）實驗室之設施內操作。
7.2 PCR 反應混和物配製、PCR 反應進行、電泳皆需於獨立區域操作。

8 檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體處理
分離的菌體：以 1 μL 接種環挑取 1/2 Loop 的新鮮菌落，放入含 100 μL
無菌水的 1.5 mL eppendorf 無菌管中，以 100°C 熱煮 10 min，放入離心
機 5,000 × g（12,000 rpm）離心 5 min，取上清液當作 Template。
百日咳 PCR 陽性之核酸：不需處理可直接當作 Template。

10.2 PCR
10.2.1 PCR 反應混和物配製如下：

<table>
<thead>
<tr>
<th>Component</th>
<th>Final conc. or volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template</td>
<td>2 μL</td>
</tr>
<tr>
<td>Each primer (5 μM)</td>
<td>1 μL</td>
</tr>
<tr>
<td>HotStarTaq Master Mix</td>
<td>12.5 μL</td>
</tr>
<tr>
<td>Total volume（加分生用水）</td>
<td>25 μL</td>
</tr>
</tbody>
</table>

10.2.2 放入儀器中進行反應，反應條件設定：
pxA (877bp)
95 °C/15 min，1 cycle。
95 °C/30s，61 °C/45s，72 °C/60s，27 cycles。
72 °C/10 min，1 cycle。
10.3 PCR 電泳分析產物純度後送定序。
10.4 定序資料與標準序列比對。

11 結果判定
11.1 判讀標準：型別判定：完全符合標準序列，ptxA1-5, prn1-11, fim3-1-3-5, ptxP1-11型。
11.2 報告核發：不需核發報告，僅提供防疫政策參考使用。
11.3 結果登錄：無。
11.3.1 結果的可報告區間：核酸序列完全符合。
11.3.2 緊急通報
無。
11.3.3 干擾因素
11.3.4 培養基上物質。
11.3.5 潛在變異的來源
11.3.6 環境中核酸污染。
11.3.7 檢驗性能之規格

12 品質管制
無

13 廢棄物處理
檢驗過程之物品、廢液、及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃・30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。
14 參考資料

1 目的
檢測疑似病患的血液、腦脊髓液或組織中是否含有日本腦炎病毒。

2 適用檢體種類
適用於急性期發病病患七日內血液檢體、腦脊髓液或組織檢體。

3 名詞解釋
無

4 原理概述
利用白線斑蚊細胞株於細胞培養盤中接種病患血清、腦脊髓液或組織研磨液，於 28 ℃培養箱中培養 3 日，取其細胞於 24 孔玻璃片上，加入抗日本腦炎病毒抗體及螢光標記的山羊抗鼠抗體，於螢光顯微鏡下檢查，測定是否有日本腦炎病毒。

5 試劑耗材
5.1 RPMI 細胞培養液（RPMI 1640，含 1 %胎牛血清【FCS】及 1 %三合一抗生素【PSA】）（RPMI 1640 Biosource, USA, Cat. no. P102G-000）(FCS, fetal calf serum, Biological Industries, Israel, Cat. no. 04-001-1A)（Psa, pen-strep-Ampho Sol., Biological Industries, Israel, Cat. no. 03-003-1B）。5.2 白線斑蚊細胞株 (C6/36，前美國海軍醫院第二研究所)。
5.3 日本腦炎病毒 (北京疫苗株當控制組)：日本腦炎病毒以 C6/36 細胞培養 3 天，取上清液，當日本腦炎病毒來源。 (PK-1)。
5.4 抗日本腦炎病毒單株抗體 (monoclonal antibody THI/JE/989, JCU Trorical Biotechnology Pty Ltd, Australia, Cat. no. 01-057-02)。
5.5 FITC-goat anti-mouse IgG（Zymed, USA, Cat. no. 62-6511）。
5.6 丙酮 (acetone, Merck, Germany, Cat. no. 1.00020)。
5.7 磷酸鹽緩衝液 (PBS, Biological Industries, Israel, Cat. no. 02-023-5A) 及水 (H2O)。
5.8 甘油緩衝液（Merck, Germany, Cat. no. 1.04093）。
5.9 96 孔培養盤。
5.10 50 mL 的離心管。
5.11 24 孔玻璃片 (Cel-Line/Erie Scientific Co., USA, Cat. no. 10-342)。
5.12 蓋玻片。
5.13 無菌 250 μL、1250 μL 之吸管尖。

6 儀器設備
6.1 28 ℃CO2 培養箱（Astec, Japan, SCI-165DC）。
6.2 37 ℃CO2 培養箱（Sanyo, Japan, MCO-20AIC）。
6.3 第 II 級生物安全櫃（class II BSC）。
6.4 螢光顯微鏡（Zeiss, Germany, Axio Imager.A1）。
6.5 吹風機。
6.6 5-40 μL Pipette 及 40-200 μL Pipette。
6.7 -20 °C 及 -80 °C 冷凍櫃。

7 環境設施安全
7.1 檢驗操作在生物安全第二等級負壓 (BSL-2 plus) 實驗室進行。
7.2 水質：25°C 蒸餾水或 RO 逆滲透離子可達 18 Ω-CM 以上超純水。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 在 96 孔細胞培養盤中將患者血清 5 μL 以細胞培養液做 20、40、80、160 倍連續稀釋，每孔加入 50 μL 之 2 倍細胞培養液連續稀釋血清。（在 96 孔組織培養盤中將患者腦脊髓液 50 μL 以細胞培養液做 2、4、8、16 倍連續稀釋，每孔加入 50 μL 之 2 倍細胞培養液連續稀釋腦脊髓液。）
每孔中再加入 100 μL C6/36 細胞懸浮液【培養 C6/36 cell 於 75T flask，加 15 mL 培養液 (RPMI 1640，含 5 % FCS 及 1 % PSA) 培養約 3-4 天，以細胞刮杓刮下細胞→以血球計數器計算細胞數。配製成 1 × 10^6/mL 細胞懸浮液】。
10.2 置 28°C 5 % CO2 培養箱培養 3 天。
10.3 將每一孔中培養液移至另一無菌盤中，置於-80 °C 保存。
10.4 取 20 μL PBS 刮下培養盤中之細胞，在 24 孔玻璃片上做抹片。
10.5 於室溫中風乾後，置於-20 °C 丙酮固定 10 min。
10.6 取出 24 孔玻璃片陰乾。
10.7 此検體抹片可保存於-20 °C 冰箱中或直接染色。
10.8 在抹片上加上 25 μL 抗日本腦炎病毒單株抗體。
10.9 將抹片放置在潮濕的培養皿中，置於 37 °C 溫箱 30 min。
10.10 將抹片取出並以磷酸鹽緩衝液 (換三次) 洗去多餘之抗體。
10.11 以蒸餾水沖洗。
10.12 在室溫中將玻璃片以冷風吹乾或陰乾。
10.13 將抹片加上 25 μL 螢光標記之山羊抗鼠抗體 (FITC-goat anti-mouse IgG)。
10.14 重複 10.9 至 10.12。
10.15 滴上甘油緩衝液，然後以蓋玻片覆蓋。
10.16 以螢光顯微鏡檢查。
結果判定

11.1 判讀標準

11.1.1 在螢光顯微鏡下將檢測標本與 Positive control 及 Negative control 比對判讀。

11.1.2 當標本呈現陽性時在螢光顯微鏡下可見黃綠色之細胞；當標本

呈現陰性時在螢光顯微鏡下無綠色細胞僅可見到細胞陰影。

11.2 報告核發：無，內部登錄處理。

11.3 結果登錄：無，內部登錄處理。

品質管制

12.1 嚴防病原散佈或污染，工作時戴手套。

12.2 實驗過程遵循 S.O.P. 的作業規範與流程，並在 BSL-2 plus 實驗室內操作，

以避免污染。

12.3 生物安全櫃及培養箱須定期進行校正及維護。

12.4 置於 37 ℃ 温箱染色時應注意保持溼度。

12.5 C6/36 細胞培養溫度不可超過 32 ℃。

12.6 必須要有未感染病毒之細胞及感染病毒之細胞分別做為陽性和陰性對照組。

廢棄物處理

檢測過程之物品、廢液及剩餘標本及感染性事務廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序辦理。

參考資料

附錄

15.1 日本腦炎病毒分離與鑑定流程圖。
附錄 15.1 日本腦炎病毒分離與鑑定流程圖

患者發病七日內血清等檢體

病毒分離細胞培養

血清稀釋 20 倍
2 倍連續稀釋至 160 倍
接種 C6/36 細胞株

28 ℃ CO₂ 培養箱培養 3 天

日本腦炎病毒螢光抗體檢驗

陰性

陽性

重複接種一次

陰性

判定
1 目的
以反轉錄－聚合酶鍵鎖反應（RT-PCR）分子診斷方法檢測疑似病患的腦脊髓液或血清檢體是否含有日本腦炎病毒核酸。

2 適用檢體種類
腦脊髓液或血清。

3 名詞解釋
Threshold cycle (Ct)：係指 PCR 產物複製的量，累積到足以被偵測到的第一個循環點稱之。換句話說，Ct 的值越小，表示檢體中初始 DNA/RNA 的含量越多。

4 原理概述
利用對日本腦炎病毒具有專一性之引子（primers）與檢體中之病毒核酸分子結合配對，並利用 RT-PCR 的複製過程及特殊的熒光定量化學方法偵測 RT-PCR 產物，以決定檢體中是否含有日本腦炎病毒核酸序列，所用之引子選自於日本腦炎病毒之保守性序列（conserved sequences）。

5 試劑耗材
5.1 檢測試劑
 5.1.1 病毒 RNA 萃取試劑套組。
 5.1.2 SYBR green 定量反轉錄－聚合酶鍵鎖反應單步驟試劑套組。
5.2 耗材
 5.2.1 檢體瓶。
 5.2.2 無菌吸管。
 5.2.3 定量 PCR 專用八連排反應管及蓋。
 5.2.4 無菌過濾型 10 μL, 20 μL, 100 μL, 200 μL, 1,000 μL 吸管尖。
 5.2.5 無菌 1.5 mL 微量離心管。
 5.2.6 無粉手套。

6 儀器設備
6.1 第 II 級生物安全櫃。
6.2 即時多重定量 PCR 偵測系統。
6.3 10 μL, 20 μL, 40 μL, 100 μL, 200 μL, 1,000 μL 微量滴管分注器。
6.4 高速離心機。
6.5 真空抽氣機。
6.6 冰箱：4 ℃。
6.7 冷凍櫃：-20 ℃。
6.8 高壓滅菌鍋。

7 環境設施安全
7.1 病人血清檢體應在第 II 級生物安全櫃（BSL-2）內處理。
7.2 檢驗操作在生物安全第二等級（BSL-2）實驗室進行。
7.3 應有獨立的操作空間，盡量與操作 DNA 有關的實驗室分開，以避免污染，影響結果。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體前處理
10.1.1 裝有靜脈血的無菌真空試管以 2,000 轉離心 10 分鐘，以無菌吸管將血清吸入檢體瓶內旋緊瓶蓋。
10.1.2 檢體瓶上標註檢體標號。
10.1.3 檢體處理好後置 2-8°C 冰箱冷藏。
10.2 步驟
10.2.1 萃取病毒 RNA，依據所使用試劑製造業者的操作手冊進行。
10.2.2 單步驟即時定量反轉錄－聚合酶鍵鎖反應，取 5 μL RNA 做模板，加入漢他病毒專一性引子組（參考附錄15.1），並依據所使用試劑製造業者的操作手冊，加入其他所需試劑，調整反應總體積至 25 μL。
10.2.3 單步驟即時定量反轉錄－聚合酶鍵鎖反應程式設定：
10.2.3.1 RT 作用：50°C，30 min。
10.2.3.2 Taq polymerase activation：95°C，15 min。
10.2.3.3 Denaturation：95°C，15 sec。
10.2.3.4 Annealing：55°C，30 sec。
10.2.3.5 Extension：72°C，20 sec。
10.2.3.6 77°C，30 sec，收集螢光值。
10.2.3.7 重複 10.2.3.3 至 10.2.3.6 步驟 45 Cycle。
10.2.4 Melting curve analysis：
10.2.4.1 95°C，1 min。
10.2.4.2 以 0.2°C/秒速率降溫至 68°C，收集螢光值。

11 結果判定
11.1 判讀標準
11.1.1 陽性對照組的 Ct 值需小於或等等於 30，Tm 值需大於或等於 79°C。
衛生福利部疾病管制署傳染病標準檢驗方法

編號：

編號：日本腦炎病毒核酸檢測（Real-time RT-PCR）

頁次：第416頁/共1104頁

核准日期：

修訂日期：

11.1.2 陰性對照組的 Ct 值需大於或等於 40，Tm 值需小於 79℃，Ct 值或 Tm 值有一項符合上述要求即可。
11.1.3 陽性對照組或陰性對照組其中之一不符合設定值時，則重新實驗。
11.1.4 在陽性對照與陰性對照組符合設定值下，Ct 值小於 35、Tm 值大於或等於 79℃者，判為日本腦炎病毒陽性，反之則判為日本腦炎病毒陰性。

11.2 報告核發
11.2.1 日本腦炎病原體檢驗方法：熒光定量聚合酶-連鎖反應（real-time PCR）
11.2.2 結果：陽性。
11.2.3 結果：陰性。

11.3 結果登錄：將檢體檢驗數據結果登錄於檢驗紀錄表，送請實驗室主管檢討確認，再依實驗室資訊管理系統（LIMS）之操作步驟，將檢驗結果登錄於系統，陳送指定之實驗室主管審核複校，發出正式檢測報告。

12 品質管制
12.1 每次進行實驗時皆有對照組，陽性對照組與陰性對照組的 Ct 值需符合設定值。
12.2 實驗過程遵循標準檢驗方法的作業規範與流程，並在個別獨立的操作空間內操作，以避免污染。
12.3 即時多重定量 PCR 偵測系統定期作檢測與校正。
12.4 微量滴管分注器定期校正。
12.5 注意試劑套組的使用期限與適當的儲放溫度。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

15 附錄
15.1 日本腦炎病毒診斷用引子組序列表。
附錄 15.1 日本腦炎病毒診斷用引子組序列表

<table>
<thead>
<tr>
<th>Japanese encephalitis virus specific primer</th>
<th>參與反應的濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>JE3F1 CCC TCA GAA CCG TCT CGG AA</td>
<td>200nM</td>
</tr>
<tr>
<td>JE3R1 CTA TTC CCA GGT GTC AAT ATG CTG T</td>
<td>200nM</td>
</tr>
</tbody>
</table>
1 目的
登革病毒及日本腦炎病毒 IgM 及 IgG 抗體檢測。

2 適用檢體種類
適用於人體血清或腦脊髓液之檢體。

3 名詞解釋
無。

4 原理概述
利用 Capture IgM 與 IgG 醣素免疫分析法，測定病人血清或腦脊髓液中之登革熱或日本腦炎特異性抗體。

5 試劑耗材
5.1 Dilution buffer：Casein blocking buffer (Sigma, Product no. C7594, USA)
+ 2.5 % Normal rabbit serum+ 4% Normal goat serum + 0.05 % Tween-20，
pH 7.2。

5.2 Washing buffer（1.5X PBS+0.05 % Tween-20，pH 7.2）。

5.3 Human positive and negative control sera
5.3.1 Dengue primary positive control(以 dilution buffer 1：100 稀釋)。
5.3.2 Dengue secondary positive control（以 dilution buffer 1：100 稀釋）。

5.4 去活化病毒細胞培養液(病毒經 C6/36 細胞培養 5-7 天，收集上清液，
經 UV 照射 1 hr，分裝後保存於-80 ℃冷凍櫃)
5.4.1 DENV-1, strain 8700828。
5.4.2 DENV-2, strain 454009。
5.4.3 DENV-3, strain 8700829。
5.4.4 DENV-4, strain 8700544。
5.4.5 JEV, strain JaGAR。

5.5 含抗黃病毒屬外套抗原(envelope)單株抗體之小鼠腹水(Glyconex, Cat.
no. FL0232, Taiwan)。

5.5.1 以 Protein A/G 管柱，經親合性純化後之抗黃病毒屬外套抗原
(envelope)單株抗體（抗體名稱為 D56.3）；該 D56.3 抗體
可遇與 Innova Biosciences 公司生產之 Lightning-Link Alkaline
Phosphatase kit 反應，以製備抗黃病毒屬外套抗原單株抗體-鹼
性磷酸酶結合體（簡稱 D56.3-AP）。

5.6 山羊抗小鼠 IgG 抗體-鹼性磷酸酶結合體 (goat anti-mouse IgG-AP
conjugate, Jackson, Code no. 115-006-071, USA)

5.7 Substrate reagent, p-Nitrophenyl-phosphate(p-NPP)(Chemicon, USA, Cat.
no. ES009-500mL)。
5.8 96 孔微量滴定盤
 5.8.1 Anti-human IgM 真空乾燥盤（ELISA plate coated with goat anti-human IgM）。
 5.8.2 Anti-human IgG 真空乾燥盤（ELISA plate coated with goat anti-human IgG）。

5.9 八連排稀釋管。
5.10 丢棄式 250 μL、1,000 μL 吸管尖。
5.11 手套。

6 儀器設備
6.1 第 II 級生物安全櫃（class II BSC）。
6.2 全自動酵素免疫分析儀（Tecan, Genesis workstation 150, Germany）。
6.3 微量滴管分注器 2 μL、20 μL、100 μL、200 μL、1,000 μL（pipettors）。
6.4 震盪器。
6.5 冰箱：4 ℃。
6.6 冷凍櫃：-20 ℃。
6.7 高壓滅菌鍋。

7 環境設施安全
7.1 病人血清樣本應在第 II 級生物安全櫃內處理。
7.2 檢驗操作在生物安全第二等級（BSL-2）實驗室進行。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體編號登錄。
10.2 檢體量須大於 0.5 mL。
10.3 四型登革病毒細胞培養液（DENV-1、DENV-2、DENV-3、DENV-4）分別以 Dilution buffer 四倍稀釋，各取等量混合後，以 1：1,000 之稀釋比例，加入含抗黃病毒屬外套抗原（envelope）單株抗體之小鼠腹水 FL0232（登革熱病毒加偵測腹水混合液）。另日本腦炎病毒細胞培養液以 Dilution buffer 四倍稀釋後，以 1：1,000 之稀釋比例，加入含抗黃病毒屬外套抗原（envelope）單株抗體之小鼠腹水 FL0232（日本腦炎病毒加偵測腹水混合液）。
10.3.1 D56.3-AP (5.5.1) 與病毒稀釋液以 1:2,000 比例混合，即可配製登革熱病毒加測抗體混合液及日本腦炎病毒加測抗體混合液，以此混合液進行測定，則可省略步驟 10.4、10.10 及 10.11。

10.4 山羊抗小鼠 IgG 抗體-膽性磷酸酶結合體以 Dilution buffer 1：4000 稀釋。

10.5 取待測血清 7 μL 加入 Dilution buffer 0.7 mL 稀釋 100 倍。若是腦脊髓液檢體，則取 70 μL 加入 Dilution buffer 0.7 mL 稀釋 10 倍。

10.6 取 0.1 mL 待測血清 (步驟 10.5) 及陰性、陽性對照血清 (試劑耗材 5.3)，加入 anti-human IgM 及 anti-human IgG 之 96 孔真空乾燥盤。

10.7 置於 37 °C 溫箱，搖盪 30 min，然後以 Washing buffer 清洗 4 次。

10.8 取 0.1 mL 登革熱病毒加測腹水混合液及日本腦炎病毒加測腹水混合液（步驟 10.3）分別加入 96 孔真空乾燥盤。

10.9 置於 37 °C 溫箱，搖盪 30 min，然後以 Washing buffer 清洗 4 次。

10.10 取 0.1 mL 山羊抗小鼠 IgG 抗體-膽性磷酸酶結合體稀釋液（步驟 10.4）加入 96 孔真空乾燥盤。

10.11 置於 37 °C 溫箱，搖盪 30 min，然後以 Washing buffer 清洗 4 次。

10.12 取 0.1 mL/孔 呈色劑（p-NPP）加入 96 孔微量滴定盤中呈色。

10.13 置於 37 °C 溫箱，搖盪 40 min。

10.14 取微量滴定盤於酵素免疫分析儀裡，以雙波長 405、630 nm 測定吸光度 (OD405-630)。

11 結果判定

11.1 判讀標準

11.1.1 若血清檢體之登革病毒特異性 IgM 抗體之 OD 值大於 0.5，且登革病毒 IgM OD 值/日本腦炎病毒 IgM OD 值大於或等於 2，判為登革熱 IgM 陽性。

11.1.2 若血清檢體之登革病毒特異性 IgG 抗體之 OD 值大於 0.5，判為登革熱 IgG 陽性。

11.1.3 Dengue primary positive control 應符合 IgM OD 值＞1.5，IgG OD 值＞0.5。

11.1.4 Dengue secondary positive control 應符合 IgM OD 值＞0.5，IgG OD 值＞1.5。

11.1.5 JE positive control 應符合 IgM OD 值＞1.5，IgG OD 值＞1.5。

11.1.6 JE negative control 應符合 IgM OD 值＜0.2，IgG OD 值＜0.2。

11.2 報告核發：

11.2.1 檢驗方法：IgM 及 IgG 抗體檢測（ELISA）

11.2.2 結果：陽性。

11.2.3 結果：陰性。

11.3 結果登錄：將檢體檢驗數據結果登錄於檢驗紀錄表，送請實驗室主管檢討確認，再依實驗室資訊管理系統 (LIMS) 之操作步驟，將檢驗結果登錄於系統，陳送指定之實驗室主管審核複核，發出正式檢測報告。
12 品質管制
12.1 應於有效期內使用，同一批號試劑，第一次使用時取一組進行試驗，
之後每隔 3 - 6 個月再取一組進行試驗。
12.2 每次檢驗應加入陽性及陰性控制組血清。
12.3 遵循 S.O.P 的作業規範與流程，並在個別獨立的操作空間內操作，以避
免污染。
12.4 微量滴管分注器定時做校正。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥
密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
14.1 Shu PY, ChenLK, ChangSF, YuehYY, ChowL, Chien LJ, ChinC, LinTH,
HuangJH. 2003. Comparison of capture immunoglobulin M (IgM) and IgG
enzyme-linked immunosorbent assay (ELISA) and nonstructural protein
NS1 serotype-specific IgG ELISA for differentiation of primary and
Immunoglobulin M antibody capture enzyme-linked immunosorbent assays
for diagnosis of St. Louis encephalitis. J Clin Microbiol 20: 784-790。
14.3 InnisBL, NissalakA, NimmannityaS, KusalerdchariyaS, ChongswasdiV,
immunosorbent assay to characterize dengue infections where dengue and

15 附錄
登革病毒、日本腦炎病毒 IgM 及 IgG 抗體試驗（酵素免疫分析法）流程圖。
登革病毒、日本腦炎病毒 IgM 及 IgG 抗體試驗（酵素免疫分析法）

流程圖。

96 孔微量真空乾燥盤 Coated with anti-human IgM
96 孔微量真空乾燥盤 Coated with anti-human IgG

待測血清及陰性、陽性對照血清 1：100 稀釋
0.1 mL/孔, 37 ℃, 30 min (shaking), 洗 4 次

取 0.1 mL 登革熱病毒加偵測抗體混合液及日本腦炎病毒加偵測抗體混合液分別加入 96 孔真空乾燥盤
0.1 mL/孔, 37 ℃, 30 min (shaking), 洗 4 次

山羊抗小鼠 IgG 抗體-鹼性磷酸酶結合體 1：4000 稀釋
0.1 mL/孔, 37 ℃, 30 min (shaking), 洗 4 次

p-NPP 呈色劑
0.1 mL/孔, 37 ℃, 40 min (shaking)

以酵素免疫分析儀，測定雙波長 405、630 nm 之吸光度（OD_{405-630}）

列印結果

結果判定
1 目的
检测检体中是否含有分枝桿菌屬。

2 檢體種類與採檢容器
2.1 適用檢體種類與採檢容器，請參照本署最新版傳染病檢體採檢手冊。
2.2 穩定性：2-8°C 可保存 3 天，-20°C 可保存 6 個月。

3 原理概述
利用分枝桿菌屬細胞壁具有抗酸、鹼的性質，使用 NaOH 鹼性溶液作用於非
經無菌技術採集之檢體（痰液、糞便等）進行前處理，另外加入
N-acetyl-L-cystein（NALC）作為消化劑，促使檢體液化，然後接種於內含孔
雀綠（malachite green）及各種抗生素之蛋基 Lowenstein－Jensen（LJ）及瓊
脂培養基，以抑制檢體中非分枝桿菌屬的生長，而成功分離出檢體中之分枝
桿菌屬。

4 檢驗性能特徵
無

5 病人準備
無

6 試劑耗材
6.1 試劑
6.1.1 NaOH—sodium citrate 溶液
（1）取 NaOH 4 g 加入 100 mL 蒸餾水配製備用。
（2）取 2.6 g sodium citrate anhydrate 加入 100 mL 蒸餾水配製備
用。
（3）將（1）及（2）混合後高溫高壓蒸氣滅菌，保存於 2°C-8°C，
效期 6 個月。
（4）NALC－NaOH：取 0.25 g NALC （如有需要時呈比例增
加），加 50 mL （3）。此試劑效期 24 小時。
6.1.2 Phosphate 緩衝液
（1）取 Na₂HPO₄ 94.7 g 加入 1,000 mL 蒸餾水配製備用。
（2）取 KH₂PO₄ 90.7 g 加入 1,000 mL 蒸餾水配製備用。
（3）將（1）及（2）混合後蒸餾水稀釋 10 倍為 pH 6.8，高
溫高壓蒸氣滅菌，保存於 2-8°C，效期 1 年。
6.1.3 BACTECTM/ MGIT™960 試劑：PANTA，OADC 各一瓶混合備用
（拆封混合後保存於 4°C 冰箱效期 5 天，瓶口邊緣避免污染）。
6.1.4 培養基
衛生福利部疾病管制署傳染病標準檢驗方法

編號：結核菌群培養

核准日期：年 月 日

修訂日期：年 月 日

頁次：第 424 頁/共 1104 頁

（1）Middlebrook 7H11培養基。
（2）Selective Middlebrook 7H11（Mitchison’s）選擇性培養基。
（3）Lowenstein－Jensen（LJ）斜面培養基。
（4）培養管。

6.2 耗材
6.2.1 50 mL 無菌離心管。
6.2.2 無菌吸管。
6.2.3 廢液瓶。
6.2.4 標籤。
6.2.5 10% 滴露。
6.2.6 70% 酒精。
6.2.7 紗布。
6.2.8 抗污染紙墊。
6.2.9 鉛筆。
6.2.10 玻片。
6.2.11 染色液。
6.2.12 生物危害廢棄物袋（Biohazard bag）。
6.2.13 防潑濺容器（無菌培養皿）。

6.3 個人防護耗材
6.3.1 依據 RDC-SOP-B3-B01 「分枝桿菌實驗室 BSL-3 工作人員進出及個人防護裝配穿脫程序」作業所需之防護衣、袖套及手套等。
6.3.2 生物安全櫃內使用之外層乳膠手套。
6.3.3 外層手套盛裝盒。

7 儀器設備
7.1 第二級生物安全櫃。
7.1.1 使用前確認具有年度合格標籤。
7.2 低溫離心機
7.2.1 使用前確認具有年度合格標籤。
7.2.2 離心力（RCF）至少可達到 3,000 xg，附有轉子保護蓋。
7.2.3 離心時若有異常，立刻停止轉動，靜置 30 分鐘再後續處理。
7.3 震盪器。
7.4 5-10% CO₂ 35-37℃ 溫箱。
7.5 微量電子天秤。
7.6 BACTECTM MGIT™960 系統。
7.7 高壓滅菌鍋
7.7.1 使用前確認具有合格檢測標籤。

8 環境與設施安全
8.1 實驗應於生物安全第三等級（BSL-3）實驗室內進行。
8.2 檢體前處理與接種必須於第二級生物安全櫃中操作。
8.3 實驗人員需依據 RDC-SOP-B3-B01「分枝桿菌實驗室 BSL-3 工作人員進出及個人防護裝配穿脫程序」作業進行個人防護，且遵守第二級生物安全櫃操作規範。
8.4 實驗完畢須將生物安全櫃內所有廢棄物清潔，且以消毒剤完成操作面清潔，並開啟紫外線燈以維護生物安全櫃之潔淨。
8.5 離開第三等級(BSL-3)實驗室須將實驗室紫外線燈開啟，以維護實驗室內之潔淨。

9 校正程序
無

10 品質管制
10.1 內部品管
10.1.1 商品化的培養基每一批號均附有廠商出廠時的品管文件，培養基應在效期內使用，使用前檢查完整性。
10.1.2 品管執行：每一批號均要執行。
 （1）接種：製備0.5 McFarland品管菌株之菌液，吸取10 µL接種，置入35℃-37℃，於5%-10% CO₂溫箱中培養21天。
 （2）品管菌株及結果判讀
 陽性品管
 M. tuberculosis ATCC 27294
 無菌試驗
 無生長菌落
 未接種菌液的培養基置入溫箱培養 48 小時
 無生長菌落

10.2 外部品管
每年進行二次 CAP 檢體能力實驗，確保實驗人員操作及相關藥品、耗材的穩定性。
10.3 所有品管結果及矯正措施應詳實記錄，並交給實驗室主管定期審核。

11 檢驗步驟
11.1 檢體前處理(需在第二級生物安全櫃操作)
 11.1.1 痰液
 （1）以無菌滴管吸取 3-5 mL 痰液至 50 mL 离心管。
 （2）加等量的無菌 NALC－NaOH(6.1.1)液化痰液。
 （3）振盪器振盪約 15-20 秒。
 （4）室溫靜置 15 分鐘。
 （5）加無菌 phosphate buffer 至 40 mL 刻度處，鎖緊蓋子。
 （6）以 3,000 xg 離心 15 分鐘，將上清液倒入廢液桶。
 （7）添加 2 mL phosphate buffer 以中和酸鹼值，準備接種。
 11.1.2 胃抽出液
 （1）經採得的胃抽出液應於 4 小時內處理完畢。
11.1.3 再加入等量 NALC−NaOH 溶液，如痰液檢體的處理方式。

11.1.4 胸水

（1）胸水以 3,000 xg 離心 15 分鐘，倒掉上清液。
（2）取沈澱物進行接種。
（3）若懷疑有雜菌污染，則依痰液檢體的處理方式。

11.1.5 尿液

（1）緩慢加入 10% CaCl₂ 至沉澱物形成。
（2）以 3,000 xg 離心 30 分鐘，倒掉上清液，再依痰液檢體的處理方式。

11.1.6 腦脊髓液

以 3,000 xg 離心 15 分鐘，倒掉上清液，取沈澱物進行接種及塗片檢查。如果檢體量少，則可直接依 10.1.1 方式接種。

11.1.7 氣管鏡的檢體

沖洗液前處理法與痰液檢體的處理方式相同。

11.1.8 血液

（1）抽取病人血液 8-10 mL，置於 50 mL 含 Tween80 的液體培養基（如：Middlebrook 7H9 broth）。
（2）35℃－37℃ 培養箱。於暗處培養（可以將試管以鋁箔紙包覆），每日須搖動一次使其混合。
（3）每週以無菌技術吸取液體培養基，做成抹片進行抗酸菌染色鏡檢。
（4）若為抗酸菌則再將培養液依 10.1.1 方式接種。

11.1.9 糞便

取適量檢體加 7H9 both 做成懸浮液，再依痰液檢體處理。

11.1.10 拭子

浸泡於 7H9 broth 的拭子先用振盪器振盪，吸取液體至 50 mL
離心管，再依痰液檢體處理。

11.2 接種(需在第二級生物安全櫃操作)

11.2.1 取1支MGIT™960培養管添加6.1.3之PANTA與OADC混合液0.8 mL，以無菌吸管取處理好的檢體0.5 mL接種，培養於BACTECT™MGIT™960系統。

11.2.2 以無菌吸管取處理好的檢體3滴接種於LJ斜面培養基及1滴到7H11培養基，非經由無菌技術採集或因採集過程有污染到人體常在菌的檢體(如痰液、糞便等)，需再接種7H11選擇性培養基，均勻塗開檢體，置入溫箱培養。

11.3 培養

11.3.1 LJ斜面培養基、7H11培養基及7H11選擇性培養基置於35oC-37oC，5%-10% CO2溫箱，LJ斜面培養基須鬆蓋傾斜置放，24小時後再將蓋子鎖緊，垂直放置。

11.3.2 若為淺表層病灶檢體及傷口檢體，需另接種一組培養基置於30oC-32oC，5%-10%溫箱培養。

11.3.3 MGIT™960培養管於BACTECT™MGIT™960系統中，機器設定37°C，培養42天。

11.4 觀察

11.4.1 培養判讀：第一週需每天判讀，第二至第八週則每週判讀一次。

11.4.2 第一週每天判讀如發現7H11培養基及LJ斜面培養基上有菌落出現，須挑取菌落做成抹片，進行抗酸菌染色鏡檢。

BACTECT™MGIT™960系統機器自動判讀至42天。

11.5 檢驗後處理

檢驗過程之物品、微生物及剩餘檢體等感染性事業廢棄物，應先以標有生物危險標誌的專用紅色廢棄袋裝妥密封，貼上化學指示劑，再以121°C，每平方公分1.06公斤以上壓力，60分鐘高壓滅菌後，由合約清理廠商處理。處理過程須符合RDC-SOP-B3-B03「分枝桿菌BSL3實驗室生物性及化學性廢棄物之儲存、隔離與清除程序」之原則。

12 干擾與交互反應

無

13 結果判定

13.1 判讀標準

13.1.1 分枝桿菌屬培養陽性：培養陽性菌落之染色結果為抗酸菌，則可先發初步培養陽性報告。並將陽性培養基留下，做後續鑑定
結核菌群培養

與抗藥性試驗用。

13.1.2 分枝桿菌屬培養陰性：培養至第八週仍無菌落，則發培養陰性報告。

13.1.3 BACTECTMGMGITTMM960 系統機器顯示陽性時，取出培養管，吸取培養液做抹片及抗酸性染色鏡檢，如 11.4.2 判定方式。

13.1.4 污染：若染色結果為非分枝桿菌屬，而是其它細菌或黴菌則登記污染並將培養基丟棄。

13.2 結果登錄
由發報告者依實驗判讀結果輸入 LIMS 系統，並經發報告者外第二人確認結果輸入無誤後完成結果登入。

13.3 報告核發
由實驗操作者依 13.1 判讀方式分成分枝桿菌屬培養陽性、陰性及污染三種判讀實驗結果，並經操作者外第二人之分別二次判讀為相同結果後，於 LIMS 系統完成結果登入完成報告核發。

14 生物參考區間/臨床決策值
無

15 檢驗結果的可報告區間
無

16 結果超出量測區間之操作說明
無

17 危急值/異常值
分枝桿菌屬培養陽性

18 臨床意義
分枝桿菌屬培養陽性為診斷分枝桿菌屬(含結核病)之細菌學證據

19 變異的潛在來源
無

20 參考文件
20.1 RDC-QP-1601 安全衛生作業程序。
20.2 Centers for Disease Control，Atlanta, Georgia 30333, Isolation and identification of Mycobacterium tuberculosis：A guide for the level II Laboratory, 1981.
20.3 A minimum 5.0 mL of sputum improves the sensitive of acid-fast smear for Mycobacterium tuberculosis, John R. W. et., Am J Respir Crit Care Med.,
衛生福利部疾病管制署傳染病標準檢驗方法

編號：結核菌群培養
核准日期：年月日
修訂日期：年月日

20.6 衛生福利部疾病管制署，傳染病檢體採檢手冊。
20.7 RDC-SOP-B3-B01 分枝桿菌實驗室 BSL-3 工作人員進出及個人防護裝配穿脫程序。

21 附錄
21.1 檢體應於未開始治療前即予採檢。因為即使僅是數日的藥物治療仍可能殺死或抑制足夠量的抗酸菌，使細菌無法培養出來，而影響診斷的正確性。
21.2 應將檢體收集於清潔、滅菌的容器或單次用的無菌塑膠容器。
21.3 分枝桿菌屬培養污染率在 LJ 培養基應控制在 3%-5%，檢體過度處理時容易殺死過多待分離的分枝桿菌屬，污染率會下降；若檢體處理不足，則無法有效抑制非分枝桿菌屬的生長，污染率上升。當污染率明顯變化時，應對整個處理流程進行檢討，若需修正時，應先減少 NaOH 的濃度而不應改變消化去污染的時間。
21.4 實驗室安全其他注意事項。
21.4.1 檢體處理過程都必須小心，避免產生氣霧及濺出及打翻任何檢體容器。
21.4.2 若有打翻及濺出情形發生，須馬上用 10% 滴露沾濕紗布覆蓋後，以紫外線照射 1 小時才可繼續操作。平板培養皿應以透明塑膠套袋包裝，熱封口機封口固定，以免打翻菌株造成實驗室環境污染。
21.4.3 廢液桶內也要加 10% 滴露，再經高壓消毒後丟棄。
21.4.4 檢驗人員進出 BSL-3 實驗室需登記姓名、進出時間及記錄每室負壓值、溫度、溼度等。
21.4.5 操作前後需用 10% 滴露擦拭生物安全櫃。
21.4.6 於 BSL-3 實驗室使用過的試管架、空試藥瓶需經過高壓消毒後再清洗。
21.4.7 生物安全櫃需登記使用時間、使用人姓名與紫外線使用時數。
21.4.8 日光燈及紫外線燈管，需每週擦拭表面灰塵。
21.4.9 離開 BSL-3 實驗室時需在前室將防護衣、N95 口罩、雙層手套、鞋套等脫掉經高壓消毒處理，再以消毒液將手清洗乾淨再離開實驗室。
1 目的
确认BSL-3实验室所操作之结核菌群临床检体及培养菌液之去活化操作程序，
确保以维护BSL-3实验室外操作人员及环境之生物安全。

2 檢體種類與採檢容器
2.1 檢體種類：由臨床實驗室送驗之含結核菌群臨床檢體及執行分子分型
所需之結核菌群菌液。
2.2 採檢容器：螺蓋小管及 eppendroff

3 原理概述
以文獻所建議之程序執行檢體去活化程序操作，後續以培養法執行驗證程序
與查核機制。

4 檢驗性能特徵
詳附錄結核菌群去活化操作驗證程序與查核機制紀錄表

5 病人準備
無

6 試劑耗材
6.1 試劑
 6.1.1 經滅菌之 1X TE 緩衝液：Amresco, TE Buffer, 1X STERILE
 SOLUTION。
 6.1.2 Middlebrook 7H11 培養基。
 6.1.3 BACTEC™ MGIT™ 960 培養管：培養管內含 BACTEC™ MGIT™
 960 試劑：PANTA 及 OADC 混合液 0.8 mL/管。

6.2 耗材
 6.2.1 消毒液 (TB PLUS II 及滴露)：以 TB PLUS II 為基礎配製 10%滴露
 消毒液。
 6.2.2 無菌吸管。
 6.2.3 廢液瓶。
 6.2.4 標籤。
 6.2.5 1.5 mL 微量離心管。
 6.2.6 菌株-80℃棲菌管。
 6.2.7 抗汗紙墊。
 6.2.8 磨菌杵。
 6.2.9 5 μL 拋棄式無菌接種環。

6.3 個人防護耗材
 6.3.1 依據 RDC-SOP-B3-B01「分枝桿菌實驗室 BSL-3 工作人員進出及個
 人防護裝配穿脫程序」作業所需之防護衣、袖套及手套等。
 6.3.2 生物安全櫃內使用之外層乳膠手套。
 6.3.3 外層手套盛裝盒。

7 儀器設備
7.1 第二級生物安全櫃。
 7.1.1 使用前確認具年度合格標籤。

7.2 乾式恆溫槽。
7.3 35-37°C, 5-10% CO2 溫箱。
7.4 BACTECTM MGITTM 960 系統。
7.5 桌上型離心機。
7.6 高壓滅菌鍋
 7.6.1 使用前確認具合格檢測標籤。

8 環境與設施安全
8.1 實驗應於生物安全第三等級(BSL-3)以上之負壓實驗室中進行。
8.2 吸取菌液、刮取菌落及磨菌步驟，必須於第二級生物安全櫃中進行。
8.3 實驗人員需依照 RDC-SOP-B3-B01「分枝桿菌實驗室 BSL-3 工作人員進出及個人防護裝配穿戴標準」作業進行個人防護(穿戴 N95 口罩、實
驗防護衣及雙層手套，穿戴遮蔽頭髮之髮帽及鞋套)，且遵守第二級生物
安全櫃操作規範。
8.4 實驗完成須將生物安全櫃內所有廢棄物清除，且以消毒劑完成操作面
清潔，並開啟紫外線燈以維護生物安全櫃之潔淨。
8.5 離開第三等級(BSL-3)實驗室須將實驗室紫外線燈開啟，以維護實驗室
內之潔淨。

9 校正程序
 詳 RDC-SOP-D2-C01 一般溫度計校正標準操作程序，每年做乾式恆溫槽溫度
計校正。

10 品質管制
10.1 內部品管
 10.1.1 商品化的培養基每一批號均附有廠商出廠時的品管文件，培養基
應在效期內使用，使用前檢查完整性。
 10.1.2 品管執行：每一批號均要執行。
 (1) 接種：製備0.5 McFarland品管菌株之菌液，吸取10 µL接種，
 置入35°C-37°C，於5%-10% CO2溫箱中培養21天。
 (2) 品管菌株及結果判讀
 陽性品管
 M. tuberculosis ATCC 27294
 無菌試驗
 品管結果
 未接種菌液的培養基置入溫箱培養48小時

10.2 外部品管
 每年進行二次 CAP 檢體能力實驗，確保實驗人員操作及相關藥品、耗
材的穩定性。
10.3 所有品管結果及矯正措施應詳實記錄，並交給實驗室主管定期審核。
11 檢驗步驟

11.1 檢體前處理（需在第二級生物安全櫃操作）

11.1.1 由臨床實驗室檢送驗之含結核菌群臨床檢體

（1）吸取0.5-1.0 mL含結核菌群臨床檢體至貼有實驗室檢體編號之1.5 mL微量離心管。

（2）於乾式恆溫槽以95℃加熱不活化處理20分鐘。

11.1.2 執行分子分型法之少量結核菌群菌液

（1）以接種環挑出1環的菌落，放入貼有實驗室檢體編號並裝有500 μL 1X TE的1.5 mL微量離心管中。

（2）於乾式恆溫槽以95℃加熱不活化處理20分鐘。

11.1.3 執行分子分型法之多量結核菌群菌液

（1）以接種環挑出3環的菌落，放入貼有實驗室檢體編號並裝有500 μL 1X TE的微量離心管中。

（2）以桌上型離心機離心至少兩分鐘後再利用磨菌杵研磨。

（3）於乾式恆溫槽以80℃加熱不活化處理60分鐘。

11.2 接種（需在第二級生物安全櫃操作）

11.2.1 11.1.1 檢體

（1）將不活化處理後之菌液接種於Middlebrook 7H11培養基。

（2）11.1.2及11.1.3檢體

（3）將經不活化處理後之菌液分別接種於MGIT™培養管及Middlebrook 7H11培養基。

11.3 培養

11.3.1 11.1.1 檢體接種之Middlebrook 7H11培養基置於35-37℃，5-10% CO₂溫箱培養。

11.3.2 11.1.2及11.1.3 檢體接種之MGIT™培養管培養於BACTEC™ MGIT™ 960系統，機器設定36℃，42天。Middlebrook 7H11培養基置於35-37℃，5-10% CO₂溫箱培養。

11.4 觀察

11.4.1 培養觀察：每週至少觀察一次是否有菌落生長，觀察8週。

11.4.2 BACTEC™ MGIT™ 960系統機器自動判讀至42天。

11.5 檢驗後處理

檢驗過程之物品、微生物及剩餘檢體等感染性事業廢棄物，應先以標有生物危險標誌的專用紅色廢棄袋裝妥密封，貼上化學指示劑，再以121℃，每平方公分1.06公斤以上壓力，60分鐘高壓滅菌後，由合約清理廠商處理。處理過程須符合RDC-SOP-B3-B03「分枝桿菌 BSL3 實驗室生物性及化學性廢棄物之儲存、隔離與清除程序」之原則。

12 干擾與交互反應

不適用
13 結果判定
 13.1 判讀標準
 13.1.1 若有任何結核菌群生長，為去活化不完全，不得進行後續符合環境與設施生物安全規範之程序。
 13.1.2 無任何結核菌群生長，為去活化完全，得進行後續程序。
 13.1.3 查核機制：填寫結核菌群去活化操作驗證程序與查核機制紀錄表並經核章完畢。
 13.2 結果登錄
 無
 13.3 報告核發
 無

14 生物參考區間/臨床決策直未生長

15 檢驗結果的可報告區間
 無

16 結果超出測量區間之操作說明
 無

17 危急值/異常值
 無

18 臨床意義
 無

19 變異的潛在來源
 無

20 參考資料
 20.1 RDC-QP-1601 安全衛生作業程序。

21 附錄
21.1 結核菌群去活化操作驗證程序與查核機制紀錄表

<table>
<thead>
<tr>
<th>檢體編號/日期</th>
<th>1401-207 103/08/19</th>
<th>1401-208 103/08/19</th>
<th>1401-209 103/08/21</th>
<th>1401-211 103/08/22</th>
<th>1401-212 103/08/22</th>
<th>1401-213 103/08/26</th>
<th>1401-214 103/08/26</th>
<th>1401-215 103/08/28</th>
</tr>
</thead>
<tbody>
<tr>
<td>7H11培養觀察</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>第一週</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>第二週</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>第三週</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>第四週</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>第五週</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>第六週</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>第七週</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>第八週</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>註解</td>
<td>(+)培養陽性</td>
<td>(+)培養陽性</td>
<td>(+)培養陽性</td>
<td>(+)培養陽性</td>
<td>(+)培養陽性</td>
<td>(+)培養陽性</td>
<td>(+)培養陽性</td>
<td>(+)培養陽性</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>檢體編號/日期</th>
<th>1402-69 103/08/19</th>
<th>1402-70 103/08/19</th>
<th>1402-71 103/08/21</th>
<th>1402-72 103/08/22</th>
<th>1402-73 103/08/27</th>
</tr>
</thead>
<tbody>
<tr>
<td>7H11培養觀察</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>第一週</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>第二週</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>周次</td>
<td>第三週</td>
<td>第四週</td>
<td>第五週</td>
<td>第六週</td>
<td>第七週</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
</tbody>
</table>

| 註解 | (-)培養陰性 | (+)培養陽性 |

分子分型法之少量結核菌群菌液 95℃ 20min

<table>
<thead>
<tr>
<th>檢體編號/日期</th>
<th>M.bovis BCG Tokyo 172 103/11/19</th>
<th>M.bovis BCG Tokyo 172 103/11/19</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>7H11 培養觀察</th>
<th>第一週</th>
<th>(-)</th>
<th>第二週</th>
<th>(-)</th>
<th>第三週</th>
<th>(-)</th>
<th>第四週</th>
<th>(-)</th>
<th>第五週</th>
<th>(-)</th>
<th>第六週</th>
<th>(-)</th>
<th>第七週</th>
<th>(-)</th>
<th>第八週</th>
<th>(-)</th>
</tr>
</thead>
</table>

| 註解 | (-)培養陰性 | (+)培養陽性 |
分子分型法之多量結核菌群菌液 80℃ 1hr

<table>
<thead>
<tr>
<th>檢體編號/日期</th>
<th>M.bovis BCG Tokyo 172 103/11/19</th>
<th>M.bovis BCG Tokyo 172 103/11/19</th>
</tr>
</thead>
<tbody>
<tr>
<td>7H11培養觀察</td>
<td></td>
<td></td>
</tr>
<tr>
<td>第一週</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>第二週</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>第三週</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>第四週</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>第五週</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>第六週</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>第七週</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>第八週</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>註解</td>
<td>(-) 培養陰性 (+) 培養陽性</td>
<td></td>
</tr>
</tbody>
</table>
MGIT 培養結果

MGIT 960 Growth and Detection Plot

MGIT 960 Growth and Detection Plot
1 目的
利用此項檢查偵測檢體中是否含有分枝桿菌屬。

2 檢體種類與採檢容器
適用於人體之痰液、尿液、體液 (含腦脊髓液、胸水、腹膜液)、腦脊髓液、胃抽出液、組織等，適用採檢容器，請參照本署最新版傳染病檢體採檢手冊。

3 原理概述
利用分枝桿菌細胞壁含 mycolic acid 具有抗酸(acid-fast)的性質，一旦染上 aniline dye 或 basic fuchsin，則很難被酸酒精脫色。

4 檢驗性能特徵
無

5 病人準備
無

6 試劑耗材
6.1 試劑
6.1.1 Ziehl-Neelsen(ZN)染色液：carbol fuchsin 取 0.3 g basic fuchsin 溶於 10 mL 95% ethanol，再加入 5 mL phenol 和 95 mL H₂O，使用前，染色劑必須過濾，試劑保存於褐色瓶，室溫，避免日光直接照射，效期 1 年。
6.1.2 酸性酒精：取 3 mL HCl 加入 97 mL 95% ethanol，試劑保存於褐色瓶，室溫，避免日光直接照射，效期 1 年。
6.1.3 甲基藍染液：取 0.3 g methylene blue 加 100 mL 蒸餾水，試劑保存於褐色瓶，室溫，避免日光直接照射，效期 1 年。
6.1.4 auramine O-rhodamine B-phenol 螢光染色液：
(1) 取 1.5 g auramine O, 0.75 g rhodamine B 溶解於 75 mL glycerol。
(2) 取 10 mL phenol 溶液加入 50 mL 蒸餾水的溶液。
(3) 混合(1)及(2)，用磁棒混合 24 小時，經玻璃絨(glass wool)過濾，試劑保存於褐色瓶於避光處(例如瓦楞紙箱內)，室溫，效期 3 個月。
6.1.5 酸性酒精：取 0.5 mL HCl 加入 100 mL 70% 乙醇中，試劑保存於褐色瓶，室溫，避免日光直接照射，效期 1 年。
6.1.6 高錳酸鉀溶液：取 0.5 g KMnO₄ 溶解於 100 mL 蒸餾水，試劑保存於褐色瓶，室溫，避免日光直接照射，效期 1 年。

6.2 耗材
6.2.1 拭鏡紙、油鏡油及 70% 酒精棉等顯微鏡清潔耗材。
6.2.2 玻片、竹籤或白金耳、標籤及無菌吸管等抹片備製耗材。
6.2.3 5%來蘇液(Lysol®)。
6.2.4 酒精燈、酒精及打火機。
6.2.5 紗布、濾紙及抗污染紙墊。
6.2.6 生物危害廢棄物袋（Biohazard bag）。

6.3 個人防護耗材
6.3.1 依據 RDC-SOP-B3-B01「分枝桿菌實驗室 BSL-3 工作人員進出及個
人防護裝配穿脫程序」作業所需之防護衣、袖套及手套等。
6.3.2 生物安全櫃內使用之外層乳膠手套。
6.3.3 外層手套盛裝盒。

7 儀器設備
7.1 電子加熱板。
7.2 第二級生物安全櫃。
7.2.1 使用前確認具年度合格標籤。
7.3 明視野顯微鏡及螢光顯微鏡。
7.4 低溫離心機
7.4.1 使用前確認具年度合格標籤。
7.4.2 離心力（RCF）至少可達到 3,000 xg，附有轉子保護蓋。
7.4.3 離心時若有異常，立刻停止轉動，靜置 30 分鐘再後續處理。
7.5 高壓滅菌鍋
7.5.1 使用前確認具合格檢測標籤。

8 環境與設施安全
8.1 實驗應於生物安全第三等級(Biosafety level 3, BSL-3)實驗室內中進
行。
8.2 實驗人員需依據 RDC-SOP-B3-B01「分枝桿菌實驗室 BSL-3 工作人員
進出及個人防護裝配穿脫程序」作業進行個人防護，且遵守第二級生
物安全櫃操作規範。穿戴 N95 口罩、實驗防護衣及雙層手套、遮蔽頭
髮之發帽及鞋套。
8.3 實驗完畢須將生物安全櫃內所有廢棄物清除，且以消毒劑完成操作面
清潔，並開啟紫外線燈以維護生物安全櫃之潔淨。
8.4 離開生物安全第三等級(BSL-3)實驗室須將實驗室紫外線燈開啟以維護
實驗室內之潔淨。

9 校正程序
無

10 品質管制
10.1 內部品管
10.1.1 每次進行染色時均需一組陽性及陰性對照組。
10.1.2 品管菌株及結果判讀：
10.1.3 陽性品管：H37Rv-fully susceptible （ATCC 27294）。
10.1.4 陰性品管：E. coli （ATCC 25922）
10.1.5 抗酸菌型態在 ZN 染色鏡檢為紅色，背景為藍色；螢光染色鏡檢
衛生福利部疾病管制署傳染病標準檢驗方法

編號：抗酸菌抹片鏡檢

核准日期：修訂日期：

為橘紅色，背景為黑色。陰性品管則均只能看到背景染色的顏色。

10.1.6 染色劑應在效期內使用。

10.1.7 所有品管結果及矯正措施應詳實記錄，並交給實驗室負責人定期審核。

10.2 外部品管

每年進行二次 CAP 檢體能力實驗，確保實驗人員操作及相關藥品、耗材的穩定性。

11 檢驗步驟

11.1 檢體前處理(需在生物安全櫃操作)

11.1.1 痰檢體濃縮法：

(1) 以無菌滴管吸取 3－5 mL 痰液至 50 mL 離心管。
(2) 加等量的無菌 NALC－NaOH 液化痰液。
(3) 振盪器振盪約 15－20 秒。
(4) 室溫靜置 15 分鐘。
(5) 加無菌 phosphate buffer 至 40 mL 刻度處，蓋緊蓋子。
(6) 以 3,000xg 離心 15 分鐘，將上清液倒入廢液桶。
(7) 以無菌吸管取 1 滴(6)的檢體作成抹片 (1X2 cm)，風乾，使用酒精燈或電子加熱板熱固定後，再用螢光染色。陽性再染 ZN 確認，或熱固定後直接做 ZN 染色。

11.1.2 痰檢體直接法：

用竹籤或白金耳取具有黏稠性，或膿性之痰液放於玻片中央輕輕的往外旋轉使成均勻薄面，不可太厚，然後把塗有痰的玻面朝上迅速通過藍色熾心四至五次，每次約 5 秒，固定做成標本。

11.1.3 胸水

(1) 胸水以 3,000xg 離心 15 分鐘，倒掉上清液。
(2) 取沈澱物進行塗片檢查。
(3) 須培養的檢體若懷疑有雜菌污染，則依痰檢體的離心法處理再進行塗片檢查。

11.1.4 腦脊髓液：

以 3,000xg 離心 15 分鐘，倒掉上清液，取沈澱物進行塗片檢查。

11.1.5 氣管鏡的檢體：將沖洗液移至 50 mL 離心管，需培養的檢體依痰檢體前處理後再取沈澱物進行塗片檢查。
11.2 抹片染色

11.2.1 Zieh-Neelsen(ZN)染色法（加熱法）

(1) 將抹片放在染色架上，再將 carbolfuchsin 經濾紙過濾滴到抹片至完全覆蓋，用酒精燈加熱至冒蒸氣的程度。
(2) 放置 5 分鐘後，棄棄染色液，以水沖洗。
(3) 注入 3% 酸性酒精，進行脫色 3 分鐘，如有脫色不完全，則再以 3% 酸性酒精脫色至肉眼判定為無色止，再以水沖洗。
(4) 以 0.3% Methylene blue 決染10－20 秒。
(5) 水洗後，自然乾燥或以全新的濾紙吸取水氣，於顯微鏡下用1,000 倍油鏡鏡檢。分枝桿菌屬為紅色，背景為藍色。觀察塗片採用的順序 橫掃三次或直掃九次，通常橫掃一次可看約100 個視野，至少要觀察 300 個視野才能發陰性報告

11.2.2 螢光染色法：

(1) 加入螢光染劑，覆蓋整個抹片，靜置 15 分鐘。 (不必加濾紙片，不必加熱)。
(2) 以蒸餾水或去離子水沖洗。
(3) 加入 0.5%酸性酒精覆蓋整個抹片脱色約2 分鐘。
(4) 以水沖洗抹片。
(5) 加入高錳酸鉀溶液，覆蓋整個抹片背景染色約2 分鐘。時間不能過長。
(6) 以水沖洗抹片，置於空氣中乾燥。
(7) 儘速以螢光顯微鏡鏡檢。auramine O-rhodamine B-phenol 染色，分枝桿菌為橘紅色，高錳酸鉀溶液複染背景為黑色。

11.3 檢驗後處理

檢驗過程之物品、微生物及剩餘檢體等感染性事業廢棄物，應先以標有生物危險標誌的專用紅色濾袋裝妥密封，貼上化學指示劑，再以121℃，每平方公分 1.06 公斤以上壓力，60 分鐘高壓滅菌後，由合約清理廠商處理。處理過程須符合 RDC-SOP-B3-B03「分枝桿菌 BSL3 實驗室生物性及化學性廢棄物之儲存、隔離與清除程序」之原則。

12 干擾與交互反應

無

13 結果判定

13.1 判讀標準

<table>
<thead>
<tr>
<th>ZN 染色</th>
<th>Auramine-rhodamine 染色</th>
<th>報告方式</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1,000</td>
<td>X250</td>
<td>X450</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1-2/300 fields</td>
<td>1-2/30 fields</td>
<td>2-4/150 fields</td>
</tr>
</tbody>
</table>
13.2 結果登錄
由發報告者依實驗判讀結果輸入 LIMS 系統，並經發報告者外第二人確認結果輸入無誤後完成結果登入。

13.3 報告核發
由實驗操作者依 13.1 判讀方式分成分枝桿菌屬培養陽性、陰性及污染三種判讀實驗結果，並經操作者外第二人二次判讀為相同結果後，於 LIMS 系統完成結果登入完成報告核發。

14 生物參考區間/臨床決策值
無

15 檢驗結果的可報告區間
無

16 結果超出量測區間之操作說明
無

17 危急值/異常值
分枝桿菌屬培養陽性

18 臨床意義
抗酸菌陽性是分枝桿菌屬培養陽性為診斷分枝桿菌屬之細菌學初步證據

19 變異的潛在來源
無

20 參考資料
20.1 RDC-QP-1601 安全衛生作業程序。
20.2 Centers for Disease Control, Atlanta, Georgia 30333, Isolation and identification of Mycobacterium tuberculosis: A guide for the level II Laboratory, 1981.
附錄

21.1 玻片放於染色架上，染色時玻片與玻片要有間距，褪染須褪乾淨以免觀察困難判斷錯誤。

21.2 Saprophytic mycobacteria 在自然界裡到處都有，自來水裡也有分布，其染色性質也不易被酸脫去。所以為了避免偽陽性，必須使用新的容器，而試劑的製備必須使用新鮮蒸餾水。

21.3 抹片不可太厚及太薄，一張玻片只能用於一個檢體。

21.4 如進行濃縮法抹片，為確保所使用的試劑無污染之虞，建議增加試劑無菌對照組，即從試劑加入離心管開始至抹片及培養之所有流程，結果應為陰性。
1 目的
利用 GeneXpert Dx 系統，搭配一次性使用的 Xpert MTB/RIF 試劑匣，執行結核菌群和利福平 (Rifampin) 抗藥性的快速檢測。

2 檢體種類與採檢容器
適用痰塗片陽性與陰性檢體，以消化去污染的痰檢體或痰沉澱物，收集於 2 mL 之微量離心管，以 95°C，20 分鐘進行去活化反應。

3 原理概述
Rifampin 抗藥菌株中 95% 以上含有 rpoB 基因的 81bp 核心區域內 (codons 507 – 533) 的突變，且該區亦具結核分枝桿菌特異性 DNA 序列，因此採用即時性聚合酵素鍊鎖反應 (Real-Time Polymerase Chain Reaction) 之技術，針對 Rifampin 抗藥基因之核酸探針進行雜交及偵測熒光訊號，可同時檢測結核菌群和 Rifampin 抗藥。

4 檢驗性能特徵
結核菌群及其抗藥基因之定性分析。

5 病人準備
無。

6 試劑耗材
6.1 試劑：Xpert MTB/RIF 試劑組，包含：
6.1.1 10 個分析試劑匣
6.1.2 10 樣品處理試劑 (8 mL)
6.1.3 12 支拋棄式無菌滴管
6.2 耗材
6.2.1 1000 μL 具過濾塞之微量吸管尖。
6.2.2 15 mL 離心管。
6.3 個人防護耗材
6.3.1 手套。

7 儀器設備
7.1 GeneXpert Dx 系統。
7.2 10－1000μL 微量吸管分注器。
7.3 高壓滅菌鍋
7.3.1 使用前確認具合格檢測標籤。

8 環境與設施安全
8.1 於生物安全第二等級 (BSL-2) 實驗室之設施內操作，惟檢體處理需於第二級生物安全體(Class II type A2，外加集氣罩及套管，將氣排出建築物外或 Class II type B)之設施內操作。
8.2 依行政院國科會「基因重組實驗守則」。

9 校正程序
無。

10 品質管制
10.1 內部品管
10.1.1 注意試劑之有效效期，避免使用過期試劑。
10.1.2 保存於2-28℃，避免直接日曬，套組內含物可使用至包裝上之有效期限。
不可冷凍。
10.1.3 操作檢體需在隔離乾淨的操作櫃內，於使用前以紫外燈照射至少15分鐘，並於操作前以70%酒精將桌面擦拭乾淨。
10.1.4 操作時需戴乾淨手套，取用檢體需避免可能產生的交叉污染。
10.1.5 檢體污染桌面時需以漂白水清潔。
10.2 外部品管
每年進行二次CAP檢體能力實驗。

11 檢驗步驟
11.1 消化去污染痰檢體、痰沉澱物或痰檢體：
11.1.1 檢體應於第二級生物安全櫃中，取0.5 mL消化去污染痰檢體或痰沉澱物，加入裝有1.5 mL的樣品處理試劑的15mL離心管中。
若為痰檢體，則與樣品處理試劑以1:2比例混合。
11.2 將離心管蓋旋緊，上下震盪10-20次。
11.3 室溫靜置10分鐘（若未液化再補以上下震盪）。
11.4 將離心管上下震盪10-20次。
11.5 室溫靜置5分鐘（若未液化再補以上下震盪）。
11.6 打開分析試劑匣蓋，使用無菌滴管加入液化後的檢體。
11.7 關上分析試劑匣蓋，上機檢測。
11.8 檢驗後處理
11.8.1 廢棄物處理：檢驗過程之物品、微生物及剩餘檢體等感染性事業廢棄物，應先以標有生物危險標誌的專用紅色廢棄袋妥妥密封，貼上化學指示劑，再以121℃，每平方公分1.06公斤以上壓力，60分鐘高壓滅菌後，由合約清理廠商處理。

12 干擾與交互反應
無。

13 結果判定：
13.1 判讀標準
13.1.1 MTB Detected：測得結核菌群基因，判定為結核菌群陽性。
13.1.2 MTB Not Detected：未測得結核菌群基因，判定為結核菌群陰性。
13.1.3 RIF Resistance Detected：測得 rpoB 基因突變，判定為 Rifampin 抗藥性陽性。
13.1.4 RIF Not Detected：未測得 rpoB 基因突變，判定為 Rifampin 抗藥性陰性。
13.1.5 無效結果：出現 INVALID、ERROR 或 NO RESULT，應重新進行分析。
13.2 結果登錄
 LIMS 系統登錄檢驗結果。
13.3 報告核發
 LIMS 系統由非操作者第二人覆核檢驗結果後，核發報告。

14 生物參考區間/臨床決策值
 依據 13.1 判定結果，得到檢體之結核菌群鑑定與 Rifampin 抗藥性結果。

15 檢驗結果的可報告區間
 抗藥基因突變位點須位於該抗藥基因區域內。

16 結果超出量測區間之操作說明
 當抗藥基因發生突變位點超出試劑設計之抗藥基因區域時，此項測試將無法檢出。

17 危急值/異常值
 無。

18 臨床意義
 GeneXpert 分子檢測結核病及與 Rifampin 抗藥性有關 rpoB 基因突變可加快結核病診斷。

19 變異的潛在來源
 無。

20 參考文件
 20.1 RDC-QP-1601 安全衛生作業程序。
 20.2 Cepheid 原廠試劑說明書。

21 附錄
 21.1 Xpert MTB/RIF 試驗紀錄與實驗結果表單 (RDC-SOP-B3-E33-01)。
Xpert MTB/RIF試驗紀錄與實驗結果表單

<table>
<thead>
<tr>
<th>No</th>
<th>檢體編號</th>
<th>透驗機關</th>
<th>姓名</th>
<th>實驗結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>MTB detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MTB not detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rif Resistance detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rif Resistance not detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>INVALID/ERROR/NO RESULT</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>MTB detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MTB not detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rif Resistance detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rif Resistance not detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>INVALID/ERROR/NO RESULT</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>MTB detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MTB not detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rif Resistance detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rif Resistance not detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>INVALID/ERROR/NO RESULT</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>MTB detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MTB not detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rif Resistance detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rif Resistance not detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>INVALID/ERROR/NO RESULT</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>MTB detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MTB not detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rif Resistance detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rif Resistance not detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>INVALID/ERROR/NO RESULT</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>MTB detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MTB not detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rif Resistance detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rif Resistance not detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>INVALID/ERROR/NO RESULT</td>
</tr>
</tbody>
</table>

備註

RDC-SOP-B3-E33-01
1 目的
利用 GenoType® MTBC 試劑組，進行結核菌群菌株快速核酸檢測以區分菌種。

2 檢體種類與採檢容器
適用於固態或液態培養基培養之結核菌群菌株，收集於 2 mL 之微量離心管，
以 95 ℃，20 分鐘進行去活化反應。

3 原理概述
利用核酸線性探針反向雜交測定技術，鑑別下列菌株：M. africanum, M. bovis BCG, M. bovis ssp. bovis, M. bovis ssp. caprae, M. microti，及 M. tuberculosis/”M. canettii”。

4 檢驗性能特徵
結核菌群菌種鑑定之定性分析。

5 病人準備
無

6 試劑耗材
6.1 試劑：GenoType® MTBC 試劑組，包含:
6.1.1 AM-A
6.1.2 AM-B
6.1.3 Denaturation solution（DEN）
6.1.4 GenoType MTBC 核酸線性探針反向雜交紙片
6.1.5 Hybridization Buffer（HYB）
6.1.6 Stringent Wash Solution（STR）
6.1.7 Rinse Solution（RIN）
6.1.8 Conjugate Concentrate（CON-C）
6.1.9 Conjugate Buffer（CON-D）
6.1.10 CON 溶液（1：100 之 CON-C 加 CON-D 配製）
6.1.11 Substrate Concentrate（SUB-C）
6.1.12 Substrate Buffer（SUB-D）
6.1.13 SUB 溶液（1：100 之 SUB-C 加 SUB-D 配製）

6.2 耗材
6.2.1 10 μL 具過濾塞之微量吸管尖。
6.2.2 100 μL 具過濾塞之微量吸管尖。
6.2.3 200 μL 具過濾塞之微量吸管尖。
6.2.4 1000 μL 具過濾塞之微量吸管尖。
6.2.5 2 mL 微量離心管。
6.2.6 核酸聚合酶微量反應管。

6.3 個人防護耗材
6.3.1 手套。
7 儀器設備
7.1 核酸聚合酶機器。
7.2 微量離心機。
7.3 核酸雜交反應槽（TwinCubator®）
7.4 1-10 μL 微量吸管分注器。
7.5 10-100 μL 微量吸管分注器。
7.6 10-200 μL 微量吸管分注器。
7.7 10-1000 μL 微量吸管分注器。
7.8 高壓滅菌鍋

7.8.1 使用前確認具合格檢測標籤。

8 環境與設施安全
8.1 於生物安全第一等級（BSL-1）實驗室之設施內操作。
8.2 依行政院國科會「基因重組實驗守則」。

9 校正程序
無

10 品質管制
10.1 內部品管
10.1.1 注意各檢驗試劑之有效效期，避免使用過期試劑。過期試劑需評估後使用，效期半年。
10.1.2 冷凍保存的試劑需進行分裝，避免反覆冷凍解凍。
10.1.3 PCR 試劑配製與操作檢體空間需分開。
10.1.4 操作檢體需在隔離乾淨的操作櫃內，於使用前以紫外燈照射至少 15 分鐘，並於操作前以 70 % 酒精將桌面擦拭乾淨。
10.1.5 操作時需戴乾淨手套，取用檢體需避免可能產生的交叉污染。
10.1.6 檢體污染桌面時需以漂白水清潔。

10.2 外部品管
CAP-E 測試組菌株鑑定為結核菌群樣本進行，每年二次。

11 檢驗步驟
11.1 檢體前處理：無。
11.2 挑選進行實驗之檢體，依序排列，並填寫實驗紀錄表。操作前，以 70 % 酒精擦拭桌面，準備所需之實驗用品。先將 PCR 室之壓克力操作檯啟 UV 照射 15 分鐘。
11.3 進入 Pre-PCR 室前，於緩衝區更換實驗衣再進入 Pre-PCR 室，按下無菌操作台前馬達鈕及電燈開關，並將拉門拉起 10-15 公分，以 70 % 酒精擦拭檯面，並待操作台馬達運轉至少 7-15 分鐘，確保操作台內空氣層流穩定，才可進行 11.4 試劑配製。
11.4 配製核酸聚合酶液，單一檢體之核酸聚合酶液含以下配方：
試劑	體積（μL）
AM-A | 10.0
AM-B | 35.0
檢體 | 5.0
總體積為 50 μL

11.5 將於冰上之每一核酸聚合酶反應管依序加入 AM-A 及 AM-B。
11.6 最後加入檢體 5 μL。
11.7 執行 PCR

<table>
<thead>
<tr>
<th>階段</th>
<th>溫度</th>
<th>時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Enzyme Activation</td>
<td>95 ℃</td>
<td>5 分鐘</td>
</tr>
<tr>
<td>2. Denature</td>
<td>95 ℃</td>
<td>30 秒</td>
</tr>
<tr>
<td>3. Annealing</td>
<td>58 ℃</td>
<td>2 分鐘</td>
</tr>
</tbody>
</table>

步驟 2.至步驟 3.循環重複 10 次

<table>
<thead>
<tr>
<th>階段</th>
<th>溫度</th>
<th>時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Extension</td>
<td>95 ℃</td>
<td>25 秒</td>
</tr>
<tr>
<td></td>
<td>53 ℃</td>
<td>40 秒</td>
</tr>
<tr>
<td></td>
<td>70 ℃</td>
<td>40 秒</td>
</tr>
</tbody>
</table>

步驟 4.循環重複 20 次

<table>
<thead>
<tr>
<th>階段</th>
<th>溫度</th>
<th>時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Final extension</td>
<td>70 ℃</td>
<td>8 分鐘</td>
</tr>
<tr>
<td>6. Store</td>
<td>16 ℃</td>
<td>∞</td>
</tr>
</tbody>
</table>

11.8 雜交

11.8.1 預熱核酸雜交反應槽至 45 ℃
11.8.2 將 HYB 和 STR 預熱至 45 ℃。
11.8.3 在室溫下，將 20 μL 之 DEN 加入反應盤中之專用溝槽中。
11.8.4 加入 20 μL 之核酸聚合酶產物與 DEN 混和均勻，反應 5 分鐘。
11.8.5 將 1 mL 之 HYB Buffer 加入含有混合物之溝槽中，加入時要避免濺入其他之溝槽中。
11.8.6 依序放入標示編號之 GenoType® CM 核酸線性探針反向雜交紙片，並將反應盤置入核酸雜交反應槽反應 45 ℃ 30 分鐘。
11.8.7 將 HYB Buffer 完全吸出（例如使用 pipette），加入 1 mL STR Buffer 至含有核酸線性探針反向雜交紙片之溝槽中，置入核酸雜交反應槽反應 45 ℃ 15 分鐘，此步驟之後續步驟皆在室溫下進行。
11.8.8 將 STR Buffer 完全吸出，加入 1 mL RIN Buffer 至含有核酸線性探針反向雜交紙片之溝槽中，擺動清洗 1 分鐘。
11.8.9 倒掉 RIN Buffer，加入 1 mL CON 溶液（10 μL CON-C 加 1 mL CON-D），搖動反應 30 分鐘。
11.8.10 移除 CON 溶液並使用 1 mL 之 RIN Buffer 摆動清洗 1 分鐘 2 次，
再加入無菌水 1 mL 擺動清洗 1 分鐘。

11.8.11 倒掉無菌水，加入 SUB 溶液（10 μL SUB-C 加 1 mL SUB-D），避光靜置 3 至 20 分鐘，直到核酸線性探針反向雜交紙片呈色完成。

11.8.12 加入無菌水 1 mL 擺動清洗 1 分鐘 2 次停止顯色。

11.9 檢驗後處理

11.9.1 廢棄物處理：檢驗過程之物品、微生物及剩餘檢體等感染性事業廢棄物，應先以標有生物危險標誌的專用紅色廢棄袋妥密封，貼上化學指示劑，再以 121 ℃，每平方公分 1.06 公斤以上壓力，60 分鐘高壓滅菌後，由合約清理廠商處理。

12 干擾與交互反應

無

13 結果判定

13.1 判讀標準

將核酸線性探針反向雜交紙片對齊貼在 GenoType® MTBC 評估表（附錄一），依核酸線性探針反向雜交紙片之顯色位點來與比對表（附錄二）對照，得到檢體之菌株鑑定結果。

13.2 結果登錄

LIMS 系統登錄檢驗結果。

13.3 報告核發

LIMS 系統由非操作者第二人覆核檢驗結果後，核發報告。

14 生物參考區間/臨床決策值

依據 13.1 判定結果，得到檢體之結核菌群結果。

15 檢驗結果的可報告區間

菌種鑑定的結果須符合判定標準。

16 結果超出量測區間之操作說明

當顯色位點無法正確符合任一結核菌群時，其結果將視為無法判定。

17 危急值/異常值

無。

18 臨床意義

代表個案感染結核菌群菌株。

變異的潛在來源

無。
19 參考文件
19.1 RDC-QP-1601 安全衛生作業程序。
19.2 GenoType® MTBC 操作手冊。

21 附錄
21.1 附錄一（GenoType® MTBC 操作手冊）

21.2 附錄二
GenoType® MTBC 試驗紀錄與實驗結果表單（RDC-QR-B3-E15-01）。

Interpretation Chart
<table>
<thead>
<tr>
<th>no</th>
<th>細菌編號</th>
<th>送驗機關</th>
<th>姓名</th>
<th>MTBC Control</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CC</td>
<td>UC</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

備註: PCR cycle (___X, ___X): SUB: ___ min.
1 目的
利用 GenoType® Mycobacterium CM/AS 試劑組，進行非結核分枝桿菌菌種鑑定。

2 檢體種類與採檢容器
適用於固態或液態培養基培養出之分枝桿菌菌株，收集於 2 mL 之微量離心管，以 95 ℃，20 分鐘進行去活化反應。

3 原理概述

4 檢驗性能特徵
非結核分枝桿菌菌種鑑定之定性分析。

5 病人準備
無

6 試劑耗材
6.1 試劑：GenoType® Mycobacterium CM/AS 試劑組，包含：
 6.1.1 Primer-Nucleotide-Mi（PNM）
 6.1.2 DNA 綜合酶（5 U/μL）
 6.1.3 25 mM 氯化鎂溶液。
 6.1.4 不含氯化鎂之 10X 緩衝液（10X buffer w/o MgCl₂）
 6.1.5 Denaturation Solution（DEN）
 6.1.6 GenoType® Mycobacterium CM 試劑組核酸線性探針反向雜交紙片
 6.1.7 Hybridization Buffer（HYB）
 6.1.8 Stringent Wash Solution（STR）
 6.1.9 Rinse Solution（RIN）
 6.1.10 Conjugate Concentrate（CON-C）
 6.1.11 Conjugate Buffer（CON-D）
 6.1.12 CON 溶液（1：100 之 CON-C 加 CON-D 配製）
 6.1.13 Substrate Concentrate（SUB-C）
 6.1.14 Substrate Buffer（SUB-D）
6.15 SUB 溶液（1：100 之 SUB-C 加 SUB-D 配製）

6.2 耗材
6.2.1 10 μL 具過濾塞之微量吸管尖。
6.2.2 100 μL 具過濾塞之微量吸管尖。
6.2.3 200 μL 具過濾塞之微量吸管尖。
6.2.4 1000 μL 具過濾塞之微量吸管尖。
6.2.5 2 mL 微量離心管。
6.2.6 核酸聚合酶微量反應管。

6.3 個人防護耗材
6.3.1 手套。

7 儀器設備
7.1 核酸聚合酶機器。
7.2 微量離心機。
7.3 核酸雜交反應槽（TwinCubator®）
7.4 1－10 μL 微量吸管分注器。
7.5 10－100 μL 微量吸管分注器。
7.6 10－200 μL 微量吸管分注器。
7.7 10－1000 μL 微量吸管分注器。
7.8 高壓滅菌鍋
7.8.1 使用前確認具合格檢測標籤。

8 環境與設施安全
8.1 於生物安全第一等級（BSL-1）實驗室之設施內操作。
8.2 依行政院國科會「基因重組實驗守則」。

9 校正程序
無

10 品質管制
10.1 內部品管
10.1.1 注意各檢驗試劑之有效效期，避免使用過期試劑。過期試劑需評估後使用，效期半年。
10.1.2 冷凍保存的試劑（聚合酶、引子）需進行分裝，避免反覆冷凍解凍。
10.1.3 PCR 試劑配製與操作檢體空間需分開。
10.1.4 操作檢體需在隔離乾淨的操作櫃內，於使用前以紫外燈照射至少 15 分鐘，並於操作前以 70 % 酒精將桌面擦拭乾淨。
10.1.5 操作時需戴乾淨手套，取用檢體需避免可能產生的交叉污染。
10.1.6 檢體污染桌面時需以漂白水清潔。
10.2 外部品管
CAP-E 測試組，每年二次。
11 檢驗步驟

11.1 檢體前處理：無。

11.2 挑選進行實驗之檢體，依序排列，並填寫實驗紀錄表。操作前，以 70 ％酒精擦拭桌面，準備所需之實驗用品。先將 PCR 室之壓克力操作檯開啟 UV 照射 15 分鐘。

11.3 進入 Pre-PCR 室前，於緩衝區更換實驗衣再進入 Pre-PCR 室，按下無菌操作台前馬達鈕及電燈開關，並將拉門拉起 10-15 公分，以 70 ％酒精擦拭檯面，並待操作台馬達運轉至少 7-15 分鐘，確保操作台內空氣層流穩定，才可進行 6.4 試劑配製。

11.4 配製核酸聚合酶液，單一檢體之核酸聚合酶液含以下配方：

<table>
<thead>
<tr>
<th>試劑</th>
<th>体积（μL）</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNM（GenoType® Mycobacterium CM/AS 試劑組）</td>
<td>35.0</td>
</tr>
<tr>
<td>不含氯化鎂之 10X 緩衝液</td>
<td>5.0</td>
</tr>
<tr>
<td>25 mM 氯化鎂溶液</td>
<td>5.0</td>
</tr>
<tr>
<td>DNA 聚合酶</td>
<td>0.18</td>
</tr>
<tr>
<td>檢體</td>
<td>5.0</td>
</tr>
<tr>
<td>總體積為 50 μL</td>
<td></td>
</tr>
</tbody>
</table>

11.5 置於冰上之 2 mL 微量離心管內依序加入 PNM、不含氯化鎂之 10X 緩衝液 25 mM 氯化鎂溶液，最後加入 DNA 聚合酶，混合均勻後分別於核酸聚合酶微量反應管內加入 46 μL 試劑混合液，操作時均在冰上操作，以維持 DNA 聚合酶活性。

11.6 最後加入檢體 5 μL。

11.7 執行 PCR

<table>
<thead>
<tr>
<th>步驟</th>
<th>溫度</th>
<th>時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Enzyme Activation</td>
<td>95 °C</td>
<td>5 分鐘</td>
</tr>
<tr>
<td>2. Denature</td>
<td>95 °C</td>
<td>30 秒</td>
</tr>
<tr>
<td>3. Annealing</td>
<td>58 °C</td>
<td>2 分鐘</td>
</tr>
<tr>
<td>4. Extension</td>
<td>95 °C</td>
<td>25 秒</td>
</tr>
<tr>
<td></td>
<td>53 °C</td>
<td>40 秒</td>
</tr>
<tr>
<td></td>
<td>70 °C</td>
<td>40 秒</td>
</tr>
<tr>
<td>5. Final extension</td>
<td>70 °C</td>
<td>8 分鐘</td>
</tr>
<tr>
<td>6. Store</td>
<td>16 °C</td>
<td>∞</td>
</tr>
</tbody>
</table>

步驟 2. 至步驟 3. 循環重複 10 次

步驟 4. 循環重複 20 次
11.8 雜交
11.8.1 預熱核酸雜交反應槽至 45 ℃
11.8.2 將 HYB 和 STR 預熱至 45 ℃。
11.8.3 在室溫下，將 20 μL 之 DEN 加入反應盤中之專用溝槽。
11.8.4 加入 20 μL 之核酸聚合酶產物與 DEN 混和均勻，反應 5 分鐘。
11.8.5 將 1 mL 之 HYB Buffer 加入含有混合物之溝槽中，加入時要避免濺入其他之溝槽中。
11.8.6 依序放入標示編號之 GenoType® CM 核酸線性探針反向雜交紙片，並將反應盤置入核酸雜交反應槽反應 45 ℃ 30 分鐘。
11.8.7 將 HYB Buffer 完全吸出（例如使用 pipette），加入 1 mL STR Buffer 至含有核酸線性探針反向雜交紙片之溝槽中，置入核酸雜交反應槽反應 45 ℃ 15 分鐘，此步驟之後續步驟皆在室溫下進行。
11.8.8 將 STR Buffer 完全吸出，加入 1 mL RIN Buffer 至含有核酸線性探針反向雜交紙片之溝槽中，置入核酸雜交反應槽反應 45 ℃ 15 分鐘，此步驟之後續步驟皆在室溫下進行。
11.8.9 倒掉 RIN Buffer，加入 1 mL CON 溶液（10 μL CON-C 加 1 mL CON-D），置入核酸反應槽反應 30 分鐘。
11.8.10 移除 CON 溶液並使用 1 mL 之 RIN Buffer 擺動清洗 1 分鐘 2 次，再加入無菌水 1 mL 擺動清洗 1 分鐘。
11.8.11 倒掉無菌水，加入 SUB 溶液（10 μL SUB-C 加 1 mL SUB-D），避光靜置 3 至 20 分鐘，直到核酸線性探針反向雜交紙片呈色完成。
11.8.12 加入無菌水 1 mL 擺動清洗 1 分鐘 2 次停止顯色。
11.8.13 若結果僅能判定為 Mycobacterium spec.，重複 11.8 試驗，將剩餘的聚合酶反應產物以 GenoType® AS 核酸線性探針反向雜交紙片進行 11.8 步驟。

11.9 檢驗後處理
11.9.1 廢棄物處理：檢驗過程之物品、微生物及剩餘檢體等感染性事業廢棄物，應先以標有生物危險標誌的專用紅色廢棄袋妥妥密封，貼上化學指示劑，再以 121 ℃，每平方公分 1.06 公斤以上壓力，60 分鐘高壓滅菌後，由合約清理廠商處理。

12 干擾與交互反應
無

13 結果判定：
13.1 判讀標準
將核酸線性探針反向雜交紙片對齊貼在 GenoType® Mycobacterium CM/AS 評估表（附錄一），依 strips 之顯色位點來與比對表（附錄二）對照，得到檢體之菌株鑑定結果。

13.2 結果登錄
LIMS 系統登錄檢驗結果。
13.3 報告核發
 LIMS 系統由非操作者第二人覆核檢驗結果後，核發報告。

14 生物參考區間/臨床決策值
 依照13.1判定結果，得到檢體之非結核分枝桿菌結果。

15 檢驗結果的可報告區間
 菌種鑑定的結果須符合13.1判定標準。

16 結果超出量測區間之操作說明
 當顯色位點無法正確符合任一非結核分枝桿菌時，其結果將視為無法判定。

17 危急值/異常值
 無。

18 臨床意義
 代表個案移生（colonization）或感染非結核分枝桿菌。

19 變異的潛在來源
 無。

20 參考文件
 20.1 RDC-QP-1601 安全衛生作業程序。
 20.2 GenoType® Mycobacterium CM 操作手冊

21 附錄
 21.1 附錄一（GenoType® Mycobacterium CM 操作手冊）
21.2 附錄二 GenoType® Mycobacterium CM
附錄三 (GenoType® Mycobacterium AS 操作手冊)

![GenoType Mycobacterium AS 操作手冊](image)

21.4 附錄四 GenoType® Mycobacterium AS

![GenoType Mycobacterium AS 操作手冊](image)
21.5 GenoType® CM 試驗紀錄與實驗結果表單（RDC-QR-B3-E16-01）。

<table>
<thead>
<tr>
<th>Lot-PNM</th>
<th>試驗紀錄與實驗結果</th>
<th>實驗成績者日期</th>
<th>審核者日期</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTCM14001</td>
<td>GenoType® CM</td>
<td></td>
<td>10/10/2041</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>疾病管制署分枝桿菌實驗室</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
</tbody>
</table>

備註: PCR cycle (___X, ___X); SUB: ___ min.
21.6 GenoType® AS 試驗紀錄與實驗結果表單（RDC-QR-B3-E16-02）。

<table>
<thead>
<tr>
<th>Lot-PNM</th>
<th>編號</th>
<th>設計</th>
<th>2014/09/10</th>
<th>審核</th>
<th>簽署</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTAS14001</td>
<td>1/1</td>
<td>GenoType® AS</td>
<td>試驗紀錄與實驗結果</td>
<td>小明</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>菌株編號</th>
<th>送驗機關</th>
<th>姓名</th>
<th>MTBC Control</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td></td>
<td></td>
<td>CC</td>
<td>UC</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

備註：PCR cycle (___X, ___X)：SUB：__ min。
RDC-QR-B3-E16-02
1. 目的
利用間隔寡核酸分子分型法（spacer oligonucleotide typing, spoligotyping）分
析結核菌群（Mycobacterium tuberculosis complex）基因型。

2. 檢體種類與採檢容器
2.1 檢體種類：陽性結核菌群菌株，或經萃取之 DNA。
2.2 採檢容器：陽性結核菌群菌株收集於 2 mL 之微量離心管，以 95 ℃，20
分鐘進行去活化反應。

3. 原理概述
利用結核菌群 DR region 重複之 direct repeat 片段在不同菌株之間寡核苷酸不
同，設計 43 種不同探針（probe），針對不同菌株間此寡核苷酸之不同而進行
分型。以聚合酶連鎖反應（polymerase chain reaction, PCR）方式，將寡核苷
酸放大再以雜交膜上之探針相互雜交，最後以生物素（biotin）與白蛋白（avidin）
方式，經由 ECL 反應激發產光，於底片曝光後偵測而完成分子分型。

4. 檢驗性能特徴
菌株基因型之定性分析。

5. 病人準備
無。

6. 試劑耗材
6.1 試劑
6.1.1 Spoligotyping kit（Ocimum Biosolutions）：雜交膜（hybridization
membrane），置於 2 ℃-8 ℃ 儲存。
6.1.2 引子（primer）：加無菌水調整濃度為 100 μM（pmole/μL）。DR-a-5′biotin
儲存於 4 ℃，DRb 儲存於-20 ℃冰箱。勿超過一年。
6.1.2.1 DR-a-5′biotin 畜序：biotin5′-GGTTTTGGGTCTGACGAC
6.1.2.2 DRb 畜序 5′-CCGAGAGGGACGGAAAC
6.1.3 puReTaq Ready-To-Go PCR Beads（GE）
6.1.4 無菌水（Sterilized deionized H2O, ddH2O）
6.1.5 10 % sodium dodecyl sulfate（SDS）：500 mL 20 % SDS（AMRESCO）
（若有沉澱，先於 45 ℃水浴槽完全溶解）加 500 mL 二次水混合均
勻，過濾滅菌（不可高溫滅菌），儲存於室溫勿超過三個月。
6.1.6 2X SSPE / 0.1 % SDS（Buffer 1）：50 mL 20X SSPE（AMRESCO）加
二次水至 495 mL。再加 5 mL 10 % SDS（總體積 500 mL）。新鮮配製。
10 % SDS 需最後加，不可與 20 X SSPE 先混合，會產生沉澱。
6.1.7 2X SSPE / 0.5 % SDS（Buffer 2）：100 mL 20X SSPE（AMRESCO）
加二次水至 950 mL，再加 50 mL 10 % SDS（總體積 1000 mL）。新鮮
配製。
6.1.8 1 % SDS（Buffer 3）：50 mL 10 % SDS（AMRESCO）加二次水至 500
衛生福利部疾病管制署傳染病標準檢驗方法

編號：結核菌群間隔寡核酸分子分型法
核准日期：
修訂日期：

6.1.9 Streptavdin-HRP (invitrogen)
6.1.10 2X SSPE：50 mL 20X SSPE (AMRESCO) 加二次水至 500 mL。新鮮配製。
6.1.11 ECL detection kit (Millipore)：包含試劑 A、B。
6.1.12 20 mM EDTA (pH 8.0)：10 mL 0.5 M EDTA (Merck) 加二次水至 250 mL。新鮮配製。

6.2 耗材
6.2.1 10 µL 具過濾塞之微量吸管尖。
6.2.2 100 µL 具過濾塞之微量吸管尖。
6.2.3 200 µL 具過濾塞之微量吸管尖。
6.2.4 1000 µL 具過濾塞之微量吸管尖。
6.2.5 玻璃皿。
6.2.6 雜交滾動瓶 (roller bottle) (Thermo Hybaind)。
6.2.7 X-ray film 底片 (GE)。
6.2.8 緩衝墊片 (Immunetics)。

6.3 個人防護耗材
6.3.1 手套。

7 儀器設備
7.1 PCR 機器 (Applied Biosystems)。
7.2 雜交烘箱 (hybridization oven) (ThermoHybaid)。
7.3 水浴槽。
7.4 Miniblottor MN45 (Immunetics)。
7.5 抽氣裝置。
7.6 冲片机 (elk Ecomat 21)。
7.7 1-10 µL 微量吸管分注器。
7.8 10-100 µL 微量吸管分注器。
7.9 10-200 µL 微量吸管分注器。
7.10 10-1000 µL 微量吸管分注器。
7.11 高壓滅菌鍋
7.11.1 使用前確認具合格檢測標籤。

8 環境與設施安全
8.1 於生物安全第一等級 (BSL-1) 實驗室之設施內操作。
8.2 依行政院國科會「基因重組實驗守則」。

9 校正程序
無。
10 品質管制

10.1 內部品管

10.1.1 注意各檢驗試劑之有效效期，避免使用過期試劑。
10.1.2 冷凍保存的試劑（引子）需進行分裝，避免反覆冷凍解凍。
10.1.3 PCR 試劑配製與操作檢體空間需分開。
10.1.4 操作檢體需在隔離乾淨的操作箱內，於使用前以紫外燈照射至少 15 分鐘，並於操作前以 70 % 酒精將桌面擦拭乾淨。
10.1.5 PCR 需放置 H37Rv DNA 陽性對照組及 ddH2O 陰性對照組。
10.1.6 操作時需戴乾淨手套，取用檢體需避免可能產生的交叉污染。
10.1.7 檢體污染桌面上時需以漂白水清潔。

10.2 外部品管

無。

11 檢驗步驟

11.1 檢體前處理：無。

11.2 5 µM 引子配製：

11.2.1 DR-a-5'biotin (5 µM)：取 50 µL 的 DR-a-5'biotin (100 µM) 加 950 µL 無菌水（總體積 1000 µL）混合均勻，spin down，分裝 120 µL/管共 8 管，儲存於 4 ℃。
11.2.2 DRb (5 µM)：取 50 µL 的 DR-a-5'biotin (100 µM) 加 950 µL 無菌水（總體積 1000 µL）混合均勻，spin down，分裝 120 µL/管共 8 管，儲存於-20℃。
11.2.3 每次配製分裝剩餘的 40 µL，於新批號第一次使用前先進行品管確認，方可使用。

11.3 PCR 反應

11.3.1 先取出需要的 PCR Beads 管數，並確認管中的凍乾 bead 仍完好存在，標示編號清楚，並包含陽性對照組及陰性對照組。

11.3.2 配製 PCR 混合液：

<table>
<thead>
<tr>
<th></th>
<th>1 rx.</th>
<th>45 rx.</th>
<th>(+) control</th>
</tr>
</thead>
<tbody>
<tr>
<td>無菌水</td>
<td>17 µL</td>
<td>765.0 µL</td>
<td>19 µL</td>
</tr>
<tr>
<td>Primer DR-a-5'biotin (5uM)</td>
<td>2.5 µL</td>
<td>112.5 µL</td>
<td>2.5 µL</td>
</tr>
<tr>
<td>Primer DRb (5uM)</td>
<td>2.5 µL</td>
<td>112.5 µL</td>
<td>2.5 µL</td>
</tr>
<tr>
<td>檢體</td>
<td>3 µL</td>
<td>個別加</td>
<td>1 µL</td>
</tr>
</tbody>
</table>

Total 25 µL 22 µL/tube 25 µL

11.3.3 每一管加入 22 µL PCR 混合液後，各加入檢體 3 µL。

11.3.4 陽性對照組為 M. tuberculosis H37Rv DNA，加入陽性對照組 1 µL，
11.3.5 陰性對照組為無菌水，加入 3 μL 無菌水。

11.3.6 執行 PCR:

<table>
<thead>
<tr>
<th>步驟</th>
<th>溫度</th>
<th>時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Enzyme Activation</td>
<td>95 ℃</td>
<td>5 分鐘</td>
</tr>
<tr>
<td>2. Denature</td>
<td>95 ℃</td>
<td>1 分鐘</td>
</tr>
<tr>
<td>3. Annealing</td>
<td>55 ℃</td>
<td>1 分鐘</td>
</tr>
<tr>
<td>4. Extension</td>
<td>72 ℃</td>
<td>30 秒</td>
</tr>
</tbody>
</table>

步驟2至步驟4循環重複25次

<table>
<thead>
<tr>
<th>步驟</th>
<th>溫度</th>
<th>時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Final extension</td>
<td>72 ℃</td>
<td>5 分鐘</td>
</tr>
<tr>
<td>6. Store for o/n</td>
<td>16 ℃</td>
<td>∞</td>
</tr>
</tbody>
</table>

11.4 核酸雜交反應

11.4.1 PCR 機器開機。

11.4.2 水浴槽開機並設定 60 ℃，配製 2X SSPE / 0.1 % SDS (Buffer 1)、2X SSPE / 0.5 % SDS (Buffer 2)、1 % SDS (Buffer 3)，置入水浴槽預熱平衡溫度（至少 1.5 小時）。

11.4.3 開啟 2 台雜交烘箱：60 ℃ 及 42 ℃。

11.4.4 將雜交膜自 4 ℃ 冰箱取出，並以镊子置於玻璃皿中，以 60 ℃ 250 mL 2X SSPE / 0.1 % SDS (Buffer 1)、於 60 ℃ 雜交烘箱內搖動清洗雜交膜，共清洗 2 次，每次 10 分鐘。

11.4.5 取出 PCR 管，確認編號仍清楚，離心並依序在 rack 上排好。PCR 產物每管以微量吸管分注器注入 150 μL 2X SSPE / 0.1 % SDS (Buffer 1)。蓋緊上蓋，上下搖晃混合均勻並離心。

11.4.6 置於聚合酶連鎖反應機器，並執行程式 99 ℃ 10 分鐘。加熱完成後，取出微量試管立即置於冰寶（提前 3 分鐘取至室溫）上至少 10 分鐘後，離心備用。

11.4.7 將清洗完成的雜交膜降溫（避免水蒸氣產生），再取出置於 Miniblotter（注意雜膠膜正反面）、雜膠膜底部置入一片緩衝墊片，將 Miniblotter 周圍六個旋鈕對稱鎖緊。

11.4.8 以抽氣裝置將 Miniblotter 每條溝內残留溶液抽出。

11.4.9 將未注入檢體的溝先以 2X SSPE / 0.1 % SDS (Buffer 1) 補滿。

11.4.10 將 150 μL 11.3.6 產物分別依序注入每條溝中，注意不可將氣泡殘留在溝內。

11.4.11 完畢後以 parafilm 封住上下兩端，水平置於 60 ℃ 雜交烘箱內靜置 1 小時。期間應留意 parafilm 是否有破裂，必要時補上以免容易蒸發。
11.4.12 玻璃皿以清水清洗，並以二次水潤洗後備用。

11.5 呈色及沖片

11.5.1 雜交反應完成後，將 parafilm 移除，避免殘留在 Miniblotter 上。以抽氣裝置將 Miniblotter 每條溝內溶液抽出，再旋開周圍旋鈕以鐵子將雜交膜取出置於玻璃皿中。

11.5.2 以 60 ℃ 250 mL 2X SSPE / 0.5 % SDS (Buffer 2)，於 60 ℃ 雜交烘箱內搖動清洗雜交膜，共清洗 2 次，每次 10 分鐘。清洗完成後，將烘箱降溫並設定為 42 ℃。將水浴槽設定為 80 ℃ 雜交烘箱內搖動清洗雜交膜，共清洗 2 次，每次 10 分鐘。清洗完成後，將烘箱預熱至 42 ℃。

11.5.3 將 2.5 µL Streptavidin-HRP 加入已降至室溫的 10 mL 2X SSPE / 0.5 % SDS (Buffer 2) (1:4000 稀釋) vortex 混合均勻備用。HRP 稀釋比例可依實際情況調整。

11.5.4 雜交膜自烘箱取出後倒乾清洗液，並先靜置至室溫後，以鐵子小心沿雜交膜邊緣捲成一圓筒狀，置於雜交滾動瓶內，並輕拍滾動瓶使雜交膜完整且無氣泡貼覆在雜交滾動瓶內側。

11.5.5 將 11.4.3 配製好的溶液垂直加入含雜交膜之雜交滾動瓶中，勿沾到雜交膜，將瓶蓋關緊後，先將溶液在雜交滾動瓶底部搖勻。

11.5.6 將雜交滾動瓶置入 42 ℃ 雜交烘箱，滾動反應 45 分鐘。

11.5.7 將剩餘的 500 mL 2X SSPE / 0.5 % SDS (Buffer 2) 血清瓶置入 42 ℃ 烘箱內。

11.5.8 反應完畢，以鐵子夾出雜交膜置於玻璃皿中，以 42 ℃ 250 mL 2X SSPE / 0.5 % SDS (Buffer 2) 清洗雜交膜，於 42 ℃ 雜交烘箱內搖動清洗雜交膜，共清洗 2 次，每次 10 分鐘。清洗完成後，將烘箱設定至 80 ℃ 預熱。

11.5.9 於室溫下以 250 mL 2X SSPE 溶液清洗雜交膜，共清洗 2 次，每次 5 分鐘。

11.5.10 開啟沖片機預熱（約需 12 分鐘），使用前確認沖片機內的顯影液與定影液顏色。

11.5.11 配製 ECL 反應試劑 10 mL（依實際情況配製等比例試劑 A、B 混合均勻），並於室溫放置 10 分鐘。

11.5.12 倒乾清洗液後並以二次水潤洗雜交膜。加入 ECL 反應試劑 10 mL，以手持方式搖動 2 分鐘並完全淹蓋雜交膜。以鐵子將雜交膜取出，並沿玻璃皿溝溝除殘留 ECL 溶液，以保鮮膜包覆雜交膜，且將氣泡趕出，以膠帶固定置於壓片卡匣內。

11.5.13 於暗房壓片，將底片（底片於壓片前先於左上角小折做記號）放入沖片機進行沖片。
11.6 雜交膜的保存

11.6.1 沖片完畢將雜交膜置於玻璃皿中，以 80 ℃ 250 mL 1% SDS (Buffer 3) 於 80 ℃ 雜交烘箱內搖動清洗雜交膜，共清洗 2 次，依實際情況每次 30 分鐘至 1 小時。

11.6.2 雜交膜移出烘箱，倒乾清洗液後並以二次水潤洗雜交膜後，於室溫下以250 mL 20 mM EDTA (pH 8.0) 清洗 15 分鐘後，將雜交膜置入塑膠袋內，並添加少許（約 50 mL）20 mM EDTA（pH 8.0）後封口，並檢查封口完整無滲漏，於 4 ℃ 冰箱保存，塑膠袋須事先標示清楚雜交膜廠牌、使用次數、使用日期。

11.6.3 檢驗後處理

11.6.4 廢棄物處理：檢驗過程之物品、微生物及剩餘檢體等感染性事業廢棄物，應先以標有生物危險標誌的專用紅色廢棄袋裝妥密封，貼上化學指示劑，再以 121 ℃，每平方公分 1.06 公斤以上壓力，60 分鐘高壓滅菌後，由合約清理廠商處理。

12 干擾與交互反應
無。

13 結果判定

13.1 將底片之結果以掃描器掃瞄後電存檔。

13.2 執讀標準

判讀各菌株圖譜，依其43個寡核酸結果，僅出現末 9 點寡核酸之圖譜判為北京株（Beijing strain, B）；若其末 9 點寡核酸有缺少則判為類北京株（Beijing-like strain, BL）；若有出現末 9 點之外之寡核酸則稱之非北京株（Non-Beijing strain, NB）。

北京株（Beijing strain, B）

類北京株（Beijing-like strain, BL）

非北京株（Non-Beijing strain, NB）

13.3 結果登錄

LIMS 系統登錄報告結果。

13.4 報告核發

LIMS 系統由非操作者第二人覆核檢驗結果後，核發報告。

14 生物參考區間/臨床決策值

依照 43 個 spacer 的有無為每個菌株的 spoligotype 基因型。
15 檢驗結果的可報告區間
43 個 spacer 可完成雜交反應。

16 結果超出量測區間之操作說明
無。

17 危急值/異常值
無。

18 臨床意義
代表個案感染結核菌群菌株之基因型。

19 變異的潛在來源
不同基因型代表可能為不同菌株所感染。

20 參考文件
20.1 RDC-QP-1601 安全衛生作業程序。

21 附錄
Spoligotyping 試驗紀錄與實驗結果表單（RDC-QR-B3-E19-01）。
Spoligotyping

<table>
<thead>
<tr>
<th>批號</th>
<th>編號</th>
<th>PCR cycles</th>
<th>DNA*</th>
<th>實驗結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SPOL14xxx</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ddH2O</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ H37Rv</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*檢體為DNA請打V

備註：膜性 membrane □ BioPlex, beads coupling date __________
1 目的
自29個已發表的結核菌群散置重複單元（mycobacterial interspersed repetitive units, MIRU）位點（locus）中，選擇對台灣地區結核菌群（Mycobacterium tuberculosis complex）菌株可達鑑別力與 IS6110 restriction fragment length polymorphism (RFLP) 相當，且最符合經濟效益的10個位點所組合成的最佳化散置重複單元分子分型法，簡稱 MIRU（10），進行高效率的基因型分析。

2 檢體種類與採檢容器
2.1 檢體種類：陽性結核菌群菌株，並經萃取之 DNA。
2.2 採檢容器：陽性結核菌群菌株收集於2 mL之微量離心管，以95℃，20分鐘進行去活化反應。

3 原理概述
利用結核菌群染色體上 MIRU 位點在不同菌株可能具有不同序列重複數（repeat number）的多形性，以多重聚合酶連鎖反應法（multiplex polymerase chain reaction, multiplex PCR），將不同單元重複序列位點放大，依照計算所得之重複數，分別給予各位點一數字代碼。本方法選用10個位點分別為 VNTR3820、QUB3232、QUB2163b、Mtub04、VNTR4120、MIRU39、QUB18、QUB-26、Mtub21、MIRU26。10個位點的單元重複數組成一串數字代碼即為每個菌株的 MIRU（10）基因型。

4 檢驗性能特徵
菌株基因型之定性分析。

5 病人準備
無。

6 試劑耗材
6.1 試劑
6.1.1 引子：加無菌水調整濃度為100 μM（pmole/μL），儲存於-20℃冰箱。勿超過一年。序列如下：

<table>
<thead>
<tr>
<th>組號</th>
<th>位點</th>
<th>單元長度 (bp)</th>
<th>引子名稱</th>
<th>引子序列 (5' to 3')</th>
<th>5' 標定</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mix21</td>
<td>VNTR3820</td>
<td>57</td>
<td>F_VNTR3820</td>
<td>TGCGCGGTGAATGAGACG</td>
<td>FAM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1001-VNTR3820</td>
<td>ACCTTCATCCTTTGGCGAC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>QUB3232</td>
<td>56</td>
<td>V_QUB3232</td>
<td>CAGACCCGGCGTCATCAAC</td>
<td>VIC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1002-QUB3232</td>
<td>CCAAGGCGCGCATGTTT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>QUB2163b</td>
<td>69</td>
<td>N_QUB2163b</td>
<td>CGAAGGTGAATGGTGCGAT</td>
<td>NED</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1003-QUB2163b</td>
<td>CGTAAGGGGATGCGGGAATAGG</td>
<td></td>
</tr>
<tr>
<td>Mix22</td>
<td>Mtub04</td>
<td>51</td>
<td>F_Mtub04</td>
<td>GGCAAGCAGAGCCCGGATTTC</td>
<td>FAM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1004-Mtub04</td>
<td>CTTGGCGGCATCAAAGGCATTATT</td>
<td></td>
</tr>
</tbody>
</table>
6.1.2 多重聚合酶連鎖反應試劑組（multiplex PCR kit）（QIAGEN）。
6.1.3 無菌水（Sterilized deionized H₂O, ddH₂O）。
6.1.4 Dimethyl sulfoxide（DMSO）（SIGMA）。

6.2 耗材
6.2.1 十二爪手動微量分注器專用 10 μL 具過濾塞之微量吸管尖。
6.2.2 10 μL 具過濾塞之微量吸管尖。
6.2.3 100 μL 具過濾塞之微量吸管尖。
6.2.4 200 μL 具過濾塞之微量吸管尖。
6.2.5 1000 μL 具過濾塞之微量吸管尖。
6.2.6 1-10 μL 分注吸管（Eppendorf）。
6.2.7 半襯邊 96 孔 PCR 微量反應盤（SSI）。

6.3 個人防護耗材
6.3.1 手套。

7 儀器設備
7.1 PCR 機器。
7.2 全自動核酸基因分析儀（Applied Biosystems 3500）。
7.3 0.1-2.5 μL 微量吸管分注器。
7.4 2-20 μL 微量吸管分注器。
7.5 1-10 μL 微量吸管分注器。
7.6 10-100 μL 微量吸管分注器。
7.7 10-200 μL 微量吸管分注器。
7.8 10-1000 μL 微量吸管分注器。
7.9 十二爪手動微量分注器。
7.10 1-10 μL 液晶多功能分注器。
7.11 高壓滅菌鍋
7.11.1 使用前確認具合格檢測標籤。
8 環境與設施安全
8.1 於生物安全第一等級（BSL-1）實驗室之設施內操作。
8.2 依行政院國科會「基因重組實驗守則」。

9 校正程序
無。

10 品質管制
10.1 內部品管
10.1.1 注意各檢驗試劑之有效效期，避免使用過期試劑。
10.1.2 冷凍保存的試劑（多重聚合酶連鎖反應試劑組、引子）需進行分裝，避免反覆冷凍解凍。
10.1.3 PCR 試劑配製與操作檢體空間需分開。
10.1.4 操作檢體需在隔離乾淨的操作箱內，於使用前以紫外燈照射至少 15 分鐘，並於操作前以 70 % 酒精將桌面擦拭乾淨。
10.1.5 PCR 需放置 H37Rv DNA 陽性對照組及 ddH2O 陰性對照組。
10.1.6 操作時需戴乾淨手套，取用檢體需避免可能產生的交叉污染。
10.1.7 檢體污染桌面時需以漂白水清潔。
10.2 外部品管
荷蘭 RIVM 測試組。

11 檢驗步驟
11.1 檢體前處理：依RDC-SOP-B3-I35執行DNA萃取。
11.2 Mutiplex PCR引子混合液配製：

<table>
<thead>
<tr>
<th>Primers Mix21</th>
<th>體積（μL）</th>
</tr>
</thead>
<tbody>
<tr>
<td>無菌水</td>
<td>200</td>
</tr>
<tr>
<td>F_VNTR3820（100 μM）</td>
<td>10</td>
</tr>
<tr>
<td>1001-VNTR3820（100 μM）</td>
<td>10</td>
</tr>
<tr>
<td>V_QUB3232（100 μM）</td>
<td>10</td>
</tr>
<tr>
<td>1002-QUB3232（100 μM）</td>
<td>10</td>
</tr>
<tr>
<td>N_QUB2163b（100 μM）</td>
<td>5</td>
</tr>
<tr>
<td>1003-QUB2163b（100 μM）</td>
<td>5</td>
</tr>
<tr>
<td>總體積為 250 μL，分裝 10 μL/管，儲存於-20 °C</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Primers Mix22</th>
<th>體積（μL）</th>
</tr>
</thead>
<tbody>
<tr>
<td>無菌水</td>
<td>195</td>
</tr>
<tr>
<td>F_Mtub04（100 μM）</td>
<td>5</td>
</tr>
<tr>
<td>1004-Mtub04（100 μM）</td>
<td>5</td>
</tr>
</tbody>
</table>
11.3 Multiplex PCR反应，每管反应含：

Mix21

<table>
<thead>
<tr>
<th></th>
<th>体积 (μL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>無菌水</td>
<td>2.3</td>
</tr>
<tr>
<td>2X Master mix</td>
<td>5.0</td>
</tr>
<tr>
<td>DMSO</td>
<td>0.5</td>
</tr>
<tr>
<td>Primers Mix21 引子混合液</td>
<td>0.2</td>
</tr>
<tr>
<td>DNA</td>
<td>2.0</td>
</tr>
<tr>
<td>總反應體積為 10 μL</td>
<td></td>
</tr>
</tbody>
</table>

Mix22

<table>
<thead>
<tr>
<th></th>
<th>体积 (μL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>無菌水</td>
<td>2.3</td>
</tr>
<tr>
<td>2X Master mix</td>
<td>5.0</td>
</tr>
<tr>
<td>DMSO</td>
<td>0.5</td>
</tr>
<tr>
<td>Primers Mix22 引子混合液</td>
<td>0.2</td>
</tr>
<tr>
<td>DNA</td>
<td>2.0</td>
</tr>
</tbody>
</table>
總反應體積為 10 μL

<table>
<thead>
<tr>
<th>混合液</th>
<th>体积 (μL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>無菌水</td>
<td>1.9</td>
</tr>
<tr>
<td>2X Master mix</td>
<td>5.0</td>
</tr>
<tr>
<td>DMSO</td>
<td>0.5</td>
</tr>
<tr>
<td>Primers Mix23VN 引子混合液</td>
<td>0.2</td>
</tr>
<tr>
<td>Primers Mix23F 引子混合液</td>
<td>0.4</td>
</tr>
<tr>
<td>DNA</td>
<td>2.0</td>
</tr>
</tbody>
</table>

總反應體積為 10 μL

11.4 Single PCR引子混合液配製：

<table>
<thead>
<tr>
<th>Primers</th>
<th>体积 (μL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>無菌水</td>
<td>96</td>
</tr>
<tr>
<td>Primer F</td>
<td>2</td>
</tr>
<tr>
<td>Primer R</td>
<td>2</td>
</tr>
</tbody>
</table>

總體積為 100 μL，分裝 10 μL/管，儲存於-20 ℃

11.5 當multiplex PCR任一產物為陰性時，需進行Single PCR反應，每管反應含：

11.5.1 引子終濃度為 0.04 μM：1003-QUB2163b、1004-Mtub04、
1006-MIRU39、1009-Mtub21、1010-MIRU26

<table>
<thead>
<tr>
<th>混合液</th>
<th>体积 (μL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>無菌水</td>
<td>2.3</td>
</tr>
<tr>
<td>2X Master mix</td>
<td>5</td>
</tr>
<tr>
<td>DMSO</td>
<td>0.5</td>
</tr>
<tr>
<td>Single PCR 引子混合液</td>
<td>0.2</td>
</tr>
<tr>
<td>DNA</td>
<td>2</td>
</tr>
</tbody>
</table>

總反應體積為 10 μL

11.5.2 引子終濃度為0.06 μM：1005-VNTR4120

<table>
<thead>
<tr>
<th>混合液</th>
<th>体积 (μL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>無菌水</td>
<td>2.2</td>
</tr>
<tr>
<td>2X Master mix</td>
<td>5.0</td>
</tr>
<tr>
<td>DMSO</td>
<td>0.5</td>
</tr>
<tr>
<td>Single PCR 引子混合液</td>
<td>0.3</td>
</tr>
</tbody>
</table>
DNA 2
總反應體積為 10 μL

11.5.3 引子終濃度為 0.08 μM：1001-VNTR3820、1002-QUB3232、
1007-QUB18

<table>
<thead>
<tr>
<th>體積（μL）</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>無菌水</td>
<td>2.1</td>
</tr>
<tr>
<td>2X Master mix</td>
<td>5.0</td>
</tr>
<tr>
<td>DMSO</td>
<td>0.5</td>
</tr>
<tr>
<td>Single PCR 引子混合液</td>
<td>0.4</td>
</tr>
<tr>
<td>DNA</td>
<td>2</td>
</tr>
<tr>
<td>總反應體積為 10 μL</td>
<td></td>
</tr>
</tbody>
</table>

11.5.4 引子終濃度為 0.16 μM：1008-QUB26

<table>
<thead>
<tr>
<th>體積（μL）</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>無菌水</td>
<td>1.7</td>
</tr>
<tr>
<td>2X Master mix</td>
<td>5.0</td>
</tr>
<tr>
<td>DMSO</td>
<td>0.5</td>
</tr>
<tr>
<td>Single PCR 引子混合液</td>
<td>0.8</td>
</tr>
<tr>
<td>DNA</td>
<td>2</td>
</tr>
<tr>
<td>總反應體積為 10 μL</td>
<td></td>
</tr>
</tbody>
</table>

11.6 取半溝邊96孔盤，標記PCR盤編號（PCR+上機日期+序號，如
PCR20150101-1）後
11.6.1 以分注器分裝8 μL PCR反應液至每個well
11.6.2 先加陽性(H37Rv DNA 10 ng/μL)及陰性對照組 (無菌水)各2 μL，
再以12爪分注器吸取2 μL DNA檢體加至well中
11.6.3 蓋上無菌96孔盤用耐熱矽膠蓋，以空tip盒加壓蓋緊
11.6.4 確認每個well中有液體，並spin down，取出96孔盤後，再次確認
well中有液體，再上機

11.7 PCR反應條件

<table>
<thead>
<tr>
<th>步驟</th>
<th>溫度</th>
<th>時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Enzyme Activation</td>
<td>95 ℃</td>
<td>10分鐘</td>
</tr>
<tr>
<td>2. Denature</td>
<td>95 ℃</td>
<td>1分鐘</td>
</tr>
</tbody>
</table>
3. Annealing 59 ℃ 1分钟
4. Extension 72 ℃ 2分钟

步骤2至步骤4重複35次
5. Final extension 72 ℃ 8分钟
6. Store for o/n 4 ℃ ∞

11.8 PCR产物以全自动核酸基因分析仪进行片段分析。

11.9 檢驗後處理

11.9.1 廢棄物處理：檢驗過程之物品、微生物及剩餘體液等感染性事業廢棄物，應先以標有生物危險標誌的專用紅色廢棄袋裝妥密封，貼上化學指示劑，再以 121 ℃，每平方公分 1.06 公斤以上壓力，60 分鐘高壓滅菌後，由合約清理廠商處理。

12 干擾與交互反應

無。

13 結果判定

13.1 判讀標準：依下表設定全自动核酸基因分析仪之片段分析单元，以判讀每个位点之重複數

<table>
<thead>
<tr>
<th>位點</th>
<th>VNTR820</th>
<th>QUB3232</th>
<th>QUB2163b</th>
<th>Mtu04</th>
<th>VNTR4120</th>
<th>MIRU 39</th>
<th>QUB-18</th>
<th>QUB26</th>
<th>Mtu21</th>
<th>MIRU 26</th>
</tr>
</thead>
<tbody>
<tr>
<td>基因位置</td>
<td>3820</td>
<td>3232</td>
<td>2163</td>
<td>424</td>
<td>4120</td>
<td>4348</td>
<td>1982</td>
<td>4052</td>
<td>1955</td>
<td>296</td>
</tr>
<tr>
<td>薩氏長度</td>
<td>57 bp</td>
<td>56 bp</td>
<td>69 bp</td>
<td>51 bp</td>
<td>57 bp</td>
<td>53 bp</td>
<td>78 bp</td>
<td>111 bp</td>
<td>57 bp</td>
<td>51 bp</td>
</tr>
<tr>
<td>重複數</td>
<td>0 253 406 55 543 322 546</td>
<td>222 134 85 270</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>306</td>
<td>449</td>
<td>128</td>
<td>594</td>
<td>372</td>
<td>599</td>
<td>304</td>
<td>251</td>
<td>140</td>
<td>324</td>
</tr>
<tr>
<td>2</td>
<td>359</td>
<td>492</td>
<td>199</td>
<td>645</td>
<td>422</td>
<td>652</td>
<td>386</td>
<td>368</td>
<td>195</td>
<td>378</td>
</tr>
<tr>
<td>3</td>
<td>412</td>
<td>535</td>
<td>270</td>
<td>696</td>
<td>472</td>
<td>705</td>
<td>468</td>
<td>485</td>
<td>250</td>
<td>432</td>
</tr>
<tr>
<td>4</td>
<td>465</td>
<td>578</td>
<td>341</td>
<td>747</td>
<td>520</td>
<td>758</td>
<td>550</td>
<td>602</td>
<td>305</td>
<td>486</td>
</tr>
<tr>
<td>5</td>
<td>518</td>
<td>621</td>
<td>416</td>
<td>798</td>
<td>568</td>
<td>811</td>
<td>632</td>
<td>719</td>
<td>360</td>
<td>540</td>
</tr>
<tr>
<td>6</td>
<td>571</td>
<td>661</td>
<td>491</td>
<td>849</td>
<td>616</td>
<td>864</td>
<td>714</td>
<td>824</td>
<td>415</td>
<td>594</td>
</tr>
<tr>
<td>7</td>
<td>624</td>
<td>701</td>
<td>566</td>
<td>900</td>
<td>664</td>
<td>917</td>
<td>796</td>
<td>924</td>
<td>475</td>
<td>648</td>
</tr>
<tr>
<td>8</td>
<td>677</td>
<td>739</td>
<td>641</td>
<td>951</td>
<td>712</td>
<td>970</td>
<td>868</td>
<td>1004</td>
<td>535</td>
<td>702</td>
</tr>
<tr>
<td>9</td>
<td>727</td>
<td>777</td>
<td>716</td>
<td>1002</td>
<td>760</td>
<td>1023</td>
<td>940</td>
<td>1084</td>
<td>595</td>
<td>756</td>
</tr>
<tr>
<td>10</td>
<td>776</td>
<td>815</td>
<td>791</td>
<td>1053</td>
<td>805</td>
<td>1076</td>
<td>1002</td>
<td>1144</td>
<td>650</td>
<td>804</td>
</tr>
<tr>
<td>11</td>
<td>822</td>
<td>853</td>
<td>856</td>
<td>850</td>
<td>1054</td>
<td>1204</td>
<td>702</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>868</td>
<td>886</td>
<td>921</td>
<td>888</td>
<td>1098</td>
<td>1239</td>
<td>754</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>909</td>
<td>923</td>
<td>976</td>
<td>926</td>
<td>1142</td>
<td>1274</td>
<td>806</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>950</td>
<td>955</td>
<td>1031</td>
<td>961</td>
<td>1186</td>
<td>1209</td>
<td>858</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>991</td>
<td>980</td>
<td>1076</td>
<td>996</td>
<td>1230</td>
<td>1344</td>
<td>910</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1025</td>
<td>1007</td>
<td>1031</td>
<td>962</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1059</td>
<td>1032</td>
<td>1066</td>
<td>1014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1088</td>
<td>1057</td>
<td>1087</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1117</td>
<td>1082</td>
<td>1108</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1146</td>
<td>1102</td>
<td>1129</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1137</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
13.3 報告核發
LIMS 系統由非操作者第二人覆核檢驗結果後，核發報告。

14 生物參考區間/臨床決策值
依照 10 個位點分別計算所得之重複數組成一串數字代碼即為每個菌株的 MIRU（10）基因型。

15 檢驗結果的可報告區間
依全自動核酸基因分析儀之片段分析單元可判讀之位點重複數。

16 結果超出量測區間之操作說明
當超出量測區間時，結果為無法判定。

17 危急值/異常值
無。

18 臨床意義
代表個案感染結核菌群菌株之基因型。

19 變異的潛在來源
不同基因型代表可能為不同菌株所感染。

20 參考文件
20.1 RDC-QP-1601 安全衛生作業程序。

21 附錄

MIRU（10）試驗紀錄與實驗結果表單（RDC-QR-B3-E28-01）。
編號：
結核菌群最佳化數置重複單元
分子分型法

<table>
<thead>
<tr>
<th>MIRU400</th>
<th>MIRU401</th>
<th>MIRU402</th>
<th>MIRU403</th>
<th>MIRU404</th>
<th>MIRU405</th>
<th>MIRU406</th>
<th>MIRU407</th>
<th>MIRU408</th>
<th>MIRU409</th>
<th>MIRU410</th>
<th>MIRU411</th>
<th>MIRU412</th>
<th>MIRU413</th>
<th>MIRU414</th>
<th>MIRU415</th>
<th>MIRU416</th>
<th>MIRU417</th>
<th>MIRU418</th>
<th>MIRU419</th>
<th>MIRU420</th>
<th>MIRU421</th>
<th>MIRU422</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>P</td>
<td>Q</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>U</td>
<td>V</td>
<td>W</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
</tr>
</tbody>
</table>

Run Name: AB20-0101, GeneMapper: AS 20190401
1 目的
病理檢體純化核酸 (RDC-SOP-B3-E24) 經結核菌群分子檢測 (RDC-SOP-B3-E13) 陽性結果，進一步確認是否為卡介苗牛型結核菌 (M. bovis BCG) 疫苗。

2 檢體種類與採檢容器
個案送驗病理檢體並經萃取之核酸，儲存於 2 mL 之微量離心管。

3 原理概述
利用 M. bovis BCG 特定重複序列進行聚合酶反應，自電泳膠進行膠體核酸純化，並將純化的核酸定序以確認該病理檢體核酸含 M. bovis BCG 核酸。

4 檢驗性能特徵
M. bovis BCG 核酸之定性分析。

5 病人準備
無。

6 試劑耗材
6.1 試劑
6.1.1 引子：加無菌水調整濃度為 100 μM (pmole/μL)，儲存於 -20 °C 冰箱。勿超過一年。序列如下：

<table>
<thead>
<tr>
<th>引子名稱</th>
<th>引子序列 (5' to 3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>INS-1</td>
<td>CGTGAGGGCATCGAGGTGGC</td>
</tr>
<tr>
<td>INS-2</td>
<td>GCGTAGGCGTCGGTGACAAA</td>
</tr>
<tr>
<td>S33</td>
<td>ACACCGACATGACGGCGG</td>
</tr>
<tr>
<td>S34</td>
<td>CGACGGTGTGGGCGAGG</td>
</tr>
</tbody>
</table>

6.1.2 多重聚合酶連鎖反應試劑組（multiplex PCR kit）（QIAGEN）。
6.1.3 電泳膠核酸純化試劑組（MinElute Gel Extraction kit）（QIAGEN）。
6.1.4 SeaKem LE 電泳膠（Lonza）。
6.1.5 MetaPhor 電泳膠（Lonza）。
6.1.6 異丙醇。
6.1.7 無菌水（Sterilized deionized H₂O, ddH₂O）。

6.2 耗材
6.2.1 10 μL 具過濾塞之微量吸管尖。
6.2.2 100 μL 具過濾塞之微量吸管尖。
6.2.3 200 μL 具過濾塞之微量吸管尖。
6.2.4 1000 μL 具過濾塞之微量吸管尖。
6.2.5 PCR 微量反應管。
6.2.6 塑膠切膠器（Easy Pure Agrose band Cutter）（Bioman）。
衛生福利部疾病管制署傳染病標準檢驗方法

編號：病理檢體卡介苗牛型結核菌核酸檢測
頁次：第 482 頁/共 1104 頁

6.3 個人防護耗材

6.3.1 手套。

7 儀器設備

7.1 PCR 機器。
7.2 0.1-2.5 μL 微量吸管分注器。
7.3 2-20 μL 微量吸管分注器。
7.4 1-10 μL 微量吸管分注器。
7.5 10-100 μL 微量吸管分注器。
7.6 10-200 μL 微量吸管分注器。
7.7 10-1000 μL 微量吸管分注器。
7.8 水平式電泳槽。
7.9 電泳膠影像儀。
7.10 乾式加熱器。
7.11 高壓滅菌鍋

7.11.1 使用前確認具合格檢測標籤。

8 環境與設施安全

8.1 於生物安全第一等級（BSL-1）實驗室之設施內操作。
8.2 依行政院國科會「基因重組實驗守則」。

9 校正程序

無。

10 品質管制

10.1 內部品管
10.1.1 注意各檢驗試劑之有效效期，避免使用過期試劑。
10.1.2 冷凍保存的試劑（多重聚合酶連鎖反應試劑組、引子）需進行分裝，避免反覆冷凍解凍。
10.1.3 PCR 試劑配製與操作檢體空間需分開。
10.1.4 操作檢體需在隔離乾淨的操作櫃內，於使用前以紫外燈照射至少 15 分鐘，並於操作前以 70 % 酒精將桌面擦拭乾淨。
10.1.5 PCR 需放置 M. bovis DNA 陽性對照組及 ddH2O 陰性對照組。
10.1.6 操作時需戴乾淨手套，取用檢體需避免可能產生的交叉污染。
10.1.7 檢體污染桌面時需以漂白水清潔。
10.2 外部品管

無。

11 檢驗步驟

11.1 引子混合液配製：
11.2 Mutiplex PCR反應，每管反應含：

<table>
<thead>
<tr>
<th>Mix</th>
<th>體積（μL）</th>
</tr>
</thead>
<tbody>
<tr>
<td>2X Master mix</td>
<td>20.0</td>
</tr>
<tr>
<td>Primers IS Mix</td>
<td>4.0</td>
</tr>
<tr>
<td>Primers S33/S34 Mix</td>
<td>12.0</td>
</tr>
<tr>
<td>DNA</td>
<td>4.0</td>
</tr>
</tbody>
</table>

總反應體積為 40 μL，至少配製 5.5 管用量（含 3 管檢體及各 1 管陽性及陰性對照組）

11.3 PCR反應條件

<table>
<thead>
<tr>
<th>步驟</th>
<th>溫度</th>
<th>時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Enzyme Activation</td>
<td>95 ℃</td>
<td>10分鐘</td>
</tr>
<tr>
<td>2. Denature</td>
<td>95 ℃</td>
<td>20秒</td>
</tr>
<tr>
<td>3. Annealing</td>
<td>65 ℃</td>
<td>30秒</td>
</tr>
<tr>
<td>4. Extension</td>
<td>72 ℃</td>
<td>30秒</td>
</tr>
</tbody>
</table>

11.4 以2% LE電泳膠進行PCR產物片段分析。

由左至右分別為100 bp marker，3管同一檢體及M. bovis陽性對照組及ddH₂O陰性對照組。
11.5 確認待測檢體核酸為M. bovis BCG核酸時，進行11.5以下步驟，以2 % Metaphor電泳膠進行剩餘PCR產物電泳，並以塑膠切膠器分別切出3段產物
並分置於3管1.5 mL離心管。

11.6 電泳膠核酸純化
11.6.1 3管含核酸片段的電泳膠分別秤重，扣除原空管的重量，每一離心管分別加入3倍電泳膠重量的QG緩衝液。
11.6.2 於50 ℃乾式加熱器加熱10分鐘，每隔2-3分鐘取出震盪以確認10分鐘後電泳膠完全溶解。
11.6.3 每管再加入1倍電泳膠重量的異丙醇，輕微搖動管身以確認混合均勻。
11.6.4 將混合液加入MinElute離心管柱，每管柱最多承載700 μL，以13,000 rpm離心1分鐘，若混合液超過700 μL，需進行第2次離心。
11.6.5 去除11.6.4離心液後，加入500 μL QG緩衝液，以13,000 rpm離心1分鐘。
11.6.6 去除11.6.5離心液後，加入700 μL PE緩衝液，靜置2分鐘後以13,000 rpm
離心1分鐘。
11.6.7 去除11.6.6離心液後，空離心管柱再次以13,000 rpm離心1分鐘，以去
除残留的清洗液。

11.6.8 離心管柱分別換乾淨離心管後，每管加入 20 μL 1X 離化液，靜置 1 分鐘後以 13,000 rpm 離心 1 分鐘。

11.6.9 收集純化產物後進行電泳分析，以確認純化過程順利。

11.7 純化電泳膠的核酸純化液分別取 2 μL 進行電泳分析，檢視各核酸片段是否符合預期。

11.8 核酸純化產物進行定序送件，待結果回覆後將序列進行比對。

11.9 檢驗後處理

11.9.1 廢棄物處理：檢驗過程之物品、微生物及剩餘檢體等感染性事業廢棄物，應先以標有生物危險標誌的專用紅色廢棄袋裝妥密封，貼上化學指示劑，再以 121 ℃，每平方公分 1.06 公斤以上壓力，60 分鐘高壓滅菌後，由合約清理廠商處理。

12 干擾與交互反應

無。

13 結果判定

13.1 判讀標準

13.1.1 若檢體為 M. bovis BCG，11.4 將會出現 3 段 PCR 產物（245 bp，178 bp 及 98 bp），若為 M. tuberculosis 將只出現 245 bp 產物，若為 M. bovis 將出現 245 bp 及 98 bp 產物。

13.1.2 若 178 bp 定序結果確認為 M. bovis BCG 時，則個案檢測報告可發布為「個案本次送驗病理檢體經核酸檢測確認為 M. bovis BCG」。

13.2 結果登記

15.1 LIMS 系統登記檢驗結果。

13.3 報告核發

LIMS 系統由非操作者第二人覆核檢驗結果後，核發報告。
14 生物參考區間/臨床決策值
 依據 13.1 判定結果，得到檢體之 M. bovis BCG 結果與否。

15 檢驗結果的可報告區間
 依定序結果判定菌種。

16 結果超出量測區間之操作說明
 無。

17 危急值/異常值
 無。

18 臨床意義
 代表個案送驗檢體含 M. bovis BCG 核酸。

19 變異的潛在來源
 無。

20 參考文件
 20.1 RDC-QP-1601 安全衛生作業程序。
 multiplex PCR to aid in routine work of the mycobacterium reference laboratory.

21 附錄
 21.1 Multiplex PCR for BCG 試驗紀錄與實驗結果（RDC-QR-B3-E29-01）
<table>
<thead>
<tr>
<th>NO</th>
<th>株號</th>
<th>送驗機關</th>
<th>姓名</th>
<th>實驗結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. 目的
定性測試人體血清或血漿中的 B 型肝炎核心抗原之 IgM 抗體(anti-HBc IgM)。
ARCHITECT Anti-HBc IgM 分析可用於輔助診斷急性或近期感染之 B 型肝炎。

2. 適用檢體種類
適用於血清或血漿檢體。

3. 名詞解釋
無。

4. 原理概述
ARCHITECT Anti-HBc IgM 分析為二步驟免疫分析法，利用化學冷光微粒免疫分析技術，配合彈性式分析過程（亦即 Chemiflex®），定性測試人類血清及血漿中之 anti-HBc IgM。在第一步驟中，預先稀釋過之樣本和覆被抗人類 IgM（小鼠、單株抗體）的磁性微粒混合，存於樣本中的人類 IgM 會與覆被抗人類 IgM 之微粒結合。經清洗後，具 anti-HBc 特異性的 IgM 會與在第二步驟加入的標幟 acridinium 之重組 B 型肝炎病毒核心抗原（rHBcAg）偶合物結合。經另一次清洗循環後，加入啟動前溶液及啟動溶液至反應瓶中。以相對光線單位（RLUs）測量最終化學冷光反應，樣本中的 anti-HBc IgM 含量與 ARCHITECT i-1000 光學系統所測得之 RLUs 有直接相關性。

檢體中的 anti-HBc IgM 存在與否，經由比較反應之化學冷光訊號及由 ARCHITECT Anti-HBc IgM 校正劑測得之臨界值來判定。若反應之化學冷光訊號值大於或等於臨界值，則檢體視為以 ARCHITECT Anti-HBc IgM 所測定之 anti-HBc IgM 有反應性。

5. 試劑耗材
5.1 試劑
5.1.1 ARCHITECT Anti-HBc IgM 試劑組（List No. 6C33）。1 或 4 瓶（5.6 mL）覆被抗人類 IgM（小鼠、單株抗體）之微粒於含蛋白質穩定劑（牛、山羊）之 TRIS 緩衝液中。最小濃度：0.12 %固體。防腐劑：抗菌劑。
5.1.2 1 或 4 瓶（5.9 mL）標幟 Acridinium 之 B 型肝炎病毒核心抗原（大腸桿菌、重組）偶合物於含蛋白質穩定劑（牛）之 succinate 緩衝液中。最小濃度：0.4 μg/mL，防腐劑：抗菌劑。
5.1.3 ARCHITECT i 前激發溶液（Pre-Trigger Solution）：含 1.32 %（w/v）過氧化氫。
5.1.4 ARCHITECT i 激發溶液（Trigger Solution）：含 0.35 N 氫氧化鈉。
5.1.5 ARCHITECT i 清洗液（Washing Buffer）：含磷酸緩衝食鹽水，防腐劑：抗菌劑。
5.1.6 ARCHITECT i Anti-HBc IgM calibrator 校正液（No. 6C33-01）。
5.1.7 ARCHITECT i Anti-HBc IgM control 對照劑 (No. 6C33-10)。
5.1.8 ARCHITECT i probe conditioning solution 探針清洗液。
5.1.9 漂白水。

5.2 耗材
5.2.1 微量吸管尖（tip）：1,000 µL、200 µL、100 µL。
5.2.2 反應容器（Reaction vessels）。
5.2.3 樣本杯（Sample cups）。
5.2.4 試劑軟蓋（Septums）。
5.2.5 可拋棄式無菌塑膠手套。

6 儀器設備
6.1 儀器：Architect i-1000 分析儀。
6.2 第二級生物安全操作櫃（Class II BSC）。
6.3 微量吸管（pipettemen）：1,000 µL、200 µL、100 µL。
6.4 離心機（KM-15200），KUBOTA，日本。
6.5 4 °C 冰箱。
6.6 -20 °C 冷凅櫃。
6.7 高壓滅菌鍋。

7 環境設施安全
於生物安全第二等級（BSL-2）實驗室之設施內操作。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 待測病患檢體依照檢體 Bar code 編號（由小至大）排序。
10.2 檢體前處理：
10.2.1 待測檢體（血清、血漿）需先震盪混合均勻並以 10,000 × g 離心 10 分鐘去除雜質，取其上清液。
10.2.2 第一次測試最小樣本杯檢體體積為 150 µL，每多一次測試增加檢體 14 µL，將樣本杯依序放置於檢體架上。
10.3 檢驗步驟：
10.3.1 由 Main Menu 中按 Orders 進入選項 calibration order、control order 依序輸入位置後，各選擇 IgM anti-HBc 項目，按 Add order。
10.3.2 將已放入校正液和對照劑之檢體架放進i-1000分析儀中，進行品管分析。
10.3.3 點選Orders後再點選Patient order。
10.3.4 輸入Carrier號碼。
10.3.5 輸入C/P（檢體放置於檢體架上之位置）及SID（檢體編號），亦可輸入PID（病歷號）。（整批檢體輸入請依Batch Order方式）。
10.3.6 點取測試項目IgM anti-HBc。
10.3.7 點取F3 Add order。
10.3.8 將放有檢體之Carrier放置於load queue上，即可開始分析測試。

10.4 Batch Order:
10.4.1 檢體不含barcode
於Patient orders畫面中點選Batch即進入Batch order畫面，只要於Starting C及P：輸入第一支檢體carrier號碼及位置然後於Number of samples輸入檢體數目接著點選欲上機之Assay項目再點選F3-Add order即可。
10.4.2 檢體含barcode
於Patient orders畫面中點選Batch並於Starting SID輸入第一支檢體之SID於Ending SID輸入最後一支檢體SID接著點選Assays後按F3-Add order即可。檢驗後處理
10.5.1 完成檢驗，IgM anti-HBc試劑組貯存於4°C冰箱保存。
10.5.2 執行關機前做好保養工作，按F1 Exit鍵讓螢幕回到Main Menu，按F2 Shutdown鍵，選擇OK，等待螢幕告知Shutdown完全後，才可關掉電源和印表機。
10.5.3 檢驗後之檢體應依序歸回檢體盒，放置-20°C冰箱保存。
10.5.4 整理清除實驗工作桌面上之抗污紙墊及使用後拋棄之微量吸管尖、手套包裝於廢棄物滅菌塑膠袋。

11 結果判定
11.1 判讀標準
11.1.1 計算結果原理
ARCHITECT i-1000系統由ARCHITECT IgM anti-HBc校正劑1及校正劑2三次測試結果之平均化學冷光訊號計算出臨界值比率（CO）並儲存結果。
臨界值RLU=[(校正劑2平均RLU值-校正劑1平均RLU值)×0.75]+校正劑1平均RLU值。儲存每一批號試劑校正之臨界值RLU。
ARCHITECT i-1000系統根據樣本RLU對臨界值RLU之比率（S/CO）計算每一個樣本及對照劑之分析結果。
S/CO=樣本RLU/臨界值RLU
以ARCHITECT IgM anti-HBc分析檢體S/CO值<1.00，視為無
反應性（陰性）。以 ARCHITECT IgM anti-HBe 分析檢體 S/CO 值≥1.00，視為有反應性（陽性）。

11.1.2 第一次測試有陽性反應之檢體應再複測試一次，檢驗結果有反應性，檢體可確認為陽性反應。

11.1.3 結果回傳由檢驗儀器傳回電腦，再列印出檢驗數據結果，並於列印紙上蓋章。

11.2 報告核發：IgM anti-HBe（陽性）、IgM anti-HBe（陰性）。

11.3 結果登錄：將檢體結果填寫於檢驗送驗單之“檢驗結果”欄，並於送驗單背面蓋章。經訓練的檢驗結論及檢體送驗單陳列於主管審核，由本署內部之網站應用系統進入傳染病通報系統輸入檢驗結果並以電子傳真輸送。

11.3.1 檢體送驗單及原始列印檢驗結果自行歸檔。

11.3.2 臨床意義：ARCHITECT IgM anti-HBe 分析利用標示 acridinium 之重組 B 型肝炎病毒核心抗原（rHBcAg）偶合物來測定 IgM anti-HBe。大部分的急性病毒感染都可偵測到具有病毒特異性的 IgM 抗體，因此其為急性病症的一項可靠標記。病患在急性感染時，IgM anti-HBe 的濃度會迅速上升；急性 B 型肝炎患者中可偵測到高量的 IgM anti-HBe。雖然 B 型肝炎表面抗原（HBsAg）通常也被當作是急性感染的一個血清學標記，但有些病例的 HBsAg 卻無法測得。IgM anti-HBe 在恢復期時會一直存在到 HBsAg 消失後，然後便慢慢減少。鑑於大家對其他 B 型肝炎病毒 (HBV) 的標記所知不多，若一個人具有可測量到的 IgM anti-HBe 時，應將其視為正受 HBV 感染或感染已痊癒。IgM anti-HBe 也會存在於慢性 B 型肝炎患者中，但其濃度通常低於急性感染的人，且會隨著疾病的惡化而上升或下降。單靠病毒的標記（像是 HBsAg、anti-HBs、HBeAg、anti-HBe 及 anti-HBc）很難判別是急性或慢性 B 型肝炎病毒感染的關係，因為這些標記大部分會同時出現在急性及慢性疾病中。高濃度的 IgM anti-HBe 與急性 B 型肝炎的相關性，因此 IgM anti-HBe 之檢測可用來輔助區分 HBV 所引起的急性肝炎或是 A 型肝炎、C 型肝炎或 delta 病毒等其他可能的致病所引起的附加感染（superimposed infection）。

12 品質管制

12.1 應於有效期限內使用，不同批號試劑組，其試劑不可混合使用。

12.2 每個月或更換試劑批號時需做校正，此外亦需根據每日對照劑的測試結果，決定是否重新校正。校正液與對照劑使用前要上下均勻混合，動作溫和避免氣泡。為得到建議所需之 ARCHITECT IgM anti-HBe 校正液及對照劑，垂握握住瓶子，滴 5 滴校正液 1 及校正液 2 與陰性、陽性對照劑各 5 滴於各自樣本杯中。

12.3 每次進行檢測試驗皆須加入陰性、陽性對照劑進行測定。
13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 °C，30 分鐘高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
ARCHITECT i-1000 IgM anti-HBc 原廠試劑說明書。

15 附錄
15.1 急性 B 型肝炎病毒感染鑑定總流程圖。
15.2 B 型肝炎病毒核心抗體 IgM 試驗(化學冷光微粒免疫分析法)流程圖。
附錄15.1 急性B型肝炎病毒感染鑑定總流程圖

B型肝炎病毒檢驗

血清/血漿檢體離心

HBsAg Test

檢驗判定

陰

陰

陽

複測兩次

陰

陽

記錄

報告

陰

陰

陽

記錄

記錄

記錄

陰

陰

陽

記錄

陽

陽

記錄

陰

陰

陽

記錄
附錄 15.2 B 型肝炎病毒核心抗體 IgM 檢測（化學冷光微粒免疫分析法）流程

血清檢體離心 10,000 x g，10 分鐘

IgM anti-HBc 試劑組放入 Architect i-1000 分析儀

確定 RV 輪架上裝有反應器 (RVs)，必要時可多加 RVs

由 Main Menu 中按 Orders 進入選項 calibration order、control order 依序輸入位置後，各選擇 IgM anti-HBc 項目，按 Add order。

將已加入校正液和對照劑之檢體架放進 i-1000 分析儀中，進行品管分析。

按 Orders 進入選項 patient order 依序輸入位置後，選擇 IgM anti-HBc 項目，按 Add order。

將已放入檢體之檢體架放進 i-1000 分析儀中處理待測檢體。

檢驗結果由檢驗儀器傳回電腦再列印出檢驗數據結果。
1 目的
定性測試人類血清及血漿中之 C 型肝炎病毒抗體。

2 適用檢體種類
適用於血清或血漿検體。

3 名詞解釋
無。

4 原理概述
ARCHITECT anti-HCV 分析為二步驟免疫分析法，利用化學冷光微粒免疫分析技術，定性測試人類血清及血漿中之 anti-HCV。在第一步驟，樣本、覆被重組 HCV 抗原的磁性微粒和分析稀釋液混合，存於樣本中的 anti-HCV 會與覆被 HCV 抗原之微粒結合，經清洗後，標示ㄚ啶(Acrifinium)的抗人類抗體偶合物於第二步驟加入，經另一次清洗循環後，加入啟動前溶液及啟動溶液於反應混合物中，以相對光線單位 (RLUs) 警測最終化學冷光反應，樣本中 anti-HCV 含量與 ARCHITECT i-1000 光學系統所測得 RLUs 有直接相關性。檢體中 anti-HCV 存在與否，經由比較反應化學冷光訊號及由 ARCHITECT anti-HCV 校正劑測得之臨界值來判定。若檢體之化學冷光訊號值大於或等於臨界值，則檢體為 anti-HCV 有反應性。

5 試劑耗材
5.1 試劑
5.1.1 ARCHITECT anti-HCV 試劑組（No.6C37）。1 或 4 瓶（每 100 次測試瓶裝 6.6 mL 或每 500 次測試瓶裝 27.0 mL）覆被 HCV 抗原（大腸桿菌, 酵母菌, 重組蛋白）微粒於 MES 緩衝液。最小濃度：0.14 %固體。保存劑：抗菌劑。

5.1.2 1 或 4 瓶（每 100 次測試瓶裝 5.9mL 或每 500 次測試瓶裝 26.3 mL）偶合物：標示ㄚ啶（Acrifinium）之鼠 anti-IgG/anti-IgM 偶合物於 MES 緩衝液。最小濃度：(IgG) 8 ng/mL/(IgM) 0.8 ng/mL。保存劑：抗菌劑。

5.1.3 1 或 4 瓶（每 100 次測試瓶裝 10.0 mL 或每 500 次測試瓶裝 50.9 mL） anti-HCV 分析稀釋液，含蛋白質穩定劑之 TRIS 緩衝液。保存劑：抗菌劑。

5.1.4 ARCHITECT i 前激發溶液（Pre-Trigger Solution）：含 1.32 % (w/v) 過氧化氫。

5.1.5 ARCHITECT i 激發溶液（Trigger Solution）：含 0.35 N 氫氧化鈉。

5.1.6 ARCHITECT i 清洗液（Washing Buffer）：含磷酸緩衝食鹽水，防腐劑：抗菌劑。
5.1.7 ARCHITECT i HAVAb-IgM calibrator 校正液（No.6C37-01）。
5.1.8 ARCHITECT i HAVAb-IgM control 對照劑（No.6C37-10）。
5.1.9 ARCHITECT i probe conditioning solution 探針清洗液。
5.1.10 漂白水。

5.2 耗材
5.2.1 微量吸管尖（tip）：1,000 µL、200 µL、100 µL。
5.2.2 反應容器（Reaction vessels）。
5.2.3 樣本杯（Sample cups）。
5.2.4 試劑軟蓋（Septums）。
5.2.5 可拋棄式無菌塑膠手套。

6 儀器設備
6.1 儀器：Architect i-1000 分析儀。
6.2 第二級生物安全操作櫃（Class II BSC）。
6.3 微量吸管（pipetmen）：1,000 µL、200 µL、100 µL。
6.4 離心機（KM-15200），KUBOTA，日本。
6.5 4 °C冰箱。
6.6 -20 °C冷凍櫃。
6.7 高壓滅菌鍋。

7 環境與施安全
於生物安全第二等級（BSL-2）實驗室之設施內操作。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 待測病患檢體依照檢體 Bar code 編號（由小至大）排序。
10.2 檢體前處理：
10.2.1 待測檢體（血清、血漿）需先震盪混合均勻並以 10,000 x g 離心 10 分鐘去除雜質，取其上清液。
10.2.2 第一次測試最小樣本杯檢體體積為 150 µL，每多一次測試增加檢體 20 µL，將樣本杯依序放置於檢體架上。
衛生福利部疾病管制署傳染病標準檢驗方法

編號：C型肝炎病毒抗體檢測

頁次：第 497 頁/共 1104 頁

10.3 Sample Order:
10.3.1 由 Main Menu 中按 Orders 進入選項 calibration order、control order 依序輸入位置後，各選擇 HCV 項目，按 Add order。
10.3.2 將已放入校正液和對照劑之檢體架放進 i-1000 分析儀中，進行品管分析。
10.3.3 點選 Orders 後再點選 Patient order。
10.3.4 輸入 Carrier 號碼。
10.3.5 輸入 C/P（檢體放置於檢體架上之位置）及 SID（檢體編號），亦可輸入 PID（病歷號）。（整批檢體輸入請依 Batch Order 方式）
10.3.6 點取測試項目 HCV。
10.3.7 點取 F3 Add order。
10.3.8 將放有檢體之 Carrier 放置於 load queue 上，即可開始分析測試。

10.4 Batch Order:
10.4.1 檢體不含 barcode
於 Patient orders 畫面中點選 Batch 即進入 Batch order 畫面,只要於 Staring C:及 P:輸入第一支檢體 carrier 號碼及位置然後於 Number of samples 輸入檢體數目接著點選欲上機之 Assay 項目再點選 F3-Add order 即可。

10.4.2 檢體含 barcode
於 Patient orders 畫面中點選 Batch 並於 Starting SID 輸入第一支檢體之 SID 於 Ending SID 輸入最後一支檢體 SID 接著點選 Assays 後按 F3-Add order 即可。檢驗後處理
10.5.1 完成檢驗，HCV 試劑組貯存於 4 °C 冰箱保存。
10.5.2 執行開關機前做好保養工作,按 F1 Exit 鍵讓螢幕回到 Main Menu,按 F2 Shutdown 鍵,選擇 OK, 等待螢幕告知 Shutdown 完全後，才可關掉電源和印表機。
10.5.3 檢驗後之檢體應依序歸回檢體盒，放置-20 °C 冰箱保存。
10.5.4 整理清除實驗工作桌面上之抗污紙墊及使用後拋棄之微量吸管尖、手套包裝於廢棄物滅菌塑膠袋。

11 結果判定
11.1 判讀標準
11.1.1 計算結果原理
ARCHITECT i-1000 系統自 3 次校正液 1 測試結果計算 anti-HCV 校正液 1 平均化學冷光訊號並儲存結果。
ARCHITECT anti-HCV 分析依 S/CO 計算結果。
臨界值計算：校正液 1 平均 RLU 值 x 0.074 =臨界值 RLU ；
S/CO =樣本 RLU/臨界值 RLU。
11.1.2 檢體之 S/CO 小於 1.00 者可視為呈陰性反應，若檢體之 S/CO大於或等於 1.00 者為陽性反應。
11.1.3 第一次檢測有陽性反應之檢體應再複測試一次，檢驗結果有反應性，檢體可確認為陽性反應。
11.1.4 初驗於灰區（Gray zone）範圍內（S/CO 0.80 - 0.99）之檢體，應以 10,000 x g 離心 15 分鐘，取其上清液，再重測二次（duplicate）。
11.1.5 結驗結果由檢驗儀器傳回電腦再列印出檢驗數據結果，並於列印紙上蓋章。

11.2 報告核發：anti-HCV（陽性）、anti-HCV（陰性）。
11.3 結果登錄：將檢驗結果填寫於檢體送驗單之“檢驗結果”欄，並於送驗單背面蓋職章，相關檢驗紀錄及檢體送驗單陳核實驗室主管審核，由本署內部之網站應用系統進入傳染病通報系統輸入檢驗結果並以電子傳真輸送。
11.3.1 檢體送驗單及原始列印檢驗結果自行歸檔。
11.3.2 臨床意義：HCV 為血液傳染性病毒，利用酵素免疫分析儀測抗 HCV 重組抗原之抗體的血清學研究証實，HCV 為大部份血液傳染及社區感染性非 A 非 B 型肝炎之主因。anti-HCV 之存在表示個體可能已感染 HCV，可能帶有感染性 HCV，並可能傳染給他人。雖然大部份受感染者可能無症狀表現，HCV 感染可能發展成慢性肝炎、肝硬化及增加肝細胞癌之危險性。以酵素免疫分析法進行捐血者 anti-HCV 篩檢，已大幅降低輸血傳染性肝炎之危險。

12.1 應於有效期限內使用，不同批號試劑組，其試劑不可混合使用。
12.2 每個月或更換試劑批號時都需做校正，此外亦需根據每日對照劑的測試結果，決定是否重新校正。校正液與對照劑使用前要上下均勻混合，動作溫和避免氣泡。為得到建議所需之 ARCHITECT anti-HCV 校正液及對照劑量，垂直握住瓶子，各滴 5 滴校正液與陰性、陽性對照劑各 6 滴於各自樣本杯中。
12.3 每次進行檢測試驗皆須加入陰性、陽性對照劑進行測定：
陰性對照劑（SCO）≦ 0.6
陽性對照劑（SCO）1.71 - 5.13
當其測定值落在可接受區間內，就可以繼續進行檢體的測定。若對照劑的測定值超出可接受區間，必須進一步檢視問題，並一一予以確認和排除，然後再重新以對照劑完成品質管制測試，最後才進行檢體的測定。
13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋妥密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
ARCHITECT anti-HCV 原廠試劑說明書。

15 附錄
15.1 急性 C 型肝炎病毒感染鑑定總流程圖。
15.2 C 型肝炎病毒抗體試驗（化學冷光微粒免疫分析法）流程圖。
附錄 15.1 急性 C 型肝炎病毒感染鑑定總流程圖

C 型肝炎抗體檢驗
血清/血漿檢體離心
ELISA Test

陰 阳
検驗判定
介於臨界值

記錄 複測兩次 複測

陰 阳
検驗判定
陰 阳

記錄 記錄 第二次複測 記錄

陰 阳
検驗判定
陰 阳

記錄 記錄

報告
附錄 15.2 C 型肝炎病毒抗體試驗（化學冷光微粒免疫分析法）流程圖

血清檢體離心 10,000 × g，10 分鐘

指數校正液(calibrator)5 drops、anti-HCV 陽性、陰性對照劑各 6 drops 依序加入檢體杯，置放於檢體架上

anti-HCV 試劑組放入 Architect i-1000 分析儀

確定 RV 輪架上裝有反應器 (RVs)，必要時可多加 RVs

由 Main Menu 中按 Orders 進入選項 calibration order、control order 依序輸入位置後，各選擇 anti-HCV 項目，按 Add order。

將已加入校正液和對照劑之檢體架放進 i-1000 分析儀中，進行品管分析。

按 Orders 進入選項 patient order 依序輸入位置後，選擇 anti-HCV 項目，按 Add order。

將已放上檢體之檢體架放進 i-1000 分析儀中處理待測検體。

檢驗結果由檢驗儀器傳回電腦再列印出檢驗數據結果。
目的
以分子生物學之技術利用即時反轉錄酶-聚合酶鏈鎖反應（Real-time RT-PCR）來檢測檢體中 C 型肝炎病毒 RNA。

適用檢體種類
適用於人體之血清及血漿檢體。

原理概述
利用 ABBOTT RealTime HCV 檢驗試劑搭配 ABBOTT m2000 system，先將檢體血液中的 C 型肝炎病毒顆粒打破，讓 HCV 核酸裸露，讓 RNA 與磁珠結合，經由多次沖洗將其他雜質去除，最後將病毒 RNA 洗出。接著使用 RT-PCR 的方法產生 HCV 臨床檢體 RNA 基因體的擴增產物。在開始樣本準備時即在每一檢體中加入一段與 HCV 目標序列無關的 RNA 序列。此無相關性的 RNA 序列在 RT-PCR 過程中同步被擴增，作為內部對照 (internal control, IC)，用以驗證每一個樣本的測試程序正確。每一次 PCR 循環中 HCV 目標序列的產量都在 m2000 系統中以測定螢光標示的寡核酸探針來定量。探針唯有專一性鍵結在擴增產物上才會產生螢光訊號。每一個樣本中 m2000 偵測到螢光訊號的 PCR 擴增循環數會對應到原始樣本中 RNA 濃度的對數值，再帶到由校準液所建立的標準曲線運算得到樣本濃度。

試劑耗材
5.1 mSample Preparation System：Abbott, Germany。
5.1.1 Abbott mLysis。
5.1.2 Abbott mWash 1。
5.1.3 Abbott mWash 2。
5.1.4 Abbott mElution Buffer。
5.1.5 Abbott mMicroparticles。
5.2 Abbott RealTime HCV Assay：Abbott, Germany。
5.2.1 Abbott RealTime HCV Amplification Reagent：含 internal control、rTth polymerase Enzyme、HCV Oligonucleotide reagent、activation reagent。
5.2.2 Abbott RealTime HCV Control Kit：含 high positive control、low positive control、negative control。
5.2.3 Abbott RealTime HCV Calibrator Kit：含 Calibrator A、Calibrator B。
5.3 Deep well plate。
5.4 DiTis (1 mL tips)、DiTis (200 μL tips)。
5.5 Reagent vessels。
5.6 Reaction vessels。
衛生福利部疾病管制署傳染病標準檢驗方法

編號：C

C 型肝炎病毒核酸檢測
（Real-time RT-PCR）

核准日期：年 月 日
修訂日期：年 月 日

頁次：第 503 頁/共 1104 頁

5.7 master mix tube。
5.8 無菌微量吸管尖 (tip): 1,000 μL、200 μL、100 μL、20 μL、10 μL。
5.9 96-well Optical Reaction Plate。
5.10 光學增強膜。

6 儀器設備
6.1 第 II 級生物安全櫃 (Class II BSC)。
6.2 m2000sp™ 全自動核酸萃取系統。
6.3 m2000rt 即時定量聚合酶鍵鎖反應系統。
6.4 微量吸管 (pipette): 1,000 μL、200 μL、100 μL、20 μL、10 μL。
6.5 振盪器 (vortexer)。
6.6 採血管離心機。
6.7 冰箱：4 ℃。
6.8 冷凍櫃：-20 ℃、-80 ℃。
6.9 高壓滅菌鍋。
6.10 Applicator。

7 檢體採集
參考本署之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

8 檢體運送及保存
參考本署之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢驗步驟
9.1 檢體編號登錄。
9.2 檢驗前處理
 9.2.1 血清或添加 EDTA 抗凝劑的血漿皆可使用。
 9.2.2 採集後之檢體，以 3,000 x g 離心 10 分鐘，將分離出的血清備用。
 9.2.3 檢體分裝：將處理好之血清檢體分成兩管：一管放置-20 ℃ 供 PCR 檢驗用；另一管放置-80 ℃ 儲存。
 9.2.4 吸取檢體 800 μL 加入 reaction vessel(檢體如果出現顆粒沉澱或是混濁，測試前應用 2000g 離心 5 分鐘後取上清液測試)，將 reaction vessel 和 control(包括 high positive control、low positive control 和 negative control 各一管)，calibrator (Calibrator A 和 Calibrator B 各三管) 置於檢體架上，並檢體架放置於工作台上，確定放置穩定並卡入後方之卡槽。
9.2.5 放入空的 DiTi tray 及 Deep Well 在 DiTi reuse rack 上，另外再放置一個 deep well plate 到 output deck（A1 朝左下方，有缺角的朝左下方）。

9.2.6 放入新的 1,000 μL DiTis 到 carrier，並將 carrier 放置於工作台上（一支待測檢體需要約 10 支 1,000 μL 的 DiTis tips）。

9.2.7 將 reaction vessel 放進 subsystem carrier，蓋上 cover，放至 heater zone 1。

9.2.8 Internal Control 充分的 vortex，取 500 μL 加到 Lysis Buffer；準備剝槽（Reagent Vessel）：先將試劑貼紙靠試劑槽右邊的邊線貼好（Barcode 朝右），再依照 reagent carrier 上的標示放入，依標籤上的試劑號碼倒入。（Lysis Buffer 及 Wash Buffer 儘量避免有氣泡產生）。

9.2.9 試劑都加好後，依照指定位置放到工作台上，確定有將 Reagent vessel Carriers 推到底部。

9.2.10 檢查 System Liquid container（液壓系統用水儲存桶）、Solid waste container（固態廢棄物垃圾桶）及 Liquid waste container（液體廢棄物垃圾桶），如果超過下列標準，則系統無法開始進行萃取

<table>
<thead>
<tr>
<th>Container</th>
<th>Liquid/Solid Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid Waste</td>
<td><½ Full</td>
</tr>
<tr>
<td>Liquid Waste</td>
<td><⅓ Full （以 RO 水補充）</td>
</tr>
<tr>
<td>System Liquid</td>
<td>>⅓ Full</td>
</tr>
</tbody>
</table>

9.3 萃取病毒 RNA

9.3.1 打開 m2000sp™ 機器和電腦的電源，電腦開機完成後會自動進入 m2000sp™ 的系統輸入帳號密碼後進入主畫面登入之後，此時點選畫面左方的 Start 進行初始，初始化完成後系統呈現 Ready 狀態。

9.3.2 由 Instrument Status 點選 Orders，再點選 Sample Extraction。

9.3.3 在 Application Specification list 下，再選取 m2000 HCV 0.5 ml。選好 protocol 後，由畫面左邊的項目中點選 Set Up Run。

9.3.4 依序輸入以下項目的資料：
- <Run Name> 可自己設定名稱
- <Comment> 輸入要補充的資料
- <Control Information> <Calibrator Information> 包括 lot number、Expiration date 及濃度；若是同一批號，可直接選擇上次保存的批號資料。

註：Calibration 只要作一次系統就會記憶，不需要每次都重作，只有在以下情形再重作即可：
* Amplification Reagent Kit 或 Sample Preparation System 換批號時
衛生福利部疾病管制署傳染病標準檢驗方法

| 頁次：第 505 頁/共 1104 頁 | C 型肝炎病毒核酸檢測（Real-time RT-PCR） | 核准日期： 年 月 日 | 修訂日期： 年 月 日 |

* 選擇不同的 sample volume 的 protocol 時(Ex：即使同樣為抽取 HCV RNA 的 protocol，但選擇不同的 sample volume，原本為 0.5 ml，但要改成 0.2 ml 時就要重新作 Calibration)*

* 距離前一次做 Calibration 半年後(m2000rt 作光學保養後)*

9.3.5 點選 Next 後會出現 Sample Extraction: Sample Scan 畫面，選擇 Scan，完成後若有條碼會直接顯示在螢幕上，無條碼需輸入檢體編號。

9.3.6 點選 Next 進到 Sample Extraction : Control and Calibrator Warning 畫面，如果沒有任何 Warning 出現，則點選 Next。

9.3.7 點選 Next 後出現 Sample Extraction: Reagent Setup 的畫面，輸入以下資料：
- 輸入<Deep Well Plate ID>
- 輸入<Reagent Lot Number>
- 輸入<Expiration Date>，月/年

9.3.8 點選 Next，Sample Extraction : Reagent Scan，點選 Scan 進行 scan，如果沒有錯誤，會出現 Next(如果 Reagent Vessel Carriers 有放錯位置，則會以紅字標出放錯的位置，更正之後再點選 Rescan 重新掃描)，點選後出現 Sample Extraction: Run Start 畫面。

9.3.9 確認後選擇 Start 開始進行萃取。

9.3.10 當萃取結束後會出現一個結束的對話框，選擇 Close，由畫面左方選 Close Process，系統回復到 READY 狀態。

9.4 real-time PCR Master Mix 之配製

9.4.1 放入所需的 master mix tube 和 96-Well Optical Reaction Plate 於工作台上。

9.4.2 放入 1,000 μL、200 μL 的 DiTi Tips。

9.4.3 將已退冰好的 reagent pack 的蓋子打開（操作前半小時從 -20 °C 拿出來退冰，完全回溶後若還沒要操作則先置於 4 °C），置於架上。

9.4.4 由主畫面選擇 Orders，再點選 Master Mix Addition 進入 Run Master Mix Addition 的畫面。

9.4.5 點選剛完成的 protocol，選擇畫面左側的 Set Up Run，接著會出現 Master Mix Addition: Plate Details 的畫面，選擇 Next。

9.4.6 輸入 PCR plate 的名稱，選擇 Next。

9.4.7 出現 Master Mix Addition: Assay Specific Reagent Scan 的畫面，點選 Scan，掃描成功後出現 assay reagent IDs，lot 及 expiration date。

9.4.8 選擇 Next，出現 Master Mix Addition: Run Start 畫面：依照指示完成再次確認的動作，點選 Start 開始進行 Master Mix 配製。
衛生福利部疾病管制署傳染病標準檢驗方法

C 型肝炎病毒核酸檢測（Real-time RT-PCR）

編號：C 型肝炎病毒核酸檢測
核准日期：年 月 日
修訂日期：年 月 日

頁次：第 506 頁/共 1104 頁

9.5 封膜

9.5.1 撕下光學增強膜白色的部分（protective backing），手儘量壓住邊緣（end tab），避免直接接觸到會覆蓋在 96 孔盤的範圍（seal）。

9.5.2 將光學增強膜覆蓋在 96 孔盤上，以 Applicator 刮平光學增強膜，再以 Applicator 壓住膜的邊緣，按虛線撕下，最後再以 Applicator 削 96 孔盤的邊線來增加膜跟 96 孔盤的密合度。

9.5.3 將封好膜的 96 孔盤移到 m2000rt 進行 real-time PCR。

9.6 real-time PCR 之上機

9.6.1 在 m2000sp™ 電腦的熒幕上方的工具列 Result，點選 View by PCR plate，選擇剛剛完成的 protocol，在畫面左邊點選 Export，將 CD-ROM 放入電腦中，選 Start。

9.6.2 打開 m2000rt™ 機器和電腦的電源，電腦開機完成後會自動進入 m2000rt™ 的系統輸入帳號密碼後進入主畫面登入之後，此時點選畫面左方的 Start 進行初始化（約 15 分鐘），初始化完成後系統呈現 Ready 狀態。

9.6.3 選擇 m2000rt™ 電腦的熒幕上方的工具列 Orders，點選 Test Orders，熒幕會顯示 Pending Test Orders，點選熒幕左方 Create Tasks 中的 Import Order，將存有 m2000sp 資料的 CD-ROM 放入電腦中，將 Test Order 加到 Pending Test Order，選 Finish。

9.6.4 選擇 Orders 中的 Test Orders，熒幕會出現 Pending Test Orders，從 Run Tasks 中點選 Set Up Run，再從右側的 Test Orders 選擇要進行反應的 plate order。

9.6.5 熒幕會顯示 Run Test Order：Order Details，確定顯示的 PCR Plate Id 是否為要進行的 plate order（熒幕下方的 Sample List 中的 Sample ID 是否正確），再點選 Next。

9.6.6 進入 Run Test Order：Run Start，打開機器的 tray drawer，將 PCR plate 放在 tray drawer 上，在推入 tray drawer；選擇有下方的 Start，開始進行反應。

10 結果判定

10.1 反應進行完成後，點選主畫面上方的 Result，選擇 View by Plate，熒幕會出現本次實驗檢測的結果，在 Result 欄中會顯示樣本的病毒量。

10.2 陽性對照組與陰性對照組的結果必須符合設定值範圍之內，同時 internal control 也要在認可範圍內，有偵測出病毒量者，判為 C 型肝炎病毒核酸檢測陽性；未偵測出病毒量者，判為 C 型肝炎病毒核酸檢測陰性。

10.3 在熒幕左方的 Result tasks 中選擇 View Plate Details、View All Results Details 或是 View Selected Results。

10.3.1 選擇 View Plate Details，可以顯示單一個樣品或是所有樣品的 Target 及 IC 在進行 PCR 的反應曲線，可用以判定每一個樣品 PCR 的反應效率及結果。

10.3.2 選擇 View All Results Details，呈現每一單個樣品的結果，從熒幕
幕右上方的 Test Information 可知样品的病毒量，即时定量反应的 Target Cycle Number 及 IC Cycle Number，亦可从 Error Code/Description 得知反应失败的原因。

10.3.3 選擇 View Selected Results，可以看一個样品的结果。

10.4 檢視反應的校正曲線 (Calibration Curve)：選擇幕幕上方的工具列 Results選單中的 View Assay Calibrations，會出現不同次的校正品結果，點選要看的結果進入 Assay Calibration Details，會有 CALA、CALB 各三點校正品的 Cycle Number 及其中間值，另有校正曲線圖。

11 品質管制
11.1 每次操作均需帶入 high positive control、low positive control、negative control 各一支。
11.2 一般試劑之品質管制：參照本署傳染病檢驗標準方法：病毒實驗室品質管制程序辦理。
11.3 m2000sp 和 m2000rt 機器定時作維修與保養。

12 廢棄物處理
檢體、廢液、及剩餘檢體等感染性事業廢棄物，應先以滅菌袋妥著密封，以 121℃，30 分高壓滅菌後，參照本署傳染病檢驗標準方法：廢棄物處理作業程序辦理。

13 參考資料
1 目的
在疑似受感染個案之採集檢體中，檢測是否存在 D 型肝炎病毒 IgM 抗體。

2 適用檢體種類
適用於血清或血漿檢體。

3 名詞解釋
無。

4 原理概述
Microplate 內 coated 上 monoclonal anti-human IgM antibody，此抗體具很好的專一性，於第一次的孵育時會將檢體中的 HDV IgM 抓下來。
接著進行清洗，將檢體內其他的成分洗掉，再加入人工合成的 HDV 抗原產生的免疫複合物以進行第二次孵育，免疫複合物具有 anti-HDV IgM 的專一性抗體，該抗體上標記有過氧化氫酶 (HRP)。
第二次孵育後再進行清洗，清洗後注入呈色劑/基質溶液，連結於盤內的酵素 (HRP) 會與呈色劑/基質溶液反應產生光訊號 (呈色反應)，光訊號的強度與檢體內的 HDV IgM 的濃度成正比。

5 試劑耗材
5.1 試劑組：HDV IgM，DIA.PRO Diagnostics，義大利。
5.1.1 96 試孔盤：purified anti human IgM specific mouse monoclonal antibody：試劑組（1）保存 4 °C 冰箱。
5.1.2 陰性對照組 Negative Control：非抗 HDV 抗原的人類抗體：試劑組（2）保存 4 °C 冰箱。
5.1.3 陽性對照組 Reactive Control：抗 HDV 抗原的人類抗體：試劑組（3）保存 4 °C 冰箱。
5.1.4 校正組 Calibrator：抗 HDV 抗原的人類抗體和胎牛血清：試劑組（4）保存 4 °C 冰箱。
5.1.5 清洗液 Wash buffer Concentrate (20 X)：試劑組（5）保存 4 °C 冰箱。
5.1.6 酵素 Conjugate (20 X)：標識 peroxidase 的抗 HDV 多株抗體：試劑組（6）保存 4 °C 冰箱。
5.1.7 HDV 抗原 HDV Antigen：非感染性重組 HDV 抗原：試劑組（7）保存 4 °C 冰箱。
5.1.8 HDV 抗原稀釋液 HDV Antigen Diluent：試劑組（8）保存 4 °C 冰箱。
5.1.9 檢體稀釋液 Speciman Diluent：試劑組（9）保存 4 °C 冰箱。
5.1.10 基質緩衝液 Chromogen/Substrate：試劑組（10）保存 4 °C 冰箱。
5.1.11 硫酸 Sulphuric Acid (0.3 M H₂SO₄)：試劑組（11）保存 4 °C 冰箱。
5.2 耗材:
5.2.1 微量吸管尖（tip）：1,000 μL、200 μL、100 μL、20 μL。
5.2.2 無菌微量離心試管：1.5 mL。
5.2.3 可拋棄式無菌塑膠手套。
5.2.4 口罩。
5.2.5 擦手紙。
5.2.6 粘膠片。
5.2.7 黑膠蓋。

6 儀器設備
6.1 第二級生物安全操作櫃 (Class Ⅱ BSC)。
6.2 乾式加熱槽 Dynamic incubator (COMMANDER)，ABBOTT，美國。
6.3 微量吸管（pipettmen）：1000 μL、200 μL、100 μL、20 μL。
6.4 振盪器（vortexer）。
6.5 離心機 (KM-15200)，KUBOTA，日本。
6.6 4°C 冰箱。
6.7 盤式自動洗滌機 (ELx 405)，BIO-TEK，美國。
6.8 盤式全光譜分析儀 (u Quant)，BIO-TEK，美國。
6.9 -20°C 冷凍櫃。
6.10 高壓滅菌鍋。

7 環境設施安全
於生物安全第二等級 (BSL-2) 實驗室之設施內操作。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowt reeid=6C7C52E7A7D5621A。

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowt reeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體編號
10.2 檢體前處理：
10.2.1 取出 D 型肝炎 IgM 試劑和待測檢體使回復室溫 (20 - 30 °C) ，
使用前先搖勻試劑及待測檢體，先將乾式加熱槽溫度設定
37 °C。
10.2.2 待測檢體（血清、血漿）需先混合均勻並以 3,000 × g 離心 10 分鐘。
10.3 檢驗步驟
10.3.1 取出 D 型肝炎 IgM 96 試孔盤，預留 1 個試孔 (A1) 作空白試孔，不可加入檢體在此試孔。
10.3.2 Diluted sample (1：200)：預先將 5 μL 檢體加入 1 mL 檢體稀釋液於新的管子中並均勻混合。
10.3.3 吸取 100 μL 陰性對照組 (B1, C1, D1) 及 100 μL 校正組 (E1, F1) 與 100 μL 陽性對照組 (G1) 依序於試孔內。
10.3.4 加入 100 μL Diluted sample (1：200) 於每個試孔內，由 H1 開始。
10.3.5 將黏膠片密貼於試盤上，以免試孔內液體蒸發，輕輕拍打試盤，使試孔內液體混合均勻。
10.3.6 置於 37 ℃ 乾式加熱槽培育 60 分鐘。
10.3.7 配製 Immunocomplex：1.9 mL HDV 抗原稀釋液加入 HDV 抗原，待完全溶解後，再加入 100 μL 酵素 Conjugate (20 X)，均勻混合。
10.3.8 配製 (20 X) 清洗緩衝液：取 1 份濃縮清洗液加 19 份蒸餾水。依所需檢體清洗容量配製，清洗緩衝液可於冰箱 (2 - 8 ℃) 保存一週。
10.3.9 撕去黏膠片，清洗試盤每孔至少每次以 350 μL 清洗緩衝液清洗 5 次並浸泡 20 秒，清洗完成後，將試盤倒置於乾淨試紙上輕輕拍打，以完全除去試孔內殘餘水份。
10.3.10 加入 100 μL Immunocomplex 於每個試孔內，不包含 1 個空白 (A1) 試孔。將黏膠片密貼於試盤上，以免試孔內液體蒸發，輕輕拍打試盤，使試孔內試液均勻充滿。
10.3.11 置於 37 ℃ 乾式加熱槽培育 60 分鐘。
10.3.12 撕去黏膠片，清洗試盤每孔至少每次以 350 μL 清洗緩衝液清洗 5 次並浸泡 20 秒，清洗完成後，將試盤倒置於乾淨試紙上輕輕拍打，以完全除去試孔內殘餘水份。
10.3.13 加入 100 μL Chromogen/Substrate 於每個試孔內，包含 1 個空白試孔。蓋上黑膠蓋避光放置於室溫 (25 ℃) 反應作用 20 分鐘。
10.3.14 加入 100 μL Sulphuric Acid (0.3 M H₂SO₄) 於每個試孔內，包含 1 個空白試孔。
10.3.15 以 ELISA Reader 分析儀器測定每個試孔的吸光度，波長設定 450 nm/620nm，需於加入 Sulphuric Acid (0.3 M H₂SO₄) 20 分鐘內判讀結果。

10.4 檢驗後處理
10.4.1 完成檢驗，HDV 試劑組貯存於 4 ℃ 冰箱保存。
10.4.2 檢驗後之檢體應依序歸回檢體盒，放置 -20 ℃ 冰箱保存。
10.4.3 整理清除實驗工作桌面上之抗污紙墊及使用後拋棄之微量吸管尖、手套、口罩包裝於廢棄物滅菌塑膠袋。
11 結果判定
11.1 判讀標準
11.1.1 陰性對照值（NRCx）：3 個陰性對照孔吸光度平均值。
11.1.2 陽性對照值（RCx）：1 個陽性對照孔吸光值。
11.1.3 臨界值（Cut off Value）= 0.250 + NRCx（陰性對照平均值）。
11.1.4 空白試孔 OD 值 < 0.100 OD450nm value，校正值與臨界值吸光度之比值（S/Co）需 > 2.5。
11.1.5 計算待測檢體與臨界值吸光度之比值（S/Co），如果檢體之比值小於 0.9，即為陰性反應（Negative）。
11.1.6 若檢體比值介於 0.9 - 1.1，則表示為不確定反應（Equivocal）。
11.1.7 若檢體比值大於 1.1，則表示為陽性反應（Positive）。
11.1.8 如果檢體之比值介於不確定反應範圍（Equivocal）內，該檢體需重新複檢二次（Duplicate），以求正確結果。
11.1.9 第一次檢測有陽性反應之檢體應再複測試一次，檢驗結果有反應性，檢體可認為陽性反應。
11.1.10 檢驗結果由檢驗儀器傳回電腦再列印出檢驗數據結果，並於列印紙上蓋章。
11.2 報告核發：IgM anti-HDV（陽性）、IgM anti-HDV（陰性）。
11.3 結果登錄：將檢驗結果填寫於檢體送驗單之“檢驗結果”欄，並於送驗單背面蓋章，相關檢驗紀錄及檢體送驗單陳核實驗室主管審核，由本署內部之網站應用系統進入傳染病通報系統輸入檢驗結果並以電子傳真輸送。
11.3.1 檢體送驗單及原始列印檢驗結果自行歸檔。

12 品質管制
12.1 空白試孔測定吸光值必須 < 0.10。
12.2 陰性對照值（NRCx）吸光值扣除空白試孔測定吸光值必須 < 0.2。
12.3 陽性對照值（RCx）吸光值必須 > 0.9。
12.4 校正值與臨界值吸光度之比值（S/Co）必須 > 2.5。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
14.1 DIA.PRO DIAGNOSTICS Bioprobes Srl. 試藥說明書。

附錄
15.1 D 型肝炎病毒抗體試驗總流程圖。
15.2 D 型肝炎病毒 IgM 抗體試驗（酵素免疫分析法）流程圖。
15.3 D 型肝炎病毒 IgM 抗體試驗檢體位置記錄表。
附錄 15.1 D 型肝炎病毒抗體試驗總流程圖
附錄 15.2 D 型肝炎病毒 IgM 抗體試驗（酵素免疫分析法）流程圖

預留 1 孔作空白試孔
加入 100 μL Diluted sample (1:200) 於待測試孔中，吸取 100 μL 對照組 (2 x 陰性，1 x 陽性) 及加入 100 μL 校正液於試孔中

將黏膠片密貼於試盤上
於 37 ℃ 乾式加熱槽培育 60 分鐘

清洗試盤

吸取 100 μL Immunocomplex 注入已加有對照組、校正組及檢體 (不含空白) 之試孔

將黏膠片密貼於試盤上
於 37 ℃ 乾式加熱槽培育 60 分鐘

清洗試盤

加入 100 μL Chromogen/Substrate 於各試孔，室温下培育 20 分鐘

加入 100 μL 之 Sulphuric Acid (0.3 M H₂SO₄) 到各試孔

盤式全光譜分析儀於波長 450/620 nm 下判讀吸光度
附錄 15.3 D 型肝炎病毒 IgM 抗體試驗劑檢體紀錄表

衛生福利部疾病管制署研究檢驗及疫苗研製中心
D 型肝炎病毒 IgM 抗體試驗暨檢體紀錄表

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Blank</td>
<td>Sample 2</td>
<td>Sample 10</td>
<td>Sample 18</td>
<td>Sample 26</td>
<td>Sample 34</td>
<td>Sample 42</td>
<td>Sample 50</td>
<td>Sample 58</td>
<td>Sample 66</td>
<td>Sample 74</td>
<td>Sample 82</td>
</tr>
<tr>
<td>B</td>
<td>NC</td>
<td>Sample 3</td>
<td>Sample 11</td>
<td>Sample 19</td>
<td>Sample 27</td>
<td>Sample 35</td>
<td>Sample 43</td>
<td>Sample 51</td>
<td>Sample 59</td>
<td>Sample 67</td>
<td>Sample 75</td>
<td>Sample 83</td>
</tr>
<tr>
<td>C</td>
<td>NC</td>
<td>Sample 4</td>
<td>Sample 12</td>
<td>Sample 20</td>
<td>Sample 28</td>
<td>Sample 36</td>
<td>Sample 44</td>
<td>Sample 52</td>
<td>Sample 60</td>
<td>Sample 68</td>
<td>Sample 76</td>
<td>Sample 84</td>
</tr>
<tr>
<td>D</td>
<td>NC</td>
<td>Sample 5</td>
<td>Sample 13</td>
<td>Sample 21</td>
<td>Sample 29</td>
<td>Sample 37</td>
<td>Sample 45</td>
<td>Sample 53</td>
<td>Sample 61</td>
<td>Sample 69</td>
<td>Sample 77</td>
<td>Sample 85</td>
</tr>
<tr>
<td>E</td>
<td>CAL</td>
<td>Sample 6</td>
<td>Sample 14</td>
<td>Sample 22</td>
<td>Sample 30</td>
<td>Sample 38</td>
<td>Sample 46</td>
<td>Sample 54</td>
<td>Sample 62</td>
<td>Sample 70</td>
<td>Sample 78</td>
<td>Sample 86</td>
</tr>
<tr>
<td>F</td>
<td>CAL</td>
<td>Sample 7</td>
<td>Sample 15</td>
<td>Sample 23</td>
<td>Sample 31</td>
<td>Sample 39</td>
<td>Sample 47</td>
<td>Sample 55</td>
<td>Sample 63</td>
<td>Sample 71</td>
<td>Sample 79</td>
<td>Sample 87</td>
</tr>
<tr>
<td>G</td>
<td>PC</td>
<td>Sample 8</td>
<td>Sample 16</td>
<td>Sample 24</td>
<td>Sample 32</td>
<td>Sample 40</td>
<td>Sample 48</td>
<td>Sample 56</td>
<td>Sample 64</td>
<td>Sample 72</td>
<td>Sample 80</td>
<td>Sample 88</td>
</tr>
<tr>
<td>H</td>
<td>Sample 1</td>
<td>Sample 9</td>
<td>Sample 17</td>
<td>Sample 25</td>
<td>Sample 33</td>
<td>Sample 41</td>
<td>Sample 49</td>
<td>Sample 57</td>
<td>Sample 65</td>
<td>Sample 73</td>
<td>Sample 81</td>
<td>Sample 89</td>
</tr>
</tbody>
</table>

檢驗者：

實驗室主管：
1 目的
在疑似受感染個案之採集検体中，檢測是否存在 E 型肝炎病毒 IgM/IgG 抗體。

2 適用検体種類
適用於血清或血漿検体。

3 名詞解釋
無。

4 原理概述
Microplate 內覆被上具 HEV 專一性的人工合成的抗原，經轉譯後保留最大的免疫反應決定位置。首先將検体稀釋後加入盤內，検体內若有 HEV IgM/IgG 則會被 HEV 抗原抓下來。接著進行清洗，將検体內其他的成分洗掉，再加入 anti-Human immunoglobulin antibodies(IgM/IgG)進行第二次孵育，anti-human immunoglobulin antibodies(IgM/IgG)上標記有過氧化氫酶(HRP)，可用來偵測 HEV IgM/IgG 的量。第二次孵育後再進行清洗，清洗後注入呈色劑/基質溶液，連結於盤內的酵素(HRP)會與呈色劑/基質溶液反應產生光訊號(呈色反應)，光訊號的強度與検体內的 HEV IgM/IgG 的濃度成正比。將光訊號的強度轉換成 cut-off 值即可判讀検体是 HEV IgM/IgG 陽性或陰性結果。

5 試剤耗材
5.1 試剤組：HEV IgM/IgG，MIKROGEN Diagnostics，德國。
5.1.1 96 試孔盤：HEV specific syhnthetic antigens derived from ORF2 regions；試剤組保存 4 °C 冰箱。
5.1.2 陽性對照組 Positive Control：試剤組保存 4 °C 冰箱。
5.1.3 Cutoff 對照組：試剤組保存 4 °C 冰箱。
5.1.4 陰性對照組 Negative Control：試剤組保存 4 °C 冰箱。
5.1.5 清洗液 Wash buffer Concentrate（10 X）：試剤組保存 4 °C 冰箱。
5.1.6 抗體 Enzyme Conjugate（anti-human IgM/IgG labelled with horseradish Peroxidase）：試剤組保存 4 °C 冰箱。
5.1.7 基質緩衝液 Chromogen/Substrate：試剤組保存 4 °C 冰箱。
5.1.8 磷酸 Phosphoric Acid（H₃SO₄）：試剤組保存 4 °C 冰箱。
5.1.9 檢體稀釋液 Dilution buffer：試剤組保存 4 °C 冰箱。

5.2 耗材：
5.2.1 微量吸管尖（tip）：1,000μL、200μL、100μL、20μL。
5.2.2 無菌微量離心試管：1.5 mL。
5.2.3 可拋棄式無菌塑膠手套。
5.2.4 口罩。
5.2.5 擦手紙。
5.2.6 粘膠片。
5.2.7 黑膠蓋。

6 儀器設備
6.1 第二級生物安全操作櫃（Class II BSC）。
6.2 乾式加熱槽 Dynamic incubator（COMMANDER），ABBOTT，美國。
6.3 微量吸管（pipette men）：1,000μL、200μL、100μL、20μL。
6.4 振盪器（vortexer）。
6.5 離心機（KM-15200），KUBOTA，日本。
6.6 4 °C 冰箱。
6.7 盤式自動洗滌機（ELx 405），BIO-TEK，美國。
6.8 盤式全光譜分析儀（u Quant），BIO-TEK，美國。
6.9 -20 °C 冷凍櫃。
6.10 高壓滅菌鍋。

7 環境設施安全
於生物安全第二等級（BSL-2）實驗室之設施內操作。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
參考本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體編號
10.2 檢體前處理：

10.2.1 取出 E 型肝炎 IgM/IgG 試劑和待測檢體使回復室溫（18-25 °C），使用前先搖勻試劑及待測檢體，先將乾式加熱槽溫度設定 37 °C。

10.2.2 待測檢體（血清、血漿）需先混合均勻並以 3,000g 離心 10 分鐘。

10.3 檢驗步驟
10.3.1 取出 E 型肝炎 IgM/IgG 96 試孔盤。

10.3.2 Diluted sample / control（1：101）：預先將 10 μL 檢體 / control 加入 1 mL 檢體稀釋液於新的試管中並均勻混合。

10.3.3 吸取 100 μL diluted cutoff 對照組 (A1 及最後一孔)、100 μL diluted 陰性對照組 (B1、C1) 及 100 μL diluted 陽性對照組 (D1、E1) 依序於試孔內。
10.3.4 加入 100 μL Diluted sample（1：101）於每個試孔內，由 F1 開始。

10.3.5 將黏膠片密貼於試盤上，以免試孔內液體蒸發，輕輕拍打試盤，使試孔內液體混合均勻。

10.3.6 置於 37 ℃ 乾式加熱槽培育 60 分鐘。

10.3.7 配製 (10 X) 清洗緩衝液：取 1 份濃縮清洗液加 9 份蒸餾水。依所需檢體清洗容量配製。

10.3.8 撕去黏膠片，清洗試盤每孔至少每次以 300 μL 清洗緩衝液清洗 4 次，清洗完成後，將試盤倒置於乾淨試紙上輕輕拍打，以完全除去試孔內殘餘水份。

10.3.9 Diluted Enzyme Conjugate（1：101）：預先將 10 μL Enzyme Conjugate 加入 1 mL 檢體稀釋液於新的試管中並均勻混合。加入 100 μL Diluted Enzyme Conjugate 於每個試孔內，將黏膠片密貼於試盤上，以免試孔內液體蒸發，輕輕拍打試盤，使試孔內試液均勻充滿。

10.3.10 置於 37 ℃ 乾式加熱槽培育 30 分鐘。

10.3.11 撕去黏膠片，清洗試盤每孔至少每次以 300 μL 清洗緩衝液清洗 4 次，清洗完成後，將試盤倒置於乾淨試紙上輕輕拍打，以完全除去試孔內殘餘水份。

10.3.12 加入 100 μL Chromogen/Substrate 於每個試孔內，蓋上黑膠蓋避光放置於室溫反應作用 30 分鐘。

10.3.13 加入 100 μL 磷酸（H₃PO₄）於每個試孔內。

10.3.14 以 ELISA Reader 分析儀器測定每個試孔的吸光度，波長設定 450 nm/620-650 nm，需於加入磷酸（H₃PO₄）60 分鐘內判讀結果。

10.4 檢驗後處理

11.1 完成檢驗，HEV 試劑組貯存於 4 ℃ 冰箱保存。

11.1.2 檢驗後之檢體應依序歸回檢體盒，放置 -20 ℃ 冰箱保存。

11.1.3 整理清除實驗工作桌面上之抗污紙墊及使用後拋棄之微量吸管尖、手套、口罩包裝於廢棄物滅菌塑膠袋。

11 結果判定

11.1 判讀標準

11.1.1 Cutoff (limit) = 2 個 Cutoff 對照孔吸光度平均值 (at the beginning and at the end of the series)。

11.1.2 陰性對照值：2 個陰性對照孔吸光值平均值。

11.1.3 陽性對照值：2 個陽性對照孔吸光值平均值。

11.1.4 Grey zone：Low limit = Cutoff

11.1.5 Upper limit = cutoff + 20% (cutoff x 1.2)

11.1.6 若檢體吸光值小於 grey zone，即為陰性反應 (Negative)。

11.1.7 若檢體吸光值介於 grey zone 中，則表示為不確定反應 (Borderline)。
11.1.8 若檢體吸光值大於 grey zone，則表示為陽性反應（Positive）。
11.1.9 檢驗結果由檢驗儀器傳回電腦再列印出檢驗數據結果，並於列印紙上蓋章。
11.1.10 檢測結果為陽性者及不確定反應者應加作西方墨點法，執行進一步檢測。

11.2 報告核發：若結果為陰性則報告核發為 IgM/IgG anti-HEV (陰性)，檢測結果為陽性及不確定反應者應加作西方墨點法，執行進一步檢測後再進行核發報告。

11.3 結果登錄：將檢驗結果填寫於檢體送驗單之“檢驗結果”欄，並於送驗單背面蓋章，相關檢驗紀錄及檢體送驗單呈核實驗室主管審核，由本署內部之網站應用系統進入傳染病通報系統輸入檢驗結果並以電子傳真輸送。
11.3.1 檢體送驗單及原始列印檢驗結果自行歸檔。

12 品質管制
12.1 2 個 Cutoff control 吸光值之差異不可大於 20% mean cutoff。
12.2 Extinction value – negative control ≤ 0.150。
12.3 Cutoff control extinction value - Negative control extinction value ≥ 0.050。
12.4 Positive control extinction value - Cutoff control extinction value ≥ 0.300。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃, 30 分鐘高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
14.1 recomWell HEV IgM/IgG 試藥說明書。

15 附錄
15.1 E 型肝炎病毒抗體試驗（IgM/IgG）流程圖。
15.2 E 型肝炎病毒抗體試驗（IgM/IgG）檢體位置紀錄表。
附錄 15.1 E 型肝炎病毒 IgM/IgG 抗體試驗（酵素免疫分析法）流程圖

吸取 100 μL Diluted 對照組 (2 x 陰性，2 x 陽性，2 x Cutoff) 於試孔中，100 μL Diluted sample (1:101) 於待測試孔中

將黏膠片密貼於試盤上
於 37℃ 乾式加熱槽培育 60 分鐘

清洗試盤

吸取 100 μL Diluted Enzyme Conjugate 注入已加有對照組及檢體之試孔

將黏膠片密貼於試盤上
於 37℃ 乾式加熱槽培育 30 分鐘

清洗試盤

加入 100 μL Chromogen/Substrate 於各試孔，室溫下培育 30 分鐘

加入 100 μL 之 Phosphoric Acid (H₃PO₄) 到各試孔

盤式全光譜分析儀於波長 450/620-650 nm 下判讀吸光
附錄 15.2 E 型肝炎病毒抗體試驗（IgM/IgG）檢體位置紀錄表

衛生福利部疾病管制署研究檢驗及疫苗研製中心

E 型肝炎病毒抗體試驗（IgM/IgG）檢體位置紀錄表

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Sample</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>12</td>
<td>20</td>
<td>28</td>
<td>36</td>
<td>44</td>
<td>52</td>
<td>60</td>
<td>68</td>
<td>76</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Sample</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>13</td>
<td>21</td>
<td>29</td>
<td>37</td>
<td>45</td>
<td>53</td>
<td>61</td>
<td>69</td>
<td>77</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Sample</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>14</td>
<td>22</td>
<td>30</td>
<td>38</td>
<td>46</td>
<td>54</td>
<td>62</td>
<td>70</td>
<td>78</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Sample</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>15</td>
<td>23</td>
<td>31</td>
<td>39</td>
<td>47</td>
<td>55</td>
<td>63</td>
<td>71</td>
<td>79</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Sample</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>16</td>
<td>24</td>
<td>32</td>
<td>40</td>
<td>48</td>
<td>56</td>
<td>64</td>
<td>72</td>
<td>80</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Sample</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>17</td>
<td>25</td>
<td>33</td>
<td>41</td>
<td>49</td>
<td>57</td>
<td>65</td>
<td>73</td>
<td>81</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Sample</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>18</td>
<td>26</td>
<td>34</td>
<td>42</td>
<td>50</td>
<td>58</td>
<td>66</td>
<td>74</td>
<td>82</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Sample</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>19</td>
<td>27</td>
<td>35</td>
<td>43</td>
<td>51</td>
<td>59</td>
<td>67</td>
<td>75</td>
<td>83</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

檢驗者：

實驗室主管：

anti-HEV IgM / IgG

Date

Kit Lot number

Exp

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Cutoff</td>
<td>Sample</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>12</td>
<td>20</td>
<td>28</td>
<td>36</td>
<td>44</td>
<td>52</td>
<td>60</td>
<td>68</td>
<td>76</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>NC</td>
<td>Sample</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>13</td>
<td>21</td>
<td>29</td>
<td>37</td>
<td>45</td>
<td>53</td>
<td>61</td>
<td>69</td>
<td>77</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>NC</td>
<td>Sample</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>14</td>
<td>22</td>
<td>30</td>
<td>38</td>
<td>46</td>
<td>54</td>
<td>62</td>
<td>70</td>
<td>78</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>PC</td>
<td>Sample</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>15</td>
<td>23</td>
<td>31</td>
<td>39</td>
<td>47</td>
<td>55</td>
<td>63</td>
<td>71</td>
<td>79</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>PC</td>
<td>Sample</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>16</td>
<td>24</td>
<td>32</td>
<td>40</td>
<td>48</td>
<td>56</td>
<td>64</td>
<td>72</td>
<td>80</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Sample</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>17</td>
<td>25</td>
<td>33</td>
<td>41</td>
<td>49</td>
<td>57</td>
<td>65</td>
<td>73</td>
<td>81</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Sample</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>18</td>
<td>26</td>
<td>34</td>
<td>42</td>
<td>50</td>
<td>58</td>
<td>66</td>
<td>74</td>
<td>82</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Sample</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>19</td>
<td>27</td>
<td>35</td>
<td>43</td>
<td>51</td>
<td>59</td>
<td>67</td>
<td>75</td>
<td>83</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

檢驗者：

實驗室主管：
1 目的
以西方墨點法檢測人體中是否存在 E 型肝炎病毒 IgM/IgG 抗體。

2 適用檢體種類
適用於血清或血漿檢體。

3 名詞解釋
無。

4 原理概述
利用電泳原理，將 E 型肝炎病毒之蛋白質依不同分子量大小分離，在運用轉印技術將電泳後之蛋白質轉至硝化纖維膜試紙表面作保存，以偵測人體血清或血漿中之相對應 E 型肝炎病毒 IgM/IgG 抗體。

5 試劑耗材
5.1 試劑組：recomLine HEV IgM/IgG，MIKROGEN Diagnostics，德國。
 5.1.1 歐克二十一條硝化纖維膜試紙條。
 5.1.2 清洗液 Wash buffer A Concentrate (10 X)：試劑組保存 4 °C 冰箱。
 5.1.3 檢體稀釋液 Dilution buffer：試劑組保存 4 °C 冰箱。
 5.1.4 陽性對照組 Positive Control：試劑組保存 4 °C 冰箱。
 5.1.5 陰性對照組 Negative Control：試劑組保存 4 °C 冰箱。
 5.1.6 抗體 Enzyme Conjugate (anti-human IgM/IgG labelled with horseradish Peroxidase)：試劑組保存 4 °C 冰箱。
 5.1.7 基質緩衝呈色液 Chromogen Substrate Tetramethylbenzidin：試劑組保存 4 °C 冰箱。
 5.1.8 脫脂奶粉 skim milk powder。
5.2 耗材：
 5.2.1 微量吸管尖（tip）：1,000μL、200μL、100μL。
 5.2.2 無菌微量離心試管：1.5 mL。
 5.2.3 無菌離心試管：15mL、50mL。
 5.2.4 可拋棄式無菌塑膠手套。
 5.2.5 口罩。
 5.2.6 搓手紙。
 5.2.7 玻璃或塑膠無菌吸管。
 5.2.8 塑膠鑷子。
 5.2.9 量筒。
 5.2.10 10%漂白水。

6 儀器設備
6.1 第二級生物安全操作櫃 (Class II BSC)。
6.2 ProfiBlot 西方墨點處理分析儀。
衛生福利部疾病管制署傳染病標準檢驗方法

編號：E 型肝炎病毒抗體西方墨點法檢測
核準日期：年 月 日

頁次：第 523 頁/共 1104 頁
修訂日期：年 月 日

1.2 微量吸管（pipette men）：1,000μL、200μL、100μL、20μL。
1.3 振盪器（vortexer）。
1.4 4 ℃冰箱。
1.5 -20 ℃冷凍櫃。
1.6 高壓滅菌鍋。

7 環境與設施安全
於生物安全第二等級（BSL-2）實驗室之設施內操作。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體編號
10.2 檢體前處理：
10.2.1 取出 E 型肝炎 IgM/IgG 試劑和待測檢體使回復室溫（18-25 ℃），
使用前先搖勻試劑及待測檢體。
10.2.2 待測檢體（血清、血漿）需先混合均勻。
10.2.3 以塑膠撬子取出 E 型肝炎 IgM/IgG 硝化纖維膜試紙條之末端，
調整正面置於反應槽中，號碼應朝上，每批次實驗所需試紙條之數量。
10.2.4 於反應槽上方以油性筆註明檢體編號、陰性、陽性對照組。
10.2.5 配製 ready-to-use wash buffer A（每五條測試紙條需要的總量為
100mL，其中包含 0.5g 的脫脂奶粉、10mL 的清洗液 Wash buffer A Concentrate（10 X）及 90mL 的水 Distilled water）。
10.2.6 配製 HEV IgG/IgM 結合液 Conjugate solutions（每五條測試紙條需要的總量為 10mL，其中包含 100 μL 的結合濃縮液 HEV IgG/IgM Conjugate concentrate 及 10mL 的 ready-to-use wash buffer A）。
10.3 儀器操作步驟：
10.3.1 進行實驗操作程序：
10.3.1.1 開啟儀器電源，螢幕出現如下畫面：

Main
FW—Run
10.3.1.2 按→萤幕出现如下画面：

Run Program

< > Main Yes

10.3.1.3 請確認廢液瓶中之廢液以清空，放足量的水(Distilled water) 在 Channel 2，稀釋配置好的(ready-to-use wash buffer A) 在 Channel 3，Dilution buffer 在 Channel 4，HEV IgG/IgM 結合液在 Channel 5，基質緩衝呈現色液 Chromogen Substrate Tetramethylbenzidin 在 Channel 6。

10.3.1.4 按＞萤幕出现如下画面：

Liquid Prep.

< > Yes

10.3.1.5 按 Yes 萤幕出现如下画面：

Clean

< > exit Yes

10.3.1.6 按 Yes 後，利用- / +來選擇欲填充之管路編號，萤幕
出 現如下畫面：

Channel : X

- + exit Yes

10.3.1.7 按 Yes 後，利用- / +來選擇欲填充之試劑體積 3ml，
萤幕出現如下画面：

Volume : 3 ml

- + exit Yes

10.3.1.8 按 Yes 萤幕出现如下画面：

Volume : 3 ml

- + exit Yes

Channel : X

- + exit Yes

10.3.1.9 待所有管路都填滿試劑後，連按 2 次 exit 回到 Run 的
畫面，萤幕依序出現如下画面：

Channel : X

- + exit Yes
10.3.1.10 按 Yes 螢幕出現如下畫面：

```
Liquid Prep.
<   >   Yes
```

10.3.1.11 確認廢液瓶已裝妥，以 -/+ 按鍵選擇要執行的程式，按 Yes 螢幕出現如下畫面：

```
Run Program
<   >   Main   Yes
```

```
WASTE BOTTLE OK?
Exit   Yes
```

10.3.1.12 按 Yes 進入 HEV 程式，螢幕出現如下畫面：

```
Run:  HEV
-   +   exit   Yes
```

10.3.1.13 貼上標有檢體編號的貼紙貼上 TRAY 後, 裝 TRAY 放入儀器平台上，並確認將測試條放入反應槽中，按 Yes 螢幕出現如下畫面：

```
INSERT TRAY!
Press any key!
```

10.3.1.14 以 -/+ 按鍵輸入反應槽開始位置(注意以三的倍數加一，如 1,4,7...)，按 Yes 出現如下畫面：

```
StPos Strip: XX
-   +   exit   Yes
```

10.3.1.15 以 -/+ 按鍵輸入測試檢體數量，按 Yes 螢幕出現如下畫面：

```
No. of Strip: XX
-   +   exit   Yes
```

10.3.1.16 決定實驗最後是否要吸乾反應槽液體，按 Yes 螢幕出現如下畫面：

```
Last Aspiration
No   Yes
```
衛生福利部疾病管制署傳染病標準檢驗方法

編號：E型肝炎病毒抗體西方墨點法檢測
核準日期：年月日
頁次：第526頁共1104頁
修訂日期：年月日

10.3.1.17 按Yes開始實驗步驟，螢幕出現如下畫面：

Proc. : 01 Disp.
- + exit Yes

10.3.1.18 此時儀器已開始執行程式，儀器加完檢體稀釋液後儀器會暫停並顯示如下畫面，請依步驟4所記錄之檢體編碼位置依序加入20微升檢體。

Paues
Cont. Prime

10.3.1.19 加完檢體後，按Cont按鈕，儀器繼續完成全部自動化流程。實驗完成後，儀器會發出警告聲，出現如下畫面：

Test done!
Please wait

You should clean
Press any key

10.3.1.20 取出相關試劑收藏保存。按Yes確認停止步驟，螢幕回到主畫面，如下畫面：

Run Program
< > Main Yes

10.3.1.21 儀器完成實驗步驟。

10.3.2 執行關機前儀器清洗程序：
10.3.2.1 在主畫面中以左右(< >)按鍵選擇次目錄Liquid Preparation，如下畫面：

Liquid Prep.
< > exit Yes

10.3.2.2 按Yes螢幕出現如下畫面：

Clean
< > exit Yes

10.3.2.3 按> 螢幕出現如下畫面：
10.3.2.4 按 Yes 將所有管路內的試劑回收，螢幕出現如下畫面：

All Pump back? Yes

10.3.2.5 待回收完畢，按 exit 螢幕出現如下畫面：

Liquid Prep. < > exit Yes

10.3.2.6 按 Yes 後螢幕出現如下畫面：

Clean < > exit Yes

10.3.2.7 按 Yes 後螢幕出現如下畫面：

Channel : X - + exit Yes

10.3.2.8 利用 -/+ 來選擇欲清洗之管路編號，依序以 ddH₂O 清洗管路並排空，按 Yes 後，利用 -/+ 來選擇欲填充之試劑體積 10ml，螢幕出現如下畫面：

Volume : 10 ml - + exit Yes

Channel : X - + exit Yes

10.3.2.9 待所有管路清洗完畢並排空後，連按 3 次 exit 回到主畫面，螢幕依序出現如下畫面：
10.3.2.10 將反應槽自儀器上取出，風乾反應後之試紙條。

10.3.3 檢驗後處理:
10.3.3.1 檢驗完成後之檢體依序放入冰箱之檢體保存盒中-20℃冷凍儲存。
10.3.3.2 將試藥放回試劑組內，置入4-8℃冰箱保存。
10.3.3.3 反應後之試紙條則風乾後，比對呈色反應並判讀。
10.3.3.4 判讀完畢後，將反應槽放回ProfiBlot48儀器中，利用其照相功能將反應後的試紙照相存檔。
10.3.3.5 掃描/照相處理：
10.3.3.5.1 確認ProfiBlot48呈開機狀態，開啟電腦桌面上BlotSeverShell軟體。
10.3.3.5.2 視窗開啟後點選Connect，待出現選擇欲連線儀器之視窗後，點選ProfiBlot48，按
10.3.3.5.3 原視窗下方SCAN的項目中選擇反應槽上欲掃描/照相的First Well及Last Well號碼
10.3.3.5.4 號碼選好後，點選StartScanandsavebitmaps或Scanallwellsandsavebitmaps
10.3.3.5.5 掃描/照相完畢，圖檔會自動存於ScannedPictures的檔案夾內。點選Disconnect，關
10.3.3.6 圖片優化與存檔：
10.3.3.6.1 開啟電腦桌面“圖檔優化”軟體。
10.3.3.6.2 點選最上方“檔案(F)”，出現下拉選項，
指至“自動(U)”，再選取“批次處理(B)”。
10.3.3.6.3 出現批次處理視窗，於”動作(A)”的選項按下右方的▼。

10.3.3.6.4 點選”Blot 優化”，按下確定，開始進行圖檔優化。已優化之圖檔會自動存於電腦桌面的”優化圖像”資料夾內。

10.3.3.6.5 待全數圖檔優化完畢，開啟電腦桌面的”優化圖像”資料夾，將圖檔依相對應之反應槽位置上所標示的檢體名稱重新命名，陽性及陰性對照組則以日期編入命名。

10.3.3.6.6 將已命名完之圖檔全數移至”已命名”資料夾內，關閉資料夾。

10.3.3.7 將已存檔完畢之反應試紙條依序貼在附錄15.2 E型肝炎病毒抗體西方墨點試驗(IgM/IgG)檢體硝化纖維膜試紙條位置紀錄表上。

11 結果判定
11.1 判讀標準
11.1.1 將已反應試紙條依序貼在附錄15.2 E型肝炎病毒抗體西方墨點試驗(IgM/IgG)檢體硝化纖維膜試紙條位置紀錄表上，比對檢體之不同蛋白位置及呈色帶之特性，將出現之反應線記錄在西方墨點法紀錄表上，並依其 Cutoff-Kontrolle 的強弱判定其他不同蛋白位置之呈色帶的價數。

11.1.2 若其他不同蛋白位置之呈色帶與 Cutoff-Kontrolle 相同或較強則可判為+、++、+++。

11.1.3 若其他不同蛋白位置之呈色帶有出現但與 Cutoff-Kontrolle 較弱則可判為+/-。

11.1.4 若其他不同蛋白位置之呈色帶無反應則可判為-。

11.1.5 依上述11.1.2~11.1.3步驟判讀結果記錄抗原呈色帶總分數。

11.1.5.1 下表為不同抗原呈色帶之分數

<table>
<thead>
<tr>
<th>抗原 Antigen</th>
<th>IgG/IgM分數</th>
</tr>
</thead>
<tbody>
<tr>
<td>O2N (Gt1, Gt3)</td>
<td>2</td>
</tr>
<tr>
<td>O2C (Ct1, Gt3)</td>
<td>4</td>
</tr>
<tr>
<td>O2M</td>
<td>2</td>
</tr>
<tr>
<td>O3 (Ct1, Gt3)</td>
<td>3</td>
</tr>
</tbody>
</table>

11.1.5.2 若其他不同蛋白位置之呈色帶被判為+、++、+++，則可依11.1.5.1表中之分數得分。

11.1.5.3 若其他不同蛋白位置之呈色帶被判為-、+/-，則無法得分。

11.1.5.4 計算總得分數。
11.1.6 若檢體抗原呈色帶總分數≤2，即為陰性反應（Negative）。
11.1.7 若檢體抗原呈色帶總分數＝3，則表示為不確定反應（Borderline）。
11.1.8 若檢體抗原呈色帶總分數≥4，則表示為陽性反應（Positive）。
11.1.9 如果檢體抗原呈色帶總分數＝3（Borderline）內，該檢體需重新複檢二次（Duplicate），以求正確結果。

11.2 報告核發：IgM/IgG anti-HEV（陽性）、IgM/IgG anti-HEV（陰性）。

11.3 結果登錄：將檢驗結果填寫於檢體送驗單之“檢驗結果”欄，並於送驗單背面蓋章章，相關檢驗紀錄及檢體送驗單陳核實實室主管審核，由本署內部之網站應用系統進入傳染病通報系統輸入檢驗結果並以電子傳真輸送。

11.3.1 檢體送驗單及E型肝炎病毒抗體西方墨點試驗（IgM/IgG）檢體硝化纖維膜試紙條位置紀錄表自行歸檔。

12 品質管制
12.1 檢體硝化纖維膜試紙條上之cutoff-control（Cutoff-Kontrolle）呈色帶需出現。
12.2 若為檢驗HEV IgG 檢體硝化纖維膜試紙條上之IgG AK-Klassen Kontrolle呈色帶需出現。
12.3 若為檢驗HEV IgM 檢體硝化纖維膜試紙條上之IgM AK-Klassen Kontrolle呈色帶需出現。
12.4 檢體硝化纖維膜試紙條上之Reaktions-Ktr.呈色帶需出現。

13 廢棄物處理
檢查過程之物品、廢液及剩餘檢驗等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以121℃，30分鐘高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
14.1 recomLine HEV IgM/IgG 試藥說明書。

15 附錄
15.1 E型肝炎病毒IgM/IgG抗體試驗（西方墨點法）流程圖。
15.2 E型肝炎病毒抗體西方墨點試驗（IgM/IgG）檢體硝化纖維膜試紙條位置紀錄表
15.3 注意事項
15.3.1 如果檢體抗原呈色帶總分數＝3（Borderline）內，該檢體需在二週內重新複檢二次（Duplicate），以求正確結果。
15.3.2 如果檢體個案有EBV感染，則可能造成偽陽性的結果。
15.3.3 如果硝化纖維膜試紙條呈現Dark test strips，即試紙條呈現髒汙情形且呈色帶呈現反白情形，應視為陰性結果。
附錄 15.1 E 型肝炎病毒 IgM/IgG 抗體試驗（西方畫點法）流程圖

將硝化試紙以稀釋液 Dilution buffer 充分潤濕

加血清/血漿檢體 20 μL

室溫下震盪作用一小時

加 2 mL 之 1 倍稀釋配置好的 ready-to-use wash buffer A 之洗滌液清洗三次

加 2 mL HEV IgG/IgM 結合液作用 45 分鐘

加 2 mL 之 1 倍稀釋配置好的 ready-to-use wash buffer A 之洗滌液清洗三次

加 2 mL 呈色液作用八分鐘

移除呈色液終止反應

加 2 mL 蒸餾水清洗三次後吸乾

檢體抗原呈色帶總分數 ≥ 4

若檢體抗原呈色帶總分數 ≥ 3，則表示為不確定反應（Borderline）

是

E 型肝炎 IgG/IgM 陽性

若檢體抗原呈色帶總分數 ≤ 2，即為陰性反應（Negative）

檢體需重新複檢二次（Duplicate），以求正確結
附錄 15.2 E 型肝炎病毒抗體西方墨點試驗 (IgM/IgG) 檢體硝化纖維膜試紙條位置紀錄表

衛生福利部疾病管制署研究檢驗及疫苗研製中心
E 型肝炎病毒抗體西方墨點試驗 (IgM/IgG) 檢體硝化纖維膜試紙條位置紀錄表

| 位 置 | 记 录 | 檢 驗
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 位 置 | 记 录 | 檢 驗
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

檢驗者：實驗室主管
1. 目的
在疑似受感染個案之採集檢體中，分離與鑑定是否存在腮腺炎病毒。

2. 適用檢體種類
咽喉拭子、含抗凝劑之全血、尿液。

3. 名詞解釋
無。

4. 原理概述
選擇適當的細胞株（vero）培養腮腺炎病毒，經二次繼代培養後，最後再以腮腺炎專一性抗體螢光染色的方法確認。

5. 試劑耗材
5.1 試劑
5.1.1 Growth medium（由含 10 % FBS 與 1 X Pen-strep solution 之 DMEM 組成）。
5.1.1.1 Dulbecco’s modified eagle medium（DMEM）。
5.1.1.1.1 With 4500 mg/L D-glucose（high glucose）。
5.1.1.1.2 With L-glutamine。
5.1.1.1.3 Without sodium pyruvate。
5.1.1.2 Fetal bovine serum（FBS）：以 56 °C Heat inactivate 後開封，以 15 mL 離心管分裝，-20 °C 儲存。
5.1.1.3 Pen-strep solution（100 X）。
5.1.1.3.4 With 10,000 units/mL penicillin G。
5.1.1.3.5 With 10,000 μg/mL streptomycin sulfate in 0.85 % Saline，開封後以 15 mL 離心管分裝，-20 °C 儲存。
5.1.2 Sample pretreat medium（由含 2 X pen-strep solution 之 DMEM 組成）。
5.1.3 Maintain medium（由含 2 %FBS 與 1X Pen-strep solution 之 DMEM 組成）。
5.1.4 Trypsin-EDTA。
5.1.4.1 With 0.05 % trypsin。
5.1.4.2 With 0.53 mM EDTA in Hanks’ balanced salt solution（HBSS） without Ca^{2+} and Mg^{2+}，開封後以 15 mL 離心管分裝，-20 °C 儲存。
5.1.5 Hank’s balanced salt solution（HBSS）。
5.1.6 Ficoll-Paque™ PLUS：Amersham Biosciences，17-1440-02，Sweden。
5.1.7 Light diagnostics mumps IFA kit：Chemicon，3140，USA，store at 2 - 8 °C。
5.1.7.1 Mumps monoclonal antibody，5028。
5.1.7.2 Mumps control slides，5029。
5.1.7.3 Anti-mouse IgG/FITC conjugate，5008。
5.1.7.4 PBS packet，5087。
5.1.7.5 Tween 20/sodium azide solution（100 X），5037。
5.1.7.6 Mounting fluid，5013。
5.1.8 IFA wash solution：將5.1.7.4 試劑溶於1 L distilled H2O 再加入
5.1.7.5 試劑以乾淨密封容器室溫儲放。
5.1.9 Vero 細胞株：由 ATCC 所購入之細胞株 Vero：CCL-81。

5.2 耗材：
5.2.1 25-cm² Culture vessels（T-25）。
5.2.2 24 孔盤。
5.2.3 Pipette：1 mL、5 mL、10 mL、25 mL。
5.2.4 200 μL Tip。
5.2.5 3 mL 無菌塑膠吸管。
5.2.6 1.5 mL Eppendorf。
5.2.7 載玻片、蓋玻片。
5.2.8 無菌螺旋試管：2 mL、4 mL。
5.2.9 無菌離心管：15 mL、50 mL。
5.2.10 5 mL 針筒。
5.2.11 0.45 μM 針頭過濾器。
5.2.12 抗凍標籤紙。
5.2.13 油性細字筆。

6 儀器設備
6.1 第二級生物安全櫃（class II BSC）。
6.2 37 ℃ 二氧化碳培養箱。
6.3 倒立相差顯微鏡。
6.4 螢光顯微鏡（Zeiss Axioskop 2 plus）。
6.5 水浴槽。
6.6 電動輔助吸管。
6.7 4 ℃ 冰箱。
6.8 -20 ℃、-80 ℃ 冷凍櫃。
6.9 乾浴器。

7 環境設施安全
於生物安全第二等級（BSL-2）實驗室之設施內操作。

8 檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。
9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體編號：收件檢體依通報疾病及種類編號。
10.2 檢驗前處理
10.2.1 開啓第二級生物安全檯之紫外光照射操作檯面 20 min。
10.2.2 將 5.1.1 - 5.1.5 試劑先置於 37 °C 回溫或解凍。
10.2.3 檢體前處理
10.2.3.1 全血
10.2.3.1.1 以針筒吸取 3 mL 的 Ficoll-paque 置於 15 mL 離心管下層。
10.2.3.1.2 取 2 mL 血液與 2 mL 的 HBSS 混合後，輕輕的置於 Ficoll-Paque 上層。
10.2.3.1.3 400 × g，室溫下離心 40 min。
10.2.3.1.4 以乾淨吸管小心吸去上層液。
10.2.3.1.5 再取另一乾淨吸管吸取 Ficoll-paque 上的淋巴細胞層至另一 15 mL 離心管。
10.2.3.1.6 加入取出淋巴層細胞三倍體積的 HBSS，輕輕以吸管混合均勻。
10.2.3.1.7 100 × g，室溫下離心 10 min 後移除上清液。
10.2.3.1.8 加入 5 mL HBSS，以吸管輕輕上下混合原沉澱細胞，重複 10.2.3.1.7。
10.2.3.1.9 加入 2 mL Sample pretreat medium 後，接種細胞或暫時置於-80 °C 保存。
10.2.3.2 咽喉拭子：加 1.5 mL Sample pretreat medium 至採檢管充分攪拌，將溶液吸出至 4 mL 滅菌塑膠檢體瓶中，以 5 mL 針筒吸取溶液後，拔去針頭，接上 0.45 μm 過濾器過濾後置於 2 mL 無菌試管保存，接種細胞或暫時置於-80 °C 保存。
10.2.3.3 尿液：以 400 × g 於 4 °C 離心 10 min 後，棄去上清液，另加 2 mL Sample pretreat medium 與沉澱物混合均勻後，接種細胞或暫時置於-80 °C 保存。

10.3 檢驗步驟：
10.3.1 接種：取 24 孔盤長滿單層之 Vero 細胞，吸出 Growth medium，接種檢體 100 μL，輕輕搖動使檢體佈滿細胞層，置於 37 °C 含 5 % CO₂ 的培養箱培養，其間約間隔 15 min，即輕輕搖動 plate，使檢體能均勻散佈於細胞層並防止細胞層乾燥。1 hr 後加入 1 mL Maintain medium，置於 37 °C 含 5 % CO₂ 的培養箱培養。
10.3.2 觀察：自翌日起每天以倒立顯微鏡觀察細胞形態，是否出現融合狀 CPE，連續觀察 7 天。

10.3.3 培養至 7 天後，收集檢體液繼代培養。步驟如下：以 3 mL 無菌吸管刮取細胞層後同培養液一起收集於 1.5 mL Eppendorf，置於 -80 °C 冰箱 10 - 15 min，取出溶解後，以 3,000 rpm 離心 15 min，再將上清液取 100 µL 接種於新的 24 孔盤的單層 Vero cell，此即為 Passage 1。

10.3.4 重覆步驟 10.3.2 - 10.3.3，此即為 Passage 2。

10.3.5 再繼續培養 7 天後進行 IFA 鑑定。

10.3.6 間接螢光免疫法鑑定

10.3.6.1 取 1 mL 受感染細胞的懸浮液於小離心管中，以 3,000 rpm 離心 15 min。

10.3.6.2 取出上清液另存於乾淨試管，沉澱之細胞加入 0.5 - 1 mL PBS，以 Pipette 上下混合均勻。

10.3.6.3 取 10 µL 點入 21 孔玻片（需含未感染細胞以為陰性對照），待細胞風乾後置入含有 4 °C 丙酮之玻片槽，固定 10 min。

10.3.6.4 取出風乾後滴一滴 5.1.7.1 Mumps monoclonal antibody，將玻片置於 Moisture chamber，置於 37 °C 恆溫箱 30 min。

10.3.6.5 以 5.1.8 IFA wash solution 清洗玻片後置於乾浴器烘乾。

10.3.6.6 每個孔加一滴 5.1.7.3 Anti-mouse IgG/FITC conjugate，將玻片置於 Moisture chamber，置於 37 °C 恆溫箱 30 min。

10.3.6.7 重覆 10.3.6.6。

10.3.6.8 以 5.1.7.6 Mounting fluid 封片後，以螢光顯微鏡鏡檢。細胞呈現紅色為陰性反應，呈現蘋果綠為陽性。

10.4 檢驗後處理：生物安全櫃操作檯面以 75 % 酒精擦拭，並以紫外光照射 20 min。

11 結果判定

11.1 判讀標準：經 Mumps IFA 測定有綠色螢光反應細胞者，判定為陽性。

11.2 報告核發：腮腺炎病毒分離陽性，腮腺炎病毒分離陰性。

11.3 結果登錄：完成檢驗後，將檢驗結果登錄於附錄 15.3 病毒培養觀察紀錄表、附錄 15.4 螢光鑑定紀錄表，檢驗結果填寫於檢體送驗單之“檢驗結果”欄，並上網登錄於實驗室資訊管理系統，傳送實驗室主管審核，待審核通過後發佈結果。

12 品質管制

12.1 除離心及螢光鑑定試驗步驟外全程作業都要在生物安全櫃（class II BSC）內進行。
12.2 二氧化碳培养箱内壁每月要定期以抗黴菌剤擦拭及水盤添加抑菌剤的無菌水以保持培養箱內溼度。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
Chemicon mumps IFA kit 所附操作說明。

15 附錄
15.1 腮腺炎病毒分離與鑑定流程圖。
15.2 細胞繼代培養紀錄表。
15.3 病毒培養觀察紀錄表。
15.4 螢光鑑定紀錄表。
15.5 腮腺炎病毒檢驗判定流程圖。
附錄 15.1 腮腺炎病毒分離與鑑定流程圖

咽喉拭子

尿液

3 mL Ficoll-paque 加 4 mL 稀釋全血，
400 × g，室溫，40 分鐘，沉澱以 HBSS wash，100 × g，室溫，10 分鐘，二次，懸浮於 2 mL Sample pretreat medium

全血

加 1.5 mL Sample pretreat medium 充分攪拌，0.45 µm 過濾

400 × g，4 ℃，10 分鐘，沉澱懸浮於 2 mL Sample pretreat medium

接種 Vero 細胞

細胞融合樣 CPE

否

7 天後繼代培養，二次

是

細胞融合樣 CPE

是

細胞融合樣 CPE 及蘋果綠螢光

否

腮腺炎病毒分離陰性

腮腺炎病毒分離陽性

螢光免疫法（IFA）鑑定

螢光顯微鏡鏡檢

細胞融合樣 CPE 及蘋果綠螢光

否

腮腺炎病毒分離陰性

腮腺炎病毒分離陽性
附錄 15.2 細胞繼代培養紀錄表

<table>
<thead>
<tr>
<th>Cell</th>
<th>Transfer Date/time</th>
<th>Person in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flask no</td>
<td>Container</td>
<td>Medium</td>
</tr>
<tr>
<td>Transfer Date/time</td>
<td>Person in charge</td>
<td></td>
</tr>
<tr>
<td>Flask no</td>
<td>Container</td>
<td>Medium</td>
</tr>
<tr>
<td>transfer Date/time</td>
<td>Person in charge</td>
<td></td>
</tr>
<tr>
<td>Flask no</td>
<td>Container</td>
<td>Medium</td>
</tr>
<tr>
<td>Transfer Date/time</td>
<td>Person in charge</td>
<td></td>
</tr>
<tr>
<td>Flask no</td>
<td>Container</td>
<td>Medium</td>
</tr>
<tr>
<td>Transfer Date/time</td>
<td>Person in charge</td>
<td></td>
</tr>
<tr>
<td>Flask no</td>
<td>Container</td>
<td>Medium</td>
</tr>
<tr>
<td>Transfer Date/time</td>
<td>Person in charge</td>
<td></td>
</tr>
<tr>
<td>Flask no</td>
<td>Container</td>
<td>Medium</td>
</tr>
</tbody>
</table>

検驗者：

實驗室主管：
附錄 15.3 病毒培養觀察紀錄表

<table>
<thead>
<tr>
<th>Date:</th>
<th>Exp. pass 1</th>
<th>Exp. Pass 2</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample ID: 1, 2, 3, 4, 5, 6, 7, 12, 3, 4, 5, 6, 7, 12, 3, 4, 5, 6, 7

<table>
<thead>
<tr>
<th>Cell Type</th>
<th>Generation</th>
<th>Culture</th>
<th>Inoculum</th>
<th>Absorption</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

編號：

腮腺炎病毒分離與鑑定

核准日期：年月日

修訂日期：年月日
附錄 15.4 螢光鑑定紀錄表

衛生福利部疾病管制署研究檢驗及疫苗研製中心

螢光鑑定紀錄表

<table>
<thead>
<tr>
<th>Date</th>
<th>檢驗者</th>
<th>實驗室主管</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>檢驗者</th>
<th>實驗室主管</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
附錄 15.5 腮腺炎病毒檢驗判定總流程圖

全血、咽喉拭子、尿液

病毒分離與鑑定

接種 Vero 細胞

觀察細胞病病變 (CPE)

CPE 陽性

間接免疫蛻光法 (IFA)

CPE 陰性

繼代培養二次

是

腮腺炎陰性

否

腮腺炎陽性

血清

IgM，IgG

詳見腮腺炎血清學檢驗及結果判定流程圖

血清學檢驗結果與細胞分離結果，有任何一者為陽性，則判為陽性
目的
以分子生物學的技術利用反轉錄酶－巢式聚合酶鍵反應（RT-nested PCR）來直接檢測檢體中是否有腮腺炎病毒。

適用檢體種類
適用之檢體種類包括咽喉拭子、尿液。

名詞解釋
無。

原理概述
RT-PCR：利用分子生物學技術 RT-PCR 高敏感度的方法來檢測檢體中的腮腺炎病毒 RNA。RT-PCR 之原理為設計專一性之引子（primers），把檢體中的病毒 RNA 反轉錄成 DNA，並將其擴增放大。

試劑耗材
5.1 檢測試劑
5.1.1 Viral RNA Extraction Kit。
5.1.2 One-step RT-PCR Kit。
5.1.3 PCR Kit。
5.1.4 One-step qRT-PCR Kit。
5.1.5 TBE buffer（Tris-borate/EDTA electrophoresis buffer）。
5.1.6 陽性對照組(positive control): 加 100-200 µl/well 無菌水於市售 IgG 檢測試劑組中吸附有腮腺炎病毒抗原的微量盤，以微量吸管尖刮取微量盤底部後將其吸出作為含腮腺炎病毒的陽性檢體；陰性對照組(Negative control):以水作陰性對照。
5.1.7 Agarose。
5.2 耗材
5.2.1 DEPC 水。
5.2.2 無菌 PCR 反應管。
5.2.3 無菌內濾式 10 µl, 20 µl, 100 µl, 200 µl, 1000 µl 微量滴管。
5.2.4 無菌 1.5 ml 微量離心管。
5.2.5 手套。

儀器設備
6.1 PCR thermal cycler。
6.2 電泳槽。
6.3 DNA 電泳膠體觀察設備。
6.4 10 µl, 20 µl, 100 µl, 200 µl, 1000 µl 微量滴管分注器。

環境設施安全
採用獨立的操作空間，將 RNA 或 DNA 有關的實驗室分開，以避免污染，影響結果。
8 檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體前處理
10.1.1 檢體編號：核對檢驗單之個案與檢體是否相符，給予疾病編號。
10.1.2 咽喉拭子檢體：棉棒充分攪拌後於塑膠管壁旋轉擠乾取出。
10.1.3 尿液檢體：以 1,500 rpm 留心 10 分鐘，將沉澱物與 1-2 ml 含 2x 抗生素的 DMEM 混合均勻。

10.2 步驟
10.2.1 1 萃取病毒 RNA (以 QIAGEN QIAamp Viral RNA Mini Kit 為例)
10.2.1.1 吸取 140 µl 的檢體，加入 560 µl Lysis buffer (AVL) ，震盪混合，室溫靜置反應 10 分鐘。
10.2.1.2 加入純酒精 560 µl 終止反應。
10.2.1.3 將上述混合液分兩次加入通管柱 (column)，並以離心 (8,000 rpm, 1 分鐘) 方式加速混合液通過濾膜，檢體中如有 RNA 存在，會吸附在管柱底部的濾膜上。
10.2.1.4 以清洗液 (AW1) 500 µl，離心 8,000 rpm，1 分鐘，作第一次沖洗，清洗膜上所吸附的雜質。
10.2.1.5 以清洗液 (AW2) 500 µl，離心 14,000 rpm，3 分鐘，作第二次沖洗，清洗膜上剩餘吸附的雜質。
10.2.1.6 離心 14,000 rpm，1 分鐘，以徹底去除膜上殘留酒精。
10.2.1.7 加入萃取液 (AVE) 50 µl，室溫靜置 1 分鐘，在 4℃ 離心 8,000 rpm，1 分鐘，取得 RNA。

10.2.2 反轉錄酶—聚合酶鏈鎖反應 (RT-PCR) (以 Qiagen one-step RT-PCR kit 為例)
10.2.2.1 取 5µl RNA 為模版，加入引子組 (primers 參考附錄 15-2) 與 RT-PCR 試劑，反應總體積 25 µl，反應溶液成分如下:
10.2.2.2 使用 PCR thermal cycle，設定反應條件如下
10.2.2.2.1 R.T.作用, 50℃ 30 分鐘。
10.2.2.2.2 Taq 活化作用, 95℃ 15 分鐘。
10.2.2.2.3 Denaturation, 94℃ 30 秒。
10.2.2.2.4 Annealing, 51℃ 30 秒。
10.2.2.2.5 Extension, 72℃ 60 秒。
10.2.2.2.6 重複 10.2.2.2.3 至 10.2.2.2.5 步驟 35 cycle。
10.2.2.2.7 Final extension, 72℃ 5 分鐘。

10.2.3 巢式聚合酶鍊鎖反應(nested PCR) (以 Qiagen HotStarTaq PLUS PCR Kit 為例)
10.2.3.1 取 1 µl 10.2.2 步驟所得的 RT-PCR 反應產物做模板，
加入引子組（primers 參考引子組序列表）與 PCR 試
劑，反應總體積 25 µl，反應溶液成分如下:
RNase-free H₂O 10.5 µl
2 X Master Mix 12.5 µl
Forward primer P1（10 µM） 0.5 µl
Reverse primer SH2R（10 µM） 0.5 µl
DNA sample 1.0 µl
25.0 µl

10.2.3.2 使用 PCR thermal cycle，設定反應條件如下:
10.2.3.2.1 Taq 活化作用, 95℃ 5 分鐘。
10.2.3.2.2 Denaturation, 94℃ 30 秒。
10.2.3.2.3 Annealing, 50℃ 30 秒。
10.2.3.2.4 Extension, 72℃ 60 秒。
10.2.3.2.5 重複 10.2.3.2.3 至 10.2.3.2.5 步驟 30 cycle。
10.2.3.2.6 Final extension, 72℃ 5 分鐘。

10.2.4 膠片電泳分析
10.2.4.1 製備 1.5% 洋菜膠：1.5 g agarose 溶於 100 ml（1 X）
TBE buffer。
10.2.4.2 選擇 100 bp DNA size Marker：5µl（2 ng/µl）。
10.2.4.3 取二次產物 5µl 及 100 bp Marker，混合 1 µl Safe-Green
Nucleic Acid Stain(eg :abm- Cat.No.G108-G)。
10.2.4.4 進行電泳分離：100V，30 min。
10.2.4.5 使用 UV light 觀察，並照相紀錄。

11 結果判定
11.1 判讀標準
RT-PCR: 取 nested RT-PCR 產物各 5μL，在 1.5% 洋菜膠進行分析，檢視分析結果。腮腺炎病毒增幅產物片段約 478 bp，若出現上述 RT-PCR 產物，檢驗結果為陽性。
11.2 報告核發：腮腺炎病毒 PCR 陽性，腮腺炎病毒 PCR 陰性。
11.3 結果登錄: 完成檢驗後，將檢驗結果填寫於檢體送驗單之”檢驗結果欄”，並上網登錄於實驗室資訊管理系統，傳送實驗室主管審核，待審核通過後發佈結果。

12 品質管制
12.1 每次進行實驗時皆有陽性及陰性對照組。
12.2 實驗過程遵循 S.O.P 的作業規範與流程，並在個別獨立的操作空間內操作，以避免污染。
12.3 微量吸管分注器做定期的校正。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋妥為密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

15 附錄
15.1 腮腺炎病毒鑑定流程圖。
15.2 腮腺炎病毒診斷用引子及探針序列表
附錄 15-1 腮腺炎病毒鑑定流程圖

咽喉拭子、尿液

病毒 RNA 萃取

Nested RT-PCR 檢測

結果判定
附錄 15-2 腮腺炎病毒診斷用引子及探針組序列表

一、Nested RT-PCR First round RT-PCR primer
SH1F : 5’-AGTAGTGTCGATGATCTCAT-3’
SH1R : 5’-GCTCAAGCCTGTGATCATTGA-3’

二、Nested RT-PCR Second round nested-PCR primer
P1: 5’- CAATATCAAGTAGTGTCG -3’
SH2R: 5’- GCCGGAGCACAGTTGTGATAG-3’
目的
利用間接免疫酵素分析法（indirect ELISA，indirect enzyme-linked immunosorbent assay）檢測人體是否有腮腺炎專一性IgM抗體。

適用檢體種類
血清（serum）或血漿（plasma）。

名詞解釋
無。

原理概述
利用間接酵素免疫分析法。檢體先以RF Absorbent吸附，以除去類風濕因子及IgG，降低對所測試IgM反應的干擾。再利用吸附有腮腺炎病毒抗原的微量盤與待測血清中具有的腮腺炎專一性IgM抗體作用一段時間，清洗掉未結合的物質然後加上Anti-human IgM/POD conjugate，再反應一段時間後清洗掉未結合的物質，最後加上無色受質TMB作用30min，受質經Conjugate上的酵素催化後，轉換為藍色，最後再加上終止液終止反應，此時有反應的微量盤會變成黃色。以650nm為參考波長以吸光光度計測定450nm波長的吸光值。

試劑耗材
5.1 試劑
5.1.1 「Enzygnost anti-parotitis-virus/IgM：Dade Behring，OWNT 15，Germany，4℃儲存」。
 5.1.1.1 Anti-parotitis virus/IgM test plate：2×6 strips。
 5.1.1.2 Anti-parotitis virus reference P/P：0.65 mL。
 5.1.1.3 Anti-parotitis virus reference P/N：0.45 mL。
 5.1.1.4 Sample buffer POD：2×50 mL。
 5.1.1.5 Anti-human IgM/POD conjugate（μ-chain specific）：1 mL。
 5.1.1.6 Conjugate buffer microbiol：4×12.5 mL。
 5.1.1.7 RF Absorbent：4×for 5 mL。
 5.1.1.8 Polyethylene bag for storing unused test strip。
 5.1.1.9 Barcode table of value。
5.1.2 「Supplementary reagents for enzygnost/TMB：Dade Behring，OUVP 17，Germany，4℃儲存」。
 5.1.2.1 Washing solution POD：3×100 mL。
 5.1.2.2 Colour solution blue for enzygnost：1×12.5 mL。
 5.1.2.3 Buffer/substrate TMB：4×30 mL。
 5.1.2.4 Chromogen TMB：4×3 mL。
 5.1.2.5 Stopping solution POD：2×100 mL。
 5.1.2.6 Adhesive foils for microtiter plates：24 pcs。
5.1.2.7 Empty bottle for the working Chromogen solution：1 pcs。
5.1.2.8 Instruction for use：1 pcs。

5.2 耗材
5.2.1 Tps：200 μL, 1,000 μL。
5.2.2 1.5 mL Eppendorf。
5.2.3 4 mL Tube。
5.2.4 2 mL 螺旋試管。
5.2.5 抗凍標籤紙。
5.2.6 油性簽字筆。

6 儀器設備
6.1 單爪 Pipetman：20 μL, 200 μL, 1,000 μL。
6.2 八爪 Pipetman：200 μL。
6.3 電動分注器：50 μL-1,000 μL。
6.4 Microplate washer。
6.5 Microplate reader。
6.6 小型離心機。
6.7 37 °C 溫箱。
6.8 振盪混合器。

7 環境設施安全
於生物安全第二等級 (BSL-2) 實驗室之設施內操作。

8 檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBE869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBE869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體編號：核對檢驗單之個案與檢體是否相符，給予疾病編號。
10.2 檢驗前處理
10.2.1 將血液分裝於 1.5 mL Eppendorf，以小型離心機離心 3 - 5 min，收集血清或血漿於 2 mL 螺旋試管。
10.2.2 記錄檢體於檢驗盤上之相對應位置，如附錄 15.1。
10.2.3 配置 Working RF Absorbent：一瓶 RF Absorbent 以 5 mL 蒸餾水溶解。
10.2.4 配置 Working wash solution：用蒸餾水以 1:20 的比例稀釋 5.1.2.1 Washing solution POD。

10.2.5 配置 Working conjugate solution：1 份 5.1.1.5 Anti-human IgM/POD conjugate + 50 份 5.1.1.6 Conjugate buffer microbiol。

10.2.6 配置 Working Chromogen solution：1 份 5.1.2.4 Chromogen TMB + 10 份 5.1.2.3 Buffer/substrate TMB。

10.2.7 Microplate washer 先以配置好的 Working wash solution 進行 Prime 指令，使管路充滿 Working wash solution。

10.3 檢驗步驟

10.3.1 血清稀釋至加到微量盤的步驟詳如附錄 15.2。

10.3.2 封上 5.1.2.6 Adhesive foils，置放 37°C 溫箱培養 60 min。

10.3.3 啓動 Microplate washer 以 Wash solution 清洗三次。

10.3.4 每個孔加入 100 μL Working conjugate solution。

10.3.5 置放 37°C 溫箱培養 60 min。

10.3.6 啟動 Microplate washer 以 Wash solution 清洗三次。

10.3.7 每個孔加入 100 μL Working Chromogen solution。

10.3.8 室溫，避光，培養 30 min。

10.3.9 每個孔加入 100 μL Stopping solution。

10.3.10 用 Microplate reader 測定 450 nm 吸光度，以 650 nm 做為參考波長。

10.4 檢驗後處理

10.4.1 Microplate washer 以蒸餾水進行二次 Prime，以去除殘存之 Wash solution，防止管路結晶阻塞。

10.4.2 使用後的 Tips、Eppendorf、Microplate strip，滅菌後丟棄。

10.4.3 Microplate washer、Microplate reader 關機。

11 結果判定
11.1 判定標準

<table>
<thead>
<tr>
<th>計算</th>
<th>判定</th>
<th>判定標準</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔA=A<sub>antigen</sub>−A<sub>control antigen</sub></td>
<td>陽性（positive）</td>
<td>ΔA>0.2</td>
</tr>
<tr>
<td></td>
<td>陰性（negative）</td>
<td>ΔA<0.1</td>
</tr>
<tr>
<td></td>
<td>未確定（equivocal）</td>
<td>0.1≦ΔA≦0.2</td>
</tr>
</tbody>
</table>

11.2 報告核發：腮腺炎 IgM 陽性，腮腺炎 IgM 陰性，腮腺炎 IgM 未確定。

11.3 結果登錄：完成檢驗後，將檢驗結果登錄於附錄 15.4 腮腺炎 ELISA 實驗紀錄表，檢驗結果填寫於檢體送驗單之“檢驗結果欄”，並上網登錄於實驗室資訊管理系統，傳送實驗室主管審核，待審核通過後發佈結果。

12 品質管制
12.1 Qualitative evaluation：ΔA_{Reference P/P}≧0.2。

12.2 Quantitative evaluation：
12.2.1 Lower margin $\leq \Delta A_{\text{Reference P/P}} \leq$ upper margin。

12.2.2 任一 $\Delta A_{\text{Reference P/P}}$ 介於 Reference P/P 平均值 $\pm 20\%$。

12.3 Measurement correction：利用 Reference P/P 來校正實驗值，改善結果的再現性。

<table>
<thead>
<tr>
<th>計算範例</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference P/P，at start of series</td>
<td>ΔA</td>
</tr>
<tr>
<td>With margins？</td>
<td>yes</td>
</tr>
<tr>
<td>Reference P/P，at end of series</td>
<td>ΔA</td>
</tr>
<tr>
<td>With margins？</td>
<td>yes</td>
</tr>
<tr>
<td>Mean value</td>
<td>ΔA</td>
</tr>
<tr>
<td>Reference P/P,nominal value</td>
<td>ΔA</td>
</tr>
<tr>
<td>Correction factor 0.518:0.431 =</td>
<td>1.2</td>
</tr>
<tr>
<td>Corrected ΔA</td>
<td>=1.2 x ΔA 待測血清</td>
</tr>
</tbody>
</table>

註：upper、lower margin、nominal value 詳見 5.1.1.9，為 lot-specific。

13 廢棄物處理
検驗過程之物品、廢液及剩餘検體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
Dade Behring 公司試藥說明書。

15 附錄
15.1 檢體排列位置圖。
15.2 檢體稀釋至加入微量盤步驟圖。
15.3 腮腺炎病毒 IgM 抗體試驗（間接酵素免疫分析法）流程圖。
15.4 腮腺炎 ELISA 實驗紀錄表。
15.5 腮腺炎 ELISA 血清學檢驗及結果判定流程圖。
附錄 15.1 檢體排列位置圖

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>B</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>C</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>D</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>E</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>F</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>G</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>H</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

1. 從 C1 開始置放待測檢體。
2. Reference P/P 除 A1 位置固定外，另一 Reference P/P 位置視檢體量而定，在最後一個試劑條 H 對應位置。
附錄 15.2 檢體稀釋至加入微量盤步驟圖

400 μL Sample Buffer POD

200 μL each Sample Buffer POD

20 μL each (additional 1:11 dilution)

Ig

Ag CoAg

outside plate

inside plate

20 μL

test sample or reference

Predilution tubes or wells(1:21)

Ag CoAg

Test dilution 1:231

200 μL RF Absorbent

After 15 min at RT, 150 μL each

Ag CoAg

Test dilution 1:42
附錄15.3 腺炎病毒 IgM 抗體試驗（間接酵素免疫分析法）流程圖

検體（血清, 發病3-28日內）

1:21稀釋

取等量稀釋檢液與RF處理15分鐘

1:42稀釋

加150μL經RF處理之檢液及稀釋之參考血清P/P及P/N至覆有病毒抗原/細胞對照抗原的一組微量盤

Wash後，加入100μL結合酵素之抗IgM抗體

37℃, 1小時

Wash後，加入100μL酵素受質使之呈色

室溫, 30分鐘

加入100μL反應終止液

1小時內

以Microplate Reader 450 nm測定OD值

以 650 nm 做為參考波長
附錄 15.4 腮腺炎 ELISA 實驗紀錄表

衛生福利部疾病管制署研究檢驗及疫苗研製中心
腮腺炎ELISA實驗紀錄表

<table>
<thead>
<tr>
<th>Date:</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Well</th>
<th>Sample No.</th>
<th>Δ A</th>
<th>Corrected Δ A</th>
<th>Result</th>
<th>Name</th>
<th>Well</th>
<th>Sample No.</th>
<th>Δ A</th>
<th>Corrected Δ A</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1A</td>
<td>P/P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1A</td>
<td>P/N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>in-house P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>in-house P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Validation Check</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. P/P ≥ 0.2</td>
<td>1. P/N ≥ 0.5</td>
</tr>
<tr>
<td></td>
<td>2. P/P within lower and upper margin</td>
<td>2. P/N within lower and upper margin</td>
</tr>
<tr>
<td></td>
<td>3. Individual P/P within ± 20% mean P/P</td>
<td>3. Individual P/N within ±20% mean P/N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kit Batch:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Expiry:</td>
<td></td>
</tr>
<tr>
<td>Lower margin:</td>
<td></td>
</tr>
<tr>
<td>Upper margin:</td>
<td></td>
</tr>
<tr>
<td>Nominal Value:</td>
<td></td>
</tr>
<tr>
<td>Mean P/P:</td>
<td></td>
</tr>
<tr>
<td>Correction Factor:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Result Interpretation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(-) Negative < 0.10</td>
<td>(+) POSITIVE > 0.20</td>
</tr>
<tr>
<td>(+/-) EQUIVOCAL: 0.10-0.20</td>
<td></td>
</tr>
</tbody>
</table>

檢驗者：實驗室主管：
附錄 15.5 腮腺炎血清學檢驗結果判定流程圖

血清

IgM EIA test

IgG EIA test

IgM：+ IgG：+或－
IgM：－ IgG：－
IgM：－ IgG：＋
IgM：± IgG：＋或－
IgM：－ IgG：±

陽性

以前曾經感染或接種疫苗

未確定，隔離七日以後再採檢

1. 第二次檢體仍為 IgM
 及 IgG 陰性者判為陰性
2. 第二次檢體為 IgM
 陽性或 IgG 陽轉者判為陽性

未確定，隔離七日以後再採檢

1. 第二次檢體 IgM 為陽性
 或 IgG 抗體有顯著上升
 者判為陽性
2. IgM 抗體為陰性或±，而
 IgG 抗體未顯著上升者
 判為陰性
1 目的
利用間接免疫酵素分析法 (indirect ELISA，indirect enzyme-linked immunosorbent assay) 檢測人體是否有腮腺炎專一性 IgG 抗體。

2 適用檢體種類
血清 (serum) 或血漿 (plasma)。

3 名詞解釋
無。

4 原理概述
利用間接酵素免疫分析法。利用 96 孔微量盤底覆有腮腺炎病毒抗原的測試盤與待測血清中具有腮腺炎專一性 IgG 抗體作用 1 hr，清洗掉未結合的物質然後加上 Anti-human IgG/POD conjugate，再反應 1 hr，清洗掉未結合的物質，最後加上無色受質 TMB 作用 30 min，經 Conjugate 上的酵素催化，轉換為藍色，最後再加上終止液終止反應，此時有反應的位點會變成黃色，以吸光光度計測定 450 nm 波長的吸光值，以 650 nm 為參考波長。

5 試劑耗材
5.1 試劑
5.1.1 「Enzygnost anti-parotitis-virus/IgG：Dade Behring，OWLP 15，Germany，4℃ 儲存」
 5.1.1.1 Anti-parotitis virus/IgG test plate：2 × 6 strips。
 5.1.1.2 Anti-parotitis virus reference P/N：0.4 mL。
 5.1.1.3 Sample buffer POD：2 × 50 mL。
 5.1.1.4 Anti-human IgG/POD conjugate：1 mL。
 5.1.1.5 Conjugate buffer microbiol：4 × 12.5 mL。
 5.1.1.6 Polyethylene bag for storing unused test strip。
 5.1.1.7 Barcode table of value。

5.1.2 「Supplementary reagents for enzygnost/TMB：Dade Behring，OUVP 17，Germany，4C 儲存」。
 5.1.2.1 Washing solution POD：3 × 100 mL。
 5.1.2.2 Colour solution blue for enzygnost：1 × 12.5 mL。
 5.1.2.3 Buffer/substrate TMB：4 × 30 mL。
 5.1.2.4 Chromogen TMB：4 × 3 mL。
 5.1.2.5 Stopping solution POD：2 × 100 mL。
 5.1.2.6 Adhesive foils for microtiter plates：24 pcs。。
 5.1.2.7 Empty bottle for the working Chromogen solution：1 pcs。。
 5.1.2.8 Instruction for use：1 pcs。。

5.2 耗材
5.2.1 tips：200 μL、1,000 μL。
5.2.2 1.5 mL Eppendorf。
5.2.3 4 mL Tube。
5.2.4 2 mL 螺旋試管。
5.2.5 抗凍標籤紙。
5.2.6 油性簽字筆。

6 儀器設備
6.1 單爪 Pipetman：20 μL、200 μL、1,000 μL。
6.2 八爪 Pipetman：200 μL。
6.3 電動分注器：50 μL-1,000 μL。
6.4 Microplate washer。
6.5 Microplate reader。
6.6 小型離心機。
6.7 37 ℃ 溫箱。
6.8 振盪混合器。

7 環境設施安全
於生物安全第二等級（BSL-2）實驗室之設施內操作。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowt reeid=6C7C52E7A7D5621A。

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowt reeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體編號：核對檢驗單之個案與檢體是否相符，給予疾病編號。
10.2 檢驗前處理
10.2.1 將血液分裝於 1.5 mL Eppendorf，以小型離心機離心 3-5 min，收集血清或血漿於 2 mL 螺旋試管。
10.2.2 記錄檢體於檢驗盤上之相對應位置，如附錄 15.1。
10.2.3 配置 Working wash solution：用蒸餾水以 1：20 的比例稀釋 5.1.2.1 Washing solution POD。
10.2.4 配置 Working conjugate solution：1 份 5.1.1.5 Anti-human IgG/POD conjugate + 50 份 5.1.1.6 Conjugate buffer microbiol。
10.2.5 配置 Working Chromogen solution：1 份 5.1.2.4 Chromogen TMB + 10 份 5.1.2.3 Buffer/substrate TMB。
10.2.6 Microplate washer 先以配置好的 Working wash solution 進行 Prime 指令，使管路充滿 Working wash solution。
10.3 檢驗步驟
10.3.1 血清稀釋至加到微量盤的步驟詳如附錄 15.2。
10.3.2 封上 5.1.2.6 Adhesive foils，置放 37°C 溫箱培養 60 min。
10.3.3 啓動 Microplate washer 以 Wash solution 清洗三次。
10.3.4 每個孔加入 100 μL Working conjugate solution。
10.3.5 置放 37°C 溫箱培養 60 min。
10.3.6 啓動 Microplate washer 以 Wash solution 清洗三次。
10.3.7 每個孔加入 100 μL Working Chromogen solution。
10.3.8 室溫，遮光，培養 30 min。
10.3.9 每個孔加入 100 μL Stopping solution。
10.3.10 用 Microplate reader 測定 450 nm 吸光度，以 650 nm 做為參考波長。

10.4 檢驗後處理
10.4.1 Microplate washer 以蒸餾水進行二次 Prime，以去除殘存之 Wash solution，防止管路結晶阻塞。
10.4.2 使用後的 Tips、Eppendorf、Microplate strip，滅菌後丟棄。
10.4.3 Microplate washer、Microplate reader 關機。

11 結果判定
11.1 判讀標準

<table>
<thead>
<tr>
<th>計算</th>
<th>判定</th>
<th>判定標準</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔA=A_{antigen}-A_{control antigen}</td>
<td>陽性（positive）</td>
<td>ΔA＞0.2</td>
</tr>
<tr>
<td></td>
<td>陰性（negative）</td>
<td>ΔA＜0.1</td>
</tr>
<tr>
<td></td>
<td>未確定（equivocal）</td>
<td>0.1≦ΔA≦0.2</td>
</tr>
</tbody>
</table>

11.2 報告核發：腮腺炎 IgG 陽性，腮腺炎 IgG 陰性，腮腺炎 IgG 未確定
11.3 結果登錄：完成檢驗後，將檢驗結果登錄於附錄 15.4 腮腺炎 ELISA 實驗紀錄表，檢驗結果填寫於檢體送驗單之“檢驗結果”欄，並上網登錄於實驗室資訊管理系統，傳送實驗室主管審核，待審核通過後發佈結果。

12 品質管制
12.1 Qualitative evaluation：ΔA_{Reference P/N} □ 0.5。
12.2 Quantitative evaluation。
12.2.1 Lower margin≦ΔA_{Reference P/N}≦ upper margin。
12.2.2 任一 ΔA_{Reference P/N} 介於 Reference P/N 平均值 ± 20%。
12.3 Measurement correction：利用 Reference P/N 來校正實驗值，改善結果的再現性。
13 廢棄物處理
检验過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
Dade Behring 公司操作說明書。

15 附錄
15.1 檢體排列位置圖。
15.2 檢體稀釋至加入微量盤步驟圖。
15.3 腮腺炎病毒 IgG 抗體試驗（間接酵素免疫分析法）流程圖。
15.4 腮腺炎 ELISA 實驗紀錄表。
15.5 腮腺炎 ELISA 血清學檢驗及結果判定流程圖。
附錄 15.1 檢體排列位置圖

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>B</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>C</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>D</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>E</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>F</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>G</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>H</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

1. 從 C1 開始置放待測檢體。
2. Reference P/N 除 A1 位置固定外，另一 Reference P/N 位置視檢體量而定，在最後一個試劑條 H 對應位置。
附錄 15.2 檢體稀釋至加入微量盤步驟圖

![Image of reaction diagram]
附錄 15.3 腮腺炎病毒 IgG 抗體試驗（間接酵素免疫分析法）流程圖

檢體（血清或血漿）

1:21稀釋後取20 ul
加入下列微量盤

覆有病毒抗原/細胞對照抗原的一組微量盤，先加入200 ul 的稀釋液

37℃，1小時

Wash後，加入100 ul 結合酵素之抗IgG抗體

37℃，1小時

Wash後，加入100 ul 酵素受質使之呈色

室溫，30分鐘

加入100 ul 反應終止液

1小時內

以Spectrophotometer 450 nm 測定OD值
以 650 nm 做為參考波長
附錄 15.4 腮腺炎 ELISA 實驗紀錄表

腮腺炎 ELISA 實驗紀錄表

<table>
<thead>
<tr>
<th>Name</th>
<th>Well</th>
<th>Sample No.</th>
<th>△A</th>
<th>Corrected △A</th>
<th>Result</th>
<th>Well</th>
<th>Sample No.</th>
<th>△A</th>
<th>Corrected △A</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>P/P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1A</td>
<td>P/N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>in-house P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>in-house P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Validation Check

1. P/P ≥ 0.2
2. P/P within lower and upper margin
3. Individual P/P within ±20 % mean P/P

Kit Batch：
Expiry：
Lower margin：
Upper margin：
Nominal Value：
Mean P/P：
Correction Factor：

Validation Check

1. P/N ≥ 0.5
2. P/N within lower and upper margin
3. Individual P/N within ±20 % mean P/N

Kit Batch：
Expiry：
Lower margin：
Upper margin：
Nominal Value：
Mean P/N：
Correction Factor：

Result Interpretation

(-) Negative < 0.10 (+) POSITIVE > 0.20 (+/-) EQUIVOCAL : 0.10-0.20

檢驗者：
實驗室主管：
附錄 15.5 腮腺炎血清學檢驗結果判定流程圖

血清

IgM EIA test
IgG EIA test

IgM：+ IgM：–
IgG：+或– IgG：–

陽性

以前曾經感染或接種疫苗

未確定，間隔七日以後再採檢

1. 第二次檢體仍為IgM及IgG陰性者判為陰性
2. 第二次檢體為IgM陽性者判為陽性

1. 第二次檢體IgM為陽性或IgG抗體有顯著上升者判為陽性
2. IgM抗體為陰性或±，而IgG抗體未顯著上升者判為陰性
目的
利用微生物的分離培養檢查病患檢體中是否有退伍軍人菌，並加以鑑定。

適用檢體種類
適用人體痰液、肋膜液、肺部組織液、呼吸道抽出液、支氣管沖洗液。

解釋名詞
無。

原理概述
退伍軍人菌（Legionella）, 包括嗜肺性退伍軍人菌（Legionella pneumophila）及其它退伍軍人菌種（Legionella species），目前已被確認的至少有 48 個Species及70種血清型。造成人類肺炎的退伍軍人菌中，90%以上為L. pneumophila, 可分為15種血清型，其中以第一型最為普遍。退伍軍人菌為革蘭氏陰性、菌落圓形平滑、白色（或藍白、藍灰、藍綠、藍紅）半透明、邊緣完整、輕度隆起、黏稠、需氧、無莢膜、不產孢子，長約1.5-2μm，寬約0.3-0.9μm的桿菌，在人體組織或體液中呈瘦短型，但在培養基中生育長可達20μm長。培養基須使用含Yeast extract, Charcoal, Iron及L-cysteine的特殊培養基。以特定培養基分離退伍軍人菌後，利用菌落形態、生理特徵、生化特性、乳膠凝集試驗及直接熒光抗體試驗等方法鑑定。

試劑耗材
5.1 檢體酸處理劑及中和劑
5.1.1 HCI-KCl 酸處理劑
稱量 7.46 g KCl 溶於 500 mL 蒸餾水中成 0.2 M KCl，以 0.2 M HCl 調整 pH 值至 2.0。
5.1.2 KOH 中和劑 (退伍軍人菌對鈉敏感，不可用 NaOH 為中和劑)。稱 1.123 g KOH 溶於 100 mL 蒸餾水中成 0.1 N KOH，取 50 mL 0.1 N KOH 加 500 mL 蒸餾水混合均勻，以 0.1 N KOH 或蒸餾水調整此稀釋 KOH 溶液的 pH 值，使其當與 HCI-KCl 酸處理劑以 1:1 體積混合時 pH 值恰好等於 6.9。
5.1.3 將以上兩種溶液以 121 °C 滅菌 15 分鐘後備用。（滅菌後再確認酸處理劑與 KOH 中和劑中和成 pH 6.9 的相對體積）
5.2 2 N KOH, 自行配製 BCYE 培養基時製備。
稱 22.44 g KOH 於 250 mL 血清瓶中，加蒸餾水至約 180 mL，溶解混合均勻後倒入量筒中，以蒸餾水補至 200 mL，倒回血清瓶中，以 121 °C 滅菌 15 分鐘後使用。
5.3 1 N HCl，裝血清瓶中，滅菌後使用。
5.4 BCYE w/ L-cystein 培養基（Buffered Charcoal Yeast Extract Agar 含 L-cysteine (半胱胺酸)）：可購買通過 IVD-GMP 之商品化產品，或自行製備。
5.4.1 配方：每 1 L 含量

<table>
<thead>
<tr>
<th>成分</th>
<th>含量</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yeast extract</td>
<td>10.0 g</td>
</tr>
<tr>
<td>Charcoal</td>
<td>1.5 g</td>
</tr>
<tr>
<td>ACES buffer</td>
<td>10.0 g</td>
</tr>
<tr>
<td>Ferric pyrophosphate</td>
<td>0.25 g</td>
</tr>
<tr>
<td>Alpha-ketoglutarate</td>
<td>1.0 g</td>
</tr>
<tr>
<td>Agar</td>
<td>15.0 g</td>
</tr>
<tr>
<td>L-cysteine</td>
<td>0.4 g</td>
</tr>
</tbody>
</table>

5.4.2 配製 500 mL：使用 1 L 錐形瓶，稱取 19.0 g BCYE agar base (Remel Inc., USA)，以 500 mL 量筒量取 485 mL 蒸餾水加入，放入一粒中型磁力攪拌子，以加熱電磁攪拌器加熱攪拌使粉末完全溶解，並加入 10 mL 2 N KOH 使 pH 約在 6.9 附近，於高壓滅菌鍋 121 °C 滅菌 15 分鐘，置於 50 °C 水浴槽冷卻至 50 °C，加入已經先以無菌蒸餾水溶解之 L-cysteine growth supplement tab（含 0.2 g L-cysteine-HCl：MAST Group Ltd., UK），以攪拌子共份混合均勻後，以 10 mL 無菌吸管吸取 10 mL 培養基置入 50 mL 小燒杯內，測 pH 值（溫度 sensor 需一起測，測過的培養基已不是無菌，丟棄之，不要倒回原瓶），以 2 N KOH 或 1 N HCl 調整培養基為 pH 6.90 ± 0.05，倒平板，90 mm 內徑培養皿倒 20 mL，高度約 0.3 cm。靜置待凝固後將培養皿翻面，隔夜在培養皿上標示培養基種類、製作日期及保存期限（三個月），裝入塑膠袋中並束緊袋口，保存於 4 °C 冰箱。

5.5 BCYE w/o L-cysteine 培養基（BCYE 不含 L-cysteine）：可購買通過 IVD-GMP 之商品化產品，或自行製備。製備 500 mL 方法如 5.4，但是不加 L-cysteine，亦可使用血液平板培養基取代。

5.6 血液平板培養基（BAP，Blood Agar Plate）：通過 IVD-GMP 之商品化產品。

5.7 PNV 選擇性培養基（BCYE 含 L-cysteine、抗生素 Polymyxin B、Natamycin 和 Vancomycin）：可購買通過 IVD-GMP 之商品化產品，或自行製備。製備 500 mL 方法如 5.4，加入 L-cysteine 時，也加入已經先以 5 mL 無菌蒸餾水溶解之 PNV supplement（MAST，UK），最終濃度為 Polymyxin B 79,200 IU/L、Natamycin 200 mg/L 和 Vancomycin 3 mg/L。

5.8 PAV 選擇性培養基（BCYE 含 L-cysteine、抗生素 Polymyxin B、Anisomycin、Vancomycin 及染料）：可購買通過 IVD-GMP 之商品化產品，或自行製備。製備 500 mL 方法如 5.4，加入 L-cysteine 時，也加入已經先以 5 mL 無菌蒸餾水溶解之 PAV supplement（MAST，UK），最終濃度為 Polymyxin B 80,000 IU/L、Anisomycin 40 mg/L、Vancomycin 1 mg/L、Bromocresol purple 10 mg/L 及 Bromothymol blue 10 mg/L。

5.9 革蘭氏染色染劑組（Gram stain set）：武藤化學，日本或 DIFCO，USA。含有 Crystal Violet、Gram Iodine、Decolorizer 及 Carbofuchsin 四劑。

5.10 馬克法藍氏濁度標準組（McFarland nephelometer standard units）。
5.11 退伍軍人菌乳膠凝集試驗試劑（Legionella Latex Agglutination Test）：
Oxoid Limited，England。
5.12 退伍軍人菌直接熒光抗體檢驗試劑（Direct Fluorescent Antibody Test,
DFA）：Zeus Scientific, Inc。，USA。
5.13 品質管制菌種：L. pneumophila 標準株 ATCC 33152。
5.14 無菌蒸餾水。
5.15 玻璃錐形瓶：1,000 mL（Pyrax）。
5.16 量筒：500 mL。
5.17 玻璃小燒杯：50 mL。
5.18 無菌培養皿：內徑約 90 mm。
5.19 無菌滴管（dropper）：3 mL。
5.20 無菌吸管（pipette）：10 mL (每 0.1 mL 一刻度)。
5.21 無菌微量吸管尖（tip）：1,000 μL、200 μL、100 μL。
5.22 接種針（環）。
5.23 可拋棄式無菌塑膠手套、口罩。
5.24 無菌離心管：50 mL、15 mL。
5.25 革蘭氏染色用載玻片。
5.26 螢光染色專用玻片及蓋玻片：60 × 24 mm。
5.27 血清瓶：1,000 mL、250 mL。
5.28 無菌玻璃珠：4 mm。
5.29 菌種保存管：PROTECT bacterial preservers，UK。

6 儀器設備

6.1 微量天平。
6.2 藥杓、稱藥紙、剪刀、錐子。
6.3 電磁攪拌器（可加熱）及磁力攪拌子。
6.4 高壓滅菌鍋。
6.5 水浴槽。
6.6 pH 值測定儀及 pH 7.0、pH 4.0 標準液。
6.7 電動吸管輔助器（pipette aid）。
6.8 第二級生物安全櫃（class II BSC）。
6.9 二氧化碳培養箱。
6.10 振盪器（vortexer）。
6.11 計時器。
6.12 本生燈或酒精燈。
6.13 立體解剖顯微鏡。
6.14 光學顯微鏡：能放大至 1,000 X 油鏡。
6.15 螢光顯微鏡：能放大至 400 X。
6.16 微量吸管 Pipetman：需 1,000 μL、200 μL、20 μL 三種規格。
6.17 紫外光燈：365 nm。
7 環境設施安全
於生物安全第二等級（BSL-2）實驗室之第二級生物安全櫃（Class II BSC）內操作。

8 檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 分離培養
10.1.1 檢體前處理：痰與其他呼吸道分泌物可能有許多雜菌污染，且有些黏稠須先均質化。先以玻璃珠均質化及以酸處理減低雜菌之生長。
10.1.1.1 均質化方法：加等量無菌去離子水，再加十數顆滅菌玻璃珠以振盪器振盪 30 秒，均質後，取 0.5 mL 進行酸處理。(註:加水及玻璃珠的數量視痰的黏稠度適度增減)
10.1.1.2 酸處理法：取已均質化痰檢體 0.5 mL 置入 15 mL 無菌離心管中，加入 0.2 M KCl-HCl (pH 2.0) 溶液 2.0 mL，以振盪器振盪混合後放置 4 分鐘，再加入 2.0 mL KOH 中和劑，振盪混合。
10.1.2 接種：取 0.1 mL 及 0.3 mL 處理過的檢體，分別接種到 PNV 或 PAV 選擇性培養基。（註:為增加分離率，每件檢體至少接種兩盤）
10.1.3 培養：置於二氧化碳培養箱中 35 ℃，2.5 - 5.0 % CO₂，及相對濕度 60 - 90 % 條件下培養。
10.1.4 觀察：培養 7 至 14 天，並每天觀察。若次日已長滿雜菌，則取新培養基減少檢體量重新接種。酸處理後之檢體及未酸處理之檢體保留於 4 ℃ 至少 2 週。10.2 鑑定
10.2.1 菌落觀察
退伍軍人菌生長緩慢，約需 3 - 5 天才可觀察到，以肉眼觀察菌落型態，必要時再以立體解剖顯微鏡進行菌落觀察，菌落圓形平滑、白色半透明 (在 PNV 選擇性培養基為白色，在 PAV 選擇性培養基則呈藍白或藍灰、藍綠、藍紅)、邊緣完整、具毛玻
璃外觀，輕度隆起。隨著菌落老化，呈中央微白邊緣淡紫色虹光，以接種環挑取，呈黏稠狀。在波長 365 nm 的紫外燈下觀察，部份退伍軍人菌株會產生藍白色自發性螢光，如 L. bozemanni、L. dumoffi、L. cherrii、L. gormanii、L. parisiensis、L. steigerwaltii、L. tucsonensis、L. anisa；某些菌株則產生紅色自發性螢光，如 L. rubrilucens 和 L. erythre。

10.2.2 L-cysteine（半胱胺酸）需求試驗：挑選可疑菌落接種於 BCYE w/ L-cysteine 及 BCYE w/o L-cysteine（或 BAP）培養基上進行培養。若 BCYE w/ L-cysteine 可生長而 BCYE w/o L-cysteine（或 BAP）不長，則可能是退伍軍人菌屬，挑取菌株再做進一步鑑定。

10.2.3 革蘭氏染色

10.2.3.1 抹片製作：挑取 BCYE 上之疑似菌落，於載玻片上製成薄抹片，風乾並過火數次固定。
10.2.3.2 初染：將已固定之抹片，用結晶紫染液（Crystal Violet）染 1 分鐘，水洗，水洗應不超過 5 秒。
10.2.3.3 媒染：加革蘭氏碘液（Gram Iodine）染 1 分鐘，水洗。
10.2.3.4 脫色：用脫色液（Decolorizer）洗至不再有紫色褪出時，數秒即可，再以自來水沖洗。
10.2.3.5 複染：用複染液（Carbolfuchsin）染 30 秒，水洗。
10.2.3.6 自然風乾。
10.2.3.7 以顯微鏡鏡檢，觀察細菌是否為革蘭氏陰性桿菌，無荚膜、不產孢子、短胖型或成長短不一的長絲型。註：退伍軍人菌為革蘭氏陰性桿菌，無荚膜、不產孢子、短胖型、較老的菌會成長短不一的長絲型。

10.2.4 退伍軍人菌乳膠凝集試驗（Legionella Latex Agglutination Test）：詳見退伍軍人菌抗原試驗（乳膠凝集試驗法）。此法可以區分嗜肺性退伍軍人菌血清型第 1 型（L. pneumophila serogroup 1）、嗜肺性退伍軍人菌血清型第 2-14 型（L. pneumophila serogroups 2-14）及其他退伍軍人菌屬菌種（Legionella species）。

10.2.5 退伍軍人菌直接螢光抗體試驗（Direct Fluorescent Antibody Test, DFA）：詳見退伍軍人菌抗原試驗（直接螢光抗體檢驗法）。

10.2.6 菌種保存：經鑑定之菌株，純培養後以菌種保存管保存。標示菌種保存管後，取一個 10μL 接種環菌量之純培養菌落置於保存液中，混合均勻後，至少靜置 30 秒，將冷凍保存液吸出，隨後旋緊保存管蓋子，放入-70 ℃ 冰箱保存，並做詳細的菌種保存記錄。
11 結果判定
11.1 判讀標準
11.1.1 陽性判定標準：由検體培養分離之疑似菌株經過 L-cysteine 生
長需求試驗、革蘭氏染色、乳膠凝集試驗、或直接螢光抗體試
驗均符合退伍軍人菌之結果，即判為退伍軍人菌陽性。
11.1.2 陰性判定標準：無符合退伍軍人菌之結果，即判為退伍軍人菌
陰性。
11.2 報告核發：退伍軍人菌陽性、退伍軍人菌陰性。
11.3 結果登錄：檢驗人員於完成驗後，將檢驗結果登錄於退伍軍人
病原菌分離與鑑定紀錄表，並將檢驗結果填寫於檢體送驗單之
“檢驗結果”欄，並於檢體送驗單背面加蓋檢驗者職章，送實
驗室主管審核及蓋章，並上網登錄於傳染病通報系統。

12 品質管制
12.1 PNV 選擇性培養基、PAV 選擇性培養基之品質管制
每批取 2 片培養基進行生長品管測試，並將一盤前一批之培養基為
對照。方法：取生長 2 日之 L. pneumophila 標準株 1-2 菌落置於 1 mL
無菌蒸餾水中，配製成 McFarland 0.5 菌液 (1.5 × 10^8 cfu/mL)，取 100
μL 菌液加 900 μL 蒸餾水 (1.5 × 10^7) ，做 1:10 之稀釋至 1.5 × 10^3，
吸取 30 μL 入待測培養基中，均勻塗開，置 35 °C 培養箱中培養 3-4
日，觀察生長情形並紀錄之。若無菌落生長或生長遲緩之批號培養基，
宜丟棄不用。若連對照培養基亦不生長，則品管試驗必須重做。
12.2 BCYE w/ L-cysteine 培養基之品質管制
每批取 2 片培養基進行生長品管測試，方法同 PNV 選擇性培養基之品
質管制。若無菌落生長或生長遲緩之批號培養基，宜丟棄不用。若連
對照培養基亦不生長，則品管試驗必須重做。若有，雜菌生長則觀察
是否於製備過程中污染，若是，則需重新製備。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥
密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
14.1 Murray PR, Baron EJ, Jorgensen JH, Landry ML, Pfaller MA, Yolken RH.
Microbiology, Washington, DC. pp. 835 - 49.
14.2 蔡文城。2011。實用臨床微生物診斷學，第十版。九州圖書文物有限
公司，台灣。
14.3 Fields BS, Benson RF, Besser RE. 2002. Legionella and Legionnaires’
14.4 Yu VL. 1995. Legionella pneumophila (Legionnaires’ disease). In Mandell
14.6 Oxoid。Legionella latex test 操作說明書。
14.7 Zeus Scientific, Inc。Legionella DFA test system 操作手冊。

15 附錄
15.1 退伍軍人病症原菌分離與鑑定流程圖。
15.2 退伍軍人病症原菌分離與鑑定紀錄表。
附錄 15.1 退伍軍人病病原菌分離與鑑定流程圖

1. 檢體經均質化及酸處理

2. 接種於 PNV 選擇性培養基，35°C，2.5 - 5.0 % CO2，相對濕度 60 - 90 % 培養

3. 菌落觀察
 - 圓形平滑、白色半透明、邊緣完整、輕度隆起 → 退伍軍人菌陽性
 - 是
 - L-cysteine 需求試驗陽性
 - 是
 - 革蘭氏陰性桿菌
 - 是
 - 365 nm 紫外燈照射
 - 有自發性熒光
 - DFA 試驗
 - L. species (+)
 - DFA 試驗
 - 呈現典型之熒光反應
 - 退伍軍人菌陰性
 - DFA 試驗
 - 退伍軍人菌陽性
 - L. p serogroup 2-14 (+)
 - DFA 試驗
 - 呈現典型之熒光反應
 - 是
 - 退伍軍人菌陽性
 - DFA 試驗
 - 退伍軍人菌陰性
 - L. p serogroup 1 (+)
 - DFA 試驗
 - 呈現典型之熒光反應
 - 是
 - 退伍軍人菌陽性
 - DFA 試驗
 - 乳膠凝集試驗 (Latex test)
 - 不凝集
 - DFA 試驗
 - L. species (+)
 - DFA 試驗
 - 呈現典型之熒光反應
 - 退伍軍人菌陽性
 - DFA 試驗
 - 呈現典型之熒光反應
 - 退伍軍人菌陰性
 - L. p serogroup 2-14 (+)
 - DFA 試驗
 - 呈現典型之熒光反應
 - 是
 - 退伍軍人菌陽性
 - DFA 試驗
 - 呈現典型之熒光反應
 - 是
 - 退伍軍人菌陽性
 - L. p serogroup 1 (+)
 - DFA 試驗
 - 呈現典型之熒光反應
 - 是
 - 退伍軍人菌陽性
 - DFA 試驗
 - 呈現典型之熒光反應
 - 是
 - 退伍軍人菌陽性
 - DFA 試驗
 - 呈現典型之熒光反應
 - 是
 - 退伍軍人菌陽性
 - DFA 試驗
 - 呈現典型之熒光反應
 - 是
 - 退伍軍人菌陽性
 - 是
 - 不凝集
 - 退伍軍人菌陰性
附錄 15.2 退伍軍人病原菌分離與鑑定紀錄表

衛生福利部疾病管制署研究檢驗及疫苗研製中心

<table>
<thead>
<tr>
<th>項目</th>
<th>檢體編號</th>
<th>檢體種類（採檢日期）</th>
<th>檢體採樣運送狀況適當</th>
<th>檢體酸處理</th>
<th>PNV 選擇性培養基上菌落外觀特徵，有菌落微突、呈圓形、具毛玻璃外觀之可疑菌落。</th>
<th>L-cysteine 需求試驗</th>
<th>革蘭氏染色</th>
<th>自發性螢光（365 nm 紫外燈）</th>
<th>乳膠凝集試驗</th>
<th>直接熒光抗體試驗（DFA）鑑定型別</th>
<th>總合結果</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>檢體編號</td>
<td></td>
</tr>
<tr>
<td>檢體種類（採檢日期）</td>
<td></td>
</tr>
<tr>
<td>檢體採樣運送狀況適當</td>
<td>是</td>
<td>否</td>
<td>是</td>
<td>是</td>
<td>是</td>
<td>否</td>
<td></td>
<td>是</td>
<td>是</td>
<td></td>
<td>是</td>
<td>否</td>
</tr>
<tr>
<td>檢體酸處理</td>
<td>是</td>
<td>否</td>
<td>是</td>
<td>是</td>
<td>是</td>
<td>否</td>
<td></td>
<td>是</td>
<td>是</td>
<td></td>
<td>是</td>
<td>否</td>
</tr>
<tr>
<td>PNV 選擇性培養基上菌落外觀特徵，有菌落微突、呈圓形、具毛玻璃外觀之可疑菌落。</td>
<td>是</td>
<td>否</td>
<td>是</td>
<td>是</td>
<td>是</td>
<td>否</td>
<td></td>
<td>是</td>
<td>是</td>
<td></td>
<td>是</td>
<td>否</td>
</tr>
<tr>
<td>L-cysteine 需求試驗</td>
<td>陽性</td>
<td>陰性</td>
<td>陽性</td>
<td>陰性</td>
<td>陰性</td>
<td>陽性</td>
<td>陰性</td>
<td>陰性</td>
<td>陽性</td>
<td></td>
<td>是</td>
<td>否</td>
</tr>
<tr>
<td>革蘭氏染色</td>
<td>陰性桿菌</td>
<td>非陰性桿菌</td>
<td>陰性桿菌</td>
<td>非陰性桿菌</td>
<td>陰性桿菌</td>
<td>非陰性桿菌</td>
<td>非陰性桿菌</td>
<td>非陰性桿菌</td>
<td>非陰性桿菌</td>
<td></td>
<td>是</td>
<td>否</td>
</tr>
<tr>
<td>自發性螢光（365 nm 紫外燈）</td>
<td>有</td>
<td>無</td>
<td>有</td>
<td>無</td>
<td>有</td>
<td>無</td>
<td>有</td>
<td>無</td>
<td>無</td>
<td></td>
<td>是</td>
<td>否</td>
</tr>
<tr>
<td>乳膠凝集試驗</td>
<td>確認退伍軍人菌</td>
<td>陽性</td>
<td>陰性</td>
<td>陽性</td>
<td>陰性</td>
<td>陽性</td>
<td>陰性</td>
<td>陽性</td>
<td>陰性</td>
<td>確認退伍軍人菌</td>
<td>陽性</td>
<td>陰性</td>
</tr>
<tr>
<td>L. p serogroup 1</td>
<td></td>
</tr>
<tr>
<td>L. p serogroup 2-14</td>
<td></td>
</tr>
<tr>
<td>L. species</td>
<td></td>
</tr>
<tr>
<td>直接熒光抗體試驗（DFA）鑑定型別</td>
<td></td>
</tr>
<tr>
<td>退伍軍人菌</td>
<td>陰性</td>
<td>陰性</td>
<td>陰性</td>
<td>陰性</td>
<td>陰性</td>
<td>是</td>
<td></td>
<td>是</td>
<td>是</td>
<td></td>
<td>是</td>
<td>否</td>
</tr>
<tr>
<td>陽性</td>
<td></td>
</tr>
<tr>
<td>血清型別</td>
<td>備註</td>
<td></td>
</tr>
</tbody>
</table>

檢驗者：
實驗室主管：
目的
利用酵素免疫分析法（Enzyme Immunoassay, EIA）测定患者尿液中是否有嗜肺退伍軍人菌第一型抗原（Legionella pneumophila serogroup 1 antigen）。

適用檢體種類
患者尿液。

名詞解釋
無。

原理概述
EIA 测定抗原，在已覆盖 polyclonal rabbit antibody specific for Legionella pneumophila serogroup 1 的酵素免疫分析皿中，加入患者尿液，若有抗原存在即会被 antibody 所吸附，Anti-Legionella HRP conjugate（抗體-酵素結合體）与尿液検体同步加入，反应後以洗液洗去未接合之尿液及抗體-酵素結合體，最後加入酵素反應的受質，與酵素反應呈色，利用分光光度计测定，再與對照組比較判定其結果。

試劑耗材
5.1 嗜肺退伍軍人菌抗原検測試劑組（Legionella Urine Antigen Elisa kit：BINAX, Inc., USA）。置 2－8 ℃保存。
 5.1.1 Microtiter wells：酵素免疫分析皿已覆盖純化之 rabbit antibody specific for Legionella pneumophila serogroup 1。
 5.1.2 Wash concentrate 濃縮洗液：0.1 M phosphate buffered saline (PBS)，以蒸餾水 1：10 倍稀释后使用。
 5.1.3 Positive control urine 陽性對照尿液：含有 Legionella pneumophila serogroup 1 antigen 的 human urine。
 5.1.4 Negative control urine 陰性對照尿液：Normal human urine。
 5.1.5 HRP conjugate 抗體-酵素結合體：purified rabbit anti-Legionella pneumophila serogroup 1 IgG conjugated to horseradish peroxidase (HRP) in Tris buffer with a protein stabilizer。
 5.1.6 Color Developer 呈色劑：tetramethylbenzidine (TMB) + hydrogen peroxide。
 5.1.7 Stop solution 反應停止液：1 N H₂SO₄。
5.2 乳膠或 PVC 手套。
5.3 微量吸管尖：200 µL。
5.4 2 mL 無菌貯存小管。
5.5 具刻度 500 mL 血清瓶。
5.6 計時器。
5.7 蒸餾水或滅菌去離子水。
5.8 儲液瓶。
5.9 儲液槽。
衛生福利部疾病管制署傳染病標準檢驗方法

編號：嗜肺退伍軍人菌抗原檢測
（EIA）
核准日期：
修訂日期：

頁次：第 577 頁/共 1104 頁

5.10 吸水紙。
5.11 96 孔盤蓋。
5.12 無菌刻度滴管：3 mL。

6 儀器設備
6.1 第二級生物安全櫃 (Class II type A2，Baker)。
6.2 微量離心機 (IWAKI，Denver Instrument Company)。
6.3 培養箱（MCO-20AIC，Sanyo）。
6.4 微量吸管：100 uL。
6.5 多頻道微量吸管（multi-channel pipettor）：200 uL、100 uL、50 uL。
6.6 多頻道清洗器（Immuino Wash 8，Thermo Fisher Scientific）。
6.7 酵素免疫分析儀（ELISA reader：Multiskan FC，Thermo Scientific）。

7 環境設施安全
於生物安全第二等級（BSL-2）實驗室之設施內操作。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 尿液檢體及使用之試劑回溫後使用，試劑中之酵素連結免疫分析盤只取出所需使用之部份孔洞。尿液若有混濁需離心後取上清液使用。
10.2 每組試劑開始使用時配製洗液，將 40 mL 濃縮洗液 (全部) 倒入 500 mL 血清瓶中，加滅菌去離子水到 400 mL 刻度，蓋上瓶蓋，輕搖混合均勻，之後並分裝於 2 個 250 mL 血清瓶中。配置完成之洗液保存於 2-30℃，使用效期同該組試劑保存期限。
10.3 於檢驗記錄表上標示 Blank(A1)、NC1(陰性對照 1)、NC2(陰性對照 2)、PC1(陽性對照 1)、PC2(陽性對照 2)及待測檢體放置位置。
10.4 A1(酵素免疫分析 96 孔盤第一行第一個洞) 設為受質空白對照 (substrate blank)，不加檢體及 HRP conjugate。
10.5 酵素免疫分析盤孔洞中依記錄表標示分別加入 100 µL 的陰性對照 negative control (2 重覆)，陽性對照 positive control (2 重覆)，待測尿液檢體 (patient specimen)。
10.6 除 A1 外，其餘各孔洞加入 100 µL 的 HRP conjugate(使用多頻道微量吸管)。
10.7 以多渠道微量吸管上下吸放数次（或轻轻敲击检验盘），使 conjugate 与检体均匀混合，但需避免溢出造成交叉污染。
10.8 覆上盘盖，于室温反应 2 小时或 37°C 反应 1.5 小时（视当天工作时间安排情形）。
10.9 反应后，将混合液多渠道清洗器吸出。每个孔洞以多渠道清洗器加入超过 250 μL 的洗液，再吸出，重覆至少 6 次，最后一次吸乾后翻面在吸水纸上轻拍数次使不残留液体。
10.10 以多渠道微量吸管加入 200 μL 的呈色剂（包括 A1）。
10.11 置于遮光盒（暗处），室温反应 15 分钟。
10.12 反应后，以多渠道微量吸管于每孔洞中加入 50 μL 的反应停止液（包括 A1）。
10.13 轻敲检验盘或上下吸放数次，使混合液均匀混合（注意：所有的孔洞应呈无色或黄色，若为绿色，则为混合不足）。
10.14 立即放入 ELISA 倡读机，以波长 450 nm 吸光值测读，以 A1 作为空白对照。

11 结果判定
11.1 判读标准
11.1.1 数据计算
尿液抗原测验结果判读：
11.1.1.1 以 A1 作为受质空白，读取阴性对照尿液、阳性对照尿液及病患尿液的吸光值。

11.1.1.2 吸光平均值 = 吸光值(1)+吸光值(2)
11.1.1.3 比值 = 陽性对照尿液吸光平均值或病患尿液吸光平均值
 阴性对照尿液吸光平均值

11.1.1.4 典型的阳性结果可以是 \frac{0.300}{0.040} = 7.5 比值

11.1.2 结果解说
11.1.2.1 尿液检验的比值大于或等于 3 表示阳性（含有 Legionella pneumophila serogroup 1 抗原）。
11.1.2.2 尿液检验的比值小于 3 表示阴性。阴性结果无法排除可能是其他退伍军人菌的感染。
11.1.2.3 比值在 2.5~6.0 范围的尿液检验需再做重覆检验。其平均比值仍大于或等于 3 则判阳性。

11.2 報告核發：
符合阳性判定标准，嗜肺退伍军人菌尿液抗原第一型阳性。
符合阴性判定标准，嗜肺退伍军人菌尿液抗原第一型阴性。

11.3 结果登录：检验人员於完成检验後，将检验结果登录于嗜肺退伍军人菌抗原检验（酵素免疫分析法）纪录表。将检验结果填寫於檢體送驗
品質管制
12.1 每次檢驗一定要作空白對照、2 個陰性對照及 2 個陽性對照。
12.2 陰性對照的平均值必須小於 0.100，陽性對照的平均值必須是陰性對照值的三倍以上，否則實驗必須重做。
12.3 檢驗試劑組更換批號之內部管制措施：進行平行試驗，即前後兩個批號之試劑組，均有用來進行至少一件相同檢體（以抽測方式）的檢測，且檢測結果在這兩個批號之試劑組為一致。
12.4 外部品管：每年參加 CAP 外部能力試驗，其每年有兩次，每次兩件檢體的試驗。

廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

參考資料
14.1 Binax Legionella urinary antigen EIA 操作說明書。

附錄
15.1 嗜肺退伍軍人菌抗原試驗（酵素免疫分析法）流程圖。
15.2 嗜肺退伍軍人菌抗原檢驗（酵素免疫分析法）紀錄表。
15.3 注意事項
15.3.1 過期的試劑不再使用。
15.3.2 不同批號之試劑不可混用。
15.3.3 試劑需保存於 2－8 ℃冰箱中，已經混濁的試劑不再使用。
15.3.4 試劑回溫使用後立即返回試劑盒中，置冰箱中保存。
15.3.5 若是洗液用前已產生混濁或懸浮物則不可再用，必須重新配製。

15.3.6 在退伍軍人菌感染中，由嗜肺退伍軍人菌（Legionella pneumophila）所造成者約佔報告病例的 80－90％，其中血清型第一型（serogroup 1）又佔大多數。在發病後第三天便可測得尿液中的特定可溶性抗原（Legionella pneumophila serogroup 1 antigen）。非因 Legionella pneumophila serogroup 1 所造成之退伍軍人病無法由此檢驗測知。

15.3.7 早期使用適當的抗生素可能減低某些病患排出抗原的量。

15.3.8 本試劑靈敏度 97.7%，特異性 100%。
附錄 15.1 嗜肺退伍軍人菌抗原試驗（酵素免疫分析法）流程圖

1. 加100 μL 的陰性對照(2重覆)、陽性對照(2重覆)、待測尿液檢體到酵素免疫分析試管中，A1空白。

2. 加100 μL 的 HRP Conjugate 到每一個孔洞（除了 A1）

3. 蓋上試管蓋，於室溫反應 2 小時或 37°C 反應 1.5 小時

4. 吸去混合液，以洗液洗 6 次

5. 加入 200 μL 的呈色劑（包括 A1）

6. 置室溫暗處 15 分鐘

7. 加入 50 μL 的反應停止液

8. 放入 ELISA 判讀機，以波長 450 nm 吸光值測讀

9. 記錄判讀結果
附錄 15.2 嗜肺退伍軍人菌抗原檢驗（酵素免疫分析法）紀錄表

衛生福利部疾病管制署研究檢驗及疫苗研製中心

嗜肺退伍軍人菌抗原檢驗（酵素免疫分析法）紀錄表

<table>
<thead>
<tr>
<th>OD450</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>NC1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>NC2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>PC1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>PC2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

陰性對照平均值：
陽性對照平均值：
陽性判定值：

日期：
試劑批號：
試劑效期：

檢驗者：
實驗室負責人：
目的
利用快速免疫呈色膜法（Rapid Immunochromatographic Membrane Assay，RIMA）测定患者尿液中是否有嗜肺退伍军人菌第一型抗原（Legionella pneumophila serogroup 1 antigen）。

適用檢體種類
患者尿液。

名詞解釋
無。

原理概述
利用快速免疫呈色膜法 RIMA 檢驗患者尿液中 L. pneumophila serogroup 1 可溶性抗原。Nitrocellulose membrane 上有兩條呈色線，Sample line 上已吸附 Rabbit anti-L. pneumophila serogroup 1 antibody，而 Control line 上吸附有 Goat anti-rabbit IgG。Sample line 上的 Rabbit anti-L. pneumophila serogroup 1 antibody 與可見粒子結合，乾燥後嵌入纖維支撐物中，由此 Conjugate pad 及 Striped membrane 構成整個測試條；測試條與檢體棉纖插入孔分別位於測試片的兩側。操作時，將棉纖放入尿液検體中沾濕，插入測試片孔中，滴入試劑 A，黏上測試片後，檢體與測試條接觸，抗原被固定不動的抗體抓住後與 conjugated antibody 結合，同時固定不動的 Goat anti-rabbit IgG 也與 Visualizing conjugate 作用而形成 Control line。檢體中抗原量愈多陽性結果出現愈快。

試劑耗材
5.1 嗜肺退伍軍人病尿液抗原快速檢驗試劑套組（now Legionella urinary antigen test kit）：Binax, Inc., USA。
5.1.1 Test devices：為覆有 Rabbit anti-L. pneumophila serogroup 1 antibody 以及 Goat anti-rabbit IgG 的薄膜。
5.1.2 試劑 A：Citrate/phosphate 含 Tween 20 及 Azide。
5.1.3 Swabs：專為此檢驗試劑設計的棉纖，不可用其他棉纖代替。
5.1.4 Positive control：含加熱去活化的 L. pneumophila serogroup 1 陽性吸取液體乾燥棉纖。
5.1.5 Negative control：含加熱去活化的正常人吸取液體乾燥棉纖。
5.1 乳膠或 PVC 手套。
5.2 計時器。

儀器設備
6.1 離心機。

環境設施安全
於生物安全第二等級（BSL-2）實驗室之設施內操作。
8 檢體採集

參照本署出版之「傳染病檢體採檢手冊」第二版。
reeid=6C7C52E7A7D5621A。

9 檢體運送及保存

參照本署出版之「傳染病檢體採檢手冊」第二版。
reeid=6C7C52E7A7D5621A。

10 檢驗步驟

10.1 測試前檢體須回溫至室溫。尿液若有混濁需離心後取上清液使用。
10.2 將測試片外包裝剪開，取出測試片。
10.3 將棉纖伸入尿液檢體中，沾取尿液，在管壁輕輕擠壓掉多餘之液體。
10.4 右半邊測試片上有兩個孔洞，依箭頭指示將棉纖自下方的孔洞插入，
向上推入至棉纖頂端進入上方孔洞中頂端位置。
10.5 自下方孔洞中垂直滴入 2 滴試劑 A 於棉纖上。
10.6 撕下右邊邊緣的貼紙，將測試片左右片粘住，放置 15 分鐘，觀察結果。

11 結果判定

11.1 判讀標準

11.1.1 視窗中只有標示 control 的位置出現一條粉紅色線條時，表示此次
檢驗操作正確，但是未偵測到嗜肺退伍軍人菌 Serogroup 1 抗
原。
11.1.2 視窗中出現兩條粉紅色線條，一條在 Control 位置，一條 Sample
位置，表示已測得嗜肺退伍軍人菌 Serogroup 1 抗原。含量較低
的檢體可能在 Sample line 出現淡淡的紅線，任何可見的線條皆
算陽性。若有需要，可用別種方法再測一次。
11.1.3 報告內容：

符合陽性判定標準，嗜肺退伍軍人菌尿液抗原第一型陽性。
符合陰性判定標準，嗜肺退伍軍人菌尿液抗原第一型陰性。
11.2 報告核發：退伍軍人病尿液陽性；退伍軍人病尿液陰性。
11.3 結果登錄：檢驗人員於完成檢驗後，將檢驗結果填寫於檢體送驗單之“檢
驗結果”欄，並於檢體送驗單背面加蓋檢驗者職章，送實驗室主管審核
及蓋章，並上網登錄於傳染病通報系統。

12 品質管制

使用試剤所附之陽性對照棉纖及陰性對照棉纖做測試，陽性棉纖測試結果應
有兩條粉紅色線條，一條在 Control 位置，一條在 Sample 位置。陰性對照棉
纖測試結果應只有一條粉紅色線條在 Control 位置。若結果不符則此試劑不
可再用。
13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121℃, 30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
14.1 Binax now Legionella urinary antigen Test 操作說明書。

15 附錄
15.1 嗜肺退伍軍人菌抗原試驗（快速免疫呈色膜法）流程圖。
15.2 注意事項
15.2.1 只可使用試劑所附的棉纖，不可使用其他棉纖。
15.2.2 Binax now Legionella urinary antigen test 只可用於測定尿液中的抗原，不適用於其它樣本，如血清、血漿及其他環境樣本。
15.2.3 Control 位置未出現線條時表示檢驗結果無效。
15.2.4 此檢查不能用以診斷由 L. pneumophila 其他血清型或 Legionella spp. 引起的感染。抗原檢查陰性亦不能排除 L. pneumophila serogroup 1 感染的可能。
15.2.5 尿液中 Legionella 抗原的分泌因人而異，可能早在發病後第三天出現，也可能持續一年，因此尿液抗原陽性可能發生於現在或過去感染，也正因为如此，本項檢查並無法做確認診斷。
15.2.6 本試劑靈敏度 95%，特異性 95%。
附錄 15.1 嗜肺退伍軍人菌抗原試驗（快速免疫呈色膜法）流程圖

1. 將測試片外包裝剪開，取出測試片

2. 將棉纖伸入尿液檢體中，沾取尿液，在管壁輕輕擠壓掉多餘之液體

3. 依箭頭指示將棉纖自下方的孔洞插入，向上推入至棉織頂端進入上方孔洞中頂端位置

4. 自下方孔洞中垂直滴入 2 滴試劑 A 於棉織上

5. 撕下右邊邊緣的貼紙，將測試片左右片粘住，放置 15 分鐘

6. 觀察結果及判讀

7. 記錄判讀結果
目的
利用間接螢光抗體試驗法（Indirect Fluorescent Antibody test, IFA）檢測病人血清中 anti-Legionella pneumophila 抗體效價。

2 適用檢體種類
適用於人體血清檢體。

3 名詞解釋
無。

4 原理概述
檢體血清經過兩倍序列稀釋後，加入已披覆 L. pneumophila 的玻片中，經 37 ℃ 保溫反應後，洗去未吸附的血清，再加入螢光標誌抗體，又經 37 ℃ 保溫反應後，洗去未吸附的螢光標誌抗體，在螢光顯微鏡下觀察結果。若有典型菌體螢光反應，則表示血清中含有 L. pneumophila 的抗體，並由稀釋終點判定其抗體效價。

5 試劑耗材
5.1 Legionella Indirect Fluorescent Antibody (IFA) test system: Zeus scientific Inc., USA。
 5.1.1 L. pneumophila substrate slides：立即可用，保存於 -20 ℃，開包前需回至室溫。解凍後玻片應當天用完，開包後不可再放回冷凍。
 5.1.2 陽性對照血清 L. pneumophila positive control serum (monkey)：依照瓶子標示加入蒸餾水溶解，使力價在 1:128，2 - 8 ℃ 保存 90 天，-20 °C 以下可保存一年。效價標示於瓶子上。註：因人抗血清取得不易，故以猴抗血清代替人抗血清，其與 anti-human FA conjugate 反應情形與人抗血清力價相當。
 5.1.3 陰性對照血清 L. pneumophila negative control serum (human)：依照瓶子標示加入蒸餾水溶解，2 - 8 ℃ 保存 90 天，-20 °C 以下可保存一年。
 5.1.4 多價螢光抗體共軛物 (FITC-polyvalent conjugate)：標誌 FITC 的山羊抗人類免疫球蛋白（goat anti-human globulin-IgG、IgA、IgM），含 1.25 % Bovine albumin，冷凍乾燥品。加入 2 mL 蒸餾水溶解，解凍後 2 - 8 ℃ 保存 90 天，-20 °C 以下保存 6 個月，解凍後勿再冰凍。
 5.1.5 磷酸鹽緩衝溶液 (phosphate buffered saline, PBS)：每包含 10 g，加入 1 L 蒸餾水溶解，保存於 2 - 8 ℃，可保存 30 天，PBS 粉末保存於 2 - 25 ℃。
 5.1.6 封片膠 (mounting medium)：含 3 mL Buffered glycerol，2 - 8 ℃ 保存至有效期限。
5.2 乳膠或 PVC 手套。
5.3 無菌吸管：3 mL。
5.4 檢體貯存小瓶及放置架。
5.5 無菌去離子水。
5.6 微量吸管尖：100 μL。
5.7 96 孔 U 型微量滴定盤。
5.8 十二頻道儲液槽。
5.9 玻璃染缸。
5.10 標示筆。
5.11 貯液瓶：1 L。
5.12 計時器。
5.13 尖頭洗瓶。
5.14 溼潤盒。
5.15 蓋玻片：24 × 60 mm。

6 儀器設備
6.1 離心機。
6.2 微量吸管（micropipette）：100 μL。
6.3 十二頻道微量吸管（multi-channel pipette）：100 μL。
6.4 37 °C 溫箱。
6.5 螢光顯微鏡：能放大至 400 倍。

7 環境設施安全
血清檢體之處理應於生物安全第二等級（BSL-2）實驗室之設施內進行。其餘操作過程則不限定。

8 檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體的運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢驗前處理
若送檢檢體為血液，則檢體先以 1,500 rpm 離心 30 分鐘，用無菌吸管抽取血清部份置於檢體貯存小瓶中，並加以標示。
10.2 取出所需之玻片（L. pneumophila substrate slides）及試劑回溫。
10.3 取 U 型 96 孔微量滴定盤，標示盤號及檢體號碼，陽性對照血清及每個血清檢體須要一排 8 孔洞（A-H），作為 2 倍序列連續稀釋用。
10.4 以十二頻道微量吸管依檢體數量加各 50 μL PBS 於微量滴定盤孔洞中。

10.5 將陽性對照血清或者病人血清 50 μL 加入第一格孔洞中，以 PBS 做連
續稀釋自 1 : 2、1 : 4、1 : 8、1 : 16、1 : 32、1 : 64、1 : 128 至 1 : 256。以 12 頻道微量吸管自第一格孔洞中連續上下吸放 20 次混合，最後吸
取 50 μL 稀釋血清至下一格孔洞中，連綿上下吸放混合後 2 倍序列稀釋
至 1 : 256。

10.6 剪開已回溫之玻片包裝袋，取出玻片，標示檢體號碼。
10.7 以微量吸管加 1 : 128 及 1 : 256 稀釋之血清 15 μL 到玻片圈孔中，同時
作 1 : 128 稀釋之陽性對照血清及不稀釋之陰性對照血清，注意不同血
清不可混合，玻片放入濕潤盒中，於 37 ℃ 溫箱內反應 30 分鐘。

10.8 取出玻片用 PBS 輕輕沖洗，放入 PBS 中浸泡 10 分鐘，利用尖頭洗瓶
裝蒸餾水沖洗去 PBS，自然風乾。

10.9 玻片每圈孔各加 10 μL 多價螢光抗體共軛物。

10.10 玻片放入濕潤盒中，於 37 ℃ 溫箱內反應 30 分鐘。

10.11 取出玻片用 PBS 輕輕沖洗，放入 PBS 中浸泡 10 分鐘，蒸餾水沖去 PBS，自然風乾。

10.12 加 2-3 滴 Mounting medium，蓋上蓋玻片，用螢光顯微鏡鏡檢，先用 20 倍物鏡觀察，再以 40 倍物鏡觀察之。

11 結果判定

11.1 判讀標準

11.1.1 血清抗體效價判定判讀標準

11.1.1.1 4+: 菌體呈耀眼黃綠螢光。

11.1.1.2 3+: 明亮黃綠螢光。

11.1.1.3 2+: 明確但微暗螢光。

11.1.1.4 1+: 一點點螢光。

11.1.1.5 Neg: 無黃綠色反應，但有可能出現黃棕色反應。

只要出現 1+ 反應就可判為陽性，並以出現陽性之最高稀釋濃度為抗體力價。例如稀釋倍數為 1 : 512，則力價 = 512。

11.1.2 病人陽性判定標準：發病初期與恢復期血清抗體力價有 4 倍以
上差距，且最高力價等於或大於 128 以上。

11.1.3 病人陰性判定標準：發病初期與恢復期血清抗體力價無 4 倍以
上差距，或最高力價小於 128。

11.1.4 若恢復期血清抗體力價大於或等於 128，且病期血清抗體力
價未達 128，則應取出前後二次血清一起做抗體力價測定，以
確認其血清抗體力價上升情形，是否有 4 倍以上差距。

11.1.5 力價大於 256 者則視需要再做更高倍數之稀釋及測定。

11.2 報告核發：

退伍軍人病血清陽性：符合陽性判定標準之血清。
退伍軍人病血清陰性：符合陰性判定標準之血清。
未確定，需再採檢：發病初期血清 IFA<128 或 IFA=128 或 IFA>128，
無法一次判定者。
檢驗陽性，未達四倍上升；(針對恢復期血清)
1. 恢復期比發病初期血清抗體效價無 4 倍上升，且恢復期之血清
抗體效價≥256。
2. 恢復期比發病初期血清抗體效價下降，且發病初期血清抗體效
價>128。
11.1 結果登錄：檢驗人員於完成檢驗後，將檢驗結果登錄於嗜肺退伍軍人
菌抗體試驗（間接免疫螢光法）檢驗紀錄表，將檢驗結果填寫於檢體
送驗單之“檢驗結果”欄，並於檢體送驗單背面加蓋檢驗者職章，送實
驗室主管審核及蓋章，並上網登錄於傳染病通報系統。

12 品質管制
每一次操作此檢驗，必須同時做陰性及陽性對照。陰性對照血清結果必須陰
性，陽性對照血清結果必須陽性，若陽性血清與陰性血清實驗結果與標準不
符，則此實驗結果不能採用，須再重做。

13 廢棄物處理
13.1 檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌
袋裝妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作
業程序處理。

14 參考資料
14.1 Zeus Scientific, Inc。*Legionella* indirect fluorescent antibody (IFA) test
system 操作說明書。
14.2 Chen MSG, Yang YR, Shen HD。1983。*Legionella pneumophila* antibodies
as detected by IFA。Proc. NSC 7: 249 - 254。
14.3 McDade JE, Shepard CC, Fraser DW, Tsai TR, Redus MA, Dowdle WR。
1977。Legionnaires’ disease, Isolation of a bacterium and demonstration of
its role in other respiratory diseases。New Engl J Med 297: 1197-1203。

15 附錄
15.1 嗜肺退伍軍人菌抗體試驗（間接免疫螢光抗體法）流程圖。
15.2 嗜肺退伍軍人菌抗體試驗（間接免疫螢光抗體法）紀錄表。
15.3 嗜肺退伍軍人菌抗體實驗室判定原則。
附錄 15.1 退伍軍人菌抗體試驗（間接螢光抗體法）流程圖

檢體血清做兩倍序列稀釋

加 15 μL 入玻片圈孔中

放入濕潤盒中於 37 °C 溫箱內反應 30 分鐘

PBS 沖洗，放入 PBS 浸泡 10 分鐘，蒸餾水沖洗，風乾

加 10 μL 多價螢光抗體共軛物
（FITC-polyvalent conjugate）

放入濕潤盒中於 37 °C 溫箱內反應 30 分鐘

PBS 沖洗，放入 PBS 浸泡 10 分鐘，蒸餾水沖洗，風乾

加 2-3 滴 Mounting medium，蓋上蓋玻片

螢光顯微鏡鏡檢
及記錄判讀結果
附錄 15.2 嗜肺退伍軍人菌抗體試驗（間接螢光抗體法）紀錄表

<table>
<thead>
<tr>
<th>玻片#</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFA 倍數</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>結果判定</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>檢體姓名</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>編號</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>送驗日期</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>IFA 倍數</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>結果判定</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>檢體姓名</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>編號</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>送驗日期</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

檢驗者：
實驗室主管：
附錄 15.3 嗜肺退伍軍人菌抗體實驗室判定原則

實驗室診斷，依血清採檢時間及 IFA 檢測之血清抗體效價結果，判定原則如下：

<table>
<thead>
<tr>
<th>項次</th>
<th>血清學檢驗結果</th>
<th>綜合檢驗結果</th>
<th>檢驗結果判定原則說明</th>
</tr>
</thead>
<tbody>
<tr>
<td>針對發病初期血清</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>未確定，需再採檢</td>
<td>未確定，需再採檢</td>
<td>發病初期血清之檢驗報告均登錄「未確定，需再採檢」，待恢復期血清檢驗後才給予研判（項次 2-4 除外）。</td>
</tr>
<tr>
<td>2</td>
<td>陽性</td>
<td>陽性</td>
<td>血清抗體效價 > 128，且其他檢體檢驗結果為陽性，例如尿液抗原陽性或痰病原體分離陽性。</td>
</tr>
<tr>
<td>3</td>
<td>陽性</td>
<td>不明(無法確定)</td>
<td>死亡個案，且僅有發病初期血清，血清抗體效價 > 128。</td>
</tr>
<tr>
<td>4</td>
<td>未確定</td>
<td>不明(無法確定)</td>
<td>死亡個案，且僅有發病初期血清，血清抗體效價 ≤ 128。</td>
</tr>
<tr>
<td>針對恢復期血清</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>陽性</td>
<td>陽性</td>
<td>恢復期比發病初期血清抗體效價有 4 倍以上增加，且恢復期之血清抗體效價 ≥ 128。</td>
</tr>
<tr>
<td>2</td>
<td>陰性</td>
<td>陰性</td>
<td>恢復期與發病初期血清抗體效價均 ≤ 128。</td>
</tr>
<tr>
<td>3</td>
<td>陽性</td>
<td>檢驗陽性，未達四倍上升</td>
<td>1. 恢復期比發病初期血清抗體效價無 4 倍上升，且恢復期之血清抗體效價 ≥ 256。 2. 恢復期比發病初期血清抗體效價下降，且發病初期血清抗體效價 > 128。</td>
</tr>
</tbody>
</table>

1. 因為病患發病時間經常無法確定，一般視首次採檢血清為發病初期血清，二次採檢血清為恢復期血清。 2. 二次採檢時間訂為首次採後四週。 3. 首次採檢血清需保留，當檢驗二次採檢血清時方便比對。
1 目的
利用乳膠凝集試驗法篩檢病患檢體或環境分離之疑似菌株是否為退伍軍人菌種。

2 適用檢體種類
適用人體及環境分離菌株。

3 名詞解釋
乳膠凝集試驗(latex agglutination)：首先將抗體與乳膠顆粒結合，若檢體中含有專一性抗原將會交叉聯結而產生凝集反應。

4 原理概述
已吸附抗體的藍色乳膠粒子會與特定的退伍軍人菌細胞壁抗原作用產生肉眼可見的凝集現象，藉此原理為病原性退伍軍人菌提供簡單而快速的篩檢。

5 試劑耗材
5.1 退伍軍人菌乳膠凝集試驗試劑組(Legionella latex agglutination test Kit)：Oxoid Limited, Basingstoke, Hampshire, England。
 5.1.1 L. pneumophila serogroup 1 test reagent：含接有兔子抗 L. pneumophila serogroup 1 antigen 抗體的藍色乳膠粒子。
 5.1.2 L. pneumophila serogroup 2-14 test reagent：含接有兔子抗 L. pneumophila serogroup 2-14 antigen 抗體的藍色乳膠粒子。
 5.1.3 Legionella species test reagent：含接有兔子抗下列 Legionella species 及 Serotypes 抗體的藍色乳膠粒子，包括
 5.1.3.1 L. longbeachae 1 and 2。
 5.1.3.2 L. bozemanii 1 and 2。
 5.1.3.3 L. dumoffii。
 5.1.3.4 L. gormanii。
 5.1.3.5 L. jordanis。
 5.1.3.6 L. micdadei。
 5.1.3.7 L. anisa。
 5.1.4 Positive control suspension(陽性對照菌液)：含有多種 Legionella 的菌液。
 5.1.5 Negative control suspension(陰性對照菌液)：含有 L. spiritensis 的菌液，不與試劑反應。
 5.1.6 Control latex：含接有不反應兔免疫球蛋白的藍色乳膠粒子。
 5.1.7 Suspension buffer：磷酸鹽緩衝溶液，pH 7.3。
 5.1.8 Reaction cards：供反應用紙卡。
 5.1.9 試劑保存於 2 - 8 °C，不可冷凍。
5.2 0.85 % saline。
5.3 小試管或微量離心管。
5.4 微量吸管尖：1,000 μL。
5.5 接種針（環）。
5.6 消毒水（例如 sodium hypochlorite solution >1.3% W/V）。
5.7 乳膠或 PVC 手套。

6 儀器設備
6.1 無菌操作台或生物安全櫃。
6.2 本生燈。
6.3 1,000 μL 微量吸管。

7 環境設施安全
於生物安全第二等級（BSL-2）實驗室之設施內操作。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 取出 latex 試劑回室溫。將四瓶 latex 懸浮液劇烈振盪充份混合均勻。
10.2 在凝集試驗紙之四個圓圈內一角各滴一滴 Latex reagent（四瓶分滴四個圓圈中）。
10.3 在四個圓圈中另一角加入一滴 Suspension buffer，注意不要碰到 latex reagent。
10.4 使用接種環挑出可疑菌落（至少 1 mm，若菌落太小則 2 個或多個）各與 Suspension buffer 混合均勻。若待檢測之分離株為絲狀且粘稠，則以接種環挑選 4 - 10 個相似菌株，置入含 0.4 mL 0.85 % Saline 試管（或微量離心管）中與 Saline 混合均勻。以振盪器劇烈混合 5 秒鐘後取 1 滴使用（不必再加 suspension buffer）。
10.5 用接種環或牙籤將圓圈內兩種液體混合均勻，塗佈於整個圓圈內。
10.6 將試驗紙以圓形旋轉方式輕輕搖匀 1 分鐘。
10.7 觀察凝集結果以判定血清型別。若藍色乳膠粒子在 1 分鐘內凝集，且對照（control latex）的圓圈內無凝集反應即判為陽性，陽性結果表示所檢測的菌落含有該種血清型抗原。若藍色乳膠粒子在 1 分鐘以上仍沒有凝集反應，且維持均勻藍色懸浮液，即判為陰性。
10.8 實驗完畢後將反應卡片丟入適當的消毒水中。
10.9 將試劑的蓋子蓋好，並放回冰箱中保存。
11 結果判定
11.1 判讀標準

11.1.1 檢體在 1 分鐘內產生凝集反應，且陰性對照沒有凝集反應者為陽性；檢體在 1 分鐘以上仍無凝集反應且維持均勻之藍色懸浮液則為陰性。

11.1.2 若 Control latex 產生凝集現象，則表示此菌會造成自我凝集，反應結果無法判定。可以使用其他方法（例如 DFA）再做進一步檢驗。

11.1.3 若有粒狀或絲狀反應，則陽性判定以反應試劑的藍色背景可以見到明顯清澈為標準。

11.1.4 注意事項

11.1.4.1 試劑使用時不可以讓瓶口接觸到檢體，以避免造成污染。使用後要蓋好瓶蓋，存放冰箱中。

11.1.4.2 本實驗只用来分辨退伍軍人菌不同的血清型群別。除了嗜肺退伍軍人菌血清第一型外，無法區分其他的個別血清型別以及非嗜肺退伍軍人菌種。需使用退伍軍人菌直接螢光抗體檢驗法（Direct Fluorescent Antibody test, DFA）來做更進一步的菌種確認。

11.1.4.3 陰性反應只表示所測試菌株非 L. pneumophila serogroup 1、L. pneumophila serogroups 2-14、L. longbeachae 1 and 2、L. bozemanii 1 and 2、L. dumoffii、L. gormanii、L. micdadei 和 L. anisa。不代表一定不是 legionella species。

11.1.4.4 L. pneumophila serogroup 1 與 L. pneumophila serogroup 9 可能產生交叉反應；如果 L. pneumophila serogroup 1 及 2-14 試劑都有凝集現象，則應考慮此交叉反應的可能性。

11.1.4.5 已知偶而會產生交叉反應的 legionella 菌株有 L. parisiensis、L. Sainthelensi、L. steigerwaltii、L. tusconensis、L. gratiana 和 L. cincinatiensis。

11.1.4.6 本試劑特異性達 100 %，靈敏度 99 %。

11.2 報告核發：報告不單獨核發。

11.3 結果登錄：檢驗結果匯入退伍軍人菌之分離與鑑定，不另發報告。

12 品質管制

品管試驗須在例行檢驗之前進行；陽性對照菌液必須在 1 分鐘內產生凝集反應；陰性對照菌液在 1 分鐘內必須不可以有凝集反應。若品管結果不符則該試劑不可再使用。

13 廢棄物處理

檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。
14 參考資料
 Oxoid。Legionella latex test 操作說明書。

15 附錄
 無。
目的
利用直接螢光抗體試驗法（Direct Fluorescent Antibody test, DFA）偵測病患檢體及環境檢體中分離的退伍軍人菌株。

適用檢體種類
人體及環境分離菌株。

名詞解釋
無。

原理概述
抗原先固定於玻片上，再加入少量與抗原有專一性之 FITC 抗體。抗原會與抗體結合，形成抗原-抗體複合體，在螢光顯微鏡下，可見到亮黃綠色桿狀的退伍軍人菌，籍此原理為病原性退伍軍人菌提供簡單而快速的確認。

試劑耗材
5.1 直接螢光抗體檢驗試劑（Direct Fluorescent Antibody test, DFA）：Zeus Scientific, Inc., USA。
 5.1.1 FITC 標定，對 Legionella pneumophila 有專一性之單一及多價抗體（含有以 PBS 稀釋之伊文斯藍[Evans Blue]，來自以管上標注之 Legionella 種類注射而獲得免疫之兔血清）：稀釋液中含有之伊文斯藍染劑可以幫助於組織切片及痰檢體中，退伍軍人菌的辨識。此抗體已為最佳使用條件，使用時不須再稀釋。抗體以 2 mL 小瓶包裝，經冷凍乾燥，呈粉末狀。以 2 mL, pH 7.6 之 PBS 溶液加以溶解後即可使用。注：單一抗體含嗜肺退伍軍人菌血清型第一型至第六型及 L.micdedia 等七種抗血清，多價抗體為以上七種抗體之混合。

5.1.2 FITC 標定，Legionella 陰性對照組抗體（含有以 PBS, pH 7.6 稀釋之伊文斯藍[Evans Blue], 來自正常兔血清)：抗體以 2 mL 小瓶包裝，經冷凍乾燥，呈粉末狀。以 2 mL, pH 7.6 之 PBS 溶液加以溶解後即可使用。一旦以 pH 7.6 之 PBS 溶液溶解後，於 2 - 8 °C 可以穩定保存 90 天。如事先予以分裝並保存於-20°C，甚至更低的溫度，則可以穩定保存達 6 個月。避免重複冷凍-解凍的步驟，因為抗體之活性會被破壞。

5.1.3 Legionella 對照組抗原。經人工培養，再以福馬林滅菌之 Legionella 對照組抗原（溶於含有福馬林之 PBS）：此抗原已為最佳使用條件。以 1 mL 小瓶包裝，同時含有 0.02 %之 Sodium Azide 作為保存劑。保存於 2 - 8 °C。

5.1.4 磷酸鹽緩衝溶液（Phosphate-Buffered-Saline, PBS），pH 7.6：每包含有 10 g，可配製成 1 L 之溶液。袋上標有保存期限。包裝袋保存於 2 - 25 °C，至有效期限內均可保證其品質。一旦配製成溶液後，可於 2 - 8 °C 穩定保存 30 天。
5.1.5 甘油缓冲液封片胶（buffered glycerol, mounting media），pH 9.0：
3 mL 瓶装。保存於2 - 8 ℃。

5.2 直接萤光抗体积检试验（Direct Fluorescent Antibody test, DFA）：
m-TECH, Monoclonal Technologies, Inc., USA。
单一抗体共轭物 (monovalent conjugate) 及多价抗体共轭物 (polyvalent conjugate)，稀释於含有 0.1 % BSA、Evans Blue 及 0.01 % Thimerosal之 PBS 中,每一瓶 2 mL，可直接使用。註：单一抗体含嗜肺退伍军人菌血清型第一型至第十五型共十五种抗体，及其他非嗜肺退伍军人菌种等十九种抗体。多价抗体有二種：一種是嗜肺退伍军人菌的抗体混合，
另一種是非嗜肺退伍军人菌的抗体混合。

5.3 麦克法蓝氏浊度标准组（McFarland nephelometer standard units）。

5.4 减菌蒸馏水。

5.5 1 %中性福马林（neutral formalin）。

5.6 無菌微量吸管尖（tip）：1,000 µL、200 µL 与 10 µL。

5.7 無菌離心管：1.5 mL。

5.8 玻片及盖玻片（60 × 24 mm）：萤光染色専用。

5.9 染色缸。

5.10 接種針（環）。

5.11 乳胶或 PVC 手套。

6 儀器設備

6.1 生物安全櫃。

6.2 本生燈。

6.3 微量吸管 Pipetman：1,000 µL、200 µL、20 µL。

6.4 萤光顯微鏡：能放大至 400 倍。

7 環境設施安全

抹片製作需於生物安全櫃中製備，其餘操作過程則不限定。

8 檢體採集

參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存

參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟

10.1 抹片製作（培養分離之菌株）。

10.1.1 將 48 小時培養菌加在 1 %中性福马林中，製成濃度為 McFarland no.1 的懸浮液（約 3 × 10⁸ CFU/mL）。
10.1.2 螢光染色專用的玻片上每個圓圈中滴入菌液。
10.1.3 吸去多餘菌液，自然風乾。
10.1.4 過火固定。
10.2 螢光抗體染色
先以多價抗體及陰性對照組抗體進行檢體之篩選。再以合適之單一抗體檢驗以多價抗體篩選為陽性反應，同時陰性對照組抗體篩選為陰性反應之檢體。
10.2.1 製備對照組抗原：將對照組抗原劇烈搖晃混勻後，滴於螢光染色專用的玻片圓圈內，吸去多餘抗原，自然風乾，過火三次固定。可與檢體或菌株抹片同時製作。
10.2.2 將相同之多價抗體共軛物（polyvalent conjugate）或單一抗體共軛物（monovalent conjugate）滴至每個檢體及相對應之對照組抗原，每個檢體都要做一個陰性對照（將陰性對照組抗體共軛物滴至檢體）。
10.2.3 放入濕潤盒中於室溫染色作用 20 分鐘，注意不同專一性抗體不可混淆。
10.2.4 取出玻片輕敲除去多餘之抗體，用 PBS 輕輕沖洗，放入 PBS 中浸泡 10 分鐘。
10.2.5 用蒸餾水沖洗，風乾。
10.2.6 加一滴 Mounting medium，蓋上蓋玻片，圓圈中避免有氣泡產生，以免防礙鏡檢。
10.2.7 以螢光顯微鏡（Nikon, Model UFX-IIA）鏡檢，先用低倍（10 X）物鏡選擇可見到病原體之視野，再轉至高倍（40 X）物鏡進行快速篩檢。

11 結果判定
11.1 判讀標準
11.1.1 由鏡檢中可見到退伍軍人菌為單一桿狀，或是周圍有強烈染色但是中心為黑色之絲狀物，可再以 1,000 X 油鏡確認結果。

<table>
<thead>
<tr>
<th>強度</th>
<th>細胞壁之染色定義</th>
</tr>
</thead>
<tbody>
<tr>
<td>4+</td>
<td>細菌被染上非常耀眼之黃綠色</td>
</tr>
<tr>
<td>3+</td>
<td>亮黃綠色</td>
</tr>
<tr>
<td>2+</td>
<td>可觀察到，但是有點模糊之染色</td>
</tr>
<tr>
<td>1+</td>
<td>可觀察到，但是很微弱之染色</td>
</tr>
<tr>
<td>-</td>
<td>沒有任何細胞出現黃綠色，但是可能出現黃褐色之背景值</td>
</tr>
</tbody>
</table>

11.1.2 培養分離之細菌結果如呈現典型之形狀，同時出現非常亮之螢光（3+～4+），則認定為陽性結果。
11.1.3 判定標準：
符合陽性判定標準，判為退伍軍人菌陽性，並標示菌種及血清型別。
不符合陽性判定標準，判為退伍軍人菌陰性。
檢驗結果匯入退伍軍人菌之分離與鑑定，不另發報告。

11.1.4 注意事項

11.1.4.1 每個検體都應該要同時進行陰性對照組，如此才能確
定陽性結果確實具有血清學上之專一性。

11.1.4.2 勿二度冷凍/解凍任何試劑及檢體。重複的冷凍/
解凍會破壞抗體活性。也請勿使用會自動除霜之冰箱保存
檢體及試劑。

11.2 報告核發：報告不單獨核發。

11.3 結果登錄：檢驗結果匯入退伍軍人菌之分離與鑑定，不另發報告。

12 品質管制

12.1 對照組抗原主要是用來鑑定抗體是否保有良好之品質。任何一種對照
組抗原，以同種抗體染色後，都應該出現4+強度之染色結果，如果無
法得到此結果，該次檢驗即不具有任何效力。

12.2 每個検體都應該要同時進行陰性對照組，如此才能確定陽性結果確實
具有血清學上之專一性。

12.3 如有需要，也可以同時進行其他種類之對照組。

13 廢棄物處理

檢驗過程之物品、廢液及剩餘検體等感染性事業廢棄物，應先以滅菌袋裝妥
密封，再以121 °C，30 min高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

14.1 Zeus Scientific, Inc. Legionella DFA Test System 操作手冊。

14.2 m-TECH, Monoclonal Technologies, Inc. DFA Staining Protocol for
Legionella.

14.3 Cherry WB, Pittman B, Harris PP, Hebert GA, Thomason BM, Thacker L,
Weaver RE. 1978. Detection of Legionnaires’ disease bacteria by direct

PH, Thomason BM. 1978. Four Serogroups of Legionnaires’ disease
bacteria defined by direct immunofluorescence. Ann Intern Med 90:
621-624.

14.5 McKinney RM, Wilkinson HW, Sommers HM, Fikes BJ, Sasseville KR,
Youngbluth MM, and Wolf JS. 1980. Legionella pneumophilia serogroup:
Six Isolation from cases of Legionellosis identification by
immunofluorescent staining and immunologic response to infection. J Clin
1 目的
利用微生物的分離培養檢查醫院環境水中是否有退伍軍人菌，並加以鑑定。

2 適用檢體種類
適用醫院環境水檢體。

3 解釋名詞
無。

4 原理概述
以含 yeast extract、charcoal、iron、L-cysteine 及抗生素的特定培養基分離退伍軍人菌後，利用菌落形態、生理特徵、生化特性、乳膠凝集試驗、直接螢光抗體試驗及分子生物學試驗等方法鑑定。

5 試劑耗材
5.1 檢體酸處理劑及中和劑
5.1.1 HCl-KCl 酸處理劑
稱量 7.46 g KCl 溶於 500 mL 蒸餾水中成 0.2 M KCl，以 0.2 M HCl 調整 pH 值至 2.0。
5.1.2 KOH 中和劑（退伍軍人菌對鈉敏感，不可用 NaOH 為中和劑）
稱 1.123 g KOH 溶於 100 mL 蒸餾水成 0.1 N KOH，取 50 mL 0.1 N KOH 加 500 mL 蒸餾水混合均勻，以 0.1 N KOH 或蒸餾水調整此稀釋 KOH 溶液的 pH 值，使其當與 HCl-KCl 酸處理劑以 1：1 體積混合時 pH 值恰好等於 6.9。
5.1.3 將以上兩種溶液以 121 °C 高壓滅菌 15 分鐘後備用。
5.2 2 N KOH，自行配製 BCYE 培養基時製備。

5.3 1 N HCl，裝血清瓶中，滅菌後使用。
5.4 BCYE w/ L-cystein 培養基（Buffered Charcoal Yeast Extract Agar 含 L-cysteine（半胱胺酸））：可購買通過 IVD-GMP 之商品化產品，或自行製備。
5.4.1 配方：每 1 L 含量
Yeast Extract 10.0 g
Charcoal 1.5 g
ACES Buffer 10.0 g
Ferric Pyrophosphate 0.25 g
Alpha-Ketoglutarate 1.0 g
Agar 15.0 g
L-cysteine 0.4 g
5.4.2 配製 500 mL：使用 1 L 錐形瓶，稱取 19.0 g BCYE Agar Base (REMEL Inc., USA)，以 500 mL 量筒量取 485 mL 蒸餾水加入，
放入一粒中型磁力攪拌子，以加熱電磁攪拌器加熱攪拌使粉末完全溶解，並加入 10 mL 2 N KOH 使 pH 約在 6.9 附近，於高壓滅菌鍋 121°C 高壓滅菌 15 分鐘，置於 50 °C 水浴槽冷卻至 50 °C，加入已經先以無菌蒸餾水溶解之 L-cysteine growth supplement tab(含 0.2 g L-cysteine-HCl: MAST Group Ltd., UK)，以攪拌子均勻後，以 10 mL 無菌吸管吸取 10 mL 培養基置入 50 mL 小燒杯中測 pH 值（溫度 sensor 需一起測，測過的培養基已不是無菌，丟棄之，不要倒回原瓶），以 2 N KOH 或 1 N HCl 調整為 pH 6.90 ± 0.05，倒平板，90 mm 內徑培養皿倒 20 mL，高度約 0.3 cm。靜置待凝固後將培養皿翻面，隔夜在培養皿上標示培養基種類、製作日期及保存期限（三個月），裝入塑膠袋中並束緊袋口，保存於 4°C 冰箱。

5.5 BCYE w/o L-cysteine 培養基 (BCYE 不含 L-cysteine): 可購買通過 IVD-GMP 之商品化產品，或自行製備。製備 500 mL 方法如 5.4，但是不加 L-cysteine，亦可使用血液平板培養基取代。

5.6 血液平板培養基 (BAP，Blood Agar Plate): 通過 IVD-GMP 之商品化產品。

5.7 MWY 選擇性培養基 (BCYE 含 L-cysteine、Polymyxin B、Amphotericin B、Vancomycin 及染料): 可購買通過 IVD-GMP 之商品化產品，或自行製備。製備 500 mL 方法如 5.4，加入 L-cysteine 時，也加入已經先以無菌蒸餾水溶解之 MWY supplement (MAST, UK)，最終濃度為 Polymyxin B 50,000 IU/L、Amphotericin B 8.0 mg/L、Vancomycin 1 mg/L、Bromocresol purple 10 mg/L、Bromothymol blue 10 mg/L 及 Glycine 3.0 g/L。

5.8 DGVP 選擇性培養基 (BCYE 含 L-cysteine、染料、Glycine、Vancomycin 及 Polymyxin B): 可購買通過 IVD-GMP 之商品化產品，或自行製備。製備 500 mL 方法如 5.4，加入 L-cysteine 時，也加入已經先以無菌蒸餾水溶解之 DGVP supplement (市售商品化抗生素添加劑)，最終濃度為 Bromocresol purple 10 mg/L、Bromothymol blue 10 mg/L、Glycine 3.0 g/L、Vancomycin 1 mg/L 及 Polymyxin B 50,000 IU/L。

5.9 CCVC 選擇性培養基 (BCYE 含 L-cysteine、Cycloheximide、Colistin、Vancomycin 及 Cephalothin): 可購買通過 IVD-GMP 之商品化產品，或自行製備。製備 500 mL 方法如 5.4，加入 L-cysteine 時，也加入已經先以無菌蒸餾水溶解之 CCVC supplement (市售商品化抗生素添加劑)，最終濃度為 Cycloheximide 80.0 mg/L、Colistin 16.0 mg/L、Vancomycin 0.5 mg/L 及 Polymyxin B 50,000 IU/L 及 Cephalothin 4.0 mg/L。

5.10 GVPC 選擇性培養基 (BCYE 含 L-cysteine、Glycine、Vancomycin、Polymyxin B 及 Cycloheximide): 可購買通過 IVD-GMP 之商品化產品，或自行製備。製備 500 mL 方法如 5.4，加入 L-cysteine 時，也加入已經先以無菌蒸餾水溶解之 GVPC supplement (市售商品化抗生素添加劑)，最終濃度為 Glycine 3.0 g/L、Vancomycin 1 mg/L、Polymyxin B 80,000 IU/L 及 Cycloheximide 80 mg/L。
5.11 革蘭氏染色染剤組 (Gram stain set): 武藤化學, 日本或 DIFCO, USA。含有 Crystal Violet、Gram Iodine、Decolorizer 及 Carbol Fuchsin 四劑。
5.12 馬克法藍氏濁度標準組 (McFarland nephelometer standard units)。
5.13 退伍軍人菌乳醣凝集試驗試劑（Legionella Latex Agglutination Test）: Oxoid Limited, England。
5.14 退伍軍人菌直接潑光抗體檢驗試剤（Direct Fluorescent Antibody Test, DFA）: Zeus Scientific, Inc., USA。m-TECH, Monoclonal Technologies, Inc., USA。
5.15 品質管制菌種：Legionella pneumophila 標準株 ATCC 33152。
5.16 無菌蒸餾水。
5.17 3%硫代硫酸鈉 (Na₂S₂O₃)。
5.18 採樣容器：容量 500 mL 以上無菌之硼矽玻璃瓶或無菌塑膠有蓋容器，或市售無菌袋。
5.19 玻璃錐形瓶：1,000 mL (Pyrax)。
5.20 量筒：500 mL。
5.21 玻璃小燒杯：50 mL。
5.22 無菌培養皿：內徑約 90 mm。
5.23 無菌滴管 (dropper)：3 mL。
5.24 無菌吸管 (pipette)：10 mL (每 0.1 mL 一刻度)。
5.25 無菌微量吸管尖 (tip)：1,000 μL、200 μL、100 μL。
5.26 接種針 (環)。
5.27 可拋棄式無菌塑膠手套、口罩。
5.28 無菌離心管：50 mL、15 mL。
5.29 載玻片。
5.30 無菌染色專用玻片及蓋玻片：60 x 24 mm。
5.31 血清瓶：1,000 mL、250 mL。
5.32 無菌玻璃珠：4 mm。
5.33 菌種保存管：PROTECT Bacterial Preservers，UK。

6 儀器設備
6.1 微量天平。
6.2 藥杓、稱藥紙、剪刀、鑷子。
6.3 電磁攪拌器 (可加熱) 及磁力攪拌子。
6.4 高壓滅菌鍋。
6.5 水浴槽。
6.6 pH 值測定儀及 pH 7.0、pH 4.0 標準液。
6.7 電動吸管輔助器 (pipette aid)。
6.8 第二級生物安全箱 (Class II BSC)。
6.9 二氧化碳培養箱。
6.10 振盪器 (vortexer)。
6.11 過濾裝置：能耐高溫高壓滅菌的玻璃、塑膠、陶瓷或不鏽鋼等材質構成之無縫隙漏斗，以鎖定裝置、磁力或重力固定於底部。
6.12 抽氣幫浦：水壓式或吸氣式，壓力差最好在 138 至 207 kPa 者。
6.13 濾膜：直徑 47 mm，孔徑 0.22 μm 的無菌聚碳酸濾膜（polycarbonate membrane）。
6.14 離心機：轉速可達 6,000 g，10 分鐘以上，能控制溫度在 4 ± 2 °C 者。
6.15 計時器。
6.16 本生燈或酒精燈。
6.17 立體解剖顯微鏡。
6.18 光學顯微鏡：能放大至 1,000 X 油鏡。
6.19 微量吸管 pipetman：需 1,000 μL、200 μL、20 μL 三種規格。
6.20 紫外光燈：365 nm。

7 環境設施安全
濃縮検體與酸處理可以在生物安全第二等級（BSL-2）之實驗室內操作；若有疑似退伍軍人菌菌落生長，建議在第二級生物安全櫃（Class II BSC）內操作後續鑑定。

8 検體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 検體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 検驗步驟
10.1 分離培養
10.1.1 濃縮検體：以過濾或是離心方式濃縮検體。
10.1.1.1 過濾：檢體過濾前須劇烈搖晃 25 次以上使充分混合均勻，以 0.22 μm 無菌濾膜過濾 300 mL 檢體，將濾膜取出置入 15 mL 離心管中，加入 3 mL 無菌蒸餾水並加以震盪，為 100 倍濃縮検體。
10.1.1.2 離心：檢體濁度高時應以離心方式進行濃縮，取 300 mL 檢體入離心管內，以 6,000 g 離心 10 分鐘以上，或以 3,000 g 離心 30 分鐘以上，吸取上清液丢棄，以無菌蒸餾水調整剩餘上清液至 3 mL 並加以震盪，置入 15 mL 無菌離心管中，為 100 倍濃縮検體。
10.1.2 酸處理法：對 3 mL 100 倍濃縮検體，加入 1.5 mL HCl-KCl 酸處理劑，放置 4 分鐘，加入 1.5 mL KOH 中和劑，振盪混合。經酸處理後之検體保留於 4 °C 至少 2 週。
10.1.3 接種：取 0.1 mL 酸處理過的検體，接種到 MWY 或其他選擇性培養基，並使均勻分佈於培養基表面，每個検體需進行二重複。
10.1.4 培養：置於二氧化碳培養箱中 35℃，2.5 - 5.0 % CO₂，及相對
湿度 60 - 90 %條件下培養。

10.1.5 觀察：培養 7 - 14 天，並每天觀察。若次日已長滿雜菌，則以
較少的檢體量重新接種於新的選擇性培養基。

10.2 鑑定

10.2.1 菌落觀察
退伍軍人菌生長緩慢，約需 3 - 5 天才可觀察到，以肉眼觀察菌落型態，必要時再以立體解剖顯微鏡進行菌落觀察，典型菌落
形態、邊緣完整平滑、輕度隆起、白色或白灰色半透明具毛玻璃
外觀，但有些菌株呈藍白、藍灰、藍綠、藍紅、淡綠、淡紅或棕色菌落，隨著菌落老化，呈中央微白邊緣淡紫色虹光，以
接種環挑取，呈黏稠狀。在波長 365 nm 的紫外燈下觀察，有些
菌株產生藍綠色、藍白色或紅色自發螢光，如 L. bozemanii、
L. dumoffi、L. cherrii、L. gormanii、L. parisiensis、L. steigerwaltii、
L. tucesconensis、L. anisa、L. rubrilucens 和 L. erythre。

10.2.2 L-cysteine 需求試驗：挑選疑似菌落接種於 BCYE w/ L-cysteine
及 BCYE w/o L-cysteine (或 BAP) 培養基上進行培養。若 BCYE
w/ L-cysteine 可生長而 BCYE w/o L-cysteine (或 BAP) 不長，
則可能是退伍軍人菌屬，挑取菌株再做進一步鑑定。

10.2.3 菌落染色

10.2.3.1 料片製作：挑取 BCYE w/ L-cysteine 培養基上之疑似
菌落，於載玻片上製成薄料片，風乾並過火數次固

10.2.3.2 初染：將已固定之料片，用結晶紫染液 (Crystal Violet)
染 1 分鐘，水洗，水洗應不超過 5 秒鐘。

10.2.3.3 媒染：加革蘭氏碘液 (Gram Iodine) 染 1 分鐘，水洗。

10.2.3.4 脫色：用脫色液 (Decolorizer) 洗至不再有紫色褪出
時，數秒即可，再以自來水沖洗。

10.2.3.5 複染：用複染液 (Carbolfuchsin) 染 30 秒鐘，水洗。

10.2.3.6 自然風乾。

10.2.3.7 以光學顯微鏡觀察。註：退伍軍人菌為革蘭氏陰性桿
菌，無莢膜、不産孢子、短胖型、較老的菌會成長短
不一的長絨型。

10.2.4 退伍軍人菌乳膠凝集試驗 (Legionella Latex Agglutination Test)：
詳見退伍軍人菌抗原試驗（乳膠凝集試驗法）。此法可以區分
嗜肺性退伍軍人菌血清型第 1 型 (L. pneumophila serogroup 1)、
嗜肺性退伍軍人菌血清型第 2 - 14 型 (L. pneumophila serogroups
2 - 14) 及其他退伍軍人菌屬菌種 (Legionella species)。

10.2.5 退伍軍人菌直接螢光抗體試驗 (Direct Fluorescent Antibody Test,
DFA)：詳見退伍軍人菌抗原試驗（直接螢光抗體檢驗法）。

10.2.6 退伍軍人菌分子生物學試驗：可用 PCR、即時 PCR (real-time
PCR) 或其他分子生物學方法確認退伍軍人菌，同時区分為嗜肺
性退伍軍人菌（*L. pneumophila*）及其他退伍軍人菌屬菌種（*Legionella species*）。

10.2.7 菌種保存：經鑑定之菌株，純培養後以菌種保存管保存。標示菌種保存管後，取一個 10 μL 接種環菌量之純培養菌落置於保存液中，混合均勻後，至少靜置 30 秒，將冷凍保存液吸出，隨後旋緊保存管蓋子，放入-70 ℃保存，並做詳細的菌種保存記錄。

11 結果判定

11.1 判定標準：由檢體培養分離之疑似菌株經過 L-cysteine 生長需求試驗、革蘭氏染色、乳膠凝集試驗、直接螢光抗體試驗或分子生物學試驗均符合退伍軍人菌之結果，即判為退伍軍人菌陽性。無符合退伍軍人菌之結果，即判為退伍軍人菌陰性。

11.1.1 結果計算：每一培養皿之疑似退伍軍人菌菌落，依據菌落形態、顏色及自發螢光加以歸類，每一類至少挑選 1 個菌落進行 10.2 鑑定，再依挑選菌落數之陽性比例，回推計算該類陽性菌落數數量。環境水檢體之退伍軍人菌濃度（cfu/L）＝二重複培養基上陽性菌落數之總和 × 0.2 mL（取出塗抹之水檢體體積總和）/100（100 倍濃縮検體）× 1000 mL/L（將每 mL 换算為每 L）；依此公式選算，退伍軍人菌濃度＝二重複培養基上陽性菌落數之總和 × 100（cfu/L）。

11.1.2 結果表示：若二重複培養基上未鑑定出退伍軍人菌菌落生長，則以每公升小於 100 個菌落數（< 100 cfu/L）表示；若二重複培養基上鑑定出退伍軍人菌菌落數為 300 時，則取兩位有效數字表示，例如菌落數為 35 時以 3.5 × 10³ cfu/L 表示；若二重複培養基上鑑定出退伍軍人菌菌落大於 300 時，菌落數以 > 3.0 × 10⁴ cfu/L 表示。

11.2 報告核發：退伍軍人菌陽性；退伍軍人菌陰性。

11.3 結果登錄：檢驗人員於完成檢驗後，將檢驗結果登錄於水中退伍軍人病原菌分離與鑑定紀錄表，將檢驗結果填寫於檢體送驗單之“檢驗結果”欄，並於檢體送驗單背面加蓋檢驗者職章，送實驗室主管審核及蓋章。

12 品質管制

12.1 MWY 選擇性培養基之品質管制

每批取 2 片培養基進行生長品管測試，並取一盤前一批號之培養基為對照。方法：取生長 2 日之 *L. pneumophila* 標準株 1 - 2 菌落植於 1 mL 無菌蒸餾水中，配製成 McFarland 0.5 菌液（1.5 × 10⁸ cfu/mL），取 100 μL 上述菌液加 900 μL 蒸餾水（1.5 × 10⁷），繼續 1:10 序列稀釋至 1.5 × 10³，吸取 30 μL 入待測培養基中，均勻塗開，置 35 ℃培養箱中培養 3 - 4 日，觀察生長情形並記錄之。若無菌落生長或生長遲缓之批號培養基，宜丟棄不用。若連對照培養基也不生長，則品管試驗必須重做。
12.2 BCYE w/ L-cysteine 培養基之品質管制
每批取 2 片培養基進行生長品管測試，方法同 MWY 選擇性培養基之品質管制。若無菌落生長或生長遲緩之批號培養基，宜丟棄不用。若連對照培養基也不生長，則品質試驗必須重做。若有雜菌生長，則觀察是否於製備過程中污染，若是，則需重新製備。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
14.2 蔡文城。2000。實用臨床微生物診斷學。第九版。九州圖書文物有限公 司。臺北。臺灣。869-878。

15 附錄
15.1 水中退伍軍人病病原菌分離與鑑定流程圖。
15.2 水中退伍軍人病病原菌分離與鑑定紀錄表。
附錄 15.1 水中退伍軍人菌分離與鑑定流程圖

檢體經濃縮及酸處理

接種於 MWY 選擇性培養基，
35 ℃ ± 2.5 - 5.0% CO₂，
相對濕度 60 - 90%

菌落觀察

圆形偏滑、蓝色半透明、
邊緣完整、輕度隆起

是

退伍軍人菌 < 100 cfu/L

否

退伍軍人菌 < 100 cfu/L

L-cysteine 需求試驗陽性

是

退伍軍人菌 < 100 cfu/L

否

退伍軍人菌 < 100 cfu/L

革蘭氏陰性桿菌

是

乳膠凝集試驗（latex test）

或

直接蛍光抗體試驗（DFA）

或

分子生物學試驗（PCR 等）

凝集

不凝集

無蛍光反應

有蛍光反應

無符合產物

有符合產物

退伍軍人菌 < 100 cfu/L

退伍軍人菌 ≥ 100 cfu/L（紀錄 _____________ cfu/L）
附錄 15.2 水中退伍軍人病病原菌分離與鑑定紀錄表

衛生福利部疾病管制署研究檢驗及疫苗研製中心

<table>
<thead>
<tr>
<th>項目</th>
<th>檢體編號</th>
<th>檢體採檢運送狀況適當</th>
<th>檢體酸處理</th>
<th>MWY 選擇性培養基上菌落外觀特徵，有菌落微突、呈圓形、具毛玻璃外觀之可疑菌落（若是，記錄菌落数）</th>
<th>L-cysteine 需求試驗</th>
<th>革蘭氏染色</th>
<th>自發性螢光（365 nm 紫外燈）</th>
<th>乳膠凝集試驗</th>
<th>確認退伍軍人菌</th>
<th>L. p serogroup 1</th>
<th>L. p serogroups 2-14</th>
<th>L. species</th>
<th>直接螢光抗體試驗型別</th>
<th>分子生物學試驗</th>
<th>綜合結果</th>
<th>退伍軍人菌</th>
<th>血清型別</th>
<th>適度（cfu/L）</th>
<th>備註</th>
</tr>
</thead>
</table>
| | | 是 | 否 | 是 | is

檢驗者： | 實驗室主管：
編號：侵襲性 b 型嗜血桿菌分離與鑑定

頁次：第 611 頁共 1104 頁
核準日期：年 月 日
修訂日期：年 月 日

1 目的
自疑似受感染個案所採集檢體中，分離與鑑定 b 型嗜血桿菌。

2 適用檢體種類
適用於病患血液、腦脊髓液、其他無菌部位檢體與醫院送驗菌株。

3 名詞解釋
無。

4 原理概述
b 型嗜血桿菌 (Haemophilus influenzae b) 為革蘭氏陰性球桿菌 (coccobacilli)，需培養在含有 X 及 V factor 之培養基上（如 chocolate agar）, 目前已有商品化之生化鑑定套組來鑑定菌種, 以及使用莢膜抗血清將之區分其莢膜多醣體型別。b 型嗜血桿菌為上呼吸道之正常菌叢, 但當侵入性感染會造成較嚴重之疾病（如菌血症、敗血性關節炎及腦膜炎等症狀）, 因此針對人體無菌部位檢體（如血液、腦脊髓液及關節液等）, 以細菌培養分離, 生化代謝與血清學特性等方法鑑定。

5 試劑耗材
5.1 培養基
5.1.1 巧克力培養基（chocolate agar plate）。
5.1.2 BHI（brain heart infusion）broth。
5.1.3 TSA（tryptic soy agar）plate。
5.1.4 Fildes enrichment：BD，USA。
5.2 嗜氧性血液培養瓶（Bactec）: BD，USA。
5.3 革蘭氏染色液（Gram’s stain solution）：Difco，USA 或武藤化學，日本或其它具相同鑑別力之試劑。
5.4 API NH 生化鑑定套組：BioMérieux，法國或其它具相同鑑別力之生化系統。
5.5 抗血清：Bacto Haemophilus influenzae antisera，BD，USA 或其它具相同鑑別力之試劑。
5.6 X factor, V factor, XV factor 生長需求區別紙片：Taxo X, V, XV factor, BD, USA 或其它具相同鑑別力之試劑。
5.7 氧化酶試劑（oxidase strips）：MAST, UK 或 BioMérieux, France 或其它具相同鑑別力之試劑。
5.8 馬克法藍氏濁度標準組（McFarland nephelometer standard units）。
5.9 標準菌株：H. influenzae ATCC 10211 及 H. parainfluenzae ATCC 7901。
5.10 無菌生理食鹽水：0.85 % NaCl。
5.11 消毒水（例如 sodium hypochlorite solution > 1.3 % W/V）。
5.12 無菌滴管（dropper）：3 mL。
5.13 無菌離心管：5 mL、1.5 mL。
5.14 接種針（環）。
5.15 載玻片。
5.16 蓋玻片。
5.17 可拋棄式無菌塑膠手套、口罩。
5.18 無菌棉棒。
5.19 無菌牙籤。
5.20 鑷子。

6 儀器設備
6.1 第二級生物安全櫃（class II BSC）。
6.2 培養箱：5 %二氧化碳、35 °C。
6.3 37 °C恆溫箱。
6.4 4 °C冰箱。
6.5 -20 °C冷凍櫃。
6.6 離心機：3,000 rpm 以上。
6.7 微量離心機。
6.8 光學顯微鏡：能放大至 1,000 X 油鏡。
6.9 立體解剖顯微鏡：有變焦功能，至少可放大 4.5 X。
6.10 振盪器（vortexer）。
6.11 本生燈。
6.12 高壓滅菌鍋。

7 環境設施安全
於生物安全第二等級（BSL-2）實驗室內操作。

8 檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體編號登錄。
10.2 檢體前處理：腦脊髓液及其他無菌部位體液前處理：
10.2.1 檢體體積超過 1 mL：以 3,000 × g 離心 20 min，吸除大部分上清液，留下約 0.5 mL 的液體，經劇烈震盪至少 30 sec 以重新懸浮沉澱。
10.2.2 檢體體積少於 1 mL：劇烈震盪至少 30 sec。
10.3 分離培養

10.3.1 接種

10.3.1.1 血液：檢體量至少 0.5 mL。將血液檢體以 1:5-1:10 的比例接種於血液培養瓶。

10.3.1.2 腦脊髓液及其他無菌部位體液：取 1-2 滴液體接種於巧克力培養基及 BHI 液態培養基（備用）。

10.3.2 培養：35 ℃ 含有 5% 二氧化碳培養箱培養。

10.3.3 觀察：

10.3.3.1 血液培養：14 - 17 hr 後觀察，然後每天觀察，培養液有混濁或紅血球溶解情形，立即将培養液混合均勻，取 0.5 mL 培養液次培養於巧克力培養基，培養 48 hr，培養條件同前述；否則，14 - 17 hr、48 hr 及 7 天時，未觀察到混濁情形者，仍取少量培養液次培養到巧克力培養基，培養 48 hr，血液培養瓶即可依適當程序滅菌銷毀。

10.3.3.2 巧克力培養基每天觀察，觀察期為 48-72 hr；液態培養每天觀察連續 7 天，若有細菌生長，次接種巧克力培養基。

10.4 鑑定

10.4.1 菌落型態：在巧克力培養基上之菌落顏色呈無色至淺灰色、半透明、潮濕、平滑、凸起、帶有鼠臭味（mouse odor）或漂白水味（bleach-like odor），菌落周圍的培養基顏色不會改變，具有莢膜菌株之菌落較無莢膜菌株大且更黏。挑取 2 - 5 個可疑菌落次接種至巧克力培養基，培養於 35 ℃ 含有 5% 二氧化碳培養箱培養、18 - 24 hr，以供進行鑑定。

10.4.2 革蘭氏染色（Gram's stain）：依照本署「革蘭氏染色法」檢驗標準方法（編號：B-48-2006-1.0）。

10.4.3 Oxidase test（氧化酶試驗）：依照本署「氧化酶試驗」檢驗標準方法（編號：B-49-2006-1.0）。

10.4.4 Catalase test（觸酶試驗）：依照本署「觸酶試驗」檢驗標準方法（編號：B-50-2006-1.0）。

10.4.5 X 及 V 生長因子需求試驗

以 TSA 為培養基，並挑取新鮮菌落（18 - 24 hr 培養）。先製備 McFarland no.1 的細菌懸浮液於無菌生理食鹽水（注意：從 chocolate agar 挑取菌落時不要 carry over 培養基成分），以滅菌棉棒沾取菌液，塗抹於培養基平板上，待菌液風乾，接著以無菌鑷子分別夾取 X factor、V factor 及 XV factor 紙片，密貼於平板表面，紙片間距離要大於 20 mm，再於 35 ℃ 含有 5% 二氧化碳培養箱培養 18 - 24 hr。H. influenzae 的生長需要 X factor 及 V factor，故應只在 X、V factor 紙片周圍可見到有細菌生長。

10.4.6 快速生化鑑定 API NH 試驗：依照本署「API NH（奈瑟氏/嗜血桿菌鑑定組）細菌鑑定法」檢驗標準方法（編號：B-56-2006-1.0）。

注：

本頁為其間的自然語言表述，非完全自動轉換的機械產生內容。
10.4.7 血清凝集鑑定試驗

10.4.7.1 將載玻片用蠟筆分格並標示編號，滴適量血清及無菌生理食鹽水（陰性對照組）於分格中，再以無菌牙籤挑取適量新鮮菌落於各分格中，並塗勻，均勻搖晃玻片約1 min，觀察並紀錄凝集情形，其間需避免液體乾掉。

10.4.7.2 一般先用多價抗血清做篩選，若多價抗血清為陽性，再用單價血清進一步鑑定。

10.4.7.3 菌株可能因次培養而失去莢膜，故儘量於分離出菌株後即進行血清分型，如有必要，於進行血清分型前一天，將菌株接種於Fildes Enrichment agar，於35 °C含有5%二氧化碳培養箱培養18 - 24 hr後，再分型。

11 結果判定

11.1 判讀標準

11.1.1 依據10.4鑑定結果，對照下表並紀錄於附錄15.2侵襲性 b型嗜血桿菌分離與鑑定紀錄表。

<table>
<thead>
<tr>
<th>鑑定試驗名稱</th>
<th>陽性反應</th>
<th>陰性反應</th>
<th>b型嗜血桿菌反應</th>
</tr>
</thead>
<tbody>
<tr>
<td>於巧克力培養基上典型菌落外觀特徵</td>
<td>颜色呈無色至淺灰色、潮濕、平滑、凸起</td>
<td>非左述現象</td>
<td>陽性反應</td>
</tr>
<tr>
<td>革蘭氏染色試驗</td>
<td>革蘭氏陰性多形性球桿菌</td>
<td>非左述現象</td>
<td>陽性反應</td>
</tr>
<tr>
<td>Catalase 試驗</td>
<td>有氣泡產生</td>
<td>無氣泡產生</td>
<td>陽性反應</td>
</tr>
<tr>
<td>Oxidase 試驗</td>
<td>藍色或藍紫色</td>
<td>不變色</td>
<td>陽性反應</td>
</tr>
<tr>
<td>X及 V生長因子需求試驗</td>
<td>只在 XV factor 紙片周圍可見到有細菌生長，而 X factor 及 V factor 紙片周圍則無</td>
<td>非左述現象</td>
<td>陽性反應</td>
</tr>
<tr>
<td>API-NH生化鑑定系統或其它具相同鑑別力之生化系統</td>
<td>可由結果直接判定菌株是否為H. influenzae</td>
<td>--</td>
<td>陽性反應</td>
</tr>
<tr>
<td>血清分型檢測</td>
<td>以H. influenzae多價血清及type b單價血清檢測有凝集現象，而生理食鹽水無凝集現象</td>
<td>非左述現象</td>
<td>陽性反應</td>
</tr>
</tbody>
</table>

11.1.2 綜合結果判斷標準：符合上表b型嗜血桿菌所有反應結果，即判斷為侵襲性 b 型嗜血桿菌陽性；若其中一項不符合者，即判斷為侵襲性 b 型嗜血桿菌陰性。

11.2 報告核發：侵襲性 b 型嗜血桿菌陽性，侵襲性 b 型嗜血桿菌陰性。

11.3 結果登錄：完成檢驗後，將檢驗結果登錄於附錄15.2侵襲性 b 型嗜血
桿菌分離與鑑定紀錄表，檢驗結果填寫於檢體送驗單之”檢驗結果”欄，並將紀錄表背面蓋章，相關檢驗紀錄及檢體送驗單陳核實驗室主管審核，俟實驗室主管核章後，再上網登錄於傳染病通報系統。

12 品質管制
12.1 X及V生長因子需求試驗試劑之品質管制
 12.1.1 應於有效期內使用，同一批號試劑，第一次使用時取一組進行試驗。
 12.1.2 使用H. influenzae ATCC 10211及H. parainfluenzae ATCC 7901標準菌株，進行試驗。
 12.1.3 進行檢驗步驟10.3.4，結果必須符合下表反應，始可使用。

<table>
<thead>
<tr>
<th>標準菌株</th>
<th>XV</th>
<th>V</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. influenzae ATCC 10211</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H. parainfluenzae ATCC 7901</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

+表示紙鋁周圍有菌生長 -表示紙鋁周圍無菌生長

12.2 血清凝集鑑定之品質管制
 12.2.1 應於有效期限內使用，同一批號試劑，第一次使用時取一組進行試驗。
 12.2.2 使用陽性反應標準菌株H. influenzae ATCC 10211及陰性反應標準菌株H. parainfluenzae ATCC 7901，進行試驗。
 12.3 鑑定結果必須符合陽性及陰性反應（判定標準依11.1節），始可使用。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以121°C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
 14.1 蔡文城。2000。實用臨床微生物診斷學，第九版。九州圖書文物有限公司，台灣。第846-858頁。

15 附錄
 15.1 侵襲性b型嗜血桿菌分離與鑑定流程圖。
 15.2 侵襲性b型嗜血桿菌分離與鑑定紀錄表。
附錄 15.1 侵襲性 b 型嗜血桿菌分離與鑑定流程圖

血液 → 菌株 → 腦脊髓液及無菌體液

血液培養瓶 → 劇烈震盪或離心 → 接種巧克力培養基 → 接種 BHI 增菌（7 天）

35°C 含 5% CO₂ 培養箱 48 小時培養

有細菌生長 → 菌落觀察 → 呈無色至淺灰色、半透明、潮濕、平滑、凸起

陰性多形性桿菌 → 革蘭氏染色

是 → Catalase 鑑定 → 陽性反應 → 快速生化鑑定 → 陰性反應 → 判讀陽性

否 → Oxidase 試驗 → 陰性反應 → 血清凝集 → 陰性反應

判讀陰性 → 陰性反應 → 是 → 陰性反應
附錄 15.2 侵襲性 b 型嗜血桿菌分離與鑑定紀錄表

<table>
<thead>
<tr>
<th>項目</th>
<th>檢體編號</th>
<th>收 件 日期</th>
<th>檢 驗 日期</th>
</tr>
</thead>
<tbody>
<tr>
<td>檢體採檢運送狀況適當</td>
<td>是</td>
<td>否</td>
<td>是</td>
</tr>
<tr>
<td>巧克力培養基上菌落:無色至淺灰色半透明、潮濕、平滑凸起、帶有鼠臭味或漂白水味菌落培養/觀察</td>
<td>是</td>
<td>否</td>
<td>是</td>
</tr>
<tr>
<td>第 2 天</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>第 3 天</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>革蘭氏染色:鏡檢區分革蘭氏陽性菌或陰性菌，區分球菌或桿菌</td>
<td>陽性</td>
<td>陰性</td>
<td>陽性</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>球菌</td>
<td>桿菌</td>
<td>球菌</td>
</tr>
<tr>
<td>Catalase test</td>
<td>陽性</td>
<td>陰性</td>
<td>陽性</td>
</tr>
<tr>
<td>Oxidase test</td>
<td>陽性</td>
<td>陰性</td>
<td>陽性</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>血清分型凝集試驗（圈選凝集型別）</td>
<td>無凝集 Poly a、b、c、d、e、f</td>
<td>無凝集 Poly a、b、c、d、e、f</td>
<td>無凝集 Poly a、b、c、d、e、f</td>
</tr>
<tr>
<td>生化試驗 API-NH（紀錄檢索碼）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>綜 合 結 果</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>報 告 日期</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>附 註</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
目的
梅毒螺旋體侵入體內所產生的一種抗脂質抗體，稱之為反應素（reagin），測試血清或血漿中反應素（reagin）可作為診斷或篩檢梅毒之檢查。

2 適用檢體種類
血清（serum）或血漿（plasma）。

3 名詞解釋
3.1 血清（serum）：血液凝固後，除去固態成份後的清亮液體，不含纖維蛋白原。
3.2 血漿（plasma）：血液的液體部分，含有血清及纖維蛋白原，後者在凝血上具有一定作用。

4 原理概述
4.1 當梅毒螺旋體侵入體內4-6週，患者血清內會出現一種非特異性抗脂質抗體，稱之為反應素（reagin）。反應素是由梅毒螺旋體和宿主細胞被破壞所釋出的類脂物質，刺激宿主免疫系統而產生的抗體。雖然反應素不具有特異性，但是可當作診斷或篩檢梅毒之檢查檢查。
4.2 反應素（reagin）可和試劑中的牛心脂（cardiolipin）產生凝集反應，碳顆粒和牛心脂結合，可幫助肉眼容易觀察結果。

5 試劑耗材
5.1 檢測試劑
5.1.1 RPR carbon antigen：carbon approximately 0.2g/L，0.003% cardiolipin，0.02% lecithin and 0.09% cholesterol。
5.1.2 Positive control：serum containing antibodies against Treponema pallidum。
5.1.3 Negative control：serum free of antibodies against Treponema pallidum。
5.1.4 試劑的儲存
5.1.5 試劑儲存於2-8°C，未曾開封可保存至保存期限，開封後其活性可維持至保存期限或是到有效期為止。
5.1.6 試劑更換批號，需執行平行測試，以確保新批號試劑符合檢驗需求。
5.2 耗材
5.2.1 拋棄式攪拌棒/吸管（試劑組已附）。
5.2.2 測試紙卡（試劑組已附）。

6 儀器設備
6.1 水平搖擺式混合器（rotator）。
6.2 計時器。
7 環境與設施安全
於生物安全第二級（BSL-2）實驗室之設施內操作。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體前處理
10.1.1 細對檢驗單之個案與檢體是否相符。
10.1.2 血液放置常溫 30 分鐘以上，離心 2,000 rpm、15 分鐘，取血清/血漿至 2 mL 檢體保存管，標示號碼。
10.1.3 取出實驗所需用量後，將檢體移放-80℃冰箱永久保存。
10.1.4 血清 56℃，30 分鐘不活化。

10.2 步驟
10.2.1 將試劑、對照組及檢體放置於室溫（20-25℃）回溫。
10.2.2 將試劑輕輕搖勻，勿產生泡沫。
10.2.3 各試劑組中的試劑經過標準化可產生適當反應，不同批號的試藥請勿混合使用。
10.2.4 定性法
10.2.4.1 以試劑組所附的拋棄式吸管吸取檢體一滴（或以微量吸管取 50 μL）滴在測試卡片圓圈內並均勻塗滿於圓圈內。
10.2.4.2 試劑混合均勻，滴一滴（或以微量吸管取 16 μL）在測試卡圓圈內，切記勿先混合檢體與試劑。
10.2.4.3 將測試卡放置於 rotator 上以轉速 180 rpm，作用 8 分鐘。
10.2.4.4 於明亮燈光下觀察結果。

10.2.5 半定量法
若定性法結果為 reactive 時，將檢體以生理食鹽水或 PBS 連續 2 倍稀釋（1/2, 1/4, 1/8, 1/16, 1/32, 1/64…等）重複步驟 10.4.1.1 至 10.4.1.4，直至 non-reactive 為止。

11 結果判定
11.1 判讀標準
11.1.1 陽性（reactive）：出現明顯凝集現象（請參考圖例）。
11.1.2 弱陽性（weak reactive）：出現輕微凝集現象。
11.1.3 陰性（non-reactive）：無凝集現象或出現平滑灰色現象（請參考圖例）。
11.1.4 RPR 檢驗結果圖例如下

11.2 報告核發
RPR 陽性（效價：），RPR 陰性。

11.3 結果登錄
完成檢驗後，將檢驗結果登錄於「RPR（rapid plasma reagin）快速血漿反應素試驗紀錄表」及檢體送驗單並加蓋檢驗者印章，經核驗者確認及蓋章後，送實驗室主管審核及蓋章，並登錄於網路報告系統。

12 品質管制
12.1 內部品管
12.1.1 品管頻率：依實驗室品管政策所定頻率及新開試劑組或更改檢驗程序時。
12.1.2 品管物質：Positive control，Negative control
12.1.3 品管操作步驟：與檢體相同。
12.1.4 品管測試結果必須符合下列標準
 12.1.4.1 Positive control（陽性對照血清）：出現凝集現象。
 12.1.4.2 Negative control（陰性對照血清）：無凝集現象或出現平滑灰色現象。
12.1.5 品管測試結果若有違背品管允收標準應依矯正及預防措施作業程序，加以矯正，必要時採取預防措施。

12.2 室外品管
12.2.1 參加外部能力測試機構舉辦之能力測試或實驗室間比對。
12.2.2 於每年底提出下一年度之參加計畫。
12.2.3 接獲能力測試檢體時，應立即打開包裝，檢視檢體是否完整，若有洩漏或破損，應立即通知代理廠商處理。
12.2.4 每支能力測試檢體應比照檢體的操作步驟測定，不應特別處理。用剩之品管檢體應於-20℃保存，以供日後必要時之複驗。
12.2.5 能力測試結果，應於規定時間內寄出，同時影印副本保存。
12.2.6 能力測試結果，應作為重要品管參考依據若有偏離允許範圍之情形發生，應依矯正及預防措施作業程序，加以矯正及採取預防措施。
12.2.7 每次能力測試處理過程登記於「能力試驗摘要紀錄表」。
13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
RPR 試劑說明書。

15 附錄
RPR（rapid plasma reagin）快速血漿反應素試驗流程圖。
附錄 RPR（rapid plasma reagin）快速血漿反應素試驗流程圖。

1. 將試劑、對照組及檢體放置於室溫 (20-25℃) 回溫
2. 以拋棄式吸管吸取檢體滴一滴（或以微量吸管取 50μL）在測試卡片圈圈內並均勻塗滿於圈圈內
3. 試劑混合均勻，滴一滴（或以微量吸管取 16μL）在測試卡圈圈內
4. 將測試卡放置於 rotator 上以轉速 180 rpm，作用 8 分鐘
5. 於明亮燈光下觀察結果

陰性（non-reactive）無凝集現象或出現平滑灰色現象
陽性（reactive）有凝集現象
目的
梅毒螺旋體侵入體內所產生的一種抗脂質抗體，稱之為反應素（reagin），測試血清或血漿中反應素（reagin）可作為診斷或篩檢梅毒之檢查。

適用檢體種類
血清、血漿或腦脊髓液檢體。

名詞解釋
3.1 血清（serum）：血液凝固後，除去固態成份後的清亮液體，不含纖維蛋白原。
3.2 血漿（plasma）：血液的液體部分，含有血清及纖維蛋白原，後者在凝血上具有一定作用。

原理概述
4.1 當梅毒螺旋體侵入體內4-6週，患者血清內會出現一種非特異性抗脂質抗體，稱之為反應素（reagin）。反應素是由梅毒螺旋體和宿主細胞被破壞所釋出的類脂物質，刺激宿主免疫系統而產生的抗體。雖然反應素不具有特異性，但是可作診斷或篩檢梅毒之檢查。
4.2 利用抗原懸浮液，測定血清中之反應素是否存在。使用牛心脂素（cardiolipin），且含有卵磷脂（lecithin），另加入膽固醇（cholesterol）以增加抗原之有效反應。

試劑耗材
5.1 檢測試劑
5.1.1 VDRL antigen：0.03% cardiolipin，0.2% lecithin，0.9% cholesterol。
5.1.2 Buffered Saline。
5.1.3 Weak positive control：serum containing antibodies against Treponema pallidum。
5.1.4 Negative control：serum free of antibodies against Treponema pallidum。
5.1.5 0.9% NaCl 生理食鹽水。
5.1.6 試劑的儲存
5.1.7 試劑儲存於2-8℃，未曾開封可保存至保存期限，開封後其活性可維持3個月或是到有效期為止。
5.1.8 試劑更換批號，需執行平行測試，以確保新批號試劑符合檢驗需求。

5.2 耗材
5.2.1 10 μL，100 μL，1,000 μL Tips。
5.2.2 Slide test：環圈玻片（glass ring slide）。
5.2.3 Tube test：玻璃試管 12x5 mm。
儀器設備
6.1 離心機。
6.2 水浴槽。
6.3 水平搖擺式混合器（Rotator）。
6.4 試管震盪混合器。
6.5 計時器。

環境設施安全
7 環境設施安全
於生物安全第二級（BSL-2）實驗室之設施內操作。

檢體採集
8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

檢體運送及保存
9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

檢驗步驟
10 檢驗步驟
10.1 檢體前處理
10.1.1 核對檢驗單之個案與檢體是否相符。
10.1.2 血液放置常溫 30 分鐘以上，離心 2,000 rpm、15 分鐘，取血清／血漿至 2 mL 檢體保存管，標示號碼。
10.1.3 取出實驗所需用量後，將檢體移放 -80℃ 冰箱永久保存。
10.1.4 血清 56℃，30 分鐘不活化。
10.2 步驟
10.2.1 將試劑、對照組及檢體放置於室溫（20-25℃）回溫。
10.2.2 將試劑輕輕搖勻，勿產生泡沫。
10.2.3 各試劑組中的試劑經過標準化可產生適當反應，不同批號的試藥請勿混合使用。
10.2.4 Slide test
10.2.4.1 試劑準備
10.2.4.1.1 加 0.4 mL 的食鹽緩衝液於平底有蓋的玻璃小管，置於搖擺式混合器（rotator）上以 150 rpm 水平搖動。
10.2.4.1.2 以乾淨的 pipette 取 0.5 mL 的抗原溶液，於六秒鐘內逐滴加入食鹽緩衝液內。加完抗原溶液後繼續水平搖動 150 rpm，10 秒。
10.2.4.1.3 再緩緩加入 4.1 mL 食鹽緩衝液，接著水平搖動 180 rpm，3 分鐘。
10.2.4.1.4 用手輕輕搖晃混和均勻，靜置 20 分鐘以上。
操作檢體時再用手輕輕混勻。

10.2.4.1.5 此混合好的抗原試劑儲存於 2-8℃在 24 小時內可使用。

10.2.4 定性法
10.2.4.2.1 取 50 μL 不活化血清到測試玻片圓圈內
並均勻塗滿於環圈內。
10.2.4.2.2 取 22 μL 稀釋的 VDRL antigen 到測試卡
環圈內，切記不需先混合檢體與試劑。
10.2.4.2.3 將環穴玻片放置於 rotator 上以轉速 180
rpm，作用 4 分鐘。
10.2.4.2.4 立即於 100X 顯微鏡下觀察結果。

10.2.4.3 半定量法
若結果為 reactive 時以生理食鹽水或 PBS 將檢體做 2 倍序列稀釋(1/2, 1/4, 1/8, 1/16, 1/32, 1/64…等)，重複
10.2.3.2.1 到 10.2.3.2.4 步驟，直至 Non-Reactive 為止。

10.2.5 Tube test
10.2.5.1 試劑準備
稀釋 VDRL antigen：取 1X 體積前述 (10.2.4.1.4) 配
置好的抗原溶液加入 4X 體積生理食鹽水混合均勻(1：
5 稀釋)，靜置 5 分鐘以上。此稀釋好的抗原試劑需在
2 小時內使用。
10.2.5.2 取 0.5 mL 不活化血清到試管內。
10.2.5.3 加入 0.5 mL 稀釋好的抗原試劑 (10.2.5.1)。
10.2.5.4 於試管震盪混合器震盪 5 分鐘。
10.2.5.5 試管離心 2000rpm, 10 分鐘。
10.2.5.6 搖晃試管 1 分鐘，並立即判讀結果。

11 結果判定
11.1 判讀標準
11.1.1 Slide test 定性法
11.1.1.1 陽性 (reactive)：有大～中顆粒的凝集現象 (請參考圖
例)。
11.1.1.2 弱陽性 (weak reactive)：小而平均的凝集顆粒 (請
參考圖例)。
11.1.1.3 陰性 (non-reactive)：無凝集現象 (請參考圖例)。
11.1.1.4 RPR 檢驗結果圖例如下

![Reactive](image1)

![Weak reactive](image2)

![Non-reactive](image3)
11.1.2 Slide test
半定量法：呈陽性反應的最終稀釋倍數即為效價。

11.1.3 Tube test
11.1.3.1 陽性（reactive）：有凝集現象。
11.1.3.2 陰性（non-reactive）：無凝集現象。

11.2 報告核發
VDRL 陽性（reactive）（效價：），弱陽性（weak reactive）（效價：），VDR 陰性（non-reactive）。

11.3 結果登錄
完成檢驗後，將檢驗結果登錄於「VDRL（Venereal Disease Research laboratory）快速血漿反應素試驗紀錄表」及檢體送驗單並加蓋檢驗者印章，經核驗者確認及蓋章後，送實驗室主管審核及蓋章，並登錄於網路報告系統。

12 品質管制

12.1 內部品管
12.1.1 品管頻率：依實驗室品管政策所定頻率及新開試劑組或更改檢驗程序時。
12.1.2 品管物質：Positive control，Negative control。
12.1.3 品管操作步驟：與檢體相同。
12.1.4 品管測試結果必須符合下列標準
- 12.1.4.1 Positive control（陽性對照血清）：出現凝集現象。
- 12.1.4.2 Negative control（陰性對照血清）：無凝集現象。
12.1.5 品管測試結果若有違背品管允收標準應依矯正及預防措施作業程序，加以矯正，必要時採取預防措施。

12.2 室外品管
12.2.1 參加外部能力測試機構舉辦之能力測試或實驗室間比對。
12.2.2 於每年底提出下一年度之參加計畫。
12.2.3 接獲能力測試檢體時，應立即打開包裝，檢視檢體是否完整，若有洩漏或破損，應立即通知代理廠商處理。
12.2.4 每支能力測試檢體應比照檢體的操作步驟測定，不應特別處理。用剩之品管檢體應於-20℃保存，以供日後必要時之複驗。
12.2.5 能力測試結果，應於規定時間內寄出，同時影印副本保存。
12.2.6 能力測試結果，應作為重要品管參考依據若有偏離允許範圍之情形發生，應依矯正及預防措施作業程序，加以矯正及採取預防措施。
12.2.7 每次能力測試處理過程登記於「能力試驗摘要紀錄表」。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。
14 參考資料
 VDRL 試劑說明書。

15 附錄
 VDRL（Venereal Disease Research laboratory）試驗 Slide test 流程圖。
附錄 VDRL (Venereal Disease Research laboratory) 試驗 Slide test 流程圖。

將對照組及檢體放置於室溫（20-25℃）回溫

稀釋 VDRL antigen

取 50 μL不活化血清到測試卡片圓圈內並均勻塗滿於圓圈內

取 22 μL 稀釋的 VDRL antigen 到測試卡圓圈內，切記勿先混合檢體與試劑

將測試卡放置於 rotator 上以轉速 180 rpm，作用 4 分鐘

100X 顯微鏡下觀察結果

陰性（non-reactive）無凝集現象

陽性（reactive）有凝集現象
1 目的
檢測血清或血漿檢體中梅毒螺旋體特異性抗體（Treponema pallidium antibody）及抗體力價。

2 適用檢體種類
血清、血漿檢體。

3 名詞解釋
3.1 血清（serum）：血液凝固後，除去固態成份後的清亮液體，不含纖維蛋白原。
3.2 血漿（plasma）：血液的液體部分，含有血清及纖維蛋白原，後者在凝血上具有一定作用。

4 原理概述
將病原性梅毒螺旋體（Treponema pallidium – Nichol’s strain）的精製菌體成分吸著於粒子化 gelatin 的人工擔體上，此感作粒子能與梅毒螺旋體抗體（Treponema pallidium antibody）產生特異性凝集反應（particle agglutination），因此可作為血清及血漿檢體中梅毒螺旋抗體的檢出及抗體力價測定用試藥。

5 試劑耗材
5.1 檢測試劑
5.1.1 溶解用液：感作粒子和未感作粒子的復元用液，含有 0.06%（W/V）的 sodium azide 防腐劑。
5.1.2 血清稀釋用液：檢體稀釋用液含有 0.10%（W/V）的 sodium azide 防腐劑。
5.1.3 感作粒子（凍乾品）：凍乾品為梅毒螺旋體（Treponema pallidium）感作 gelatin 粒子，復元後含有 0.08%（W/V）的 sodium azide 防腐劑。
5.1.4 未感作粒子（凍乾品）：凍乾品為 tannic acid 處理之 gelatin 粒子，復元後含有 0.08%（W/V）的 sodium azide 防腐劑。
5.1.5 對照用陽性血清：以抗梅毒螺旋體（Treponema pallidium）免疫兔子血清調製，抗體力價為 1：320（最終稀釋倍數）並含有 0.10%（W/V）的 sodium azide 防腐劑。
5.1.6 試劑的儲存
5.1.7 試劑儲存於 2-10℃，未曾開封可保存至保存期限，開封後其活性可維持至保存期限或是到有效期為止。
5.1.8 試劑更換批號，需執行平行測試，以確保新批號試劑符合檢驗需求。
5.2 耗材
5.2.1 96 well U-shaped microplate（96 孔 U 型盤）。
5.2.2 10 μL、100 μL Tips。
衛生福利部疾病管制署傳染病標準檢驗方法

編號：TPPA（Treponema Pallidium Particle Agglutination）標準檢驗方法

核准日期：年月日
修訂日期：年月日

頁次：第630頁共1104頁

6 儀器設備
 6.1 100 μL、25 μL Pipette（微量吸管）。
 6.2 U型盤磁攪拌器。
 6.3 計時器。

7 環境設施安全
於生物安全第二級（BSL-2）實驗室之設施內操作。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體前處理
 10.1.1 核對檢驗單之個案與檢體是否相符。
 10.1.2 血液放置常溫30分鐘以上，離心2,000 rpm、15分鐘，取血清/血漿至2 mL檢體保存管，標示號碼。
 10.1.3 取出實驗所需用量後，將檢體移放-80℃冰箱永久保存。
 10.1.4 血清檢體56℃，30分鐘不活化，血漿檢體不要活化。

10.2 步驟
 10.2.1 將試劑、對照組及檢體放置於室溫（20-25℃）回溫。
 10.2.2 復元凍乾品。
 10.2.3 感作粒子及未感作粒子於使用前30分鐘在室溫（20-25℃）下加入定量溶解用液調製。
 10.2.4 各試劑組中的試劑經過標準化可產生適當反應，不同批號的試藥請勿混合使用。

10.2.5 定性法
 10.2.5.1 用微量吸管滴入血清稀釋用液於96孔U型盤，第1孔加100 μL，第2-4孔各加25 μL。
 10.2.5.2 用微量吸管取25 μL待測檢體加入96孔U型盤第1孔，混合均勻後吸出25 μL加入第2孔，依此類推2倍序列稀釋至第4孔混合均勻後吸出25 μL丢棄。稀釋倍數為1：5-1：40。
 10.2.5.3 陽性對照血清同檢體，取25 μL加入檢體96孔U型盤第一排第1孔，序列稀釋方法同10.2.4.2。
 10.2.5.4 用微量吸管於第3孔滴入25 μL未感作粒子，第4孔
衛生福利部疾病管制署傳染病標準檢驗方法

編號：TPPA（Treponema Pallidium Particle Agglutination）標準檢驗方法

核准日期：年 月 日
修訂日期：年 月 日

第 631 頁 / 共 1104 頁

10.2.5.5 將 U 型盤置於振盪器，以不使內容物被振的程度出振搖 30 秒混勻之，加蓋於室溫（20-25°C）水平靜置，2 小時後觀察箱上觀察反應像並記錄。

10.2.6 定量法

10.2.6.1 用微量吸管滴入血清稀釋用液於 96 孔 U 型盤，第 1 孔加 100 μL，第 2-12 孔各加 25 μL。

10.2.6.2 用微量吸管取 25 μL 待測檢體加入 96 孔 U 型盤第 1 孔，混合均勻後吸出 25 μL 加入第 2 孔，依此類推 2 倍序列稀釋至第 12 孔混合均勻後吸出 25 μL 丟棄。稀釋倍數為 1:40-1:10240。

10.2.6.3 陽性對照血清視同檢體，取 25 μL 加入檢體 96 孔 U 型盤第一排第 1 孔，序列稀釋方法同 10.2.5.2。

10.2.6.4 用微量吸管於第 3 孔滴入 25 μL 未感作粒子，第 4 孔到第 12 孔滴入 25 μL 感作粒子。第 3 孔最終稀釋倍數為 1:40，第 4 孔到第 12 孔最終稀釋倍數為 1:80-1:20480。

10.2.6.5 U 型盤置振盪器，以不使內容物被振的程度出振摇，加蓋於室溫（20-25°C）水平靜置，2 hr 後觀察箱上觀察反應像並記錄。

10.2.7 吸收操作

若判讀時未感作粒子及感作粒子同時呈現（±）以上的凝集，需作吸附程序試驗。

10.2.7.1 取 50 μL 檢體加 950 μL 未感作粒子混合均勻室溫（20-25°C）放置 20 分鐘以上。

10.2.7.2 離心分離（2000 rpm，5 分鐘），取上清液 50 μL 加入 96 孔 U 型盤第 3 孔（1:20），96 孔 U 型盤第 4-12 孔各加 25 μL 血清稀釋用液，由第 3 孔吸出 25 μL 加入第 4 孔序列稀釋依此類推序列稀釋至第 12 孔混合均勻後吸出 25 μL 丟棄。

10.2.7.3 操作步驟同 10.2.5.2，10.2.5.4。

11 結果判定

11.1 判讀標準

11.1.1 反應像判讀：U 型盤靜置於判定用觀察箱上，觀察粒子的反應像。反應像與空白對照（medium）請參照表 1 及圖例判讀之。

11.1.2 梅毒血清效價判讀標準

11.1.2.1 陽性（reactive）未感作粒子（最終稀釋倍數 1:40）的反應為（－），而感作粒子（最終稀釋倍數 1:80 以上）的反應像為
衛生福利部疾病管制署傳染病標準檢驗方法

編號：TPPA（Treponema Pallidium Particle Agglutination）標準檢驗方法

核准日期：年 月 日
修訂日期：年 月 日

頁次：第 632 頁/共 1104 頁

11.1.2.1 陽性（positive）

定量法中最終稀釋倍數反應像為(+)時，可判定為陽性。定性法中最終稀釋倍數反應像為(+)，其所對應的稀釋倍數就是抗體效價，如 1:80、1:160、1:320、1:640、1:1280、1:2560、1:5120、>1:5120。

11.1.2.2 陰性（non-reactive）

比對未感作粒子的反應像，若感作粒子稀釋倍數（最終稀釋倍數 1:80）的反應像為(-)，則可判定為陰性(-)。

11.1.2.3 保留

未感作粒子（最終稀釋倍數 1:40）的反應像為(-)，而感作粒子（最終稀釋倍數 1:80）的反應像為(±)時，則予以保留。

11.1.2.4 表 1 粒子反應像結果判讀

<table>
<thead>
<tr>
<th>反應像</th>
<th>判讀</th>
</tr>
</thead>
<tbody>
<tr>
<td>粒子凝集如鈕釦狀，外緣呈現均等的平滑圓形</td>
<td>(-)</td>
</tr>
<tr>
<td>粒子形成小指環狀，外緣呈現均等的平滑圓形</td>
<td>(±)</td>
</tr>
<tr>
<td>粒子形成明顯且較大的指環狀，外緣可見不均等的凝集現象</td>
<td>(+)</td>
</tr>
<tr>
<td>粒子呈均一凝集狀，凝集粒子如膜狀廣佈 well 底部全體</td>
<td>(++)</td>
</tr>
</tbody>
</table>

11.1.2.5 判讀圖例

11.2 報告核發

TPPA 陽性（reactive）(效價：)，TPPA 陰性（non-reactive）。

11.3 結果登錄

完成檢驗後，將檢驗結果登錄於「TPPA（Treponema pallidium particle agglutination）梅毒螺旋體粒子凝集試驗紀錄表」及檢體送驗單並加蓋檢驗者印章，經核驗者確認及蓋章後，送實驗室主管審核及蓋章，並登錄於網路報告系統。
12 品質管制

12.1 內部品管

12.1.1 品管頻率：依實驗室品管政策所定頻率及新開試劑組或更改檢驗程序時。

12.1.2 品管物質：陽性對照血清（positive control serum）。

12.1.3 品管操作步驟：與檢體相同。

12.1.4 品管測試結果必須符合下列標準

12.1.4.1 各檢體與未感作粒子（最終稀釋倍數 1：40）的反應為（-）。

12.1.4.2 陽性對照血清（positive control serum）效價應為 1：320（最終稀釋倍數）。

12.1.5 品管測試結果若有違背品管允收標準應依矯正及預防措施作業程序，加以矯正，必要時採取預防措施。

12.2 室外品管

12.2.1 參加外部能力測試機構舉辦之能力測試或實驗室間比對。

12.2.2 於每年底提出下一年度之參加計畫。

12.2.3 接獲能力測試檢體時，應立即打開包裝，檢視檢體是否完整，若有洩漏或破損，應立即通知代理廠商處理。

12.2.4 每支能力測試檢體應依照檢體的操作步驟測定，不應特別處理。用剩之品管檢體應於-20℃保存，以供日後必要時之複驗。

12.2.5 能力測試結果，應於規定時間內寄出，同時影印副本保存。

12.2.6 能力測試結果，應作為重要品質參考依據若有偏離允許範圍之情形發生，應依矯正及預防措施作業程序，加以矯正及採取預防措施。

12.2.7 每次能力測試處理過程登記於「能力試驗摘要紀錄表」。

13 廢棄物處理

檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

TPPA 試劑說明書。

15 附錄

15.1 TPPA（Treponema pallidium particle agglutination）梅毒螺旋體粒子凝集試驗定性法檢體稀釋操作簡圖。

15.2 TPPA（Treponema pallidium particle agglutination）梅毒螺旋體粒子凝集試驗定量法檢體稀釋操作簡圖。

15.3 TPPA（Treponema pallidium particle agglutination）梅毒螺旋體粒子凝集試驗定性法流程圖。

15.4 TPPA（Treponema pallidium particle agglutination）梅毒螺旋體粒子凝集試驗定量法流程圖。
附錄 15.1 TPPA（Treponema pallidium particle agglutination）梅毒螺旋體粒子凝集試驗定性法檢體稀釋操作簡圖。

<table>
<thead>
<tr>
<th>Well No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>血清稀釋用液（μL）</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>檢體或對照用陰性血清（μL）</td>
<td>100</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>檢體稀釋倍數</td>
<td>1:5</td>
<td>1:10</td>
<td>1:20</td>
<td>1:40</td>
</tr>
<tr>
<td>末感作答子（μL）</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>感作答子（μL）</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>最終稀釋倍數</td>
<td>1:40</td>
<td>1:80</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

附錄 15.2 TPPA（Treponema pallidium particle agglutination）梅毒螺旋體粒子凝集試驗定量法檢體稀釋操作簡圖。

<table>
<thead>
<tr>
<th>Well No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>檢體稀釋倍數</td>
<td>1:5</td>
<td>1:10</td>
<td>1:20</td>
<td>1:40</td>
<td>1:80</td>
<td>1:160</td>
<td>1:320</td>
<td>1:640</td>
<td>1:1280</td>
<td>1:2560</td>
<td>1:5120</td>
<td>1:10240</td>
</tr>
<tr>
<td>末感作答子（μL）</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>
附錄 15.3 TPPA（Treponema pallidium particle agglutination）梅毒螺旋體粒子凝集試驗定性法流程圖。

1. 將試劑、控制組及検體放置於室溫（20-25℃）回溫
2. 用微量滴管滴入血清稀釋用液於 U 型盤，第 1 孔加 100 μL，第 2-4 孔各加 25 μL
3. 用微量滴管取 25 μL 待測檢體加入 96 孔 U 型盤第 1 孔，混合均勻後吸出 25 μL 加入第 2 孔，依此類推序列稀釋至第 4 孔混合均勻後吸出 25 μL 丟棄
4. 用微量滴管於第 3 孔滴入 25 μL 未感作粒子，第 4 孔滴入 25 μL 感作粒子
5. U 型盤置振盪器，以不使內容物被振的程度出振搖，加蓋於室溫（20-25℃）水平靜置，2 小時後觀察箱上觀察反應像並記錄

陽性對照血清視同検體，取 25 μL 加入 96 孔 U 型盤第一排第 1 孔
附錄 15.4 TPPA (Treponema pallidium particle agglutination) 梅毒螺旋體粒子凝集試驗定量法流程圖。

將試劑、對照組及檢體放置於室溫（20-25℃）回溫

用微量滴管滴入血清稀釋用液於 U 型盤，第 1 孔加 100 μL，第 2-12 孔各加 25 μL

用微量滴管取 25 μL 待測檢體加入 96 孔 U 型盤第 1 孔，混合均勻後吸出 25 μL 加入第 2 孔，依此類推序列稀釋至第 12 孔混合均勻後吸出 25 μL 丟棄

用微量滴管於第 3 孔滴入 25 μL 未感作粒子，第 4-12 孔孔滴入 25 μL 感作粒子

U 型盤置振盪器，以不使內容物被振的程度出振搖，加蓋於室溫（20-25℃）水平靜置，2 小時後觀察箱上觀察反應像並記錄

陽性對照血清視同檢體，取 25 μL 加入 96 孔 U 型盤第一排第 1 孔
衛生福利部疾病管制署傳染病標準檢驗方法

編號：TPHA（Treponema Pallidium Hemagglutination Agglutination）標準檢驗方法
核准日期：年 月 日
修訂日期：年 月 日

1 目的
檢測血清或血漿檢體中梅毒螺旋體特異性抗體（Treponema pallidium antibody）及抗體力價。

2 適用檢體種類
血清、CSF 檢體。

3 名詞解釋
3.1 血清（serum）：血液凝固後，除去固態成份後的清亮液體，不含纖維蛋白原。
3.2 血漿（plasma）：血液的液體部分，含有血清及纖維蛋白原，後者在凝血上具有一定作用。

4 原理概述
以梅毒螺旋體做為抗原吸附在禽類紅血球上，在加入患者血清時，紅血球表現上的抗原即與血清抗體反應進行特異性結合，從而使紅血球被動地凝集在一起，根據紅血球凝集程度即可判讀結果。

5 試劑耗材
5.1 檢測試劑
5.1.1 Test Cells：Treponema pallidium antigen coated preserved fowl erythrocytes（approximately 0.36% W/V）in buffer。
5.1.2 Diluent：Selected rabbit serum（approximately 0.4%）in buffer。
5.1.3 Control Cells：Preserved fowl erythrocytes（approximately 0.36% W/V）in buffer。
5.1.4 Positive Control：Serum prediluted（1：20）in buffer containing antibodies to Treponema pallidium。
5.1.5 Negative Control：Serum prediluted（1：20）in buffer free of antibodies to Treponema pallidium。
5.1.6 試劑的儲存
5.1.7 試劑儲存於 2-8℃，未曾開封可保存至保存期限，開封後其活性可維持至保存期限或是到有效期為止。
5.1.8 試劑更換批號，需執行平行測試，以確保新批號試劑符合檢驗需求。
5.2 耗材
5.2.1 96 well U-shaped microplate（96 孔 U 型盤）。
5.2.2 10 µL、100 µL Tips。

6 儀器設備
6.1 100 µL、25 µL Pipette（微量吸管）。
6.2 U 型盤置振盪器。
6.3 計時器。
<table>
<thead>
<tr>
<th>編號：</th>
<th>TPHA（Treponema Pallidium Hemagglutination Agglutination）標準檢驗方法</th>
<th>核准日期：年月日</th>
</tr>
</thead>
<tbody>
<tr>
<td>頁次：第638頁/共1104頁</td>
<td>修訂日期：年月日</td>
<td></td>
</tr>
</tbody>
</table>

7 環境設施安全
於生物安全第二級（BSL-2）實驗室之設施內操作。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowt reeid=6C7C52E7A7D5621A。

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowt reeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體前處理
10.1.1 核對檢驗單之個案與檢體是否相符。
10.1.2 血液放置常溫30分鐘以上，離心2,000 rpm、15分鐘，取血清/血漿至2 mL檢體保存管，標示號碼。
10.1.3 取出實驗所需用量後，將檢體移放-80℃冰箱永久保存。
10.1.4 血清檢體56℃，30分鐘不活化。

10.2 步驟
10.2.1 將試劑、對照組及檢體放置於室溫（20-25℃）回溫。
10.2.2 各試劑組中的試劑經過標準化可產生適當反應，不同批號的試藥請勿混合使用。

10.2.3 定性法
10.2.3.1 用微量吸管滴入diluent於96孔U型盤，第1、3、4孔各加25 μL，第2孔各加100 μL。
10.2.3.2 用微量吸管取25 μL待測檢體加入96孔U型盤第1孔，混合均勻後吸出25 μL加入第2孔混合均。
10.2.3.3 自第2孔分別取出25 μL加入第3孔及第4孔混合均勻後吸出25 μL丟棄。第3孔及第4孔稀釋倍數為1：20。
10.2.3.4 陽性及陰性對照血清（已1：20稀釋），直接取25 μL加入96孔U型盤第3孔及第4孔。
10.2.3.5 用微量吸管於第3孔滴入75 μL Control Cells，第4孔滴入75 μL Test Cells。第3孔及第4孔最終稀釋倍數為1：80。
10.2.3.6 將U型盤置於振盪器，以不使內容物被振出的程度出振搖30秒混勻之，加蓋於室溫（20-25℃）水平靜置，45-60分鐘（或過夜）後觀察箱上觀察反應像並記錄。
10.2.4 定量法

10.2.4.1 用微量吸管滴入血清稀释液于 96 孔 U 型盘，第 1 孔加 25 μL，第 2 孔加 100 μL，第 3-8 孔各加 25 μL。

10.2.4.2 用微量吸管取 25 μL 待测检体加入 96 孔 U 型盘第 1 孔，混合均匀后吸出 25 μL 加入第 2 孔。用微量吸管取第 2 孔的稀释检体 25 μL 加入第 3 孔混合均匀后吸出 25 μL 丢弃。第 3 孔稀释倍数为 1：20。

10.2.4.3 用微量吸管取第 2 孔的稀释检体 25 μL 加入第 4 孔混合均匀后吸出 25 μL 加入第 5 孔，依此推 2 倍序列稀释至第 10 孔混合均匀，井自第 10 孔吸出 25 μL 丢弃。第 4-10 孔稀释倍数为 1：20-1：1280。

10.2.4.4 用微量吸管滴入 25 μL 血清稀释液于 96 孔 U 型盘的第 5-10 孔。

10.2.4.5 用微量吸管於第 3 孔滴入 75 μL Control Cells，第 4-10 孔滴入 75 μL Test Cells。第 3 孔及第 4 孔最终稀释倍数为 1：80，第 4 孔-18 孔最终稀释倍数为 1：160-1：5120。

10.2.4.6 将 U 型盘置于振荡器，以不使内容物被振出的程度出振。30 秒混匀后，加于室温 (20-25℃) 水平静置，45-60 分钟（或过夜）后观察箱上观察反应像并记录。

10.2.5 吸收操作

结果为保留（not valid），应将待测血清进行吸附前处理后重做试验。

10.2.5.1 将待测血清与 Control Cells 1：4 混合稀释后，置於室温 45-60 分钟。

10.2.5.2 非心分离（1000 rpm，5 分钟）取出上清液与稀释液 1：5 混合稀释后，取此稀释后血清检体与 Test Cells 和 Control Cells 悬浮液进行测试。

11 结果判定

11.1 判读标准

11.1.1 反应像判读：U 型盘静置于判定用观察箱上，观察粒子的反应像。反应像与空白对照（medium）请参照表 1 及图例判读之。
11.1.2 梅毒血清效價判讀標準

11.1.2.1 陽性（reactive）
Control Cells（最終稀釋倍數 1：80）的反應為（－），
而 Test Cells（最終稀釋倍數 1：80 以上）的反應像為
（＋）時，可判定為陽性。定量法中最終稀釋倍數反
應像為（＋）其所對應的稀釋倍數就是抗體價，如 1:80、
1:160、1:320、1:640、1:1280、1:2560、1:
5120、>1:5120。

11.1.2.2 陰性（non-reactive）
比對 Control Cells 的反應像，若感作粒子 Test Cells
稀釋倍數（最終稀釋倍數 1：80）的反應像為（－），
則可判定為陰性（－）。

11.1.2.3 保留
Control Cells（最終稀釋倍數 1：80）的反應像為（－），
而 Test Cells（最終稀釋倍數 1：80）的反應像為（±）
時，則予以保留。

11.1.2.4 表 1 粒子反應像結果判讀

<table>
<thead>
<tr>
<th>反應像</th>
<th>判讀</th>
</tr>
</thead>
<tbody>
<tr>
<td>粒子凝集如頭砧狀，外緣呈現均等的平滑圓形</td>
<td>（－）</td>
</tr>
<tr>
<td>粒子形成小指環狀，外緣呈現均等的平滑圓形</td>
<td>（±）</td>
</tr>
</tbody>
</table>
| 粒子形成明顯及偏的指環狀，外緣可見不均
等的凝集現象 | （＋） |
| 粒子呈均一凝集狀，凝集粒子如膜狀廣佈 well
底部全體 | （++） |

11.1.2.5 判讀圖例

11.2 報告核發
TPHA 陽性（reactive）（效價：），TPHA 陰性（non-reactive）。
11.3 結果登錄
完成檢驗後，將檢驗結果登錄於「TPPA（*Treponema pallidium* particle agglutination）梅毒螺旋體粒子凝集試驗紀錄表」及檢體送驗單並加蓋檢驗者印章，經核驗者確認及蓋章後，送實驗室主管審核及蓋章，並登錄於網路報告系統。

12 品質管制

12.1 內部品管

12.1.1 品管頻率：依實驗室品管政策所定頻率及新開試劑組或更改檢驗程序時。

12.1.2 品管物質：陽性對照血清（positive control serum），陰性對照血清（negative control serum）。

12.1.3 品管操作步驟：與檢體相同。

12.1.4 品管測試結果必須符合下列標準

12.1.4.1 各檢體與 Control Cells（最終稀釋倍數 1：80）的反應為（－）。

12.1.4.2 陽性對照血清（positive control serum）效價應為 1：2560±1 個 2 倍稀釋（最終稀釋倍數），陰性對照血清（negative control serum）為陰性反應。

12.1.5 品管測試結果若有違背品管允收標準應依矯正及預防措施作業程序，加以矯正，必要時採取預防措施。

12.2 室外品管

12.2.1 參加外部能力測試機構舉辦之能力測試或實驗室間比對。

12.2.2 於每年底提出下一年度之參加計畫。

12.2.3 接獲能力測試檢體時，應立即打開包裝，檢視檢體是否完整，若有洩漏或破損，應立即通知代理廠商處理。

12.2.4 每支能力測試檢體應比照檢體的操作步驟測定，不應特別處理。用剩之品管檢體應於 -20℃ 保存，以供日後必要時之複驗。

12.2.5 能力測試結果，應於規定時間內寄出，同時影印副本保存。

12.2.6 能力測試結果，應作為重要品管參考依據若有偏離允許範圍之情形發生，應依矯正及預防措施作業程序，加以矯正及採取預防措施。

12.2.7 每次能力測試處理過程登記於「能力試驗摘要紀錄表」。

13 廢棄物處理

檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

TPHA 試劑說明書。
15 附錄
15.1 TPHA (Treponema pallidium hemagglutination agglutination) 梅毒螺旋體血球凝集試驗定性法檢體稀釋操作簡圖。
15.2 TPHA (Treponema pallidium hemagglutination agglutination) 梅毒螺旋體血球凝集試驗定量法檢體稀釋操作簡圖。
15.3 TPHA (Treponema pallidium hemagglutination agglutination) 梅毒螺旋體血球凝集試驗定性法流程圖。
15.4 TPHA (Treponema pallidium hemagglutination agglutination) 梅毒螺旋體血球凝集試驗定量法流程圖。
附錄 15.1 TPHA（Treponema pallidium hemagglutination agglutination）梅毒螺旋體血球凝集試驗定性法檢體稀釋操作簡圖。

附錄 15.2 TPHA（Treponema pallidium hemagglutination agglutination）梅毒螺旋體血球凝集試驗定量法檢體稀釋操作簡圖。
附錄 15.3 TPHA（Treponema pallidium hemagglutination agglutination）梅毒螺旋體血球凝集試驗定性法流程圖。

將試劑、對照組及檢體放置於室溫（20-25℃）回溫。

用微量吸管滴入血清稀釋用液於96孔U型盤，第1、3、4孔各加25μL，第2加100μL。

用微量吸管取25μL待測檢體加入96孔U型盤第1孔，混合均勻後吸出25μL加入第2孔，混合均勻後分別取25μL加入第3、4孔，混合均勻後吸出25μL丟棄。

陽性對照血清、陰性對照血清當同檢體，各取25μL加入檢體96孔U型盤第一排第3、4孔。

用微量吸管於第3孔滴入75μL Control Cells，第4孔滴入75μL Test Cells。

將U型盤重於振盪器，以不使內容物被振出的程度出振搖30秒混勻後，加蓋於室溫（20-25℃）水平靜置，45-60分鐘（或過夜）後觀察箱上觀察反應像。
附錄15.4 TPHA（Treponema pallidium hemagglutination agglutination）梅毒螺旋體血球凝集試驗定量法流程圖。

將試劑、對照組及檢體放置於室溫（20-25℃）回溫

用微量吸管滴入血清稀釋用液於96孔U型盤，第1、3-10孔各加25μL，第2加100μL

用微量吸管取25μL待測檢體加入96孔U型盤第1孔，混合均勻後吸出25μL加入第2孔，混合均勻後吸25μL加入第3，混合均勻後吸出25μL丢棄

用微量吸管取自96孔U型盤第2孔25μL加入第4孔，混合均勻後吸出25μL加入第5孔混合均勻，依此類推2倍序列稀釋至第10孔混合均勻，並自第10孔吸出25μL丟棄

用微量吸管於第3孔滴入75μL Control Cells，第4孔滴入75μL Test Cells

用微量吸管取陽性及陰性對照血清25μL加入第5孔混合均勻後取25μL加入第6孔，依此類推序列稀釋至第10孔混合均勻後吸出25μL丟棄

將U型盤置於振盪器，以不使內容物被振出的程度出振搖30秒混勻後，加蓋於室溫（20-25℃）水平靜置45-60分鐘（或過夜）後觀察箱上觀察反應像
1 目的
培養鑑定奈氏淋病雙球菌（Neisseria gonorrhoeae）。

2 適用檢體種類
尿液、泌尿生殖道分泌物、肛門直腸拭子、咽喉拭子與眼睛分泌物。

3 名詞解釋
無。

4 原理概述
4.1 利用巧克力平板（chocolate agar plate）及改良式淋病雙球菌培養基（modified Thayer-Martin agar，MTM agar）分離奈氏淋病雙球菌（Neisseria gonorrhoeae）。
4.2 以菌落特性、革藍氏染色（Gram Stain）觀察菌體顯微型態及生化代謝特性鑑定奈氏淋病雙球菌（Neisseria gonorrhoeae）。

5 試劑耗材
5.1 檢測試劑
5.1.1 巧克力平板（chocolate agar plate）。
5.1.2 改良式淋病雙球菌培養基（modified Thayer-Martin agar，MTM agar）。
5.1.3 革蘭氏染色液（Gram's stain solution）。
5.1.4 VITEK 2 NH 鑑定卡。
5.1.5 氧化酶試劑（oxidase strips）。
5.1.6 過氧化氫（30% hydrogen peroxide）。
5.1.7 無菌生理食鹽水。
5.1.8 試劑的儲存
5.1.8.1 巧克力平板（chocolate agar plate）、改良式淋病雙球菌培養基（modified Thayer-Martin agar，MTM agar）、VITEK 2 NH 鑑定卡儲存於2-8℃。
5.1.8.2 革蘭氏染色液（Gram's stain solution）、氧化酶試劑（oxidase strips）、過氧化氫（30% hydrogen peroxide）儲存於室溫。
5.1.9 試劑更換批號，需執行平行測試，以確保新批號試劑符合檢驗需求。
5.2 耗材
5.2.1 接種針（環）。
5.2.2 玻片。
5.2.3 無菌吸管。
5.2.4 濾紙。
儀器設備
6.1 培養箱。
6.2 第二級生物安全操作台（class II BSC）。
6.3 顯微鏡。
6.4 微生物自動鑑定儀：VITEK 2。

環境設施安全
於生物安全第二等級（BSL-2）實驗室之設施內操作。

檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

檢驗步驟
10.1 檢體前處理
 10.1.1 核對檢驗單之個案與檢體是否相符。
 10.1.2 尿液檢體以 3,000 轉離心 15 分鐘，並去掉上清液，再取沉澱物接種。

10.2 步驟
 10.2.1 檢體接種
 10.2.1.1 巧克力平板（chocolate agar plate）、改良式淋病雙球菌培養基（modified Thayer-Martin agar，MTM agar）。
 10.2.1.2 尿液檢體離心後以無菌接種環取沉澱物接種於巧克力平板（chocolate agar plate）、改良式淋病雙球菌培養基（modified Thayer-Martin agar，MTM agar）。
 10.2.1.3 泌尿生殖道分泌物、肛門直腸拭子、咽喉拭子與眼睛分泌物檢體直接接種於巧克力平板（chocolate agar plate）、改良式淋病雙球菌培養基（modified Thayer-Martin agar，MTM agar）。
 10.2.1.4 檢體接種於培養基執行 3-4 區劃線法，接種完置於 35-37℃，5% CO₂ 培養箱，培養 16-18 小時觀察。

10.2.2 菌落觀察
觀察巧克力平板（chocolate agar plate）、改良式淋病雙球菌培養基（modified Thayer-Martin agar，MTM agar）上生長之菌落，若有小顆粒狀微凸起、光滑有光澤、圓形無色或乳白略帶灰色、半透明黏稠、直徑約為 0.5-1 mm 之菌落，則疑似為奈氏淋病雙球菌（Neisseria gonorrhoeae），若無菌落生長則持續觀察 72 小時。
10.2.3 革蘭氏染色（Gram Stain）
取3 µL生理食盐水於玻片上以接种环取菌落，涂抹於玻片上
与生理食盐水混合均匀，将玻片烤乾固定，进行染色（参照革
兰氏染色作业程序）。以显微镜100X油镜观察应为Gram
negative diplococcus，红色肾形状成双排列。

10.2.4 Oxidase test
以接种环挑取疑似菌落直接涂於strip上，观察颜色变化，10
秒内变為蓝色，为阳性反应。

10.2.5 Superoxol test
以接种环挑取疑似菌落（三至四个菌落，量太少发泡会不明顯）
塗抹於乾淨玻片上，以滴管取30%過氧化氫（H₂O₂）滴在疑似
菌落上，應立即产生大量気泡为陽性反应。

10.2.6 VITEK 2 NH 鑑定卡
取分離新鮮培養之菌株依說明书配製菌液，将菌液、NH鑑定
卡依操作手冊上機判讀結果。電腦軟體顯示可信度需達95%以
上的结果才可以接受。

11 結果判定
11.1 判讀標準
奈色氏淋病雙球菌（Neisseria gonorrhoeae）陽性需符合以下條件，若
其中有一不符合者，即判定為奈色氏淋病雙球菌陰性（No growth for
Neisseria gonorrhoeae）。

<table>
<thead>
<tr>
<th>試驗</th>
<th>Neisseria gonorrhoeae</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Chocolate agar-MTM agar上典型菌落外观特徴</td>
<td>凸起、光滑有光泽圆形无色、或乳白略带灰色黏稠之菌落</td>
</tr>
<tr>
<td>2. Gram Stain</td>
<td>Gram negative diplococcus，红色腎形状成双排列，直径约在0.6至</td>
</tr>
<tr>
<td></td>
<td>0.8 µm 左右</td>
</tr>
<tr>
<td>3. Oxidase Test</td>
<td>陽性，呈现蓝色或蓝紫色</td>
</tr>
<tr>
<td>4. Superoxol Test</td>
<td>陽性，立即产生大量気泡</td>
</tr>
<tr>
<td>5. VITEK 2 NH ID Card</td>
<td>Neisseria gonorrhoea</td>
</tr>
<tr>
<td></td>
<td>電腦軟體顯示可信度需達95%以上</td>
</tr>
</tbody>
</table>

11.2 報告核發
奈色氏淋病雙球菌（Neisseria gonorrhoea）阳性，奈色氏淋病雙球菌
（Neisseria gonorrhoea）陰性（No growth for Neisseria gonorrhoea）。

11.3 結果登錄
完成検驗後，将検验结果登录於「奈色氏淋病双球菌分離與鑑定紀錄
表奈色氏淋病双球菌（Neisseria gonorrhoeae）分離與鑑定紀錄表」及
検體送验單並加蓋検验者印章，經核驗者確認及盖章後，送實驗室主
管審核及蓋章，並登錄於網路報告系統。
12 品質管制
12.1 內部品管
12.1.1 MTM（modified Thayer-Martin）agar之品質管制。
12.1.2 品管頻率：每一批號由廠商提供品質管制文件，實驗室每季進行一次品管測試。
12.1.3 測試菌株：Neisseria gonorrhoeae ATCC 49226、Staphylococcus epidermidis ATCC14990。
12.1.4 測試方法：使用新鮮的測試菌，生長在固體營養培養基一天的菌，挑菌懸浮於2 mL無菌水中，調菌液濁度0.5 McFarland，以1 mL Loop取菌液接種於測試培養基上，35℃，3-7% CO₂二氧化碳培養箱培養。
12.1.5 品管測試結果必須符合下列標準
12.1.5.1 Neisseria gonorrhoeae ATCC 49226，24小時後可見1-2 mm菌落。
12.1.5.2 Staphylococcus epidermidis ATCC14990，24小時後沒有菌落生長或生長菌落稀少。
12.1.6 品管測試結果若有違背品管允收標準應依矯正及預防措施作業程序，加以矯正，必要時採取預防措施。

1.1 外部品管
12.1.7 參加外部能力測試機構舉辦之能力測試或實驗室間比對。
12.1.8 於每年底提出下一年度之參加計畫。
12.1.9 接獲能力測試檢體時，應立即打開包裝，檢視檢體是否完整，若有洩漏或破損，應立即通知代理廠商處理。
12.1.10 每支能力測試檢體應比照檢體的操作步驟測定，不應特別處理。用剩之品管檢體應適當保存，以供日後必要時之複驗。
12.1.11 能力測試結果，應於規定時間內寄出，同時影印副本保存。
12.1.12 能力測試結果，應作為重要品管參考依據，若有偏離允許範圍之情形發生，應依矯正及預防措施作業程序，加以矯正及採取預防措施。
12.1.13 每次能力測試處理過程登記於「能力試驗摘要紀錄表」。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以121℃，30 min高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
蔡文城。2011。實用臨床微生物診斷學，第十版。九州圖書文物有限公司，臺灣。

15 附錄
奈氏氏淋病雙球菌（Neisseria gonorrhoeae）分離與鑑定流程圖。
附錄 奈氏淋病雙球菌（Neisseria gonorrhoeae）分離與鑑定流程圖

檢體類接種 chocolate agar plate，MTM agar，置入 35-37°C，5% CO₂ 培養

72 小時觀察，無可疑菌落

16-18 小時觀察生長情形，菌落型態：小顆粒狀微凸起、光滑有光澤、圓形無色或乳白略帶灰色、半透明黏稠、直徑約為 0.5-1 mm 之菌落為疑似 N. gonorrhoeae

挑取疑似菌落，Gram Stain

Gram positive
Gram negative diplococcus，紅色腎形狀成雙排列

Superoxol Test Oxidase Test

陰性 陽性

VITEK 2 NH ID Card

其他菌種 N. gonorrhoeae

N. gonorrhoeae 陰性 N. gonorrhoeae 陽性
1 目的
鑑定細菌的型態、大小、外觀、以及對革蘭氏染色的反應。

2 適用檢體種類
2.1 血液、尿液、膿、體液、痰液、分泌物檢體。
2.2 培養培養基平板上生成待鑑定之菌株。
2.3 直接塗抹病灶抹片。

3 名詞解釋
無

4 原理概述
革蘭氏染色法主要是利用細菌細胞壁構造的差異，以染色液將細菌染成不同顏色，被染成紫色的細菌為革蘭氏陽性菌，被染成紅色的細菌為革蘭氏陰性菌，為目前細菌分類的重要依據。

5 試劑耗材
5.1 檢測試劑
5.1.1 革蘭氏染色液（Gram's stain solution）。
5.1.2 無菌生理食鹽水：取氯化鈉 8.5 g 溶於 1,000 mL 蒸餾水中，以 121°C 滅菌 15 min。
5.1.3 試劑的儲存：試劑儲存於室溫保存至有效期限為止。
5.1.4 試劑更換批號，需執行平行測試，以確保新批號試劑符合檢驗需求。
5.2 耗材
5.2.1 接種針（環）。
5.2.2 載玻片及蓋玻片。
5.2.3 無菌吸管。
5.2.4 濾紙。

6 儀器設備
6.1 顯微鏡。
6.2 第二級生物安全操作台（class II BSC）。

7 環境設施安全
於生物安全第二等級（BSL-2）實驗室之設施內操作。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。
9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 抹片製作
10.1.1 菌株: 使用接種針（環），挑取 1-5 個生長於培養基上之菌落，於載玻片上塗布製成薄抹片，待菌液完全風乾後，將載玻片在火燄上來回數次固定。
10.1.2 血液: 以 3,000 xg 離心 20 分鐘，吸除大部分上清液，留下約 0.5 mL 的液體，經劇烈震盪至少 30 秒以重新懸浮沉澱後，取 1 滴於載玻片上塗開，待其自然風乾後，將載玻片於火燄上過火數次固定。
10.1.3 腦脊髓液及其他體液: 以 3,000 xg 離心 20 分鐘，吸除大部分上清液，留下約 0.5 mL 的液體，經劇烈震盪至少 30 秒，取 1 滴置於載玻片上，不要塗開液體，待其自然風乾後，將載玻片於火燄上過火數次固定。
10.2 初染：將已固定之抹片，用哈克氏結晶紫染液染 1 min，水洗，水洗應不超過 5 秒。
10.3 媒染：加革蘭氏碘液作用 1 分鐘，水洗。
10.4 脫色：用 95%乙醇洗至不再有紫色褪出時，再以自來水沖洗，此步驟需時甚短，僅數秒即可，惟視抹片之厚薄而定。
10.5 複染：用哈克氏複染液染 30 秒，水洗。
10.6 自然風乾。
10.7 鏡檢：以顯微鏡觀察。

11 結果判定
11.1 判讀標準
11.1.1 革蘭氏陽性：深藍色、藍紫色或紫色。
11.1.2 革蘭氏陰性：粉紅色或紅色。
11.2 報告核發
Gram（－）diplococcus 或其他（Gram（＋）coccus，Gram（－）coccus，Gram（＋）bacilli，Gram（－）bacilli，Gram（＋）diplococcus，Yeast like）。
11.3 結果登錄
完成檢驗後，將檢驗結果登錄於「革蘭氏染色紀錄表」及檢體送驗單並加蓋檢驗者印章，經核驗者確認及蓋章後，送實驗室主管審核及蓋章，並登錄於網路報告系統。
12 品質管制
12.1 內部品管
12.1.1 品管頻率：依實驗室品管政策所定頻率及新開試劑組或更改檢
驗程序時。
12.1.2 品管物質：革蘭氏陽性球菌標準菌株 Staphylococcus aureus
ATCC 75923 及革蘭氏陰性標準菌株 Escherichia coli ATCC
75922。
12.1.3 品管操作步驟：與檢體相同。
12.1.4 品管測試結果必須符合下列標準
12.1.4.1 Staphylococcus aureus ATCC 75923: 革蘭氏陽性，深
藍色、藍紫色或紫色。
12.1.4.2 Escherichia coli ATCC 75922: 革蘭氏陰性，粉紅色或
紅色。
12.1.5 品管測試結果若有違背品管允收標準應依矯正及預防措施作業
程序，加以矯正，必要時採取預防措施。
12.2 外部品管
12.2.1 參加外部能力測試機構舉辦之能力測試或實驗室間比對。
12.2.2 於每年度提出下一年度之參加計畫。
12.2.3 接獲能力測試檢體時，應立即打開包裝，檢視檢體是否完整，
若有洩漏或破損，應立即通知代理廠商處理。
12.2.4 每支能力測試檢體應比照檢體的操作步驟測定，不應特別處理。
用剩之品管檢體應適當保存，以供日後必要時之複驗。
12.2.5 能力測試結果，應於規定時間內寄出，同時影印副本保存。
12.2.6 能力測試結果，應作為重要品管參考依據若有偏離允許範圍之
情形發生，應依矯正及預防措施作業程序，加以矯正及採取預
防措施。
12.2.7 每次能力測試處理過程登記於「能力試驗摘要紀錄表」。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥
密封，再以 121℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
14.1 蔡文城。2011。實用臨床微生物診斷學，第十版。九州圖書文物有限公
司，臺灣。
of clinical microbiology, 8th edition. American Society for Microbiology,
Washington, DC.

15 附錄
革蘭氏染色流程圖。
衛生福利部疾病管制署傳染病標準檢驗方法

編號： 奈色氏淋病雙球菌染色鏡檢
頁次：第 654 頁/共 1104 頁
(革蘭氏染色法)
核实日期： 年 月 日
修訂日期： 年 月 日

附錄 革蘭氏染色流程圖。

菌株

挑取 1-2 個生長於培養基上之菌落

塗抹於載玻片上

血液

3,000 xg 離心 20 分鐘

腦脊髓液及其他無菌體液

吸除大部分上清液，留下約 0.5 mL 液體

劇烈震盪

取 1 滴置於載玻片

血液

取 1 滴置於載玻片

菌株

塗抹開

風乾

火上來回數次固定

結晶紫染液：1 分鐘

水洗

革蘭氏碘液：1 分鐘

水洗

95%乙醇洗至無紫色褪出

水洗

哈克氏複染液：30 秒鐘

水洗

顯微鏡觀察
目的
以分子生物學之技術利用即時聚合酶連鎖反應（Real-Time-PCR）來檢測檢體中是否有砂眼披衣菌及奈氏淋病雙球菌。

適用檢體種類
女性子宮頸、陰道拭子檢體及男性尿道拭子檢體，女性及男性尿液檢體。

名詞解釋
無

原理概述
利用具特殊專一性之引子（primers）和探針（probe），經由PCR擴增奈氏淋病雙球菌及砂眼披衣菌的目標序列，並以螢光標記探針偵測，篩選檢體是否感染奈氏淋病雙球菌或砂眼披衣菌。

試劑耗材
5.1 檢測試劑
5.1.1 Sample preparation system。
5.1.2 CT/NG amplification reagent kit。
5.1.3 CT/NG control kit。
5.1.4 試劑的儲存：Sample preparation system儲存於室溫保存至有效期限為止，CT/NG amplification reagent kit、CT/NG control kit儲存於-30°C。
5.1.5 試劑更換批號，需執行平行測試，以確保新批號試劑符合檢驗需求。

5.2 耗材
5.2.1 Droper。
5.2.2 Deep well plate。
5.2.3 DiTis（1 mL tips）、DiTis（200 μL tips）。
5.2.4 Reagent vessels。
5.2.5 Reaction vessels。
5.2.6 Master mix tube。
5.2.7 96-well optical reaction plate。
5.2.8 光學增強膜。

儀器設備
6.1 第二級生物安全櫃（class II BSC）。
6.2 m2000sp™全自動核酸萃取系統。
6.3 m2000rt 即時定量聚合酶連鎖反應系統。

環境設施安全
於生物安全第二等級（BSL-2）實驗室之設施內操作。
8 檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體前處理：核對檢驗單之個案與檢體是否相符。
10.2 步驟
10.2.1 將 CT/NG control kit 置於室溫（20-25°C）回溫，CT/NG amplification reagent kit 置於 4°C 回溫。
10.2.2 各試劑組中的試劑經過標準化可產生適當反應，不同批號的試藥請勿混合使用。
10.2.3 取 1 mL 檢體加入 Reaction vessel，將 Reaction vessel 和 CT/NG cutoff control（二支）、CT/NG negative control 置於檢體架上（若有條碼，將條碼朝向檢體架右方）。 10.2.4 將檢體架放置於 m2000spTM 工作台上，確定有放穩並卡入後方之卡榫。
10.2.5 將 5 mL 的 Reaction vessel 放進 1 mL Subsystem carrier（先將 subsystem carrier 的 cover 拿開再放入 reaction vessel），蓋上 Cover，放到 Magnetic zone。。
10.2.6 放入新的 1,000 μL DiTis 到 Carrier，並將 Carrier 放置於 m2000spTM 工作台上（一箇檢體需要約 10 支 1,000 μL DiTis tips）。
10.2.7 放入空的 DiTi tray 及 Deep well 在 DiTi reuse rack 上，另外再放置一個 Deep well 到 Output deck（A1 朝左上方，有缺角的朝左下方）。
10.2.8 萃取試劑準備
10.2.8.1 Internal control 充分混合均勻，取 750 μL 加到 Lysis buffer。
10.2.8.2 取 70 mL USP Grade 190-200 Proof ethanol（95-100% ethanol）加到 Wash 2。
10.2.8.3 準備貯槽（reagent vessel）：先將試劑貼紙靠試劑槽右邊的邊緣貼好（barcode 朝右），將試劑槽依照 Reagent carrier 上的標示放到 carrier 上。
10.2.8.4 再依試劑槽上的標籤，倒入試劑（lysis buffer 及 wash buffer 儘量避免有氣泡產生）。
10.2.8.5 試劑都加好後，依照指定位置放到 m2000sp™ 工作台上，確定有將 Reagent vessel carriers 推到底部。

10.2.9 檢查 System liquid container(液壓系統用水儲存桶)、Solid waste container(固態廢棄物垃圾桶) 及 Liquid waste container(液體廢棄物垃圾桶)，如果超過下列標準，則系統無法開始進行萃取。

<table>
<thead>
<tr>
<th>Container</th>
<th>Liquid/Solid Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid Waste</td>
<td><½ Full</td>
</tr>
<tr>
<td>Liquid Waste</td>
<td><¾ Full</td>
</tr>
<tr>
<td>System Liquid</td>
<td>>¾ Full</td>
</tr>
</tbody>
</table>

10.2.10 萃取細菌 DNA

10.2.10.1 打開 m2000sp™ 機器和電腦的電源，電腦開機完成後會自動進入 m2000sp™ 的系統輸入帳號密碼後進入主畫面登入之後，此時點選畫面左方的 Start 進行初始化，初始化完成後系統呈現 Ready 狀態。

10.2.10.2 由 <Instrument Status> 點選 Orders, 再點選 Sample Extraction。

10.2.10.3 在 <Application Specification> list 下，選取所要進行的 Protocol 後，由畫面左邊的項目中點選 Set Up Run。

10.2.10.4 依序輸入以下項目的資料：<Run Name> 可自己設定名稱，<Comment> 輸入要補充的資料。

10.2.10.5 點選 Next 後會出現進入 <Sample Extraction: Assay Details> 畫面：輸入 <Control Information>、<Calibrator Information>，包括 lot number、Expiration date 及濃度；若是同一批號，可直接選擇上次保存的批號資料。

10.2.10.6 註：Calibration 只要作一次系統就會記憶，不需要每次都重作，除非 Amplification Reagent Kit 或 Sample Preparation System 换批號。

10.2.10.7 點選 Next 後會出現 <Sample Extraction: Sample Scan> 畫面，選擇 Scan，完成後若有條碼會直接顯示在螢幕上，無條碼需輸入條碼編號。

10.2.10.8 點選 Next 後會出現 <Sample Extraction: Assay Assignment>，再次確認檢體排列及要進行的 protocol 是否正確。

10.2.10.9 點選 Next 進到 <Sample Extraction: Control and Calibrator Warning> 畫面，如果沒有任何 Warning 出現，則點選 Next。

10.2.10.10 點選 Next 後出現 <Sample Extraction: Worktable Setup> 的畫面。
10.2.10.11點選Next後，進到<Checking Worktable locations>，系統會去檢查subsystem carrier是否放對位置，檢查完畢畫面進到<Sample Extraction: Disposable Tip Status>畫面，依照是否有補充Tips來勾選需要update的項目，點選畫面右下方Update，系統開始檢查shelves 1是否為空的。

10.2.10.12點選Next後出現<Sample Extraction: Reagent Setup>的畫面，輸入以下資料：<Deep Well Plate ID>、<Reagent Lot Number>、<Expiration Date>（月/年）。

10.2.10.13點選Next後出現<Sample Extraction: Reagent Scan>，點選Scan進行scan。如果沒有錯誤，會出現Next（如果Reagent Vessel Carriers有放錯位置，則會以紅字標出放錯的位置，更正之後再點選Rescan重新掃描），點選後出現<Sample Extraction: Run Start>畫面。

10.2.10.14確認後選擇Start開始進行萃取。

10.2.10.15當萃取結束後會出現一個結束的對話框，選擇Close，由畫面左方選Close Process，系統回復到READY狀態。

10.2.11 Real-time PCR master mix之配製

10.2.11.1 放入所需的Master mix tube（蓋子須取下）和96-Well optical reaction plate於m2000sp™工作台上。

10.2.11.2 放入1,000 mL、200 mL的DiTi tips。

10.2.11.3 拿掉已解凍好的Reagent pack的蓋子（操作前半hr從-20°C拿出來解凍，完全解凍後若還沒要操作則先置於4°C），確定完全解凍及是否有氣泡，依照順序放到架上。

10.2.11.4 由主畫面選擇Orders，再點選Master Mix Addition進入<Run Master Mix Addition>的畫面。

10.2.11.5 點選剛完成的Deep well name，選擇畫面左側的SetUp Run，接著會出現<Master Mix Addition: Plate Details>的畫面，選擇Next。

10.2.11.6 出現<Master Mix Addition: Worktable Setup>輸入PCR plate的名稱，選擇Next。

10.2.11.7 出現<Master Mix Addition: Disposable Tip Status>的畫面，選擇Next。

10.2.11.8 出現<Master Mix Addition: Assay Specific Reagent Scan>的畫面，點選Scan，掃描成功後出現Assay reagent IDs、Lot及Expiration date。

10.2.11.9 選擇Next，出現<Master Mix Addition: Run Start>畫面：依照指示完成再次確認的動作，點選Start開始進行Master mix配製。
10.2.12 封膜

10.2.12.1 撕下光學增強膜白色的部分（protective backing），手

 導壓住邊緣（end tab），避免直接接觸到會覆蓋在

 96 孔盤的範圍（seal）。

10.2.12.2 將光學增強膜覆蓋在 96 孔盤上，以 Applicator 壓平光

 學增強膜，再以 Applicator 壓住膜的邊緣，按順序撕

 下，最後再以 Applicator 壓 96 孔盤的邊線區來增加膜

 跟 96 孔盤的密合度。

10.2.13 Real-time PCR

10.2.13.1 在 m2000sp™ 電腦的螢幕上方的工具列 <Result>，點

 選 <View by PCR plate>，選擇剛剛完成的 Protocol，在

 畫面左邊點選 Export，將 CD-ROM 放入電腦中，選

 Start。

10.2.13.2 打開 m2000rt™ 機器和電腦的電源，進入 m2000rt 使

 用者輸入的畫面 <User Logon>，輸入 <User name> 及 <Password>。

10.2.13.3 在 <Instrument Status> 畫面的左邊，選擇 Start，開

 始機器的初始化 (約 15 min)，當初始化進行完畢，

 <Instrument Status> 會顯示 <Ready>；此時即可開始

 進行試驗。

10.2.13.4 點選主畫面的 <Order>，點選 <Test Orders>，螢幕會

 顯示 <Pending Test Orders>，點選螢幕左方 <Create

 Tasks> 中的 <Import and Set Up Run>，將存有

 m2000sp™ 資料的 CD 放入電腦中，選擇要進行的反

 應盤名稱，點選 Next，檢查是否有錯誤，再選 Next，

 打開 tray drawer，放入 PCR plate，點選 Start 即可。

10.2.13.5 反應進行完成後，點選主畫面上方的 <Result> 選擇

 <View by Plate>，螢幕會出現本次實驗偵測的結果，

 若在 Error code 出現紅色的代碼，即表示這個樣本反

 應失敗。

11 結果判定

11.1 判讀標準

 陽性對照組與陰性對照組的結果必須符合設定值範圍之內，同時

 Internal control 也要在認可範圍內，有偵測出砂眼披衣菌、奈色氏淋病

 雙球菌者，判為砂眼披衣菌、奈色氏淋病雙球菌核酸檢測陽性；未偵

 測出砂眼披衣菌、奈色氏淋病雙球菌者，判為砂眼披衣菌、淋菌核酸

 檢測陰性。

11.2 報告核發

 砂眼披衣菌核酸檢測陽性，砂眼披衣菌核酸檢測陰性，奈色氏淋病雙

 球菌核酸檢測陽性，奈色氏淋病雙球菌核酸檢測陰性。
11.3 結果登錄
完成檢驗後，將檢驗結果登錄於檢體送驗單並加蓋檢驗者印章，經核驗者確認及蓋章後，送實驗室主管審核及蓋章，並登錄於網路報告系統。

12 品質管制
12.1 內部品管
12.1.1 品管頻率：依實驗室品質政策所定頻率及新開試劑組或更改檢驗程序時。
12.1.2 品管物質：CT/NG internal control，CT/NG control kit。
12.1.3 品管操作步驟：與檢體相同。
12.1.4 品管測試結果必須符合下列標準
 12.1.4.1 CT/NG internal control 在認可範圍內。
 12.1.4.2 CT/NG cutoff control 符合設定值範圍。
 12.1.4.3 CT/NG negative control 應為陰性。
12.1.5 品管測試結果若有違背品質管收標準應依矯正及預防措施作業程序，加以矯正，必要時採取預防措施。

12.2 外部品管
12.2.1 參加外部能力測試機構舉辦之能力測試或實驗室間比對。
12.2.2 於每年底提出下一年度之參加計畫。
12.2.3 接獲能力測試檢體時，應立即打開包裝，檢視檢體是否完整，若有洩漏或破損，應立即通知代理廠商處理。
12.2.4 每支能力測試檢體應比照檢體的操作步驟測定，不應特別處理。用剩之品質檢體應適當保存，以供日後必要時之複驗。
12.2.5 能力測試結果，應於規定時間內寄出，同時影印副本保存。
12.2.6 能力測試結果，應作為重要品質參考依據若有偏離允許範圍之情形發生，應依矯正及預防措施作業程序，加以矯正及採取預防措施。
12.2.7 每次能力測試處理過程登記於「能力試驗摘要紀錄表」。

13 廢棄物處理
檢驗過程之物品、廢液及剎餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
試劑說明書。

15 附錄
奈氏氏淋病雙球菌及砂眼披衣菌核酸檢測（即時聚合酶鍵鎖反應）流程圖。
附錄 奈色氏淋病雙球菌及砂眼披衣菌核酸檢測 (即時聚合酶鍵鎖反應)流程圖。

1. 尿液、女性子宮頸、陰道拭子檢體，男性尿道拭子檢體
 - 細菌 DNA 萃取
 - Real-time PCR master mix 之配製
 - Real-time PCR 之上機
 - 軟體分析，是否偵測到細菌核酸
 - 判讀：砂眼披衣核酸檢測陰性 奈色氏淋病雙球菌核酸檢測陰性
 - 判讀：砂眼披衣核酸檢測陽性 奈色氏淋病雙球菌核酸檢測陽性
 - 如果軟體分析沒有偵測到細菌核酸，則進行下一步。
1. 目的
分離腸病毒，並鑑定病毒之血清型別。

2. 適用檢體種類
適用於糞便（stool）、肛門拭子（rectal swab）、咽喉拭子（throat swab）、胸膜液（pleural fluid）、心包液（pericardial fluid）、腹水（ascites）、腦脊髓液（cerebrospinal fluid，CSF）、血清（serum）、結膜拭子（conjuctival swab）及臟器（如腦部組織、肺臟、心臟、小腸、淋巴結）等檢體。

3. 名詞解釋
無。

4. 原理概述
檢體之腸病毒和細胞之受器結合即進入細胞內，藉細胞之機制複製病毒。病毒不斷複製造成細胞形態改變（細胞病變 cytopathic effect；CPE），終至凋死。單株抗體可與複製之病毒形成複合物，之後再加入結合螢光物質之第二抗體，便可於螢光顯微鏡下觀察而確認腸病毒之血清型別。

5. 試劑耗材
5.1 Dulbecco’s modified eagle medium；DMEM。
5.2 Essential modified eagle medium；EMEM。
5.3 RD 細胞株（Victorian Infectious Disease Reference Laboratory passage 228）。
5.4 HEP-2C 細胞（from Centers for Disease Control and Prevention, USA）。
5.5 細胞培養管（25 cm²、75 cm²、150 cm²）。
5.6 Trypsin。
5.7 細胞培養瓶。
5.8 尖形吸量管（250 μL、300 μL、1,250 μL）。
5.9 胎牛血清（fetal calf serum）。
5.10 吸管（1 mL、5 mL、10 mL、25 mL）。
5.11 抗生素（penicillin、streptomycin、amphotericin B；PSA）。
5.12 檢體保存瓶（cryotube 2 mL/管）。
5.13 病毒採檢拭子（culture swab）。
5.14 二氧化碳。
5.15 PBS buffer。
5.16 商品化抗體（chemicon Cat.no.3340, 3345, 3324, 3350, 3360, 5008, 5013, 5000 等）。
5.17 玻片。
5.18 丙酮。
5.19 蓋玻片。
5.20 口罩。
5.21 可拋棄塑膠手套。
5.22 Virkon 消毒液。
儀器設備
6.1 倒立顯微鏡。
6.2 實覽顯微鏡。
6.3 二氧化碳培養箱（incubator）。
6.4 吸管輔助器。
6.5 第二級生物安全櫃。
6.6 離心機。
6.7 4 ℃冰箱。
6.8 -20 ℃及-80 ℃冷凍櫃。
6.9 Vortex。
6.10 加熱器。
6.11 高壓滅菌器。

環境設施安全
應於生物安全第二等級（BSL-2）實驗室進行所有檢測之操作流程。

檢體採集
8.1 參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

檢體運送及保存
9.1 參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

檢驗步驟
10.1 檢體編號
10.2 檢體前處理
10.2.1 咽喉或肛門擦拭檢體：
10.2.1.1 棉棒充分攪拌後於塑膠管壁旋轉擠乾取出。
10.2.1.2 於4 ℃，2,100 x g離心15 min。
10.2.1.3 收集上清液裝於 Cryotube 標示號碼及日期並接種於細胞，其餘保存於-70 ℃。
10.2.2 糞便檢體
10.2.2.1 取糞便1 g 加入10 mL BS（+）液調成10 ％懸浮液。
10.2.2.2 於4 ℃2,100 x g離心15 min，上清液移至耐氯仿的離心管，視上清液之總體積依比率加入 1/10 量氯仿，振盪混合15 min。
10.2.2.3 於4 ℃2,100 x g離心15 min。
10.2.2.4 收集上清液分裝於2 - 3支 Cryotube，標示號碼及日期，其中一支接種於細胞，其餘保存於-70 ℃。
10.3 細胞繼代
10.3.1 由液態氮桶中取欲 Recover 之細胞株一管。
10.3.2 迅速置於 37 °C 水浴箱中回溫，以 Virkon 消毒液擦拭瓶蓋接合處。
10.3.3 緩慢滴入 10 mL 含有 10 %胎牛血清但未含抗生素生長培養基後，將細胞放入 75 cm² 培養瓶中，置入含有 5 %二氧化碳培養箱。
10.3.4 隔夜後觀察細胞生長狀況並吸取上清液。
10.3.5 再放入 10 mL 10 %含有胎牛血清但未含抗生素生長培養基。
10.3.6 觀察細胞生長狀況以為繼代使用。
10.3.7 吸取上清液。
10.3.8 放入適量（約 2 mL）0.25 % trpsin-EDTA，反應 1 min。
10.3.9 吸取 trpsin-EDTA 丟棄並靜置 30 sec 至 1 min。
10.3.10 取 10 mL 含有 10 %胎牛血清及抗生素之培養基由下往上將細胞沖下。
10.3.11 取 10 mL 含有 10 %胎牛血清及抗生素之培養基由下往上將細胞沖下。
10.3.12 稀釋每 1 mL 含有 1 x 10⁵ 細胞，以為檢體接種培養之用。
10.3.13 填寫細胞繼代培養紀錄。

10.4 接種
10.4.1 發育完成之 RD 及 HEp-2 細胞將生長培養基丟棄，加入等量 (1 mL) 之維持培養基。
10.4.2 每一檢體分別接種至 4 支培養細胞中 (RD 及 HEp-2 各 2 支)，每支接種 0.2 mL。另取 2 支培養細胞各接種 0.2 mL 做為對照。
10.4.3 置於 36 °C，5 % CO₂ 培養箱繼續培養。

10.5 觀察
10.5.1 由翌日起每天以倒立顯微鏡觀察細胞形態是否改變。
10.5.2 填寫每日細胞培養分離紀錄表。
10.5.3 當檢體接種細胞呈細胞病變時，收集細胞及培養液。
10.5.4 4 °C，2,100 x g 離心 10 min。
10.5.5 上清液移至 Cryotube。
10.5.6 收集之細胞則依 10.6 進行鑑定。
10.5.7 若接種細胞觀察至第 7 天仍無病變，則於 -70 °C 及 37 °C 冷凍、解凍二次，收集細胞及培養液於 4 °C 以 2,100 x g 離心 10 min。

10.6 間接免疫螢光法 (IFA): (本法以市售 “chemicon” 試劑為主，操作流程依說明書進行)。
10.6.1 病毒培養呈現 2⁺⁺⁺ CPE 反應。
10.6.1.1 先以 2,100 x g 離心 15 min，收集上清液放入 Cryotube 中，保存於 -70 °C。
10.6.1.2 在已移除上清液的細胞培養管中，加入少許 (約 1 mL)
PBS，用 dropper 將壁上的細胞沖下，再加 PBS 至 5 mL，並將細胞沖散。

10.6.1.3 於 4 ℃，2,100 x g 離心 15 min。

10.6.1.4 移除上清液，視分離細胞的量，約留下 0.1 - 0.3 mL 的 PBS，再用 Vortex 將細胞打成懸浮液，用來製作螢光抹片。

10.6.1.5 取兩片 21 孔的載玻片，用鉛筆（不可用原子筆或簽字筆）分別標上日期及檢體編號，一片是作為染各種腸病毒之 Blend；另一片是為分型之用。

10.6.1.6 每孔之檢體量為 10 µL/孔；另於玻片的最後一排，加入正常細胞(normal cell)為陰性對照(negative control)及市售或 in house 為陽性對照組(positive control)。

10.6.1.7 風乾後，放入 -20 ℃ 的丙酮液中固定 15 min。

10.6.1.8 取出風乾，加入各型腸病毒 blend 依次為 Pan-Entero、Polio blend、Echo blend、CoxB blend、Enterob Blend、EV71 and CA16、EV71 及 CA9、CA24 第一劑抗體(約 10 µL/孔)，次序如下：

10.6.1.9 將玻片置入潮濕盒內 37 ℃，Incubation 30 min。

10.6.1.10 取出用 PBS 浸洗 3 - 5 min 再風乾。

10.6.1.11 加二級螢光抗體標幟物(goose anti-mouse IgG FITC)，再置入潮濕盒中 37 ℃，30 min。

10.6.1.12 重覆步驟 10。

10.6.1.13 封片。

10.6.1.14 以螢光顯微鏡觀察，並記錄結果。

10.6.1.15 若 Blend 中判定螢光染色結果出為陽性反應，則進行 Blend 分型，放入分型之螢光抗體第一劑(腸病毒分型試劑: monoclonal antibody)。步驟 10.6.1.8~10.6.1.14，鑑定出最後型別。

10.6.2 病毒培養 14 天後無 CPE。

10.6.2.1 先離心 2,100 x g，15 min，收集上清液至另一管中。

10.6.2.2 在已移除上清液的細胞培養管中，加入少許(約 1 mL) PBS，用 dropper 將附在管壁上的細胞沖下，再加 PBS 至 5 mL，並將細胞沖散。

10.6.2.3 於 4 ℃，離心 2,100 x g，15 min。

10.6.2.4 移除上清液，視細胞的量，約留下 0.1 - 0.3 mL 的 PBS，再用 vortex 將細胞打成懸浮液，用來製作螢光抹片。

10.6.2.5 取一片 21 孔的載玻片標上日期及檢體編號。

10.6.2.6 每支檢體點 1 個孔（10 µL/孔），並加做 Negative control。

10.6.2.7 風乾後，放入 -20 ℃ 的丙酮液中固定 15 min。

10.6.2.8 取出風乾，加入 pan-Entero 抗體第一劑。
10.6.2.9 將玻片置入潮濕盒內 37 °C，Incubation 30 min。
10.6.2.10 取出用 PBS 浸洗 3 - 5 min 再風乾。
10.6.2.11 加二級螢光抗體標記物（goat anti-mouse IgG FITC），
(FITC)，再置入潮濕盒中 37 °C，30 min。
10.6.2.12 重覆步驟 10.6.2.10。
10.6.2.13 封片。
10.6.2.14 螢光顯微鏡觀察並記錄結果。
10.6.2.15 如結果為陽性反應，則依 CPE 陽性反應之染色法鑑定血清型別。

11 結果判定
11.1 判讀標準
11.1.1 病毒分離: 以 14 日為分離終止日, 當細胞出現細胞病變(CPE)，
則判定分離陽性，細胞若維持原來形態，則判定為陰性。
11.1.2 免疫蛻光法（IFA）：在蛻光顯微鏡下觀察，若感染細胞之細胞質呈現蘋果綠（apple green），判為陽性；細胞呈現紅色則判為陰性。
11.2 報告核發: 檢驗結果填寫於検體送驗單之“檢驗結果”欄之“病原體分離”欄位，填入分離腸病毒分離陰性或腸病毒鑑定之血清型。
11.3 結果登錄：相關檢驗紀錄及檢體送驗單背面蓋職章，陳核實驗室主管審核，實驗室主管核章後，再上網登錄於傳染病通報系統。

12 品質管制
12.1 培養基配製在放入抗生素前，應進行無菌試驗。
12.2 細胞株自液態氮取出進行繼代約 2 - 3 代後，應進行黴漿菌及敏感性試
驗，以確保細胞不受污染及保持良好之感受性。
12.3 除離心、去活化及培育步驟外，操作過程都要在二級生物安全櫃（class II BSC）內進行。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
14.3 Essential Procedure for Clinical Microbiology.

15 附錄
15.1 腸病毒檢驗總流程圖。
15.2 細胞繼代紀錄。
15.3 病毒分離每日觀察紀錄表。
15.4 間接免疫螢光測定紀錄表。
附錄 15.1 腸病毒檢驗總流程圖

咽喉拭子 → 病原體分離 → 顯微鏡觀察

細胞病變 (CPE)

否 (至第7天仍無CPE) → 繼代接種

是 (1-7日) → 顯微鏡觀察 → 中和抗體檢測

間接免疫螢光法

型別判定

否 → 病毒感染效價測定

是 → 中和試驗

型別判定

至第7天仍無CPE → 間接免疫螢光法

結果判定
附錄 15.2 細胞繼代紀錄

衛生福利部疾病管制署研究檢驗及疫苗研製中心
細胞繼代紀錄表

<table>
<thead>
<tr>
<th>Cell:</th>
<th>Transfer (CDC):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date:</td>
<td>Person in Charge:</td>
</tr>
<tr>
<td>Cell: Seeded on:</td>
<td>Container:</td>
</tr>
<tr>
<td>Medium:</td>
<td>Appearance:</td>
</tr>
</tbody>
</table>

Procedure:

Discard old Growth Medium

Add the trpsin-EDTA mixture to monolayer

Trypsinization at RT Temperature for ___ min

Remove the Trypsin-EDTA, add ___ mL of fresh growth medium

Disperse cells by gentle pipetting

Final cell number ___ /mL

Above suspension of cells was seeded as follows:

<table>
<thead>
<tr>
<th>Flask no.</th>
<th>Container</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Incubated at 36℃ CO\textsubscript{2} incubator</td>
<td></td>
</tr>
</tbody>
</table>

Remark:

檢驗者：

實驗室主管：
附錄 15.3 病原體分每日觀察紀錄表

<table>
<thead>
<tr>
<th>病原體分離每日觀察紀錄表</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date:</td>
</tr>
<tr>
<td>日期 1 2 3 4 5 6 7</td>
</tr>
<tr>
<td>染體編號 1 2 3 4 5 6 7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date:</th>
<th>日期 1 2 3 4 5 6 7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cell : 生成 : 寶特 : day0
G. M. : G. M. :
Immulum : Absorption :
检验者 : 实验室主管 :
附錄 15.4 間接免疫螢光測定紀錄表

衛生福利部疾病管制署研究檢驗及疫苗研製中心

間接免疫螢光測定紀錄表

<table>
<thead>
<tr>
<th>測定日期：</th>
<th>年 月 日</th>
<th>結果：</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>測定日期：</th>
<th>年 月 日</th>
<th>結果：</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>測定日期：</th>
<th>年 月 日</th>
<th>結果：</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>測定日期：</th>
<th>年 月 日</th>
<th>結果：</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

檢驗者：

實驗室主管：
1 目的
在疑似遭受腸病毒七十一型感染個案之採集檢體中，檢測是否有腸病毒71型IgM抗體。

2 適用檢體種類
血清(serum)或血漿(plasma)

3 名詞解釋
無

4 原理概述
主要採用捕獲酵素免疫吸附之原理，微孔條上已包覆抗人體IgM抗體(Anti-μchain)與稀釋過後的待測血清中IgM抗體作結合，清洗後加入purified EV71 antigen (antigen-reagent)及Anti-EV71抗體-偶合物(HRP-conjugate)在37℃做結合反應，形成”抗μchain-IgM抗體-EV71抗原-酶標標物抗體(peroxidase)”複合物，複合物與HRP作用呈現蓝色產物，終止反應後則為黃色。

5 試劑耗材
5.1 檢測試劑：「EV-71 IgM ELISA」。
 5.1.1 Anti-EV71 virus/ IgM plate
 5.1.2 Anti-EV71 virus reference Positive
 5.1.3 Anti-EV71 virus reference Negative
 5.1.4 Specimen diluent：1 × 10mL
 5.1.5 HRP-conjugate：1 × 6mL
 5.1.6 Antigen-reagent：1 × 6mL
 5.1.7 20×Wash buffer：1 × 50mL
 5.1.8 Chromogen solution A/B：1 × 6mL
 5.1.9 Stop solution：1 × 6mL
5.2 耗材：
 5.2.1 微量吸管(tips)：10μL、100μL、200μL、1000μL
 5.2.2 2mL螺旋試管
 5.2.3 抗凍標籤紙
 5.2.4 油性簽字筆
 5.2.5 手套

6 儀器設備
6.1 單爪 pipetement：10μL、100μL、200μL、1000μL。
6.2 電動分注器：10μL-1000μL。
6.3 微量盤式分析儀。
6.4 離心機。
6.5 37℃溫箱。
6.6 震盪混合器。
7 環境與設施安全
於生物安全第二等級 (BSL-2) 實驗室之設施內操作。

8 檢體採集
參考本署出版之「傳染病檢體採檢手冊」第二版
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

9 檢體運送及保存
參考本署出版之「傳染病檢體採檢手冊」第二版
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

10 檢驗步驟
10.1 檢驗前處理
10.1.1 檢體編號：核對檢驗單之個案與檢體是否相符並給予檢體編號。
10.1.2 將血液檢體用離心機離心 1500rpm 10 分鐘，收集血清或血漿於 2mL 螺旋試管。
10.1.3 紀錄檢體於檢驗盤上的相對位置。
10.1.4 配置 Working wash solution：用蒸餾水以 1：20 的比例稀釋
5.1.7(1) 20×Wash buffer。

10.2 步驟
10.2.1 取每孔加入 100μL diluent buffer，再各加入 10μL 待測血清檢體
(步驟 10.1.2) 及三個陰性、兩個陽性對照血清 (5.1.1(2))，加入
anti-EV71 virus IgM plate，及一個 Blank，封膜。
10.2.2 置於 37℃溫箱培養 30 分鐘。然後以 wash buffer 清洗 5 次。
10.2.3 除了 blank，每個孔各加入 antigen-reagent(5.1.1(5) 50μL 與
HRP-conjugate 50μL，均勻混合後封膜。
10.2.4 置於 37℃溫箱培養 30 分鐘。然後以 wash buffer 清洗 5 次。
10.2.5 每孔各加入 Chromogen A 50μL，避光再加入 Chromogen B 50μL，
均勻混合。
10.2.6 置放 37℃溫箱避光培養 15 分鐘。
10.2.7 每孔各加入 50μL Stop solution。
10.2.8 以 620nm 作參考波長，用微量盤式分析儀測定 450nm 吸光度。

10.3 檢驗後處理
10.3.1 使用後的微量吸管尖、microplate strip、手套滅菌後丟棄。
10.3.2 微量盤式分析儀關機。
11 結果判定
 11.1 判讀標準：Calculation of the Cut-Off(C.O.)：Nc + 0.10
 (Nc= the mean absorbance value for three negative control)
 (若 Nc<0.05，要視為 0.05)

 | 陽性(positive) | A/C.O. ≥ 1 |
 | 陰性(negative) | A/C.O. < 1 |
 | 未確定(equivocal) | A/C.O. = 0.9~1.1 |

 11.2 報告核發：
 EV71 IgM 陽性、陰性及未確定。

 11.3 結果登錄：
 完成檢驗將檢驗結果登錄於實驗紀錄表，檢驗結果填寫於檢體送驗單
 之”檢驗結果欄”，再上網登錄於傳染病通報系統。

12 品質管制
 12.1 每次進行實驗時皆須有對照組，陽性對照組與陰性對照組的須符合設
 定值。
 12.2 實驗過程遵循 S.O.P 的作業規範與流程，並在個別獨立的操作空間內操
 作，以避免污染。
 12.3 Pipettman 做定時的校正。
 12.4 注意檢測套組的使用期限與適當的儲放溫度。

13 廢棄物處理
 檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥
 密封，再以121℃、30 min高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
 檢驗試劑說明書。

15 附錄
 無。
1 目的
以反轉錄－聚合酶鏈鎖反應(RT-PCR)分子診斷方法檢測腸病毒七十一型核酸。

2 適用檢體種類
適用於採自人體之咽喉拭子、肛門拭子、糞便、血液、體液、腦脊髓液及臟器等檢體。

3 名詞解釋
無。

4 原理概述
利用腸病毒七十一型具專一性之引子，進行檢體中 RNA 經由反轉錄－聚合酶鍵鎖反應 RT-PCR 複製放大的過程來偵測檢體中是否含有腸病毒七十一型核酸反應。

5 試劑耗材
5.1 QIAMP Viral RNA mini Kit：QIAGEN, Germany。
 5.1.1 QIAMP spin column 離心管柱。
 5.1.2 2 ml 有蓋收集管。
 5.1.3 Lysis buffer (AVL＋carrier RNA)。
 5.1.4 清洗液(AW1)。
 5.1.5 清洗液(AW2)。
 5.1.6 萃取液(AVE)。
5.2 QIAGEN OneStep RT-PCR kit：QIAGEN, Germany。
 5.2.1 QIAGEN OneStep RT-PCR Enzyme Mix。
 5.2.2 RNase-free water。
 5.2.3 5x QIAGEN OneStep RT-PCR Buffer。
 5.2.4 dNTP Mix (containing 10 mM of each dNTP)。
 5.2.5 5x Q-Solution。
5.3 RNaseOUT Recombinant Ribonuclease Inhibitor：Invitrogen, US
5.4 positive control RNA：腸病毒七十一型病毒。
5.5 negative control RNA: DNase, RNase-free H2O。
5.6 TBE buffer (Tris-borate/EDTA electrophoresis buffer)。
5.7 無菌微量吸尖形吸管：1000 μL、200 μL、100 μL、20 μL、10μL。
5.8 無菌微量離心管：1.5 mL。
5.9 Agarose。
5.10 可拋棄式塑膠手套。
5.11 無菌 PCR 反應管。

6 儀器設備
6.1 第 II 級生物安全櫃(Class II BSC)。
6.2 PCR thermal cycler。
6.3 微量吸管(pipette)：1000 μL、200 μL、100 μL、20 μL、10 μL。
6.4 振盪器(vortexer)。
6.5 無菌微量離心管離心機。
6.6 冰箱：4°C。
6.7 冷凍櫃：-20°C。
6.8 電泳槽。
6.9 高壓滅菌鍋。
6.10 DNA 電泳膠體顯影設備。

7 環境及設施安全
於生物安全第二等級（BSL-2) 操作櫃內進行。

8 檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 試劑之準備
10.1 AVL buffer
10.1.1 新開封時要加一瓶 carrier RNA，先取 1 ml AVL buffer 至 carrier RNA tube (紅頭螺旋管)，待完全溶解再 transfer 回 AVL buffer 瓶中，混合均勻。
10.1.2 每次使用時先檢查是否有結晶產生，若有結晶則加熱回溫，冷凍解凍回溫次數不可超過六次，AVL buffer/carrier RNA 若保存於室溫不可超過二星期。
10.2 AW1 buffer
10.2.1 新開封時依瓶身指示加入 125 ml 絕對酒精，得到總體積 220 ml，室溫下可保存 1 年。
10.3 AW2 buffer
10.3.1 新開封時依瓶身指示加入 160 ml 絕對酒精，得到總體積 226 ml，室溫下可保存 1 年。

11 檢驗步驟
11.1 萃取病毒 RNA
11.1.1 先吸取 560 μl Lysis buffer (AVL buffer 加 carrier RNA) 放入 1.5
ml 微量離心管，再加入 140 μL 的血清樣本，震盪混合，室溫靜置反應 10 分鐘。

11.1.2 加入 560 μL 絕對酒精，震盪混合 15 秒，以終止反應。

11.1.3 將上述混合液先取 630μL，以離心方式 (8,000 rpm，1 分鐘) 通管柱 (column)，檢體中如有 RNA 存在，會吸附在管柱底部的膜上。

11.1.4 丢棄管柱內的廢液。剩餘的混合液如上述步驟加入管柱 (column) 內離心 (8,000 rpm，1 分鐘)。

11.1.5 丟棄管柱內的廢液。以清洗液 (AW1) 500 μL，離心 8,000 rpm，1 分鐘，作第一次沖洗，清洗膜上所吸附的雜質。

11.1.6 丟棄管柱內的廢液。以清洗液 (AW2) 500 μL，離心 13,000 rpm，1 分鐘，作第二次沖洗，清洗膜上剩餘吸附的雜質。

11.1.7 丟棄管柱內的廢液。離心 13,000 rpm，3 分鐘，以徹底去除膜上的殘留酒精。

11.1.8 準備一支新的有蓋收集管，將管柱放入有蓋收集管內，加入萃取液 (AVE) 55 μL，室溫靜置 3 分鐘，離心 9,000 rpm，1 分鐘，取得 RNA。

11.2 反轉錄酶-聚合酶鏈鎖反應 (RT-PCR)

11.2.1 取 5 μL RNA 做模板，分別加入引子組 (159, 162 參考附件 16.2) 及其他反應溶液 (成分如下表)，調整反應總體積至 25 μL。

<table>
<thead>
<tr>
<th>反應試劑</th>
<th>加入體積</th>
<th>最終濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>5x QIAGEN OneStep RT-PCR Buffer</td>
<td>5 μL</td>
<td>1x</td>
</tr>
<tr>
<td>dNTP Mix</td>
<td>1 μL</td>
<td>400 μM of each dNTP</td>
</tr>
<tr>
<td>5xQ-solution</td>
<td>5 μL</td>
<td>1 x</td>
</tr>
<tr>
<td>RnaseOUT</td>
<td>0.25 μL</td>
<td>10units</td>
</tr>
<tr>
<td>QIAGEN OneStep RT-PCR Enzyme Mix</td>
<td>1 μL</td>
<td>-</td>
</tr>
<tr>
<td>159 -Forward primer</td>
<td>1.5 μL</td>
<td>0.6 μM</td>
</tr>
<tr>
<td>162 -Reverse primer</td>
<td>1.5 μL</td>
<td>0.6 μM</td>
</tr>
<tr>
<td>RNase-free water</td>
<td>4.75 μL</td>
<td>-</td>
</tr>
</tbody>
</table>

11.2.2 反轉錄酶-聚合酶鏈鎖反應 (RT-PCR)：使用 PCR thermal cycler。

11.2.2.1 R.T.作用：50 °C，30 分鐘。
11.2.2.2 HotStart：95°C，15 分鐘。
11.2.2.3 denature：95°C，30 秒。
11.2.2.4 annealing：48°C，40 秒。
11.2.2.5 extension：72°C，1 分
11.2.2.6 重複 (11.2.2.3) 至 (11.2.2.5) 步驟 40 cycle。
11.2.2.7 final extension：72°C，10 分鐘。
11.2.2.8 最後維持在 4°C
衛生福利部疾病管制署傳染病標準檢驗方法

編號： 腸病毒七十一型核酸檢測（反轉錄－聚合酶鍵鎖反應法）

頁次：第 678 頁/共 1104 頁 核准日期：年 月 日
修訂日期：年 月 日

11.2.3 膠片電泳分析
11.2.3.1 製備 1.5 % 洋菜膠：1.5 g agarose 溶於 100 ml（1 X）
 TBE buffer。
11.2.3.2 選擇 100 bp DNA size Marker：5 μL。
11.2.3.3 取產物 5μL，並加入 1μL loading dye。
11.2.3.4 進行電泳分離 100 V，30 min。
11.2.3.5 膠片染色：1 μL/ml ethidium bromide 染色 10 min，
 H2O 褪染。
11.2.3.6 使用 UV light 觀察，並照相紀錄。

12 結果判定
12.1 判讀標準
100 bp marker 會在洋菜膠上呈現出 100～1,500 bp 的 ladder band，並以此作為識別依據，如在洋菜膠上呈現空白，即為陰性反應；在膠上出現 band 於正確位置時(產物長度為 484bp)，則判斷為腸病毒七十一型。
12.2 報告核發
腸病毒七十一型陽性、陰性
12.3 結果登錄
完成檢驗後將檢驗結果登錄於實驗紀錄表，檢驗結果填寫於檢體送驗單之“檢驗結果欄”，再上網登錄於傳染病通報系統。

13 品質管制
13.1 每次進行實驗時皆須有對照組，陽性對照組與陰性對照組的須符合設定條件。
13.2 實驗過程遵循 S.O.P 的作業規範與流程，並在個別獨立的操作空間內操作，以避免污染。
13.3 Pipettman 做定時的校正。
13.4 注意檢測套組的使用期限與適當的儲放溫度。

14 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

15 參考資料
15.2 QIAmp Viral RNA mini Kit, QIAGEN OneStep RT-PCR kit 使用手冊

16 附錄
16.1 腸病毒七十一型核酸鑑定（反轉錄酶－聚合酶鍵鎖反應法）流程圖
16.2 Primers used for PCR amplification of the partial VP3, VP1 gene region.
附錄 16.1 腸病毒七十一型核酸鑑定（反轉錄酶－聚合酶鍵鎖反應）流程圖

檢體 → 病毒 RNA 萃取 → 反轉錄酶－聚合酶鍵鎖反應（RT-PCR）

膠片電泳分析，是否有專一性 band 出現

是 → 判讀-腸病毒七十一型核酸陽性

否 → 判讀-腸病毒七十一型核酸陰性
附錄 16.2. Primers used for PCR amplification of the partial VP3, VP1 gene region.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence</th>
<th>Position*</th>
</tr>
</thead>
<tbody>
<tr>
<td>159</td>
<td>ACYATGAAAYTGTGCAAGG</td>
<td>2385-2403</td>
</tr>
<tr>
<td>162</td>
<td>CCRGTAGGKGTRCAGCRC</td>
<td>2869-2850</td>
</tr>
</tbody>
</table>

*Position relative to the genome of EV71 strain 7423-MS-87.
1．目的
以反轉錄酶-巢式聚合酶鏈鎖反應(RT-nested PCR)分子診斷方法檢測腸病毒核酸。

2．適用檢體種類
適用於採自人體之咽喉拭子、肛門拭子、糞便、血液、體液、腦脊髓液及臟器等檢體。

3．名詞解釋
無。

4．原理概述
利用腸病毒具專一性之引子，進行檢體中 RNA 經由反轉錄酶進行反轉錄反應為 cDNA，再藉由巢式聚合酶鏈鎖反應 nest-PCR 複製放大的過程來偵測檢體中是否含有腸病毒核酸反應。

5．試劑耗材
5.1 QIAamp Viral RNA mini Kit：QIAGEN, Germany。
 5.1.1 QIAmp spin column 離心管柱。
 5.1.2 2 ml 有蓋收集管。
 5.1.3 Lysis buffer（AVL+carrier RNA）
 5.1.4 清洗液（AW1）。
 5.1.5 清洗液（AW2）。
 5.1.6 萃取液（AVE）。
5.2 SuperScript™ III Reverse Transcriptase kit：Invitrogen, US。
 5.2.1 SuperScript™ III RT(200U/μL)。
 5.2.2 5x First-Strand Buffer。
 5.2.3 0.1M DTT。
5.3 Platinum Taq DNA Polymerase kit：Invitrogen, US。
 5.3.1 Platinum Taq DNA Polymerase。
 5.3.2 10x PCR Buffer, Minus Mg。
 5.3.3 50mM Magnesium Chloride。
5.4 RNaseOUT Recombinant Ribonuclease Inhibitor：Invitrogen, US。
5.5 positive control RNA：伊科病毒型別 24。
5.6 negative control RNA: DNase、RNase-free H₂O。
5.7 TBE buffer（Tris-borate/EDTA electrophoresis buffer）。
5.8 無菌微量吸尖形吸管(tip)：1000 μL、200 μL、100 μL、20 μL、10μL。
5.9 無菌微量離心管：1.5 mL。
5.10 Agarose。
5.11 可拋棄式塑膠手套。
5.12 無菌 PCR 反應管。
6 儀器設備
6.1 第 II 級生物安全櫃(Class II BSC)。
6.2 PCR thermal cycler。
6.3 微量吸管(pipette): 1000 μL、200 μL、100 μL、20 μL、10 μL。
6.4 振盪器(vortexer)。
6.5 無菌微量離心管離心機。
6.6 冰箱: 4°C。
6.7 冷凍櫃: -20°C。
6.8 電泳槽。
6.9 高壓滅菌鍋。
6.10 DNA 電泳膠體顯影設備。

7 環境及設施安全
於生物安全第二等級(BSL-2)實驗室之設施內操作。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowt reeid=6C7C52E7A7D5621A。

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowt reeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體前處理(萃取病毒 RNA)
10.1.1 先吸取 560 μl Lysis buffer (AVL buffer 加 carrier RNA) 放入 1.5 ml 微量離心管，再加入 140 μl 的血清檢體，震盪混合，室溫靜置反應 10 分鐘。
10.1.2 加入 560 μl 絕對酒精，震盪混合 15 秒，以終止反應。
10.1.3 將上述混合液先取 630μL，以離心方式（8,000 rpm, 1 分鐘）通管柱（column），檢體中如有 RNA 存在，會吸附在管柱底部的膜上。
10.1.4 丢棄管柱內的廢液。剩餘的混合液如上述步驟加入管柱(column)內離心 (8,000 rpm, 1 分鐘)。
10.1.5 丢棄管柱內的廢液。以清洗液 (AW1) 500 μL, 離心 8,000 rpm，1 分鐘，作第一次沖洗，清洗膜上所吸附的雜質。
10.1.6 丢棄管柱內的廢液。以清洗液 (AW2) 500 μL, 離心 13,000 rpm，1 分鐘，作第二次沖洗，清洗膜上剩餘吸附的雜質。
10.1.7 丢棄管柱內的廢液。離心 13,000 rpm，3 分鐘，以徹底去除膜上殘留酒精。
10.1.8 將通管柱（column）移入新 1.5 ml 微量離心管，加入 50 µl Elution buffer (buffer AVE) 於通管柱底部的膜上待 RNA 溶出後，離心 8,000 rpm，3 分鐘。

10.2 反轉錄酶反轉錄反應(RT)
10.2.1 取 5 µL RNA 做模板，分別加入反轉錄試劑及其他反應溶液（成分如下表），調整反應總體積至 10 µL。

<table>
<thead>
<tr>
<th>反應試劑</th>
<th>加入體積</th>
<th>RT 反應最終濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>5x First-Strand RT Buffer</td>
<td>2 µL</td>
<td>1x</td>
</tr>
<tr>
<td>20mM dNTP Mix</td>
<td>0.5 µL</td>
<td>1 mM of each dNTP</td>
</tr>
<tr>
<td>100μM AN32 – primer</td>
<td>0.05 µL</td>
<td>0.5 μM</td>
</tr>
<tr>
<td>100μM AN33 – primer</td>
<td>0.05 µL</td>
<td>0.5 μM</td>
</tr>
<tr>
<td>100μM AN34 – primer</td>
<td>0.05 µL</td>
<td>0.5 μM</td>
</tr>
<tr>
<td>100μM AN35 – primer</td>
<td>0.05 µL</td>
<td>0.5 μM</td>
</tr>
<tr>
<td>0.1M DTT</td>
<td>1 µL</td>
<td>0.01 M</td>
</tr>
<tr>
<td>RnaseOUT</td>
<td>0.5 µL</td>
<td>20 units</td>
</tr>
<tr>
<td>SuperScript™ III RT(200U/µL)</td>
<td>0.5 µL</td>
<td>100 units</td>
</tr>
<tr>
<td>RNase-free water</td>
<td>0.3 µL</td>
<td>-</td>
</tr>
</tbody>
</table>

10.2.2 反轉錄酶反轉錄反應(RT)：使用 PCR thermal cycler。
10.2.2.1 annealing：22 ℃，10 分鐘。
10.2.2.2 R.T.作用：42 ℃，60 分鐘。
10.2.2.3 HotStop：95 ℃，5 分鐘。
10.2.2.4 最後維持在 4 ℃，保存 cDNA。

10.3 聚合酶鏈鎖反應(PCR)
10.3.1 取 2 µL cDNA 做模板，分別加入聚合酶鏈鎖反應試劑及其他反應溶液（成分如下表），調整反應總體積至 10 µL。

<table>
<thead>
<tr>
<th>反應試劑</th>
<th>加入體積</th>
<th>PCR 反應最終濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>10x PCR Buffer, Minus Mg</td>
<td>1 µL</td>
<td>1x</td>
</tr>
<tr>
<td>2.5mM dNTP Mix</td>
<td>1 µL</td>
<td>0.25 mM</td>
</tr>
<tr>
<td>50mM Magnesium Chloride</td>
<td>0.5 µL</td>
<td>2.5mM</td>
</tr>
<tr>
<td>0.1M DTT</td>
<td>0.1 µL</td>
<td>0.001M</td>
</tr>
<tr>
<td>224 – Forward primer(10µM)</td>
<td>0.8 µL</td>
<td>0.8 μM</td>
</tr>
<tr>
<td>222 – Reverse primer(10µM)</td>
<td>0.8 µL</td>
<td>0.8 μM</td>
</tr>
<tr>
<td>Platinum Taq DNA Polymerase</td>
<td>0.5 µL</td>
<td>2.5 units</td>
</tr>
<tr>
<td>RNase-free water</td>
<td>3.3 µL</td>
<td>-</td>
</tr>
</tbody>
</table>

10.3.2 聚合酶鍊鎖反應(PCR)：使用 PCR thermal cycler。
10.3.2.1 denature：95 ℃，30 秒。
10.3.2.2 annealing：42 ℃，30 秒。
10.3.2.3 extension：60℃，45 秒。
10.3.2.4 重複上述1~3步驟40 cycles。
10.3.2.5 最後維持在4℃。

10.4 巢式聚合酶鍵鎖反應(nest-PCR)

10.4.1 取1 μL聚合酶鍵鎖反應(PCR)產物做模板，分別加入聚合酶鍵鎖反應試劑及其他反應溶液（成分如下表），調整反應總體積至25 μL。

<table>
<thead>
<tr>
<th>反應試劑</th>
<th>加入體積</th>
<th>nest-PCR反應最終濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>10x PCR Buffer, Minus Mg</td>
<td>2.5 μL</td>
<td>1x</td>
</tr>
<tr>
<td>2.5mM dNTP Mix</td>
<td>2.5 μL</td>
<td>0.25mM</td>
</tr>
<tr>
<td>50mM Magnesium Chloride</td>
<td>1.25 μL</td>
<td>2.5mM</td>
</tr>
<tr>
<td>0.1M DTT</td>
<td>0.25 μL</td>
<td>0.001M</td>
</tr>
<tr>
<td>AN89 -Forward primer(10μM)</td>
<td>2.0 μL</td>
<td>0.8 μM</td>
</tr>
<tr>
<td>AN88 -Reverse primer(10μM)</td>
<td>2.0 μL</td>
<td>0.8 μM</td>
</tr>
<tr>
<td>Platinum Taq DNA Polymerase</td>
<td>0.5 μL</td>
<td>2.5units</td>
</tr>
<tr>
<td>RNase-free water</td>
<td>13.0 μL</td>
<td>-</td>
</tr>
</tbody>
</table>

10.4.2 巢式聚合酶鍵鎖反應(nest-PCR)：使用PCR thermal cycler。

10.4.2.1 HotStart：95℃，6 分鐘。
10.4.2.2 denature：95℃，30 秒。
10.4.2.3 annealing：60℃，20 秒。
10.4.2.4 extension：72℃，45 秒。
10.4.2.5 重複上述2~4步驟40 cycles。
10.4.2.6 最後維持在4℃。

10.4.3 膠片電泳分析

10.4.3.1 製備 2.0% 洋菜膠：2.0 g agarose 溶於100 ml（1X）TBE buffer。
10.4.3.2 選擇 100 bp DNA size Marker：5 μL。
10.4.3.3 取產物5 μL，並加入1 μL loading dye。
10.4.3.4 進行電泳分離 100 V，30 min。
10.4.3.5 膠片染色：1 μL/ml ethidium bromide 染色 10 min，H2O 趕染。
10.4.3.6 使用 UV light觀察，並照相紀錄。

11 結果判定

11.1 判讀標準

100 bp marker 會在洋菜膠上呈現出100~1,500 bp 的 ladder band，並以此作為識別依據，如在洋菜膠上呈現空白，即為陰性反應；在膠上出現 band 於正確位置時（產物長度為 360 bp~400bp)，初步具腸病毒核酸反應；需進一步定序確定型別。
11.2 報告核發
陽性(含型別)、陰性

11.3 結果登錄
完成檢驗將檢驗結果登錄於實驗紀錄表，檢驗結果填寫於檢體送驗單之“檢驗結果欄”，再上網登錄於傳染病通報系統。

12 品質管制
12.1 每次進行實驗時皆須有對照組，陽性對照組與陰性對照組的須符合設定值。
12.2 實驗過程遵循 S.O.P 的作業規範與流程，並在個別獨立的操作空間內操作，以避免污染。
12.3 Pipettman 做定期的校正。
12.4 注意檢測試劑的使用期限與適當的儲放溫度。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
14.2 QIAmp Viral RNA mini Kit、Invitrogen SuperScript™ III Reverse Transcriptase kit 使用手冊、Invitrogen Platinum Taq DNA Polymerase kit 使用手冊

15 附錄
15.1 腸病毒－巢式聚合酶鏈鎖反應法流程圖
15.2 Primers used for PCR amplification of the partial VP3、VP1 gene region.
附錄 15.1 腸病毒－巢式聚合酶鍵鎖反應法流程圖

檢體

病毒 RNA 萃取

反轉錄反應 (Revers-Transcription)

巢式聚合酶鍵鎖反應 (nest-PCR)

膠片電泳分析，是否有專一性 band 出現

是

判讀-腸病毒核酸陽性

否

判讀-腸病毒核酸陰性

定序分析-腸病毒核酸分型確認
附錄 15.2 . Primers used for seminested PCR amplification of VP1 sequences region.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN32</td>
<td>GTYGCCA</td>
<td>3009-3002</td>
</tr>
<tr>
<td>AN33</td>
<td>GAYTGCCA</td>
<td>3009-3002</td>
</tr>
<tr>
<td>AN34</td>
<td>CCRTCRTA</td>
<td>3111-3104</td>
</tr>
<tr>
<td>AN35</td>
<td>RCTYGCCA</td>
<td>3009-3002</td>
</tr>
<tr>
<td>224</td>
<td>GCIATGYTIGGIACICAYRT</td>
<td>1977-1996</td>
</tr>
<tr>
<td>222</td>
<td>CICCIGGIGGIAYRWACAT</td>
<td>2969-2951</td>
</tr>
<tr>
<td>AN89</td>
<td>CCAGCAGACACACAGCAGYNGARAYNGG</td>
<td>2602-2627</td>
</tr>
<tr>
<td>AN88</td>
<td>TACTGACCACCTGGNGNAYRWACAT</td>
<td>2977-2951</td>
</tr>
<tr>
<td>編號：</td>
<td>人類免疫缺乏病毒抗體檢測（粒子凝集法）</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>頁次：第 688 頁/共 1104 頁</td>
<td>核准日期：年 月 日</td>
<td></td>
</tr>
<tr>
<td>修訂日期：年 月 日</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. 目的
以粒子凝集法篩檢人體是否受到人類免疫缺乏病毒第一型或第二型感染之定性試驗。

2. 適用檢體種類
血清及血漿檢體。

3. 名詞解釋
無。

4. 原理概述
以人工膠粒（Gelatin Particle）做載體（Carriers），再分別吸附（Coating）一層第一型或第二型去活化人類免疫缺乏病毒病毒抗原。若血液中存在第一型或第二型抗體，基於免疫反應原理，則會形成凝集現象，故可藉此判定人體血清或血漿中是否含有人類免疫缺乏病毒之抗體。

5. 試劑耗材
5.1 試劑名稱：SERODIA HIV-1/2；廠牌：Fujirebio Inc；國別：Japan。（依根據七十六年十一月二日之衛署藥字第 700404 號公告規定及監測第二型個案所需選用此商品），內含物：
- 5.1.1 複原液（A）。
- 5.1.2 血清稀釋液（B）。
- 5.1.3 人類免疫缺乏病毒敏感化粒子抗體第一型（C1）。
- 5.1.4 人類免疫缺乏病毒敏感化粒子抗體第二型（C2）。
- 5.1.5 未敏感化粒子（D）。
- 5.1.6 對照用陽性血清（E）。
5.2 Fastec Microplate U 型盤－隨試劑採購由原廠提供。
5.3 250 μL 吸管尖。
5.4 40 μL 吸管尖。
5.5 八爪分注器。
5.6 手套。
5.7 0.5 mL 尖底離心管。
5.8 2 mL 血清瓶。

6. 儀器設備
6.1 觀察箱。
6.2 第二級生物安全櫃（Class II BSC）。
6.3 tray mixer（廠牌：Fujirebio Inc；型號：PMX-01）。
6.4 離心機。
6.5 tube mixer。
7 環境與設施安全
於生物安全第二等級（BSL-2）實驗室之設施內操作。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及儲存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體編號。
10.2 檢驗前處理：
10.2.1 確認檢體與送驗單資料一致，如有特殊規格檢體瓶不易儲存時，置換成 2 mL 之血清瓶。
10.2.2 確認試劑組於有效使用期限內，使用前需先置於室溫至少 30 分鐘後才可使用。
10.2.3 新開封試劑應於試劑盒上備註使用日期，冷凍乾燥之粒子其復原方式為：未敏感化粒子 (D) 瓶加入復原液 (A) 2 mL；第一型抗原敏感化粒子 (C1) 及第二型抗原敏感化粒子 (C2) 則各加入復原液 (A) 1.5 mL，已完成復原粒子應註明復原日期，溫和搖晃後置於室溫三十分鐘，待粒子完整復原後才可使用。
10.2.4 將 96 孔微量測定盤上標記檢體編號及加入試劑之代號。
10.3 加入血清稀釋液 (B)。實驗組：於第一孔滴入血清稀釋液 (B) 75 L，第二孔至第四孔各 25 L，陽性對照組：第一型 (PC1) 與第二型 (PC2) 之對照組需分別測定，第一孔滴入血清稀釋液 (B) 75 L，而第二至第八孔則均滴入 25 L。
10.4 二倍連續稀釋。實驗組：以微量吸管分別吸取 25 L 血清檢體加入第一孔中，並在液面下吸放混合至少五次，吸 25 L 移入第二孔，同樣混勻後，再取 25 L 移入第三孔，同樣混勻後，於第四孔吸 25 L 連同微量吸管丟棄於可高壓滅菌之廢棄物容器內。陽性對照組：取對照用陽性血清 (E) 各 25 L 分別加入第一型 (PC1) 及第二型 (PC2) 之第一孔，然後作二倍連續稀釋至第八孔後再丟棄 25 L。
10.5 實驗組及陽性對照組均於第二孔加入 25 L 未敏感化粒子 (D)，當作陰性血清對照；實驗組：加 25 L 第一型敏感化粒子 (C1) 於第三孔，加 25 L 第二型敏感化粒子 (C2) 於第四孔。陽性對照組：第一型 (PC1) 的第三孔至第八孔各加 25 L (C1)，第二型 (PC2) 的第三孔至第八孔各加 (C2) 敏感化粒子 25 L。
血清檢體件數少時實驗組與陽性對照組放在同一微量盤上操作。

稀釋步驟如下：

實驗組（圖例一）

<table>
<thead>
<tr>
<th>孔</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>血清稀釋液(μL)</td>
<td>75</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>血清檢體(μL)</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>未敏感化粒子(μL)</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>第一型敏感化粒子(μL)</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>第二型敏感化粒子(μL)</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

陽性對照組（圖例二）

<table>
<thead>
<tr>
<th>孔</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>血清稀釋液(μL)</td>
<td>75</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>未敏感化粒子(μL)</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>第一型敏感化粒子(μL)</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>（或第二型敏感化粒子）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

實驗組（圖例一）

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2X</td>
<td>16X</td>
<td>64X</td>
</tr>
</tbody>
</table>

檢體稀釋倍數
10.6 將 96 孔微量滴定盤振盪混合均勻後，加透明封膜於盤上，並註明實驗起訖時間，靜置於不易接觸及震動之平面上，於室溫下靜置二小時，使血清中之特異性抗體與抗原結合形成凝集；如未敏感化粒子呈現凝集現象則需進行 10.7 至 10.10 步驟。

10.7 取已經溶解復原的未敏感化粒子 350 μL，加入一尖底離心管中。

10.8 再將 50 μL 血清檢體加入離心管中，使用 tube mixer 加以完成混合，在室溫下放置 20 分鐘以上（靜置期間可震盪 1-2 次）。

10.9 將試管進行離心沉澱（2,000 rpm/5 分鐘/室溫）完全分離，取得上清液 50 μL 置入 U 型盤第 2 孔中。

10.10 重複 10.4-10.5 步驟。

11 結果判定

11.1 將 U 型盤輕置於觀察箱上(透過間接光線)，將檢體與對照組加以比較，最終稀釋倍數 ≥1：32 呈現凝集反應時判定為第一型陽性；最終稀釋倍數 ≥1：64 呈現凝集反應時判定為第二型陽性（參見下表）。

11.2 凝集像之狀態敘述

<table>
<thead>
<tr>
<th>粒子凝集像</th>
<th>結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>粒子聚集於穴的中心成鈕釦（button）狀實心圓，並帶有圓形規則狀的外緣。</td>
<td>無反應</td>
</tr>
<tr>
<td>粒子聚集於穴的中心成鈕釦（button）狀，具規則狀外緣之空心圓。</td>
<td>弱反應</td>
</tr>
<tr>
<td>粒子呈明顯的大環，外緣呈不規則狀粗糙之凝集現象。</td>
<td>有反應</td>
</tr>
<tr>
<td>粒子如膜狀凝集，圓盤狀週邊呈現内摺現象。</td>
<td>強反應</td>
</tr>
</tbody>
</table>
11.3 最終判定

此法依下表判定為陽性之檢體，應再進行西方墨點法確認試驗。

<table>
<thead>
<tr>
<th>致敏化粒子</th>
<th>結果</th>
<th>判定</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1 致敏化粒子</td>
<td>無反應</td>
<td>人類免疫缺乏病毒抗體第一型陰性</td>
</tr>
<tr>
<td>C-2 致敏化粒子</td>
<td>無反應</td>
<td>人類免疫缺乏病毒抗體第二型陰性</td>
</tr>
<tr>
<td>C-1 致敏化粒子</td>
<td>有反應</td>
<td>人類免疫缺乏病毒抗體第一型陽性</td>
</tr>
<tr>
<td>C-2 致敏化粒子</td>
<td>無反應</td>
<td></td>
</tr>
<tr>
<td>C-1 致敏化粒子</td>
<td>無反應</td>
<td>人類免疫缺乏病毒抗體第二型陽性</td>
</tr>
<tr>
<td>C-2 致敏化粒子</td>
<td>有反應</td>
<td></td>
</tr>
</tbody>
</table>

12 品質管制
12.1 每次操作均需伴隨進行陽性對照組、且確認人類免疫缺乏病毒第一型陽性對照組稀釋1：128±1管稀釋呈現凝集；人類免疫缺乏病毒第二型陽性對照組之效價是1：256±1管稀釋呈現凝集。
12.2 應確認實驗組及對照組之未致敏化粒子皆呈現不凝集之陰性反應。
12.3 如血清檢體與未敏感化粒子反應，皆出現凝集反應時，則依10.9-10.12進行吸收操作法重新試驗。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以121°C, 30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
台富製藥股份有限公司製造說明書（Fujirebio Inc）。
附錄 15.1 人類免疫缺乏病毒抗體試驗（粒子凝集法）流程圖

血清稀釋液（B 液）75 μL
血清/血漿檢體及陽性對照液（E 液）各25 μL
2 倍連續稀釋
添加敏感化粒子（C1，C2）及未敏感化粒子（D 液）
混勻，靜置二小時後觀察

粒子呈圓盤狀凝集

是

血清稀釋液（B 液）75 μL（複驗）
血清/血漿檢體及陽性對照液（E 液）各25 μL
2 倍連續稀釋
添加敏感化粒子（C1，C2）及未敏感化粒子（D 液）
混勻，靜置二小時後觀察

粒子呈圓盤狀凝集

是

陽性

否

陰性

根據最新 HIV 檢驗流程，應從事第三次檢查，第三次為陰性，才發陰性結果；若為陽性，則發陽性結果。
附錄 15.2 人類免疫缺乏病毒抗體試驗之粒子凝集法實驗紀錄表

<table>
<thead>
<tr>
<th>檢體編號</th>
<th>S</th>
<th>D</th>
<th>C1</th>
<th>C2</th>
<th>S</th>
<th>D</th>
<th>C1</th>
<th>C2</th>
</tr>
</thead>
</table>

+ 有反應 - 無反應 ± 弱反應
S：sample
D：unsensitized particles
C1：HIV-1 sensitized particles
C2：HIV-2 sensitized particles
PC1：HIV-1 positive control
PC2：HIV-2 positive control
1 目的
以西方墨點法確認人體是否受到人類免疫缺乏病毒第一型的感染。

2 適用檢體種類
血清及血漿檢體。

3 名詞解釋
無。

4 原理概述
利用電泳原理，將人類免疫缺乏病毒之蛋白質依不同分子量大小分離，再運用轉印技術將電泳膠內之蛋白質移轉至硝化纖維膜試紙表面作保存，以偵測人體血清或血漿中之相對應抗體。

5 試劑耗材
5.1 試劑名稱：New Lav Blot I；廠牌：Bio-Rad；國別：France；code no：72251 (依據七十六年十一月二日之衛署藥字第700404號公告規定及監測第二型個案所需選用此商品)，內含物：
5.1.1 共計十八條硝化纖維膜試紙條（R1）。
5.1.2 五倍濃縮洗滌液（R2）。
5.1.3 對照用陰性血清（R3）。
5.1.4 對照用陽性血清（R4）。
5.1.5 結合液（R5）。
5.1.6 呈色液（R6）。
5.2 40 μL 吸管尖（tip）。
5.3 玻璃或塑膠無菌吸管。
5.4 塑膠鑷子。
5.5 量筒。
5.6 2 mL 血清瓶。
5.7 10 %漂白水。
5.8 可拋棄式無菌塑膠手套。
5.9 口罩，眼罩。

6 儀器設備
6.1 第二級生物安全櫃（Class II BSC）。
6.2 翹翹板式震盪器。
6.3 分注器。
6.4 25 μL 微量吸管。
6.5 負壓抽吸幫浦。
6.6 4 °C 冰箱。
6.7 -20 °C 冷凍櫃。
7 環境與設施安全
於生物安全第二等級 (BSL-2) 實驗室之設施內操作。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及儲存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體編號。
10.2 檢驗前處理：
 10.2.1 確認檢體與送驗單資料一致，如有特殊規格檢體瓶不易儲存時，置換成 2 mL 血清瓶。
 10.2.2 先確認試劑組效期無誤後，使用前試劑組需先置於室溫至少 30 分鐘後才可使用；以二次蒸餾水將 (R2) 濃縮液做五倍稀釋，並標註配置日期，使用期限為一個月。
 10.2.3 新開封試劑應於試劑盒上備註使用日期。
 10.2.4 在反應槽上標記試劑批號及檢驗日期。
 10.2.5 於廢液瓶內加入 10 % 漂白水。
 10.2.6 以塑膠週子依序夾取硝酸試紙條之末端，調整正面置於反應槽中，號碼應朝上，每批次實驗所需試紙條之數量，除檢體數外需再加二條（陽性、陰性）進行對照組之平行測試。
 10.2.7 於反應槽下方以油性筆註明檢體編號、陰性、陽性對照組。
 10.3 於各凹槽內加入 2 mL 洗滌液後開啟震盪板搖 5 分鐘，使試紙條充分濕潤。
 10.4 分別加入各 20 μL 血清檢體、陰性及陽性對照液於相對應之反應槽中，加蓋於室溫下搖擺作用 2 個小時。
 10.5 以負壓抽吸器吸乾各反應槽內之液體。
 10.6 各注入 2 mL 洗滌液，搖擺後吸乾，再注入 2 mL 洗滌液搖擺作用 5 分鐘重複此清洗步驟二次。
 10.7 各注入 2 mL 的結合液，加蓋後於室溫中搖擺作用一小時。
 10.8 重複 10.6 步驟清洗三次。
 10.9 各注入 2 mL 之呈色液，搖擺作用約 5 分鐘使之呈色。
 10.10 以負壓抽吸器吸乾反應槽內液體並以二次蒸餾水清洗三次，以停止反應。
 10.11 以負壓抽吸器盡可能吸淨反應槽內液體。
 10.12 檢驗後處理：
10.12.1 抽吸管尖以 10 % 漂白水消毒後再以清水沖洗。
10.12.2 比對呈色反應判讀後發報告，反應後之試紙條則陰乾後黏貼於
黏貼表，詳如附表一。
10.12.3 檢驗完成後之檢體依序放入冰箱之檢體保存盒中 -20 °C 冷凍儲
存。
10.12.4 將試藥放回試劑組內，置入 4 - 8 °C 冰箱保存。
10.12.5 操作箱之桌面以 10 % 漂白水消毒，再以清水擦拭。

11 結果判定
11.1 根據陽性對照檢體之不同蛋白位置及呈色帶之特性 (參見下表)，判讀
各血清檢體之抗體蛋白，將出現之反應線記錄在西方墨點法紀錄表上
(詳如附表二)。

<table>
<thead>
<tr>
<th>Molecular Weight</th>
<th>Gene</th>
<th>Antigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>GP160</td>
<td>ENV</td>
<td>Clear band</td>
</tr>
<tr>
<td>GP110/120</td>
<td>ENV</td>
<td>Diffuse band</td>
</tr>
<tr>
<td>P68</td>
<td>POL</td>
<td>Clear band</td>
</tr>
<tr>
<td>P55</td>
<td>GAG</td>
<td>Clear band (doublet)</td>
</tr>
<tr>
<td>P52</td>
<td>POL</td>
<td>Clear band</td>
</tr>
<tr>
<td>GP41</td>
<td>ENV</td>
<td>Diffuse band</td>
</tr>
<tr>
<td>P40</td>
<td>GAG</td>
<td>Clear band</td>
</tr>
<tr>
<td>P34</td>
<td>POL</td>
<td>Clear band</td>
</tr>
<tr>
<td>P24/25</td>
<td>GAG</td>
<td>Clear band</td>
</tr>
<tr>
<td>P18</td>
<td>GAG</td>
<td>Clear band (sometimes a doublet)</td>
</tr>
</tbody>
</table>

11.2 圖卡對照應以該批號試劑組內所提供之圖卡為比對依據。
對照試劑組內所附圖卡，參見下圖。

11.3 結果判定標準：依據使用試劑之建議判讀標準即 gp41、gp120、gp160
三者之中出現任何兩條反應線就判斷為“阳性”；沒有任何反應線出現者判斷為“阴性”；有反應線出現但無法到達陽性標準者，則判斷為“未確定”。

11.4 報告核發：西方墨點法陽性，西方墨點法陰性，西方墨點法未確定。

11.5 結果登錄：完成檢驗後，將檢驗結果填寫於檢體送驗單之“檢驗結果”欄，並將紀錄表背面蓋職章，相關檢驗紀錄及檢體送驗單陳核實驗室主管審核，俟實驗室主管核章後，再將影印本加蓋檢驗專用章之後以限時掛號寄發給送驗單位，陽性個案則加寄轄區主管衛生局及權責疾病組。

12 品質管制
12.1 每次操作均需伴隨進行陽性、陰性對照組各一。
12.2 確認每一檢體試紙條內之anti-IgG內控反應線為顯著之呈色反應。
12.3 確認陰性對照應完全不呈現任何特異性之反應線。
12.4 陽性對照檢體應出現所有之特異性蛋白反應線（p18、p25、p31、p40、gp41、p52、p55、p68、gp110/120、gp160）。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以121℃，30 min高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
Bio-Rad製葯股份有限公司製造說明書。

15 附錄
15.1 人類免疫缺乏病毒抗體檢驗總流程圖。
15.2 人類免疫缺乏病毒抗體試驗之西方墨點法流程圖。
15.3 人類免疫缺乏病毒抗體試驗之西方墨點法試紙黏貼表。
15.4 人類免疫缺乏病毒抗體試驗之西方墨點法結果紀錄表。
附錄 15.1 人類免疫缺乏病毒抗體檢驗總流程圖

血清/血漿

HIV1/2 粒子凝集法篩檢

粒子呈圓盤狀凝集

是

人類免疫缺乏病毒抗體篩檢陽性

人類免疫缺乏病毒抗體第一型西方墨點法

GP160, GP120, GP41 三者之中出現任何兩條反應

否

未確定 (註 1)

是

人類免疫缺乏病毒抗體第一型確認陽性

陰性

根據最新 HIV 檢驗流程，篩檢測試須至少兩次陽性，才可定義為愛滋抗體篩檢陽性！

一般個案隔三個月再次採檢

不

陰性

註 1. 特殊案件加作核酸檢測
附錄 15.2 人類免疫缺乏病毒抗體試驗（西方墨點法）流程圖

將硝化試紙（R1）以洗滌液（1 倍的 R2）充分潤濕

加血清/血漿檢體及陰性（R3）陽性（R4）對照液各 20 μL

室溫下震盪作用二小時

加 2 mL 之 1 倍的 R2 洗滌液清洗三次

加 2 mL 結合劑（R5）作用一小時

加 2 mL 之 1 倍的 R2 洗滌液清洗三次

加 2 mL 呈色液(R6)作用五分鐘

加 2 mL 蒸餾水終止反應

加 2 mL 蒸餾水清洗三次後吸乾

GP160, GP120, GP41 三者之中出現任何兩條反應線

否

未確定（註 1）

是

陰性（註 2）

隔三個月再次採檢

否

愛滋抗體第一型陽性

註 1：有反應線出現但無法達到陽性標準者，則判斷為“未確定”。

註 2：沒有任何反應線出現者判斷為“陰性”。
附錄15.3 人類免疫缺乏病毒抗體試驗之西方墨點法試紙條黏貼表

<table>
<thead>
<tr>
<th>檢體編號</th>
<th>黏 貼 處</th>
<th>備 註</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>檢驗者：</td>
<td>實驗室主管：</td>
<td></td>
</tr>
</tbody>
</table>
附錄 15.4 人類免疫缺乏病毒抗體試驗之西方墨點法實驗紀錄表

<table>
<thead>
<tr>
<th>檢體編號</th>
<th>呈色</th>
<th>狀態</th>
<th>判讀</th>
</tr>
</thead>
<tbody>
<tr>
<td>GP160</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP110/120</td>
<td>P68</td>
<td>P55</td>
<td>P52</td>
</tr>
<tr>
<td></td>
<td>GP41</td>
<td>P40</td>
<td>P34</td>
</tr>
<tr>
<td></td>
<td>P25</td>
<td>P18</td>
<td></td>
</tr>
</tbody>
</table>

檢驗者： 实驗室主管：
1 目的
以分子生物學之技術利用即時反轉錄酶-聚合酶鏈鎖反應（Real time-RT-PCR）來檢測檢體中是否有人類免疫缺乏病毒之核酸。

2 適用檢體種類
適用於人體之血清及血漿檢體。

3 名詞解釋
無。

4 原理概述
利用具特殊專一性之 primers，把檢體中的病毒 RNA 經由 RT-PCR 來複製放大具有人類免疫缺乏病毒的核酸，再以 probe 進行螢光偵測，以篩選檢體中是否含有人類免疫缺乏病毒。

5 試劑耗材
5.1 Sample Preparation System：Abbott, Germany。
 5.1.1 Lysis buffer。
 5.1.2 Microparticles。
 5.1.3 Wash 1 buffer。
 5.1.4 Wash 2 buffer。
 5.1.5 Elution Buffer。
5.2 Abbott RealTime HIV-1 Assay：Abbott, Germany。
 5.2.1 Abbott RealTime HIV-1 Amplification Reagent：含 internal control、rTth polymerase Enzyme、HIV-1 Oligonucleotide reagent、activation reagent。
 5.2.2 Abbott RealTime HIV-1 Control Kit：含 high positive control、low positive control、negative control。
 5.2.3 Abbott RealTime HIV-1 Calibrator Kit：含 Calibrator A・Calibrator B。
5.3 Deep well plate。
5.4 DiTis (1 mL tips)、DiTis (200 μL tips)。
5.5 Reagent vessels。
5.6 Reaction vessels。
5.7 master mix tube。
5.8 無菌微量吸管尖（tip）：1,000 μL、200 μL、100 μL、20 μL、10 μL。
5.9 96-well Optical Reaction Plate。
5.10 光學增強膜。

6 儀器設備
6.1 第 II 級生物安全櫃（Class II BSC）。
6.2 m2000sp™ 全自動核酸萃取系統。
6.3 m2000rt 即時定量聚合酶鏈鎖反應系統。
6.4 微量吸管（pipette）：1,000 μL、200 μL、100 μL、20 μL、10 μL。
6.5 振盪器（vortexer）。
6.6 採血管離心機。
6.7 冰箱：4 °C。
6.8 冷凍櫃：-20 °C、-80 °C。
6.9 高壓滅菌鍋。
6.10 Applicator。

7 環境設施安全
於生物安全第二等級（BSL-2）實驗室之設施內操作。

8 檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體編號登錄。
10.2 檢驗前處理
10.2.1 血清或添加 EDTA 抗凝劑的血漿皆可使用。
10.2.2 採集後之檢體，以 3,000 x g 靜置 10 分鐘，將分離出的血清備用。
10.2.3 檢體分裝：將處理好之血清檢體分成兩管：一管放置-20 °C 供 PCR 檢驗用；另一管放置-80 °C 儲存。
10.2.4 吸取檢體 800 μL 加入 reaction vessel，將 reaction vessel 和 control（包括 high positive control、low positive control 和 negative control 各一管）、calibrator（Calibrator A 和 Calibrator B 各三管）置於檢體架上，並檢體架放置於工作台上，確定放置穩定並卡入後方之卡榫。
10.2.5 放入空的 DiTi tray 及 Deep Well 在 DiTi reuse rack 上，另外再放置一個 deep well plate 到 output deck（A1 朝左上方，有缺角的朝左下方）。
10.2.6 放入新的 1,000 μL DiTis 到 carrier，並將 carrier 放置於工作台上（一支待測檢體需要約 10 支 1,000 μL 的 DiTis tips）。
10.2.7 將 reaction vessel 放進 subsystem carrier，蓋上 cover，放至 heater zone 1。
10.2.8 Internal Control 充分的 vortex，取 500 μL 加到 Lysis Buffer；準備試槽（Reagent Vessel）：先將試劑貼紙靠試劑槽右邊的邊緣貼好（Barcode 朝右），再依照 reagent carrier 上的標示放入，依標籤上的試劑號碼倒入。（Lysis Buffer 及 Wash Buffer 儘量避免有氣泡產生）。
10.2.9 試剤都加好後，依照指定位放置到工作台上，確定有將 Reagent vessel Carriers 推到底部。
10.2.10 檢查 System Liquid container（液壓系統用水儲存桶）、Solid waste container（固態廢棄物垃圾桶）及 Liquid waste container（液體廢棄物垃圾桶），如果超過下列標準，則系統無法開始進行萃取。

<table>
<thead>
<tr>
<th>Container</th>
<th>Liquid/Solid Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid Waste</td>
<td><½ Full</td>
</tr>
<tr>
<td>Liquid Waste</td>
<td><¾ Full</td>
</tr>
<tr>
<td>System Liquid</td>
<td>>¾ Full (以 RO 水補充)</td>
</tr>
</tbody>
</table>

10.3 萃取病毒 RNA

10.3.1 打開 m2000sp™ 機器和電腦的電源，電腦開機完成後會自動進入 m2000sp™ 的系統輸入帳號密碼後進入主畫面登入之後，此時點選畫面左方的 Start 進行初始化，初始化完成後系統呈現 Ready 狀態。
10.3.2 由 Instrument Status 點選 Orders，再點選 Sample Extraction。
10.3.3 在 Application Specification list 下，再選取 m2000 0.6 ml HIV-1 RNA 向好 protocol 後，由畫面左邊的項目中點選 Set Up Run。
10.3.4 依序輸入以下項目的資料:
 <Run Name> 可自己設定名稱
 <Comment> 輸入要補充的資料
 <Control Information> <Calibrator Information> 包括 lot number、Expiration date 及濃度；若是同一批號，可直接選擇上次保存的批號資料。
 註: Calibration 只要作一次系統就會記憶，不需要每次都重作，除非 Amplification Reagent Kit 或 Sample Preparation System 换批號。
10.3.5 點選 Next 後會出現 Sample Extraction: Sample Scan 畫面，選擇 Scan，完成後若有條碼會直接顯示在螢幕上，無條碼需輸入檢體編號。
10.3.6 點選 Next 進入 Sample Extraction: Control and Calibrator Warning 畫面，如果沒有任何 Warning 出現，則點選 Next。
10.3.7 點選 Next 後出現 Sample Extraction: Reagent Setup 的畫面，輸入以下資料：
 輸入<Deep Well Plate ID>
輸入<Reagent Lot Number>
輸入<Expiration Date>，月/年
10.3.8 點選Next，Sample Extraction：Reagent Scan，點選Scan進行scan。如果沒有錯誤，會出現Next(如果Reagent Vessel Carriers有放錯位置，則會以紅字標出放錯的位置，更正之後再點選Rescan重新掃描)，點選後出現Sample Extraction：Run Start畫面。
10.3.9 確認後選擇Start開始進行萃取。
10.3.10 當萃取結束後會出現一個結束的對話框，選擇Close，由畫面左方選CloseProcess，系統回復到READY狀態。
10.4 real-time PCR Master Mix之配製
10.4.1 放入所需的master mix tube和96-Well Optical Reaction Plate於工作台上。
10.4.2 放入1,000 μL、200 μL的DiTi Tips。
10.4.3 將已退冰好的reagent pack的蓋子打開（操作前半小時從-20 ºC拿出來退冰，完全回溶後若還沒要操作則先置於4 ºC），置於架上。
10.4.4 由主畫面選擇Orders，再點選Master Mix Addition進入Run Master Mix Addition的畫面。
10.4.5 點選剛完成的protocol，選擇畫面左側的Set Up Run，接著會出現Master Mix Addition：Plate Details的畫面，選擇Next。
10.4.6 輸入PCR plate的名稱，選擇Next。
10.4.7 出現Master Mix Addition：Assay Specific Reagent Scan的畫面，點選Scan，掃描成功後出現assay reagent IDs，lot及expiration date。
10.4.8 選擇Next，出現Master Mix Addition：Run Start畫面：依照指示完成再次確認的動作，點選Start開始進行Master Mix配製。
10.5 封膜
10.5.1 撕下光學增強膜白色的部份（protective backing），手儘量壓住邊緣（end tab），避免直接接觸到會覆蓋在96孔盤的範圍（seal）。
10.5.2 將光學增強膜覆蓋在96孔盤上，以Applicator刮平光學增強膜，再以Applicator壓住膜的邊緣，按虛線撕下。最後再以Applicator刮96孔盤的邊緣區來增加膜跟96孔盤的密合度。
10.5.3 將封好膜的96孔盤移到m2000rt進行real-time PCR。
10.6 real-time PCR之上機
10.6.1 在m2000sp™電動的幕幕上方的工具列Result，點選View by PCR plate，選擇剛剛完成的protocol，在畫面左邊點選Export，將CD-ROM放入電腦中，選Start。
10.6.2 打開m2000rt™機器和電腦的電源，電腦開機完成後會自動進入m2000rt™的系統輸入帳號密碼後進入主畫面登入之後，此
時點選畫面左方的 Start 進行初始化（約 15 分鐘），初始化完成後系統呈現 Ready 狀態。

10.6.3 選擇 m2000rt™ 電腦的螢幕上方的工具列 Orders，點選 Test Orders，螢幕會顯示 Pending Test Orders，點選螢幕左方 Create Tasks 中的 Import Order，將存有 m2000sp 資料的 CD-ROM 放入電腦中，將 Test Order 加到 Pending Test Order，選 Finish。

10.6.4 選擇 Orders 中的 Test Orders，螢幕會出現 Pending Test Orders，從 Run Tasks 中點選 Set Up Run，再從右側的 Test Orders 選要進行反應的 plate order。

10.6.5 螢幕會顯示 Run Test Order: Order Details，確定顯示的 PCR Plate Id 是否為要進行的 plate order（螢幕下方的 Sample List 中的 Sample ID 是否正確），再點選 Next。

10.6.6 進入 Run Test Order: Run Start，打開機器的 tray drawer，將 PCR plate 放在 tray drawer 上，在推入 tray drawer；選擇下方的 Start，開始進行反應。

11 結果判定

11.1 反應進行完成後，點選主畫面上方的 Result，選擇 View by Plate，螢幕會出現本次實驗偵測的結果，在 Result 欄中會顯示樣本的病毒量。

11.2 陽性對照組與陰性對照組的結果必須符合設定值範圍之內，同時 internal control 也要在認可範圍內，有偵測出病毒者，判為人類免疫缺乏病毒核酸檢測陽性；未偵測出病毒者，判為人類免疫缺乏病毒核酸檢測陰性。

11.3 在螢幕左方的 Result tasks 中選擇 View Plate Details、View All Results Details 或是 View Selected Results。

11.3.1 選擇 View Plate Details，可以顯示單一個樣品或是所有樣品的 Target 及 IC 在進行 PCR 的反應曲線，可用以判定每一個樣品 PCR 的反應效率及結果。

11.3.2 選擇 View All Results Details，呈現每一單個樣品的結果，從螢幕右上方的 Test Information 可知樣品的病毒量、即時定量反應的 Target Cycle Number 及 IC Cycle Number，亦可從 Error Code/Description 得知反應失敗的原因。

11.3.3 選擇 View Selected Results，可以看單一個樣品的結果。

11.4 檢視反應的校正曲線 (Calibration Curve)；選擇螢幕上方的工具列 Results選單中的 View Assay Calibrations，會出現不同次的校正結果，點選要選的結果進入 Assay Calibration Details，會有 CALA、CALB 各三點校正的 Cycle Number 及其中間值，另有校正曲線圖。
12.2 一般試劑之品質管制：參照本署傳染病檢驗標準方法：病毒實驗室品質管制程序辦理。

12.3 國際標準品之品質管制

12.4 應於有效期限內使用，同一批號試劑，第一次使用時取一組進行試驗，之後每隔 3 - 6 個月再取一組進行試驗。

12.5 使用國際標準品 NIBSC HIV-1 PWS-2 和 PWS-3 進行試驗。

12.6 試驗結果必須符合陽性反應。

12.7 m2000sp 和 m2000rt 機器定時作檢驗與校正。

13 廢棄物處理

檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

15 附錄

15.1 人類免疫缺乏病毒核酸鑑定（即時反轉錄酶－聚合酶鍵鎖反應）總流程圖。

15.2 人類免疫缺乏病毒核酸檢驗（即時反轉錄酶－聚合酶鍵鎖反應）流程圖。
附錄 15.1 人類免疫缺乏病毒核酸鑑定（即時反轉錄酶－聚合酶鏈鎖反應）總流程圖

血清

人類免疫缺乏病毒核酸檢測

檢驗判斷

陰性

人類免疫缺乏病毒核酸陰性

陽性

通知個案再次採檢

人類免疫缺乏病毒核酸檢測

檢驗判斷

陰性

人類免疫缺乏病毒核酸陰性

陽性

人類免疫缺乏病毒核酸陽性
附錄 15.2 人類免疫缺乏病毒核酸檢驗（即時反轉錄酶－聚合酶鎖鎖反應）流程圖

血清

病毒 RNA 萃取

real-time PCR Master Mix 之配製

real-time PCR 之上機

軟體分析 ± 是否偵測到病毒核酸

判讀-人類免疫缺乏病毒核酸陰性

是

否
目的
檢測疑似病患的血液或組織中是否含有疱疹 B 病毒。

適用檢體種類
適用於病患急性期發病七病日內血液檢體或組織檢體。

名詞解釋
無。

原理概述
將檢體血清或組織液，經 0.22 M 的過濾膜過濾，一部份利用即時定量 PCR 直接進行反應，如有反應，再進行細胞培養。

試劑耗材
5.1 QIA DNA blood mini kit (QIAGen cat#51104)。
5.2 Primer set-1 gGS4(5’-CCGCGTACGACTACGAGATCC-3’)
gGAS4(5’-GTTCGCCGCCACGATCCA-3’)
Primer set-2 gGBV-323F(5’-TGGCTACTACCCGCCTGG-3’)
gGBV-446R(5’-TGGTACGTGTGGGAGTAGCG-3’)
Primer set-2 HSV-P1(5’-GTGGTGAGCCTGGCCAGCCTGTACCC-3’)
HSV-P2(5’-TAAACATGGAGCTCCGTGTGCCCGTAGATGA-3’)
5.3 QuantiTect SYBR green DNA kit。
5.4 合成基因作為 Positive control。
5.5 Eagles’ minimum essential medium。
5.6 Fetal calf serum。
5.7 Trypsine-EDTA。
5.8 25T Flask。

儀器設備
6.1 第 II 級生物安全櫃 (class II BSC)。
6.2 離心機 (sigma 1K-15)。
6.3 Lightcycler 2.01 (roche)。
6.4 LC Carousel centrifuge (roche)。
6.5 1-20 μL、40-200 μL Pipette。
6.6 -20 °C 及 -80 °C 冷凍櫃。
6.7 第 III 級生物安全櫃 (class III BSC)。

環境設施安全
7.1 於生物安全第四等級實驗室內檢體分裝、去活化。檢驗操作在生物安全等級 BSL-2 實驗室進行。
7.2 水質：25 ℃ 蒸餾水或 RO 逆滲透可達 18 MΩ-CM 以上超純水。
8 檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

10 檢驗步驟
10.1 病毒檢測
10.1.1 使用 QIA DNA blood mini kit 抽取病毒的 DNA。
10.1.2 配置反應的溶液，必須包含有待測檢體，Positive control 以及 Negative control

<table>
<thead>
<tr>
<th>component</th>
<th>Volume/50 μL reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O</td>
<td>add to 50μL</td>
</tr>
<tr>
<td>5 X reaction buffer</td>
<td>10 μL</td>
</tr>
<tr>
<td>10 mM dNTPs</td>
<td>1 μL</td>
</tr>
<tr>
<td>primer A</td>
<td>4 μL</td>
</tr>
<tr>
<td>primer B</td>
<td>4 μL</td>
</tr>
<tr>
<td>template DNA</td>
<td>x μL</td>
</tr>
<tr>
<td>(DMSO, optional)</td>
<td>(1.5 μL)</td>
</tr>
<tr>
<td>DNA polymerase</td>
<td>0.5 μL</td>
</tr>
</tbody>
</table>

10.1.3 進行聚合酶反應，使用 Roche 之 lightcycler2.01

<table>
<thead>
<tr>
<th>Cycle step</th>
<th>Temp.</th>
<th>Time</th>
<th>Number of cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial denaturation</td>
<td>98℃</td>
<td>30 s</td>
<td>1</td>
</tr>
<tr>
<td>Denaturation</td>
<td>98℃</td>
<td>5-10 s</td>
<td>25-35</td>
</tr>
<tr>
<td>Annealing</td>
<td>45-72℃</td>
<td>10-30 s</td>
<td></td>
</tr>
<tr>
<td>Extension</td>
<td>72℃</td>
<td>15-30 s *5/1 kb</td>
<td></td>
</tr>
<tr>
<td>Final extension</td>
<td>72℃</td>
<td>5-10 min</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4℃</td>
<td>hold</td>
<td>1</td>
</tr>
</tbody>
</table>

10.1.4 進行判讀
10.2 病毒分離
10.2.1 Vero E6 細胞以 Eagles‘ minimum essential medium (EMEM，內含10%加熱去活化胎牛血清)在37℃, 5% CO₂的條件下培養。
10.2.2 細胞接種後，改以2% FBS EMEM 做繼代培養。
10.2.3 送檢樣本先經過濾除去雜質後，以 EMEM 培養液調整成10%的懸浮液，以100 μL 之該懸浮液，於37℃接種至70%細胞滿的25 cm²的培養瓶。
10.2.4 接種2 hr 後，再加入5mL 2% EMEM 培養液，置入37℃，5% CO₂培養箱。
10.2.5 每兩週做一次繼代培養，先吸出上層培養液，以 0.25 % Trypsine-EDTA 處理分離細胞。
10.2.6 再混入原吸出之培養液，而後將 1/3 量置入新的 25 cm² 培養瓶，並以 2 % EMEM 補足至 5 mL。
10.2.7 另 1/3 置於 -70 °C 凍存，另 1/3 量留做抗原檢測用。

11 結果判定
11.1 判讀標準
Lightcycler 即時定量聚合酶反應的結果，與 Positive control，Negative control 之間互相比較來做為判讀的結果。
11.2 報告核發：病原體分離(陰性)，病原體分離(陽性)。
11.3 結果登錄：將檢體之檢驗結果登錄於檢體送驗單並加蓋檢驗者印章，送報告簽署人審核及蓋章，並登錄於網路報告系統。

12 品質管制
12.1 嚴防病原散佈或污染，工作時帶手套。
12.2 實驗過程遵循 S.O.P 的作業規範與流程，並在 BSL-4 實驗室內操作，以避免污染。
12.3 生物安全櫃及培養箱定期做校正及維護。
12.4 置於 37 °C 溫箱染色時應注意保持溼度。
12.5 必須要有未感染病毒之細胞及感染病毒之細胞分別做為陰性與陽性對照組。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序辦理。

14 參考資料

15 附錄
15.1 疱疹 B 病毒分離與鑑定流程圖。
附錄 15.1 病疹 B 病毒分離與鑑定流程圖

患者發病七日內血清

病毒分離組織培養

血清稀釋 20 倍
2 倍連續稀釋至 160 倍
接種 Vero 細胞株

37 ℃ CO₂ 培養箱培養 3 天

疱疹 B 病毒 Real-time PCR 核酸檢驗

陰性

陽性

重複接種一次

陰性

判定
1. 目的
檢測疱疹 B 病毒核酸。

2. 適用檢體種類
適用於符合疱疹 B 病毒病徵之病患血清檢體。

3. 名詞解釋
Herpes B virus：疱疹 B 病毒。

4. 原理概述
其技術原理是將待測的病毒 DNA，利用 PCR 技術將基因片段以幾何級數倍增的方式增加到數十萬倍，若以 Real Time PCR 儀器進行時，則是 PCR 反應一面進行時，機器就利用螢光偵測技術與電腦分析並記錄 PCR 的反應結果，因此能以螢光曲線即時呈現檢驗結果。

5. 試劑耗材
5.1 檢體稀釋液（PBS pH 7.2/0.05 % Tween 20/0.5 % BSA）。
5.2 QIAamp Viral DNA 抽取試劑組。
5.3 Real-Time PCR 儀器 LightCycler 所需之檢體毛細管。
5.4 LightCycler FastStart DNA master SYBR green I（Cat. no. 03 003 230 001）。
5.5 Nuclease-free（RNase/DNase-free）無菌微量吸管尖（tip）：5 μL、10 μL、200 μL。
5.6 Nuclease-free（RNase/DNase-free）無菌蒸餾水。
5.7 可拋棄式無菌 Nuclease-free（RNase/DNase-free）塑膠手套。
5.8 病毒基因製備：國內直至目前為止並無第四級病毒感染之病例報告，因此此類病毒受到國際協會的管制無法獲得這些第四級病毒做為參考病毒。所以這些病毒抗原之製備，則需靠人工合成基因之方式獲得，本實驗方法之陽性對照組由疱疹病毒之合成基因取代完整病毒。
5.9 引子與探針的合成：疱疹病毒的引子合成，在選定偵側的病毒序列後（gB（UL27）gene、RhCMV gB 及 BV US4 三段序列），參照文獻及利用 Roche 公司所出的 Probe design software 2.0 進行引子與探針序列之設計，之後再送交廠商合成。
Herpes B virus

<table>
<thead>
<tr>
<th>引子名稱</th>
<th>引子序列</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>第一組 primer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RhBVgB forward</td>
<td>5-GGTGATCGACAAGATCAACGC-3</td>
<td></td>
</tr>
<tr>
<td>RhBVgB reverse</td>
<td>5-GCCGTGCTCTCCATGTTGTT-3</td>
<td></td>
</tr>
<tr>
<td>第二組 primer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RhCMVgB forward</td>
<td>5-TGCCTGACTATGGAAGAGACAATGC-3</td>
<td></td>
</tr>
<tr>
<td>RhCMVgB reverse</td>
<td>5-ACATCTGGCCGTTCAAAAAAAC-3</td>
<td></td>
</tr>
<tr>
<td>第三組 primer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV US4-323 Forward</td>
<td>5-TGGCCTACTACCAGCGTGG-3</td>
<td></td>
</tr>
<tr>
<td>BV US4-446 Reverse</td>
<td>5-TGGTACGTTGGAGTAGCG-3</td>
<td></td>
</tr>
</tbody>
</table>

6 儀器設備
6.1 The LightCycler instrument system。
6.2 微量吸管（pipettemen）：5 μL、10 μL、200 μL。
6.3 計時器。
6.4 37 °C 水浴箱。

7 環境設施安全
送檢樣本在 BSL-4 實驗室的隔離箱分裝後，必需經去活性處理才可將檢體送出一般實驗室進行血清學測試，如經 Guanidine Thiocynate 處理才可進入分生（BSL-2）實驗室進行病毒核酸抽取及 PCR 等實驗，而只有操作活病毒的實驗如病毒培養、動物實驗等才需進入 BSL-4 實驗室操作。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A
10 檢驗步驟

10.1 檢體前處理

10.1.1 檢體以 2,000 rpm 離心 30 min，分離出上清液備用。

10.1.2 在接獲疑似第四級病毒檢體時，先將裝運檢體之容器以 UV 燈照射 20 min，BSL-4 實驗室工作人員在實驗室操作將容器打開拿出檢體，在隔離箱內將送檢樣本（血液或尿液）經過濾處理後分裝為三部份：

10.1.2.1 感染細胞株進行病毒培養。

10.1.2.2 加入 Guanidine thiocynate 溶液中進行病毒核酸抽取及 PCR 之實驗。

10.1.2.3 加入最終濃度為 10 % 福馬林中進行抗體檢測。

10.1.3 在細胞株觀察到有細胞病變時，將細胞外溶液或細胞加入 Guanidine thiocynate 溶液中進行病毒核酸抽取及 PCR 或 real-time PCR 之實驗，一部份將細胞加入最終濃度為 10 % 福馬林中進行免疫抗原之診斷、以刮杓將細胞刮下後加入最終濃度 10 % 福馬林中進行細胞內免疫抗原之診斷或加入 Glutaldehyde 中進行電子顕微鏡觀察等各種相關之診斷實驗。

10.2 檢體 DNA 萃取

採用商品化套組 QIAamp DNA mini kit (Qiagen, GmbH, Hilden, Germany) 進行 DNA 萃取，參照其手冊操作之。

10.2.1 取 100 μL 乳劑於 1.5 mL 微量離心管，依序加入 100 μL buffer ATL、20 μL proteinase K 混合均勻後。

10.2.2 56 °C 加熱至液體呈現清澈（約 5 - 10 min）。

10.2.3 短暫離心（spin down），後加入 200 μL Buffer AL 並混合均勻。

10.2.4 70 °C 加熱，10 min 後短暫離心。

10.2.5 再加入 200 μL 酒精（96 - 100 ％）混合均勻。

10.2.6 並將液體移置 Spin column。以 8,000 rpm 離心 1 min 後去棄濾液收集管。

10.2.7 更換新的收集管後加入 500 μL Buffer AW1，於 8,000 rpm 離心 1 min 後去棄濾液收集管。

10.2.8 更換新的收集管加入 500 μL Buffer AW2，以 14,000 rpm 離心 3 min 後去棄濾液收集管。

10.2.9 更換新的 1.5 mL 微量離心管加入 200 μL Buffer AE，置於室溫 1 min，以 8,000 rpm 離心 1 min 後收集濾液（DNA）。

10.2.10 該濾液檢體即可進行即時定量聚合酶鍊鎖反應或存於 -20 °C 備用。

10.3 Real-Time PCR Amplification

10.3.1 製備試剤:

10.3.1.1 製備 LightCycler FastStart DNA master SYBR green I, 10 X conc.: 將 LightCycler FastStart enzyme (colorless cap) 取出 10 μL 加入一管 LightCycler FastStart DNA master
10.3.1.2 製備 Primer:
 以 H₂O 將 Forward 及 Reverse primer 溶解，使其濃度為 100 μM，再以 H₂O 將 Primer 稀釋至最終濃度 5 μM。

10.3.2 製備 Real time PCR mix:
DNA template 4 μL
5 μM forward primer (F) 2 μL x Z
5 μM reverse primer (R) 2 μL x Z
LightCycler FastStart DNA master SYBR green I, 10X conc. 2 μL x Z
25 mM MgCl₂ stock solution 2 μL x Z
H₂O 8 μL x Z

(Z=總反應數 + 1)

10.3.3 取 16 μL 的 Real time PCR mix 至 LightCycler 專用毛細管中。
10.3.4 加入 DNA template 各 4 μL。
10.3.5 將各毛細管封上專用蓋子。
10.3.6 離心 700 x g，5 sec（或 spin down）。
10.3.7 將毛細管依序放入檢體轉盤。
10.3.8 Run real-time PCR:

【Pre-incubation】
95°C 10 min 1 cycle

【Amplification】
Denaturing 95°C 10 sec
Annealing 55°C 10 sec 45 cycles
Extension 72°C 25 sec

Acquisition mode: single

【Melting curve analysis】
Denaturing 95°C 0 sec
Annealing 65°C 15 sec
Melting 95°C 0 sec

Slope = 0.1°C/sec
Acquisition mode: continuous

【Cooling】
40°C 30 sec

10.3.9 利用儀器軟體中的 Melting curve analysis 分析 PCR 產物，亦可進一步利用洋菜膠電泳技術分析 PCR 產物。

11 結果判定：
11.1 評判標準：45 個 PCR 循環加上 Tm 曲線的鑑定過程在 30 min 內，經熒光放射分析即可得到結果。並將陽性對照組之模板 DNA 用量為 100 ng、10 ng、1 ng、100 pg、10 pg、1 pg 等核酸濃度，測定核酸與循環數之標準曲線，可應用於檢體之定量分析。
11.2 報告核發：有熒光曲線產生、Melting curve analysis 分析正確，則可判
定為陽性。
11.3 結果登錄：將檢體之檢驗結果登錄於檢體送驗單並加蓋檢驗者印章，送
報告簽署人審核及蓋章，並登錄於網路報告系統。

12 品質管制

略。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥
密封，再以 121 摄氏度，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
detection of B virus and rhesus cytomegalovirus in rhesus macaques. J Gen
Quantitative real-time PCR for detection of monkey B virus
(Cercopithecine herpesvirus 1) in clinical samples. J Virol Methods 109:
245-251.

15 附錄
15.1 疱疹 B 病毒核酸檢測分析法流程圖。
附錄 15.1 疱疹 B 病毒核酸檢測（real-time PCR）流程圖

病毒檢體前處理

檢體 DNA 萃取

Real-time PCR reaction

Melting curve analysis

陽性判定：
具有多組基因片段螢光曲線產生，並且
Melting curve 分析與陽性對照組一致。

未確定判定：
螢光曲線產生過晚 (超過 40 個 cycles 之後)
或只有單一基因片段
螢光曲線產生。

陰性判定：
無螢光曲線産生，或
Melting curve 分析與陽性對照組不一致。

再以免疫偵測法確認

再重複 PCR 確認 (使用不同基因之引子)
或以免疫偵測法確認
1 目的
檢測疱疹 B 病毒抗體。

2 適用檢體種類
適用於符合疱疹 B 病毒之病患血清檢體。

3 名詞解釋
無。

4 原理概述
利用 Dot immunobinding assy 套組來測定病人血清中是否有抗體。

5 試劑耗材
此組 DIAdot kit（VRL Laboratories, USA）包含
5.1 Nitrocellulose（NC）sheet on a filter paper pad。
5.2 Precut filter paper strips。
5.3 Powdered phosphate buffer（PBS）。
5.4 5.0 mL 20 % Tween-20（green top vial）。
5.5 1.0 mL 10 X Goat anti-human IgG conjugated with alkaline phosphatase。
5.6 9.0 mL Conjugate dilutant。
5.7 10.0 mL Chromogen- BCIP/NBT:（amber bottle）。
5.8 0.2 mL Positive control serum（do not dilute）。
5.9 0.2 mL Negative control serum（do not dilute）。
5.10 10.0 mL EDTA （stopping solution）。

6 儀器設備
6.1 第二級生物安全櫃（class II BSC：SterilGARD III Advance, Baker Company, USA）。
6.2 鑷子。
6.3 震盪器。

7 環境設施安全
於生物安全第四等級實驗室內檢體分裝、去活化。於第二等級（BSL-2）實驗室之設施內操作。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowt reeid=6C7C52E7A7D5621A
檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowteereid=6C7C52E7A7D5621A

檢驗步驟
10.1 取出 NC sheet，放於含 20 mL PBS Tween-20 的 Filter paper pad 上。
10.2 滴除過多的 PBS，表面不要有過多的 PBS tween-20。
10.3 每一個 NC filter 上必須包含一個 Cell culture control site (C)，以及一個 B virus test antigen site (V)。
10.4 血清可以做不同濃度的稀釋。
10.5 用鉗子取出一片 Filter paper strip，放入檢體血清中，滴除過多的血清，直接放於 NC filter 上。
10.6 同樣取 Filter paper strip 放入 NEG 以及 POS（不要稀釋）對照血清中，滴除過多的血清，直接放於 NC filter 上。
10.7 在室溫中反應 30 min。
10.8 加入 50 mL PBS tween-20，讓所有反應的 Filter paper strip 漂浮起來，必要時用鉗子去除所有的 Filter paper strip。
10.9 將 NC sheet 放在一個 Plastic lid 中，加入 10 mL PBS tween-20 清洗三次，一次 5 min。
10.10 加入 1.0 mL 10 X Conjugate to 9.0 mL 稀釋液中，加以混合。
10.11 10 mL 的混合物放入 NC sheet 中，室溫反應 30 min。
10.12 倒除混合物，加入 20 mL PBS tween-20 清洗三次，一次 5 min。
10.13 加入 10 mL 的 Chromogen。
10.14 輕搖 NC sheet，直到陽性對照組出現 3-4+。
10.15 在水龍頭下清洗 1 min，加入 EDTA 終止反應，反應 1 min 後取出 NC Sheet 晾乾。
10.16 進行判讀。

結果判定
11.1 判讀標準：由 NC 上的染色的強度判定是否為陽性，若無染色，則判定為陰性。
11.2 報告核發：疱疹 B 病毒抗體(陰性)，疱疹 B 病毒抗體(陽性)。
11.3 結果登錄：將檢體之檢驗結果登錄於檢體送驗單並加蓋檢驗者印章，送報告簽署人審核及蓋章，並登錄於網路報告系統。

品質管制
每次執行陽性及陰性對照血清。
<table>
<thead>
<tr>
<th>疾病名称</th>
<th>修訂日期：年 月 日</th>
</tr>
</thead>
<tbody>
<tr>
<td>疱疹 B 病毒抗體檢測</td>
<td>頁次：第 723 頁/共 1104 頁</td>
</tr>
</tbody>
</table>

13 廢棄物處理

檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

15 附錄

15.1 疱疹 B 病毒抗體試驗（酵素免疫分析法）流程圖。
附錄 15.1 疱疹 B 病毒抗體試驗（酵素免疫分析法）流程圖

1. 用鉗子取出 DIAdot kit 之一片 Filter paper strip
2. 待測血清 80 倍稀釋及陽性標準液處理後，置入 Filter paper strip
3. 25 ℃，0.5 小時清洗液清洗 3 次
4. 加入 10 mL Conjugate 混合液 Filter paper strip，進行反應。
5. 25 ℃，0.5 小時清洗液清洗 4 次
6. 加入 10 mL Chromogen 於 Filter paper strip 上
7. 直到陽性對照組出現 3-4十 Filter paper strip 加入 Stop solution EDTA，100 μL/ well
8. 以肉眼判定呈色
9. 陽性判定：有顏色呈現，視為陽性反應
10. 陰性判定：無顏色呈現，視為陰性反應
11. 再以 Real-time PCR 確認
1 目的
疑似鉤端螺旋體病人檢體中鉤端螺旋體的分離與鑑定。

2 適用檢體種類
適用於符合鉤端螺旋體病徵之病患，發病於 10 天內採檢之血液檢體或發病超過 7 天之尿液檢體或具無菌性腦膜炎症狀，發病 5-10 天之腦脊髓液。

3 名詞解釋
無。

4 原理概述
以培養方式分離培養鉤端螺旋體，以聚合酶鏈鎖反應 (polymerase chain reaction, PCR) 法進行鉤端螺旋體的鑑定。

5 試劑耗材
5.1 無菌吸管 (pipette)：20 mL、10 mL、1 mL 有 0.1 mL 刻度。
5.2 載玻片。
5.3 蓋玻片。
5.4 EMJH 培養基
5.5 2X PCR Master mix。
5.6 Primer：G1，10 μM。
5.7 Primer：G2，10 μM。
5.8 Primer：B64I，10 μM。
5.9 Primer：B64II，10 μM。
5.10 PCR 專用八連排反應管。
5.11 PCR 專用八連排反應蓋。
5.12 TBE 緩衝液。
5.13 陽性對照：本實驗採用 Leptospira 血清型 Icterohaemorrhagiaeh 參考菌株作對照；陰性對照：以水作陰性對照。
5.14 Agarose。
5.15 水質：25 °C 蒸餾水或 RO 逆滲透達 18 MΩ-CM 以上超純水。
5.16 無菌微量吸管尖 (tip)：1,000 μL、200 μL、10 μL。
5.17 無菌微量離心管：1.5 mL，0.2 mL。
5.18 手套。
5.19 PBS（phosphate buffered saline）。
5.20 100 bp 核酸標定物。

6 儀器設備
6.1 微量吸管 (pipetteman)：1,000 μL、300 μL、30 μL。
6.2 暗視野顯微鏡。
6.3 震盪器。
6.4 核酸增幅儀
6.5 電泳槽。
6.6 DNA 電泳膠體觀察照相設備。
6.7 水浴槽。
6.8 冰桶。
6.9 28 ℃ 培養箱。
6.10 離心機：4,000 rpm 以上。
6.11 微量離心機。
6.12 第二級生物安全櫃（class II BSC）。

7 環境設施安全
7.1 於生物安全第二等級（BSL-2）實驗室之設施內操作。
7.2 菌株處理、PCR 反應混合物配製、PCR 反應進行、電泳皆需於獨立區域操作。

8 檢體採集
尿液與血液檢體的採集，參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

9 檢體運送及保存
低溫運送及保存，參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

10 檢驗步驟
10.1 分離培養
10.1.1 檢體接種：血液、尿液、腦脊髓液 3 - 5 滴各置入 6 mL EMJH培養基的試管。
10.1.2 培養：28 ℃ 培養箱培養。
10.1.3 觀察：每隔一至二週吸取一滴培養基置於載玻片上，以暗視野顯微鏡觀察疑似鈷端螺旋體菌體，連續觀察 8-12 週。

10.2 鑑定
10.2.1 萃取核酸：萃取每批核酸應同時以水作萃取品管樣品。
10.2.1.1 吸取有可疑菌體之 EMJH 培養基 1 mL 於 1.5 mL 微量離心管以 10,000 rpm 離心 5 min，除去上清液。加入 1 mL PBS 清洗。以 10,000 rpm 離心 5 min，除去上清液。加入含 100 μL 無菌水的 1.5 mL 微量離心管中，100 ℃ 煮沸 10 min 後，10,000 rpm 離心 5 min，取上清液作為 PCR 反應模板 DNA。
10.2.2 PCR 鑑定

10.2.2.1 PCR 反應混和物配製如下:

<table>
<thead>
<tr>
<th>Component</th>
<th>Final conc.</th>
<th>Or volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primer G1/G2 與 Primer B64I/B64II Component</td>
<td>10 μM</td>
<td>1 μL</td>
</tr>
<tr>
<td>Template（陽性 DNA、水、檢體）</td>
<td>2 μL</td>
<td></td>
</tr>
<tr>
<td>Each primer (10 μM)</td>
<td>1 μL</td>
<td></td>
</tr>
<tr>
<td>2X PCR M</td>
<td>25 μL</td>
<td></td>
</tr>
<tr>
<td>加無菌水</td>
<td>21 μL</td>
<td></td>
</tr>
</tbody>
</table>

10.2.2.2 放入儀器中進行反應，反應條件設定:

10.2.2.2.1 94 °C/ 3 min，1 cycle。
10.2.2.2.2 94 °C / 60s，55 °C / 60s，72 °C / 120s，30 cycles。
10.2.2.2.3 72 °C / 300s，1 cycle。
10.2.2.2.4 維持在 4 °C。

10.2.2.3 PCR 電泳分析。

11 結果判定

11.1 判讀標準:

11.1.1 未發現細線樣螺旋活動快速之細菌，判定為陰性。
11.1.2 當有細線樣螺旋活動快速之細菌，需以聚合酶鍵鎖反應進行鑑定：以 Primer G1/G2 反應出現 285 bp 之片斷判定為陽性，未出現 285 bp 之片斷判定為陰性；以 Primer B64I/B64II 反應出現 563 bp 之片斷判定為陽性，未出現 563 bp 之片斷判定為陰性。

11.2 報告核發：鉤端螺旋體陰性，鉤端螺旋體陽性。
11.3 結果登錄：將檢體之檢驗結果登錄於實驗室資訊系統，經 PI 核准報告後發佈。

12 品質管制

12.1 電泳結果之檢視，應以 100 bp Marker 會在洋菜膠上呈現出 100 - 1,000 bp 的 Ladder band，並以此作片段大小之識別依據。
12.2 Primer G1/G2 其陽性對照之結果需符合設定值，即有 285 bp 之片斷，才可進行研判否則需重做檢驗。
12.3 Primer B64I/B64II 其陽性對照之結果需符合設定值，即有 563 bp 之片斷，才可進行研判否則需重做檢驗。
12.4 陰性對照與萃取品管樣品之結果均需符合設定值，即不能有增幅片斷，才可進行研判否則需重做檢驗。

13 廢棄物處理

檢查過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。
14 參考資料

15 附錄
15.1 鉤端螺旋體分離與鑑定流程圖。
15.2 鉤端螺旋體診斷用引子組序列表。
附錄 15.1 鉤端螺旋體分離與鑑定流程圖。

血液檢體 尿液檢體 腦脊髓液檢體

檢體接種

一至二週觀察一次

有細線樣螺旋活動快速之細菌 連續觀察 12 週，均無細線樣螺旋活動快速之細菌

聚合酶鏈鎖反應

以 primer G1/G2 與 primer B64I/B64II 檢驗

有 285 bp 有 285 bp 無 285 bp 無 285 bp
有 563 bp 無 563 bp 有 563 bp 無 563 bp

綜合研判為陽性 綜合研判為未分離到鈷端螺旋體

附錄 15.2 鉤端螺旋體診斷用引子組序列表

G1： 5’-CTGAATCGCTGTATAAAGT-3’
G2： 5’-GGAAAACAAATGGTCGGAAG-3’
B64I： 5’-ACTAACTGAGAAACTTCTAC-3’
B64II： 5’-TCCTTAACTGACACCTATGA-3’
1 目的
検測病患是否出現特定鈞端螺旋體血清型（serovar-specific Leptospira）抗體。

2 適用檢體種類
適用於符合鈞端螺旋體病徵之病患血清。

3 名詞解釋
無。

4 原理概述
本實驗室利用數種常見的鈞端螺旋體血清型活菌作為抗原，與病患血清中的抗體進行抗原抗體反應。若該病患之抗體源自某特定血清型鈞端螺旋體感染引發，則此抗體將凝集特定血清型鈞端螺旋體活菌成為高度屈光之球體，並可彼此聯結產生不規則之凝集叢體。凝集反應程度，因血清稀釋倍數逐漸增加而漸減，從 100% 減至 0%；100% 凝集反應，即自暗視野顯微鏡觀察，無法得見凝集叢體中有活動自由的單獨鈞端螺旋體；0% 凝集反應，即自暗視野顯微鏡觀察，只見活動自由的單獨鈞端螺旋體且未見任何凝集叢體。當血清稀釋倍數增加時，愈少的鈞端螺旋體被抗體凝集，就得見愈多活動自由的單獨鈞端螺旋體。凝集反應程度，可自多少比例的活動自由的單獨鈞端螺旋體評估而得。

抗體力價判定乃是根據產生至少 50% 菌體凝集之血清稀釋最高倍數而定。50% 菌體凝集定義為：暗視野顯微鏡觀察，與陰性對照組比較，單獨自由活動的鈞端螺旋體少於 50%。

5 試劑耗材
5.1 適量 EMJH 培養之鈞端螺旋體活菌，血清型表列如下：

<table>
<thead>
<tr>
<th>Species</th>
<th>Serovar</th>
<th>編號</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. interrogans</td>
<td>Canicola</td>
<td>2</td>
</tr>
<tr>
<td>L. interrogans</td>
<td>Bratislava</td>
<td>8</td>
</tr>
<tr>
<td>L. interrogans</td>
<td>Kenniwicki</td>
<td>11</td>
</tr>
<tr>
<td>L. interrogans</td>
<td>Icterohaemorrhagiae</td>
<td>13</td>
</tr>
<tr>
<td>L. santarosai</td>
<td>Shermanii</td>
<td>34</td>
</tr>
<tr>
<td>L. borgepetersenii</td>
<td>Poi</td>
<td>47</td>
</tr>
<tr>
<td>L. borgepetersenii</td>
<td>Tarassovi</td>
<td>51</td>
</tr>
<tr>
<td>L. interrogans</td>
<td>Pomona</td>
<td>67</td>
</tr>
<tr>
<td>L. interrogans</td>
<td>Bataviae</td>
<td>86</td>
</tr>
<tr>
<td>L. borgepetersenii</td>
<td>Javanica</td>
<td>2939</td>
</tr>
</tbody>
</table>

5.2 EMJH broth。
5.3 PBS（phosphate buffered saline）。
5.4 無菌微量吸管尖（tip）：200 μL、1,000 μL。
5.5 96 孔微量滴定盤（microtiter plate）：U 型。
5.6 96 孔微量滴定盤封膜。
5.7 八連排血清稀釋管。
5.8 八連排血清稀釋架。
5.9 載玻片。
5.10 手套。
5.11 室內品管血清：陰性品管血清來自法傳通報檢驗陰性之血清。陽性品
管血清清單表列如下：

<table>
<thead>
<tr>
<th>開放</th>
<th>Serovar</th>
<th>Strain</th>
</tr>
</thead>
<tbody>
<tr>
<td>陽性</td>
<td>Canicola</td>
<td>Hond Utrecht IV</td>
</tr>
<tr>
<td>陽性</td>
<td>Bratislava</td>
<td>Jez Bratislava</td>
</tr>
<tr>
<td>陽性</td>
<td>Icterohaemorrhagiae</td>
<td>Ictero I</td>
</tr>
<tr>
<td>陽性</td>
<td>Shermanii</td>
<td>1342 K</td>
</tr>
<tr>
<td>陽性</td>
<td>Poi</td>
<td>Poi</td>
</tr>
<tr>
<td>陽性</td>
<td>Tarassovi</td>
<td>Percpelitsin</td>
</tr>
<tr>
<td>陽性</td>
<td>Pomona</td>
<td>Pomona</td>
</tr>
<tr>
<td>陽性</td>
<td>Bataviae</td>
<td>Swart</td>
</tr>
</tbody>
</table>

*Serovar Kenniwicki 與 Pomona 同屬 Pomona serogroup，因此共用陽性品管血清。Serovar Poi 與
Javanica 同屬 Javanica serogroup，因此共用陽性品管血清。

6 儀器設備
6.1 微量吸管（pipetteman）：1,000 μL、300 μL、30 μL。
6.2 八管式微量吸管（Thermo, pipetteman）：5~50 μL、30~300 μL。
6.3 離心機。
6.4 暗視野顯微鏡。
6.5 震盪器。
6.6 37 ℃ 溫箱。
6.7 第二級生物安全櫃 (class II BSC)。

7 環境設施安全
於生物安全第二等級 (BSL-2) 實驗室之設施內操作。

8 檢體採集
8.1 檢體無添加抗凝劑，血清無溶血且量不少於 200 μL。
8.2 參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869
&nowtreeid=6C7C52E7A7D5621A

9 檢體運送及保存
低溫運送及保存，8.2 參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A
10 檢驗步驟
10.1 檢驗前處理
10.1.1 檢體以 3,500 rpm 離心 10 min，分離出上清液備用。
10.2 檢驗步驟
10.2.1 篩檢驗，以稀釋 100 倍血清做篩檢依據。
10.2.1.1 待測血清以 PBS 稀釋 50 倍，作法如下：標好編號之八連排血清稀釋管，置入 PBS 980 μL，再加入待測血清 20 μL，混合均勻。
10.2.1.2 設立試劑陰性對照組及 50%凝集對照組，作法如下：
試劑陰性對照組：25 μL PBS + 25 μL 鉤端螺旋體活菌。
50%凝集對照組：75 μL PBS + 25 μL 鉤端螺旋體活菌。
10.2.1.3 設立陰性對照組，作法如下：選取一個室內品管陰性血清做為每次檢驗的陰性對照組，依照一般檢體的檢驗方式操作。
10.2.1.4 設立陽性對照組，作法如下：
陽性對照組：針對鉤端螺旋體各血清型之室內品管陽性血清，做為每次檢驗的陽性對照組，依照一般檢體的檢驗方式操作。
10.2.1.5 對照組及稀釋後血清各取 25 μL 加入 96 孔微量滴定盤孔格中。
10.2.1.6 每個對照組及血清分別與鉤端螺旋體各血清型菌液各 25 μL 反應。
10.2.1.7 對照組及待測組於 96 孔微量滴定盤排列方式如下：

<table>
<thead>
<tr>
<th>Well No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 試劑陰性對照組</td>
<td>PBS (μL)</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>B 50%凝集對照組</td>
<td>PBS (μL)</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>C 陽性對照組</td>
<td>50 倍稀釋血清</td>
<td>KIT/1</td>
<td>25</td>
<td>KIT/2</td>
<td>25</td>
<td>KIT/6</td>
<td>25</td>
<td>KIT/11</td>
<td>25</td>
<td>KIT/17</td>
</tr>
</tbody>
</table>
10.2.1 鉤端螺旋體抗體檢測

10.2.1.8 覆上 96 孔微量滴定盤封膜，震盪後放置 37°C 恆溫箱中，反應 30 min。

10.2.1.9 由各孔格中吸取 5 μL 置於載玻片上，以暗視野顯微鏡觀察。

10.2.1.10 結果判定：在陽性對照組檢測具有 50% 以上菌體產生凝集現象，而陰性對照組均未出現凝集現象條件下，待驗檢體產生 50% 以上之菌體產生凝集現象，即須要作進一步抗體力價確認。

10.2.2 血清抗體力價確認

10.2.2.1 將需測定抗體力價血清自 50 倍，以 PBS 開始 2 倍稀釋至 6,400 倍，作法如下：

<table>
<thead>
<tr>
<th>Well No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS (μL)</td>
<td>25</td>
<td>75</td>
<td>0</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>檢體稀釋倍數</td>
<td>1:50</td>
<td>1:100</td>
<td>1:200</td>
<td>1:400</td>
<td>1:800</td>
<td>1:1600</td>
<td>1:3200</td>
<td>1:6400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
10.2.2.2

各孔格加入待確定之血清型菌液 25 μL, 使最终反应血清稀釋倍數依序為 100 倍、200 倍、400 倍、800 倍、1,600 倍、3,200 倍、6,400 倍、12,800 倍，作法如下：

<table>
<thead>
<tr>
<th>Well No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS (μL)</td>
<td>25</td>
<td>75</td>
<td>0</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>檢體稀釋倍數</td>
<td>1:50</td>
<td>1:100</td>
<td>1:200</td>
<td>1:400</td>
<td>1:800</td>
<td>1:1600</td>
<td>1:3200</td>
<td>1:6400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>最終稀釋倍數</td>
<td>1:100</td>
<td>1:200</td>
<td>1:400</td>
<td>1:800</td>
<td>1:1600</td>
<td>1:3200</td>
<td>1:6400</td>
<td>1:12800</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10.2.2.3 覆上封膜，震盪後放置 37°C 恆溫箱中，反應 30 min。

10.2.2.4 由各孔格中吸取 5 μL 置於載玻片上，以暗視野顯微鏡觀察。

10.2.2.5 結果判定：50%菌體凝集之血清稀釋倍數，即為該血清之血清型抗體力價。

11 結果判定

11.1 判讀標準：

11.1.1 結果判定：結果判定在陽性對照組檢測具有 50%以上菌體產生凝集現象，而陰性對照組均未出現凝集現象條件下，抗體力價為使某特定鉤端血清型至少 50%菌體凝集之血清稀釋最高倍數，即為該血清之特定鉤端血清型抗體力價。50%菌體凝集定義為：暗視野顯微鏡觀察，與陰性對照組(與 PBS 反應之血清型菌液)比較，單獨自由活動的鉤端螺旋體少於 50%。

11.1.2 抗體效價判讀標準：未達 100 倍抗體力價之檢體，顯微凝集判定為陰性。血清檢體抗體力價 ≥100 倍，以配對檢體經由下列判讀標準判定

11.1.3 綜合檢驗結果判讀標準：

11.1.3.1 一採檢體：綜合檢驗結果均判為未確定需再採檢。

11.1.3.2 配對檢體：

11.1.3.2.1 配對血清均 <100 倍抗體力價者，其綜合檢驗結果判為陰性。

11.1.3.2.2 配對血清未達四倍上升者，其綜合檢驗結果判為抗體未達四倍上升。
11.2 報告核發：鉤端螺旋體病抗體陰性，鉤端螺旋體病抗體未確定需再採
檢，鉤端螺旋體病抗體未達四倍上升，鉤端螺旋體病抗體陽性。
11.3 結果登録：將檢體之檢驗結果登録於實驗室資訊系統，經 PI 核准報告
後發佈。

12 品質管制
12.1 每次檢驗之菌株，需使用培養 4 到 10 天內之菌株，濃度約 1 - 2 x 10⁸
leptospires/mL。
12.2 每次執行顯微凝集法檢測時，須加入室內品管血清作為陰性或陽性對
照組結果比對之依據。
12.3 試驗中判斷菌體是否達 50 % 凝集，需與 PBS 反應之血清型菌液比較。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥
密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
and control.

15 附錄
15.1 鉤端螺旋體抗體顯微凝集試驗流程圖。
附錄 15.1 鉤端螺旋體抗體顯微凝集試驗抗體力價判讀流程圖

1. 血清
 - 酵素免疫分析法
 - 稀釋 100 倍起，連續兩倍稀釋
 - 菌體 50%（含）凝集之最高稀釋倍數
 - 配對血清均陰性
 - 陽性及未確定
 - 顯微凝集法篩檢
 - 具配對血清
 - 稀釋 100 倍起，連續兩倍稀釋
 - 菌體 50%（含）凝集之最高稀釋倍數
 - 配對血清有四倍以上上升
 - 配對血清無四倍上升
 - 配對血清均<100 倍
 - 綜合研判為陰性
 - 綜合研判為陽性
 - 綜合研判為抗體未達四倍上升
 - 綜合研判為未確定需再採檢
目的
检测钩端螺旋体病抗体。

适用检体种類
适用於符合钩端螺旋体病徵之病患血清检体。

名詞解释
無。

原理概述
利用钩端螺旋体作為抗原，與病患血清進行抗原抗體反應，以酵素標幟抗體間接地將此反應轉成颜色訊號，由自働酵素免疫分析儀讀取結果。

試劑耗材
5.1 清洗液 PBST（PBS pH 7.2 含 0.05 % Tween 20)。
5.2 檢体稀释液（PBST 含 0.5 % BSA)。
5.3 已吸附钩端螺旋体抗原之 96 孔微量滴定盤。
5.4 抗人類 IgM 之 HRP（horseradish peroxidase）酵素結合抗體（peroxidase conjugated affinity purified anti-human IgM μ【goat】)。
5.5 HRP 稳定液（HRP stabilizer)。
5.6 呈色剂（TMB 受質 X SureBlueTM TMB microwell peroxidase substrate），KPL，USA。
5.7 終止液（TMB stop solution)。
5.8 陽性標準液。
5.9 無菌蒸餾水。
5.10 八連排血清稀釋管。
5.11 八連排血清稀釋架。
5.12 無菌微量吸管尖（tip）：200 μL、1,000 μL。
5.13 96 孔微量滴定盤封膜。
5.14 可拋棄式無菌塑膠手套。

儀器設備
6.1 第二級生物安全櫃（class II BSC)。
6.2 全自動酵素免疫分析儀（ELISA reader)：Multiskan EX（450 nm 波長），Thermo，Finland。
6.3 全自動清洗器。
6.4 微量吸管（pipettemen)：1,000 μL、100 μL、30 μL。
6.5 計時器。
6.6 37 ℃ 溫箱。

環境設施安全
於生物安全第二等級（BSL-2）實驗室之設施內操作。
8 檢體採集
8.1 檢體無添加抗凝劑。血清無溶血且量不少於 200 μL。
8.2 參照本署出版之「傳染病檢體採檢手冊」第二版。

http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

9 檢體運送及保存
低溫運送及保存，參照本署出版之「傳染病檢體採檢手冊」第二版。

http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

10 檢驗步驟
10.1 檢驗前血清處理
檢體以 3,500 rpm 離心 10 min，分離出血清備用。
10.2 微孔盤處理
10.2.1 微孔盤注入清洗液放置 5 min，以清洗液清洗 3 次。
10.2.2 微孔盤注入 100 μL 檢體稀釋液，室溫靜置 10 min，拍乾微孔盤。
10.3 陽性對照血清（亦即陽性標準液）
10.3.1 A1、B1、C1 至 H1，加入 100 μL 檢體稀釋液。
10.3.2 B1 孔格加入 80 μL 檢體稀釋液。
10.3.3 B1 孔格加入 20 μL 陽性對照血清，混合均勻。
10.3.4 從 B1-H1 作序列兩倍稀釋：B1 孔取 100 μL，置入 C1 孔格內混合均勻；最後至 H1 孔格，捨棄 H1 孔格多餘的 100 μL 液體。
10.4 待測血清
10.4.1 待測血清稀釋 80 倍：血清稀釋管分別加入 395 μL 檢體稀釋液，與 5 μL 待測血清檢體。
10.4.2 A2 孔格後分別加入稀釋後之血清檢體，各檢體需二重複試驗。
10.5 37°C 反應 30 min 後，移除液體並於各微孔盤注入 300 μL 清洗液清洗 4 次，拍乾微孔盤。
10.6 微孔盤加入 100 μL 抗人類 IgM 之 HRP 酵素結合抗體（以 1:6,000 稀釋於 HRP 穩定液），37 °C 反應 30 min，移除液體並於各微孔盤注入 300 μL 清洗液清洗 4 次，拍乾微孔盤。
10.7 微孔盤注入 100 μL 已回溫之受質（TMB），室溫反應 4 min。
10.8 微孔盤再注入 100 μL 停止液。
10.9 ELISA reader 判讀，使用波長 450 nm 判讀。

11 結果判定
11.1 判讀標準：以陽性標準品測得最高吸光值之 1/2，作為陽性標準吸光值。以次於陽性判定標準 OD 值之孔格實測 OD，作為臨界值（borderline OD）。當檢體吸光值高於陽性標準值（含），以「陽性」註記，再以顯微凝集法確認（依鉤端螺旋體病抗體檢測（顯微凝集法）操作程序進
11.2 報告核發：以顯微凝集法之結果為判定標準，鉗端螺旋體病抗體陰性，
鉗端螺旋體病抗體未確定需再採檢。
11.3 結果登錄：將檢體之檢驗結果登錄於實驗室資訊系統，經PI核准報告
後通過發佈。

12 品質管制
每次執行陽性及陰性對照血清。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥
密封，再以121°C，30 min高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
and control.

15 附錄
15.1 鉗端螺旋體抗體試驗-酵素免疫分析法流程圖。
附錄 15.1 鉤端螺旋體抗體試驗（酵素免疫分析法）流程圖

吸附鉤端螺旋體抗原 96 孔 ELISA 微孔盤前處理

待測血清 80 倍稀釋及陽性標準液處理後，置入微孔盤

37 °C，30 min
清洗液清洗 4 次

微孔盤孔內加入抗人類 IgM 之酵素結合抗體，100 μL/孔

37 °C，30 min
清洗液清洗 4 次

微孔盤孔內加入 TMB，100 μL/孔

室溫 4 min

微孔盤孔內加入 Stop solution，100 μL/孔

ELISA reader (Multiskan EX, Thermo)，用 450 nm 讀取 OD 值

陽性判定：OD 值大於陽性標準品測得最高吸光值之 1/2 (1/2 OD max of positive control)

未確定判定（亦即臨界值）：OD 值介於 1/2 OD max of positive control 及下一個 OD 值之間

陰性判定：OD 值小於臨界值

再以顯微凝集法確認

再以顯微凝集法確認
1 目的
類鼻疽伯克氏菌 (Burkholderia pseudomallei) 的分離與鑑定。

2 適用検體種類
適用於疑似類鼻疽感染症個案之血液、喉部擦拭液或分泌物、膿汁、菌株。

3 名詞解釋
無。

4 原理概述
以特定培養基分離類鼻疽伯克氏菌，利用細菌生長型態、染色及鈉類、胺基酸代謝特性鑑定。

5 試剤耗材
5.1 無菌吸管。
5.2 減菌培養皿：內徑約 90 mm，深度約 15 mm。
5.3 可拋棄式接種環（針）。
5.4 0.22 μM 孔徑無菌濾膜。
5.5 無菌 3 mL 塑膠吸管。
5.6 麥克法籃氏濁度標準組 (McFarland nephelometer standard units)。
5.7 蓋玻片、載玻片。
5.8 培養基。
5.8.1 MacConkey agar。
5.8.2 Blood agar plate (BAP)。
5.8.3 Ashdown medium 選擇性培養基。
 5.8.3.1 配方如下

 TSB 10 g
 Glycerol 40 mL
 Agar 15 g
 Aqueous crystal violet (0.1% w/v) 5 mL
 蒸餾水 940 mL
 5.8.3.2 121 ℃，滅菌 15 min，待冷卻至約 50 ℃。
 5.8.3.3 秤 0.005 g gentamicin 溶於 10 mL 蒸餾水中，以濾膜過濾除菌，再加入上述之培養基中。
 5.8.3.4 倒入減菌培養皿，存放於 4 ℃ 冰箱中，有效期 2 星期。
5.8.4 Burkholderia pseudomallei selective broth。
5.9 Gram’s staining 染劑。
5.10 Oxidase reagent solution：取 1 μg N,N,N’,N’-tetramethyl-p-phenylenediamine dihydro-chloride 溶於 100 mL 蒸餾水中，儲存於褐色瓶，保存於冰箱，使用期限以一週為宜。另可選用商品化試劑，如榮
研、DIFCO、BBL、ROSCO 等均有 Oxidase 試劑，型態有 Strips、Disks、Tablets 等。

5.11 快速生化鑑定套組試劑：有多組商品可選用，如 API-20 NE，Vitek GNI 或 GNI+卡片等。

6 儀器設備
6.1 高壓滅菌鍋。
6.2 電動 Pipet aid。
6.3 37 °C CO₂培養箱。
6.4 電子式微量天平。
6.5 光學顯微鏡。
6.6 攪拌器。
6.7 37 °C 培養箱（incubator）。
6.8 第二級生物安全櫃（class II BSC）。

7 環境設施安全
7.1 臨床檢體於生物安全第二等級（BSL-2）實驗室之設施內操作。
7.2 大量操作時需至生物安全第三等級（BSL-3）實驗室之設施內操作。

8 檢體採集
8.1 血液檢體量應 6 - 20 mL 以上才足夠。喉部檢體或分泌物、膿汁、菌株。
8.2 參照本署出版之「傳染病檢體採檢手冊」第二版。
 http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869
 &nowtreeid=6C7C52E7A7D5621A

9 檢體運送及保存
9.1 檢體以低溫保存運送，抗凝固全血及血液培養瓶以常溫運送。
9.2 參照本署出版之「傳染病檢體採檢手冊」第二版。
 http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869
 &nowtreeid=6C7C52E7A7D5621A

10 檢驗步驟
10.1 分離培養
10.1.1 血液：檢體量應 6 - 20 mL 以上才足夠。將血液檢體以體積 1：6-10 接種於血液培養瓶中（血液培養瓶瓶蓋先以 70 %酒精及 2 %碘酊消毒），於 37 °C 有氧狀況下，培養 14 - 16 hr 後觀察，然後每天觀察，培養基中若呈混濁，即將培養液混合均勻並取出作革蘭氏染色及接種於 Ashdown medium、MacConkey 及 BAP 培養基中，於 37 °C CO₂ 培養箱中培養，約 24 - 48 hr 後，挑選疑似菌落作革蘭氏染色及次培養。目前商品化已發展出半自動化偵測血液培養裝置，利用細菌代謝培養基內成份產生 CO₂ 後，作為電腦偵測依據，並將結果自動呈現告知實驗者。
10.1.2 喉部檢體或分泌物、痰汁、菌株、血液：將檢體接種於 Ashdown medium、MacConkey 及 BAP 培養基中，於 37 °C CO₂ 培養箱中培養，約 24 - 48 hr 後，挑選疑似菌落作革蘭氏染色及次培養有，時需 72 hr 或更長時間才可以看到典型肚臍眼狀皺縮菌落。或將檢體接種於 B. pseudomallei selective broth 後，於 37 °C CO₂ 培養箱中培養，培養 24 - 48 hr，若有疑似 B. pseudomallei，會在培養液上層形成乾薄膜，具有蓬亂表面；再將此菌移轉至 Ashdown medium，於 37 °C CO₂ 培養箱中培養，若純菌可於 24-48 hr 以後看見典型藍紫色-紫色之皺縮乾燥菌落。

10.2 鑑定：

10.2.1 菌落型態：B. pseudomallei 於培養基上菌落呈乾酪狀、皺縮（似肚臍眼狀）、表面乾燥，具泥土味（注意：不可用鼻子直接吸聞）。於 MacConKey agar 上菌落為乳醣不發酵及 BAP 培養基上菌落為白色；於 B. pseudomallei selective broth 培養液上層形成乾薄膜，具有蓬亂表面；於 Ashdown medium 為典型藍紫色－紫色之菌落。

10.2.2 革蘭氏染色：挑選疑似之菌落以革蘭氏染色，特性為革蘭氏陰性，短小桿菌，菌體中心呈空泡狀無法染色，菌體二端濃染，形狀似別針。

10.2.3 Oxidase test：取一滴 Oxidase reagent 溶液，滴於新鮮菌落上，若反應後菌落呈藍色或藍紫色為陽性，不變色為陰性。B. pseudomallei 為 Oxidase 陽性。

10.2.4 快速生化鑑定系統：挑取革蘭氏染色陰性、菌體形狀特徵類似且 Oxidase test 陽性之菌落，依套組說明製備菌液、接種菌液於鑑定盤各反應格、培養、判讀結果。B. pseudomallei 主要生化特性為 Oxidase 陽性、Nitrate 反應產生 N₂、Arginine dihydrolase 陽性、Gelatinase 陽性、TSIA 反應為 A/K 斜面酸化（可利用 lactose 及 sucrose）。
11 結果判定

<table>
<thead>
<tr>
<th>試驗或基質</th>
<th>正反應</th>
<th>負反應</th>
<th>B. pseudomallei 之反應</th>
</tr>
</thead>
<tbody>
<tr>
<td>MacConKey agar 及 BAP</td>
<td>MacConKey agar 上菌落為乳糖不發酵，但培養4-7天後因氧化乳糖菌落成為深粉紅色;BAP上菌落為白色乾酪狀，皺縮(似肚臍眼狀)，表面乾燥菌落，具泥土味</td>
<td>非左述狀況</td>
<td>正反應</td>
</tr>
<tr>
<td>Ashdown medium</td>
<td>藍紫色-紫色，皺縮(似肚臍眼狀)，表面乾燥菌落，具泥土味</td>
<td>非左述狀況</td>
<td>正反應</td>
</tr>
<tr>
<td>革蘭氏染色</td>
<td>陰性，短小桿菌，菌體中心空泡狀無法染色，菌體二端濃染，形狀似別針</td>
<td>非左述狀況</td>
<td>正反應</td>
</tr>
<tr>
<td>Oxidase test</td>
<td>藍色或藍紫色</td>
<td>不變色</td>
<td>正反應</td>
</tr>
<tr>
<td>快速生化試驗</td>
<td>依套組指示可直接判定結果</td>
<td>--</td>
<td>正反應</td>
</tr>
</tbody>
</table>

12 品質管制
判定感染應配合臨床症狀，培養菌落性狀，菌落生化反應。

13 廢棄物處理
檢驗過程之物品及廢液等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
14.1 蔡文城。2000。實用臨床微生物診斷學，第九版。九州圖書文物有限公司，臺灣。

15 附錄
15.1 類鼻疽伯克氏菌分離與鑑定流程圖。
附錄 15.1 類鼻疽伯克氏菌分離與鑑定流程圖

個案檢體（血液、喉部檢體、膿汁、菌株）

血液

血液培養瓶

窒息

血液

接種於 Ashdown medium、MacConkey 及 BAP 培養基

或

接種於 Burkholderia pseudomallei selective broth

或

移轉至 Ashdown medium

可疑菌落

Oxidase test 陽性

革蘭氏染色陰性短小桿菌

次培養

快速生化試驗

綜合正反應結果為陽性
1 目的
檢查食品中毒案件中送驗檢體是否含有肉毒桿菌。

2 適用檢體種類
適用於人體糞便、嘔吐物。

3 名詞解釋
無。

4 原理概述
藉由 Egg yolk agar plate (EYA) 蛋黃分離培養肉毒桿菌，利用是否產生 Lipase 與 Lecithinase 的特性及染色後肉毒芽胞的型態鑑定，做為初步鑑定的標準。

5 試劑耗材
5.1 培養基
5.1.1 Chopped meat-glucose-starch (CMGS medium)。
5.1.2 Modified McClung-Toabe egg yolk agar plate (EYA)。
5.2 0.2% Gel-phosphate diluent。
5.3 標準菌株：肉毒桿菌 ATCC3802。
5.4 無菌吸管：10 mL，應該有 0.1 mL 刻度。
5.5 無菌微量吸管尖（tip）：1,000 μL、200 μL 與 10 μL。
5.6 無菌培養皿：內徑約 90 或 100 mm，深度約 15 mm，外面應平坦、無氣泡、刮痕或其他缺點。
5.7 接種針（環）。
5.8 載玻片及蓋玻片。
5.9 可拋棄式無菌塑膠手套。
5.10 馬克法藍氏濁度標準組（McFarland nephelometer standardunits）。
5.11 襲密封蓋離心管。
5.12 無菌濾膜：孔徑 0.45 μM 之親水性醋酸纖維膜。
5.13 萃取氏染色液（Gram stain solution）。
5.14 0.85%滅菌生理食鹽水。
5.15 70%酒精。
5.16 85% N₂, 5%CO₂ 混和氣。
5.17 厭氧產氣包。

6 儀器設備
6.1 顯微鏡：能放大至 1,000 倍之一般光學顯微鏡。
6.2 相位差或亮視野（bright field）顯微鏡。
6.3 微量吸管 Pipetman：1,000 μL、200 μL、2 μL。
6.4 電動 Pipetaid。
6.5 高壓滅菌鍋。
6.6 生物安全櫃。
衛生福利部疾病管制署傳染病標準檢驗方法

6.7 4°C冰箱
6.8 -20°C冷凍櫃。
6.9 厭氧箱。
6.10 厭氧缸。
6.11 35°C培養箱。
6.12 水浴槽。

7 環境設施安全
7.1 於生物安全第二等級（BSL-2）實驗室之設施內操作。
7.2 實驗操作儘可能於生物安全櫃中進行。
7.3 檢體應置於密封且具有安全杯之離心機內離心。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

10 檢驗步驟
10.1 分離
10.1.1 檢驗前處理
10.1.1.1 取 10 - 50 g 食物檢體於無菌研缽內，加等體積 Gel-phosphate diluent 研磨，置 4°C 過夜後，離心 4,000 rpm 10 min，去上清液，取一個接種環之沉澱物進行培養。
10.1.1.2 糞便檢體則取約 0.5 g，以 1:1 比例進行酒精處理 (alcohol treatment)，每 15 min 混搖一次，共處理 60 min 後，取 0.5 mL 行為培養。
10.1.1.3 取 0.5 g 糞便檢體加等體積 Gel-phosphate diluent，於試管內 80°C、10 min 加熱處理 (heat treatment) 後，取 0.5 mL 檢體進行培養。接種：取前處理過之檢體，接種到 CMGS medium 及 EYA 上，接種 CMGS medium 時宜種到底部，並避免產生氣泡。
10.1.2 培養：37°C 厭氧培養。培養 2 天之 CMGS medium 再接種一次 EYA，增加菌體分離之可能性。
10.1.3 觀察：每天觀察 EYA 生長情形，至少 7 天。
10.2 鑑定
10.2.1 菌落型態：肉毒桿菌在 EYA 培養基上的典型菌落形態凸起或
扁平、平滑或粗糙菌落，周围轮廓不规则状扩展。以斜角度检视培基时，菌落常呈现珍珠光泽不透明，Lipase (+)、Lecithinase (-)。

10.2.2 革兰氏染色: 肉毒杆菌为革兰氏阳性且具有 Subterminal spore。
10.2.3 生化鉴定: 依 API 20A 操作说明书指示，作生化鉴定。
10.2.4 毒素及中和试验; 接种 CMGS medium 后进行。

11 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋袋妥密封，再以 121 °C, 30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

12 結果判定
12.1 肉毒桿菌在 EYA 培養基，典型菌落形态凸起或扁平、平滑或粗糙菌落，周围轮廓不规则状扩展。以斜角度检视培基时，菌落常呈现珍珠光泽。肉毒桿菌为 Lipase (+)，Lecithinase (-)，且革兰氏染色呈现蓝色芽胞 (+)。
12.2 報告核發: 肉毒桿菌培養陽性、革兰氏染色阳性及 API 20A 反应阳性，初步判定为肉毒桿菌阳性。若肉毒桿菌培養陰性，初步判断为肉毒桿菌陰性。所有検体皆须作肉毒桿菌毒素及中和試験，才能進行綜合研判。

13 品質管制
13.1 培養基之品質管制
每一批購置或自行配製的培養基，應置入 4 °C 冰箱，標誌有效期限，依廠商批次產品建議，使用時檢視有無污染菌產生，用完即應丟棄，不得再使用。
13.2 利用 ATCC3802 標準菌株進行菌株分離品管，試驗結果必須符合陽性反應，確保培養基的有效性。
13.3 全部的培養基及試劑應保存於 4 - 6 °C，於有效期限內使用。

14 參考資料
14.3 Laboratory methods in anaerobic bacteriology (CDC laboratory manual), 1979.
14.4 行政院衛生署.1998 「食品微生物之檢驗方法--肉毒桿菌及其毒素之檢驗」。87 年 12 月 31 日衛署食字第 87074866 號公告。

15 附錄
15.1 肉毒桿菌分離與鑑定流程圖。
附錄 15.1 肉毒桿菌分離與鑑定流程圖

檢體（糞便）或嘔吐物

研磨（gel-phosphate）

沉澱物

酒精處理 加熱處理

CMGS EYA

35 ℃ 2-7 天厭氧培養

挑選可疑菌落 lipase (+)，lecithinase (-)，且 G (+) 査菌，subterminal spore

培養於 CMGS 染色鏡檢 生化鑑定

動物毒素及中和試驗
1 目的
食品中毒案件中肉毒桿菌毒素型別的鑑定。

2 適用檢體種類
適用於人體血清及含肉毒桿菌毒素上清液。

3 名詞解釋
無。

4 原理概述
利用肉毒桿菌毒素 A、B、E 與 F 型的抗血清，分別與肉毒桿菌毒素進行動物體內的中和試驗，用來鑑定毒素之型別。

5 試劑耗材
5.1 培養基
5.1.1 CMGS（chopped meat-glucose-starch）plate。
5.1.2 Modified McClung-Toabe egg yolk agar plate。
5.2 無菌吸管：10 mL，應該有 0.1 mL 刻度。
5.3 無菌微量吸管尖（tip）：1,000 μL、200 μL 與 10 μL。
5.4 無菌培養皿：內徑約 90 或 100 mm，深度約 15 mm，外面應平坦、無氣泡、刮痕或其他缺點。
5.5 接種針（環）。
5.6 載玻片及蓋玻片。
5.7 可拋棄式無菌塑膠手套。
5.8 馬克法藍氏濁度標準組（McFarland nephelometer standard units）。
5.9 附密封蓋離心管。
5.10 無菌濾膜：孔徑 0.45 μM 之親水性醋酸纖維膜。
5.11 注射筒：1 mL 及 3 mL，附 25 號（5/8）吋的注射針。
5.12 小鼠：小白鼠，雄性體重 16 - 24 g，年齡 6 - 8 週。
5.13 0.85 %滅菌生理食鹽水。
5.14 A-F 型單價肉毒桿菌抗毒素與 A-F 型多價肉毒桿菌抗毒素：冷凍乾燥之抗毒素以無菌 50 %甘油水依標示配製，分裝至無菌 Eppendorf 試管內，-20 ℃ 保存。
5.15 10 %胰蛋白酵素溶液：取胰蛋白酵素 1.0 g 置乾淨培養試管中，加蒸餾水 10 mL 振搖，微熱至溶解

6 儀器設備
6.1 高速低溫離心機：可達 7,500 x g 以上。
6.2 微量吸管 Pipetman：1,000 μL、200 μL、2 μL。
6.3 電動 Pipetaid。
6.4 高壓滅菌鍋。
6.5 生物安全櫃。
衛生福利部疾病管制署傳染病標準檢驗方法

編號: 肉毒桿菌中和試驗

核准日期: 年 月 日
修訂日期: 年 月 日

頁次: 第 751 頁/共 1104 頁

6.6 4 °C 冰箱
6.7 -20 °C 冷凍櫃。
6.8 35 °C 恒溫培養箱。
6.9 水浴槽。

7 環境設施安全
7.1 於生物安全第二等級（BSL-2）實驗室之設施內操作。
7.2 實驗操作儘可能於生物安全櫃中進行。
7.3 檢體應置於密封且具有安全杯之離心機內離心。

8 檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

10 檢驗步驟
10.1 檢驗前處理
10.1.1 血清與抗毒素中和: 將單價 A、B、E 及 F 型抗毒素各取 0.25 mL 與疑似中毒血清 0.4 或 0.8 mL 進行試管外中和反應，在 37°C 下反應 60 分鐘。
10.1.2 嘔吐物液或糞便培養液，須與 0.22 μM 之親水性醋酸纖維膜過濾後，再與胰蛋白酵素反應於 37°C 60 分鐘後，再進行各種抗毒素中和。

10.2 檢驗步驟
10.2.1 將疑似中毒血清或嘔吐物液或糞便培養液進行試管外中和反應後，以腹腔注射 0.4 mL 及 0.8mL 至小鼠，分別進行二重複試驗。
10.2.2 陽性對照組以 A 型肉毒桿菌標準株 3802 所產生毒素標準液，取 0.4 mL 同時進行小鼠腹腔注射。
10.2.3 陰性對照組則以正常血清或無菌水作為對照組，進行二重複試驗。
10.2.4 持續觀察小鼠至 48 hrs，紀錄肉毒桿菌毒素中毒症狀及死亡情形，尤其是腹腔注射後 4-10 小時小鼠中毒情形。

11 廢棄物處理
11.1 檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。
11.2 動物死屍送進焚化爐焚毀。
12 結果判定
12.1 抗毒素完全中和後實驗小鼠會存活，部分中和或無法中和的小鼠，依
毒素濃度於24小時內死亡，即可確認檢體中含有肉毒桿菌毒素及其毒
素型別。
12.2 報告核發：肉毒桿菌毒素型別，肉毒毒素綜合研判時中和試驗與毒素
試驗結果須一致。

13 品質管制
13.1 培養基之品質管制
13.2 每一批購置或自行配製的培養基，應置入4 °C冰箱，標誌有效期限一
個月，使用時檢視有無污染菌產生，用完即應丟棄，不得再使用。
13.3 動物（老鼠）選擇
13.4 以雄性老鼠體重介於16 - 24 g之健康老鼠。
13.5 使用單價肉毒桿菌抗毒素之品質管制
13.6 將A-F型單價肉毒桿菌抗毒素置於-20 °C下保存。
13.7 利用ATCC3802標準菌株進行毒素中和試驗品管。
13.8 試驗結果必須符合陽性反應始可使用，確保實驗的中和抗毒素有效
性。

14 參考資料
14.3 Laboratory methods in anaerobic bacteriology (CDC laboratory manual),
1979.
14.4 行政院衛生署。1998。食品微生物之檢驗方法--肉毒桿菌及其毒素之檢
驗。87年12月31日衛署食字第87074866號公告。

15 附錄
15.1 肉毒桿菌中和試驗流程圖。
附錄 15.1 肉毒桿菌中和試驗流程圖

單價或多價抗毒素

以生理食鹽水稀釋

原液及各稀釋液各注射二隻小鼠 0.4 mL

腹腔注射最高稀釋倍數毒素檢液 0.4 mL

觀察並記錄小鼠死亡情形

判定毒素型別

對照實驗

二隻未注射抗毒素之小鼠

腹腔注射最高稀釋倍數毒素檢液 0.4 mL

觀察並記錄小鼠死亡情形

小鼠皆應死亡
1 目的
檢查中毒案件中檢體是否產生肉毒桿菌毒素。

2 適用檢體種類
適用於人體糞便、血清、肉毒桿菌懸浮液。

3 名詞解釋
無。

4 原理概述
利用動物毒力試驗檢查患者糞便、血清是否產生肉毒桿菌之毒素。

5 試劑耗材
5.1 CMGS（chopped meat-glucose-starch）plate。
5.2 無菌吸管：10 mL，應該有 0.1 mL 刻度。
5.3 無菌微量吸管尖（tip）：1,000 μL、200 μL 與 10 μL。
5.4 無菌培養皿：內徑約 90 或 100 mm，深度約 15 mm，外面應平坦、無氣泡、刮痕或其他缺點。
5.5 接種針（環）。
5.6 載玻片及蓋玻片。
5.7 可拋棄式無菌塑膠手套。
5.8 10 倍 gelatin 稀釋液。
5.9 馬克法藍氏濁度標準組（McFarland nephelometer standard units）。
5.10 附密封蓋離心管。
5.11 無菌濾膜：孔徑 0.45 μM 或 0.22 μM 之親水性醋酸纖維膜。
5.12 注射筒：1 mL 及 3 mL，附 25 號（5/8）吋的注射針。
5.13 小鼠：雄性體重 16 - 24 g。
5.14 革蘭氏染色液（Gram stain solution）。
5.15 0.85 %滅菌生理食鹽水。
5.16 A-F 型單價肉毒桿菌抗毒素與 A-F 型多價肉毒桿菌抗毒素：冷凍乾燥之抗毒素以滅菌 50%甘油水依標示復水（或依購買之說明書操作），供作抗毒素備用。以生理食鹽水對抗毒素原液 5 倍稀釋，供注射小鼠用。
5.17 10 %胰蛋白酵素溶液：取胰蛋白酵素 1.0 g 置乾淨培養試管中，加蒸餾水 10 mL 振搖，微熱至溶解。

6 儀器設備
6.1 高速低溫離心機，可達 7,500 x g 以上。
6.2 微量吸管 Pipetman：需 1,000 μL、200 μL、2 μL 三種規格。
6.3 電動 Pipetaid。
6.4 高壓滅菌鍋。
6.5 生物安全櫃。
6.6 4 °C 冰箱。
6.7 -20 °C 冷凍櫃。
6.8 厌氧箱。
6.9 恆溫培養箱，35 °C 和 26 °C。
6.10 電子式微量天平。
6.11 pH 值測定儀。
6.12 攪拌器及震盪器。
6.13 水浴槽。

7.環境設施安全
7.1 於生物安全第二等級（BSL-2）實驗室之設施內操作。
7.2 實驗操作於生物安全櫃中進行。
7.3 檢體應置於密封且具有安全杯之離心機內離心。

8.檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeteid=6C7C52E7A7D5621A

9.檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeteid=6C7C52E7A7D5621A

10.檢驗步驟
10.1 檢驗前處理
10.1.1 血液須離心，取血清作小白鼠毒力試驗。
10.1.2 疑似菌落，經 CMGS 培養 3 天後，離心再經 0.22 μM 過濾滅菌後，取過濾液作小白鼠毒力試驗。

10.2 檢驗步驟
10.2.1 取待測血清或已過濾之培養上清液，以原液(未稀釋) 對小老鼠腹腔注射 0.4 mL 及 0.8 mL，進行二重複試驗。
10.2.2 若原液毒素量太高，則以 Gel-phosphate diluent 將檢液稀釋成 5、10 及 100 倍之稀釋檢液，再進行動物實驗。
10.2.3 檢液包括原液(血清除外)及各稀釋檢液，經胰蛋白酵素在 37 °C 作用 1 hr 後，於 100 °C 加熱 10 min (陰性對照組)，對小老鼠腹腔注射 0.4 mL 及 0.8 mL，進行二重複試驗。
10.2.4 觀察至 48 hr 內定時觀察試驗小鼠有無肉毒桿菌毒素中毒症狀及死亡，(尤其是 4-10 小時)並作成記錄。典型之肉毒桿菌毒素中毒症狀，在注射檢液 24 hr 內引起呼吸困難、四肢軟弱，有典型的腹式呼吸症狀，終至呼吸麻痺，衰竭死亡。
11 廢棄物處理
 11.1 檢驗後工作人員應親自將所使用過之器材及廢棄物立即送進滅菌釜滅菌，動物死屍送進焚化爐焚毀。
 11.2 使用過之器材必須加以消毒處理。

12 結果判定
 12.1 試驗初起 24 hr，是小鼠之症狀和死亡關鍵時刻，98 %之試驗動物於 24 hr 內死亡。典型之肉毒桿菌毒素中毒症狀和死亡，可能發生在注射含肉毒桿菌毒素之檢液後 4 - 10 hr 內。
 12.2 若死亡發生在 24 hr 之後，除非有非常明確的典型肉毒桿菌毒素中毒之症狀，否則僅屬疑似個案。

13 品質管制
 13.1 培養基之品質管制
 每一批購置或自行配製的培養基，應置入 4 ℃冰箱，標誌有效期限一個月，使用時檢視有無污染菌產生，用完即應丟棄，不得再使用。
 13.2 動物（老鼠）選擇
 以雄性老鼠體重介於 16 - 24 g 之健康老鼠。
 13.3 每次進行毒素試驗，皆須使用肉毒桿菌標準菌株 ATCC 3802 培養濾液作為陽性對照，以利對照實驗動物組結果，確保實驗正確性。

14 參考資料
 14.3 Laboratory methods in anaerobic bacteriology (CDC laboratory manual), 1979.
 14.4 行政院衛生署。1998。食品微生物之檢驗方法--肉毒桿菌及其毒素之檢驗。87 年 12 月 31 日衛署食字第 87074866 號公告。

15 附錄
 15.1 肉毒桿菌毒素測定流程圖。
附錄 15.1 肉毒桿菌毒素型別測定流程圖

血清

細菌培養

CMGS 厌氧培養三天

離心過濾

上清液

陰性對照 原檢液 原檢液及各稀釋液

100 ℃ 加熱 10 分鐘 37℃ 胰蛋白酶 處理 1 小時

毒素試驗

觀察及記錄小白鼠存活得失亡情形
1 目的
在疑似受感染個案之採集檢體中，分離與鑑定肺炎鏈球菌。

2 適用檢體種類
適用於病患血液、腦脊髓液、其他無菌部位檢體（如胸膜液、腹膜液等）與醫院送驗菌株。

3 名詞解釋
無。

4 原理概述
肺炎鏈球菌（Streptococcus pneumoniae）為兼性厭氧性革蘭氏陽性球菌，直徑約為 0.5 - 1.25 µM，呈單個、成對或數個鏈狀排列，周圍繞以明顯莢膜。
在含綿羊血液培養基上生長良好，最適溫度為 35 - 37 °C，大部分菌落由中央凹陷而呈火山口狀，菌落周圍會形成α溶血環。對 Optochin 具有感受，且具有膽盐溶解（bile soluble）等性質。目前利用抗莢膜多醣類（anti-capsular polysaccharide）抗體，可將肺炎鏈球菌分為 90 種不同血清型別。

5 試劑耗材
5.1 培養基：
5.1.1 血液培養基（blood agar plate，BAP）：TSA 含 5 ％脫纖維綿羊血液。
5.1.2 BHI (brain heart infusion) broth。
5.2 嗜氧性血液培養瓶（Bactec）：BD，USA。
5.3 革蘭氏染色液（Gram's stain solution）：Difco，美國或武藤化學，日本或其他具相同鑑別力之試劑。
5.4 抗血清：Antisera Pneumococcus（Omni、Pool、Type、Group、Factor），Statens Serum Institut，Denmark 或其它具相同鑑別力之試劑。
5.5 3％H₂O₂溶液：ID color catalase，BioMérieux，France 或其它具相同鑑別力之試劑。
5.6 PYR（L-pyrrolidonyl aminopeptidase）test reagent。
5.7 Optochin 紙錠：Taxo P Discs。
5.8 10％Sodium deoxycholate。
5.9 無菌生理食鹽水：0.85％NaCl。
5.10 標準菌株：Streptococcus pyogenes ATCC 19615 及 S. pneumoniae ATCC 49619。
5.11 無菌微量吸管尖（tip）：1,000 µL、200 µL、100 µL、10 µL。
5.12 無菌微量離心管：1.5 mL。
5.13 接種針（環）。
5.14 蓋玻片。
5.15 可拋棄式無菌塑膠手套、口罩。
5.16 鎖子。
儀器設備

6.1 第二級生物安全櫃 (class II BSC)。
6.2 培養箱：5 % 二氧化碳、35 ℃。
6.3 恆溫箱：37 ℃。
6.4 血瓶培養箱：Bactec 9050。
6.5 冰箱：4 ℃。
6.6 顯微鏡：能放大至 1,000 倍之相位差光學顯微鏡。
6.7 冷凍櫃：-20 ℃。
6.8 微量吸管 (pipetteman)：1,000 μL、200 μL、100 μL、10 μL。
6.9 振盪器 (vortexer)。
6.10 本生燈。
6.11 高壓滅菌鍋。

環境設施安全
於生物安全第二等級 (BSL-2) 實驗室之設施內操作。

檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

檢驗步驟

10.1 檢體編號登記。
10.2 檢體前處理：腦脊髓液及其他無菌部位體液前處理：
 10.2.1 檢體體積超過 1 mL：以 3,000 x g 離心 20 min，吸除大部分上清液，留下約 0.5 mL 的液體，經劇烈震盪至少 30 sec 以重新懸浮沉澱。
 10.2.2 檢體體積少於 1 mL：劇烈震盪至少 30 sec。
10.3 分離培養
 10.3.1 接種
 10.3.1.1 血液：檢體量至少 0.5 mL。將血液檢體以 1 : 5 - 1 : 10 的比例接種於血液培養瓶。
 10.3.1.2 腦脊髓液及其他無菌部位體液：取 1 - 2 滴液體接種於血液培養基及 BHI 液態培養基（備用）。
10.3.2 培養：35 ℃ 含有 5 % 二氧化碳培養箱培養。
10.3.3 觀察：
 10.3.3.1 血液培養：14 - 17 hr 後觀察，然後每天觀察，培養液有混濁或紅血球溶解情形，立即將培養液混合均勻，
取 0.5 mL 培養液次培養於血液培養基，培養 48 hr，培養條件同前述；否則，14 - 17 hr、48 hr 及 7 天時，未觀察到混濁情形，仍取少量培養液次培養於血液培養基，培養 48 hr，血液培養瓶即可依適當程序滅菌銷毀。

10.3.3.2 血液培養基每天觀察，觀察期為 48 - 72 hr；液態培養每天觀察連續 7 天，若有細菌生長，次接種血液培養基。

10.4 鑑定

10.4.1 菌落型態：在血液培養基上之菌落光滑（glossy）、灰白色、周圍有明顯α溶血環，大部分菌落中央凹陷而呈火山口狀。挑取 2 - 5 個可疑菌落次接種至血液培養基，培養於 35 ℃ 含有 5 %二氧化碳培養箱培養、18 - 24 hr，以供進行鑑定。

10.4.2 革蘭氏染色（Gram's stain）：依照本署「革蘭氏染色法」檢驗標準方法（編號：B-48-2006-1.0）。

10.4.3 生化鑑定

10.4.3.1 Catalase test（觸酶試驗）

依照本署「觸酶試驗」標準檢驗方法（編號：B-50-2006-1.0）。

10.4.3.2 Optochin 生長抑制試驗

將血液培養基上可疑之單一菌落進行次培養，並於第一劃線區貼上含 5 μg Optochin 的紙錠，於 35 ℃ 含有 5 %二氧化碳培養箱培養 18 - 24 hr 後，若有大於 14 mm 之抑制環產生即為陽性反應。

10.4.3.3 Bile solubility test（膽鹽溶解試驗）

將幾滴 10 % Sodium deoxycholate 直接加到血液培養基上的菌落，觀察 30 min，如溶解無漂浮菌落，即為陽性反應。

10.4.4 血清型別鑑定

10.4.4.1 鏈球菌血清型之確認係以莢膜腫脹試驗進行。

10.4.4.2 取血液培養基上隔夜培養之新鮮菌落，溶於 50 μL 生理食鹽水，混合均勻成細菌懸浮液。

10.4.4.3 取 2 μL 細菌懸浮液滴在載玻片上，再滴 2 μL 生理食鹽水，混合均勻當做對照組。

10.4.4.4 另外再取 2 μL 細菌懸浮液，加上 2 μL 測試之抗血清，混合均勻做為試驗組。

10.4.4.5 使用相位差光學顯微鏡以 1,000 倍油鏡觀察，若滴加抗血清之試驗組有菌體莢膜膨脹，觀察到菌體輪廓清晰變厚甚至有聚集現象，便判斷為該測試之抗血清型別。

10.4.4.6 若無此現象，繼續使用其他型別之抗血清測試，直到找出該現象產生為止。
10.4.4.7 測試抗血清順序：先鑑定為何種 Pool sera (A~I)，然後測試其內所包含之 Type sera 或 Group sera，若為 Group 則還要再測試其所包含的 Factor sera。

11 結果判定
11.1 判讀標準
11.1.1 依據 10.4 鑑定結果，對照下表並紀錄於附錄 15.2 侵襲性肺炎鏈球菌分離與鑑定紀錄表。

<table>
<thead>
<tr>
<th>鑑定試驗名稱</th>
<th>陽性反應</th>
<th>陰性反應</th>
<th>肺炎鏈球菌反應</th>
</tr>
</thead>
<tbody>
<tr>
<td>生長於血液培養基上典型菌落外觀特徵</td>
<td>光滑（glossy）、灰白色、周圍有明顯 α溶血環</td>
<td>非左述現象</td>
<td>陽性反應</td>
</tr>
<tr>
<td>藍氏染色試驗</td>
<td>藍氏陽性菌球菌，單球雙球或鏈狀</td>
<td>非左述現象</td>
<td>陽性反應</td>
</tr>
<tr>
<td>觸酶試驗</td>
<td>有気泡產生</td>
<td>無気泡產生</td>
<td>陰性反應</td>
</tr>
<tr>
<td>Optochin 生長抑制試驗</td>
<td>大於 14 mm 之抑制環</td>
<td>非左述現象</td>
<td>陽性反應</td>
</tr>
<tr>
<td>膽鹽溶解試驗</td>
<td>溶解無漂浮菌落</td>
<td>非左述現象</td>
<td>陽性反應</td>
</tr>
<tr>
<td>血清型別鑑定</td>
<td>菌體輪廓清晰變厚甚至有聚集現象</td>
<td>非左述現象</td>
<td>判定陽性反應之血清型</td>
</tr>
</tbody>
</table>

11.1.2 綜合結果判斷標準：符合上表肺炎鏈球菌所有反應結果，即判斷為侵襲性肺炎鏈球菌陽性，及其血清型；若其中一項不符合者，即判斷為侵襲性肺炎鏈球菌陰性。有時膽鹽溶解試驗為陽性但 optochin 為陰性或相反結果時也有可能是肺炎鏈球菌。要注意!!

11.2 報告核發：侵襲性肺炎鏈球菌陽性、及其血清型，侵襲性肺炎鏈球菌陰性。

11.3 結果登錄：完成檢驗後，將檢驗結果登錄於附錄 15.2 侵襲性肺炎鏈球菌分離與鑑定紀錄表，檢驗結果填寫於檢體送驗單之“優開結果”欄，並將紀錄表背面蓋職章，相關檢驗紀錄及檢體送驗單呈實驗室主管審核，俟實驗室主管核章後，再上網登錄於傳染病通報系統。

12 品質管制
12.1 Optochin 生長抑制試驗之品質管制
12.1.1 應於有效期限內使用，同一批號試劑，第一次使用時取一組進行試驗。
12.1.2 使用陽性反應標準菌株 S. pneumoniae ATCC 49619 及陰性反應標準菌株 S. pyogenes ATCC 19615 進行試驗。
12.1.3 試驗結果必須符合陽性反應及陰性反應（判定標準依 11.1 節），始可使用。
12.2 膽鹽溶解試驗之品質管制

12.2.1 應於有效期內使用，同一批號試劑，第一次使用時取一組進行試驗。

12.2.2 使用陽性反應標準菌株 S. pneumoniae ATCC 49619 及陰性反應標準菌株 S. pyogenes ATCC 19615 進行試驗。

12.2.3 試驗結果必須符合陽性反應及陰性反應（判定標準依 11.1 節），始可使用。

13 廢棄物處理

檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋妥密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

14.1 蔡文城。2000。實用臨床微生物診斷學。第九版。九州圖書文物有限公司。臺灣。第 483-509 頁。

14.4 Statens Serum Institute, Denmark。Antisera Pneumococcus 操作說明書。

15 附錄

15.1 侵襲性肺炎鏈球菌分離與血清型鑑定流程圖。

15.2 侵襲性肺炎鏈球菌分離與血清型鑑定紀錄表。
附錄 15.1 侵襲性肺炎鏈球菌分離與血清型鑑定流程圖

血液培養瓶

血液培養瓶

劇烈震盪或離心

接種血液培養基

接種 BHI 增菌 (7 天)

35 ℃含 5% CO2 培養箱
24 小時培養

有細菌生長

無細菌生長

菌落觀察

菌落中央凹陷呈火山口狀，四周形成草綠色 α 溶血環、呈半透明水樣或黏稠狀

革蘭氏染色

陽性球菌（單、雙或鏈狀）

是

陰性反應

陰性反應

Catalase 鑑定

Optochin 生長抑制試驗

膽鹽溶解試驗

陽性反應

血清型別鑑定

判讀侵襲性肺炎鏈球菌陽性、血清型
附錄 15.2 侵襲性肺炎鏈球菌分離與血清型鑑定紀錄表

<table>
<thead>
<tr>
<th>項目</th>
<th>陽性</th>
<th>陰性</th>
<th>陽性</th>
<th>陰性</th>
<th>陽性</th>
<th>陰性</th>
<th>陽性</th>
<th>陰性</th>
</tr>
</thead>
<tbody>
<tr>
<td>血清型別</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>綜合結果</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>報告日期</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>附註</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

検體採檢運送狀況

<table>
<thead>
<tr>
<th>適當</th>
<th>是</th>
<th>否</th>
<th>是</th>
<th>否</th>
<th>是</th>
<th>否</th>
<th>是</th>
<th>否</th>
</tr>
</thead>
<tbody>
<tr>
<td>血液培養基生長呈火山口狀，周圍草綠色α溶血環、呈半透明水樣或黏稠狀菌落</td>
<td>陽性</td>
<td>陰性</td>
<td>陽性</td>
<td>陰性</td>
<td>陽性</td>
<td>陰性</td>
<td>陽性</td>
<td>陰性</td>
</tr>
</tbody>
</table>

第 2 天

第 3 天

<table>
<thead>
<tr>
<th>Catalase test</th>
<th>陽性</th>
<th>陰性</th>
<th>陽性</th>
<th>陰性</th>
<th>陽性</th>
<th>陰性</th>
<th>陽性</th>
<th>陰性</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optochin 生長抑制試驗</td>
<td>陽性</td>
<td>陰性</td>
<td>陽性</td>
<td>陰性</td>
<td>陽性</td>
<td>陰性</td>
<td>陽性</td>
<td>陰性</td>
</tr>
<tr>
<td>膽鹽溶解試驗</td>
<td>陽性</td>
<td>陰性</td>
<td>陽性</td>
<td>陰性</td>
<td>陽性</td>
<td>陰性</td>
<td>陽性</td>
<td>陰性</td>
</tr>
</tbody>
</table>
1. 目的
採用即時定量巢式聚合酶鍊鎖反應（single tube nested real-time PCR（STN-RT PCR））分子診斷方法檢測檢體中是否有貝氏考克斯菌核酸。

2. 適用檢體種類
血清、血液、體液、拭子等檢體。

3. 名詞解釋
Threshold cycle（Ct）：聚合酶鍊鎖反應產物之複製量，累積到足以被偵測的第一個循環點。Ct的值越小，表示檢體中原始菌體RNA或DNA的量越多。

4. 原理概述
採用專一性之引子（primers），貝氏考克斯菌（Coxiella burnetii）的核酸分子（DNA）經由STN-RT PCR方法複製增多放大，篩選確認是否為貝氏考克斯菌。

5. 試劑耗材
5.1 MagNA pure LC total nucleic acid isolation kit-large volume（Roche Cat. no.03 264 793 001）。
 5.1.1 清洗液 I（wash buffer I）。
 5.1.2 清洗液 II（wash buffer II）。
 5.1.3 清洗液 III（wash buffer III）。
 5.1.4 Lysis buffer。
 5.1.5 Proteinase K。
 5.1.6 Magnetic class particles suspension。
 5.1.7 Elution buffer。
 5.1.8 Sample cartridge。
5.2 核酸引子（Primer）。
 5.2.1 QF9（5’-TAT GTA TCC GTA GCC AGTC-3’）0.1 μM。
 5.2.2 QF10（5’-CCC AAC AAC ACC TCC TTA TTC-3’）0.1 μM。
 5.2.3 QF11（5’-GAg CGA ACC ATT GGT ATC G-3’）10 μM。
 5.2.4 QF12（5’-CTT TAA CAG CGC TTG AAC GT-3’）10 μM。
5.3 QuantiTect SYBR green PCR kit（Qiagen, Cat. no.204143）。
 5.3.1 2 X QuantiTect SYBR green PCR master mix：
 5.3.2 DNase，RNase-free H2O。
5.4 對照組
 5.4.1 陽性對照組（positive control DNA），含C. burnetii基因序列之Plasmid DNA。
 5.4.2 陰性對照組（negative control DNA），DNase或RNase-free H2O或陰性檢體抽取之DNA產物。
5.5 水質：RO逆滲透可達18 MΩ-CM以上之無菌水（去離子水），25 °C。（distilled water or deionized water）
5.6 專用試管
 5.6.1 定量 PCR 專用八連排反應管（QPCR 8-strip tubes）（Stratagene, USA Cat. no.410022）。
 5.6.2 定量 PCR 專用八連排反應蓋（QPCR 8-strip caps）（Stratagene, USA Cat. no.410024）。
 5.6.3 無菌過濾型 2 μL、20 μL、100 μL、200 μL、1,000 μL 吸管尖（aerosol resistant pipetting tips）。
 5.6.4 無菌 1.5 mL 微量離心管（sterile eppendorf tubes）。

5.7 手套。

6 儀器設備
 6.1 第二級生物安全櫃（class II BSC）。
 6.2 Roche MagNAPure 核酸自動萃取機。
 6.3 Mx4000 multiple quantitative PCR system（Strategene, USA）。
 6.4 微量滴管分注器 2 μL、20 μL、100 μL、200 μL、1,000 μL（pipettors）。
 6.5 高速離心機。
 6.6 4 °C 冰箱。
 6.7 -20 °C 冷凍櫃。
 6.8 高壓滅菌鍋。

7 環境設施安全
 7.1 貝氏考克斯菌核酸可經由吸入感染，所以病人血清檢體應在第二級生物安全櫃內處理。
 7.2 後續核酸檢驗可在生物安全第二等級（BSL-2）實驗室操作。
 7.3 應有獨立的操作空間與操作 DNA 有關的實驗室分開，以避免污染。

8 檢體採集
 參照本署出版之「傳染病檢體採檢手冊」第二版。
 http://www.cdc.gov.tw/professional/list.aspx?treenid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

9 檢體運送及保存
 參照本署出版之「傳染病檢體採檢手冊」第二版。
 http://www.cdc.gov.tw/professional/list.aspx?treenid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

10 檢驗步驟
 10.1 檢體編號登錄。
 10.2 Roche MagNAPure 核酸自動萃取機萃取細菌 DNA
 10.2.1 開啟電腦及機器。
 10.2.2 開啟 MagNAPure 3.0。
 10.2.3 點選 Sample ordering。
 10.2.4 Protocol 點選 DNA LV 選擇 DNA LV Blood_300_500.blk。
10.2.5 Sample volume改成400 µL。
10.2.6 輸入Sample名稱。
10.2.7 點選Stage setup。
10.2.8 依圖面檢查各Reagent位置及量及相關耗材等位置。
10.2.9 確認後逐一點選反白。
10.2.10 確認後出現OK選項點選。

10.3 單管即時定量巢式聚合酶鍊鎖反應（single tube nested Real-Time PCR）。

10.3.1 取5 µL DNA做模板，加入偵測的Coxiella burnetii的引子組置於冰上。
10.3.2 加入反應溶液（成分如附表），調整反應總體積至50 µL。

<table>
<thead>
<tr>
<th>初始濃度</th>
<th>加入體積</th>
<th>最終濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>2X QuantiTect SYBR green</td>
<td>25 µL</td>
<td>1X</td>
</tr>
<tr>
<td>QF9</td>
<td>Variable</td>
<td>參考5.2核酸引子</td>
</tr>
<tr>
<td>QF10</td>
<td>Variable</td>
<td>參考5.2核酸引子</td>
</tr>
<tr>
<td>QF11</td>
<td>Variable</td>
<td>參考5.2核酸引子</td>
</tr>
<tr>
<td>QF12</td>
<td>Variable</td>
<td>參考5.2核酸引子</td>
</tr>
<tr>
<td>RNase-free H2O</td>
<td>Variable</td>
<td></td>
</tr>
</tbody>
</table>

10.3.3 使用Mx4000 quantitative PCR system(Strategene)的上機步驟：
10.3.3.1 External amplification
95 ℃/10 min, and 5 cycles of denaturation at 94 ℃ for 30 sec, annealing temperature followed a touchdown profile from 66 ℃ to 62 ℃ for 30 sec that decreased -1 ℃ for each cycle of amplification, and extension at 72 ℃ for 60 sec followed by 10 cycles of denaturation at 94 ℃ for 30 sec, annealing at 61 ℃ for 30 sec, and extension at 72 ℃ for 60 sec。
10.3.3.2 Internal amplification
35 cycles of denaturation at 94 ℃ for 30 sec, annealing at 54 ℃ for 30 sec, and extension at 72 ℃ for 60 sec, Denaturation: 94 ℃，30 sec。

10.3.4 Melting curve analysis：
10.3.4.1 95 ℃，1 min。
10.3.4.2 66 ℃→95 ℃+1 ℃/30 sec/cycle，共30 Cycles。

11 結果判定
11.1 判讀標準
11.1.1 以Mx4000軟體分析結果，可以從Amplification plots與Tm值作判斷。
11.1.2 Q熱陽性對照和陰性對照組的Ct值符合預定值。樣品之Ct值小於40者判為陽性。Ct值大於或等於40（或無Ct值）者判為陰性。
11.3 Melting curve (Tm) 81 - 83 °C 可作為判別是否為 Q 熱之特異性 PCR 產物。

11.2 報告核發：於通報單上紀錄核酸檢驗結果並於工作日誌記錄檢驗數據。

11.3 結果登錄：將核酸檢驗之結果登錄於 LIMS 系統，於病原檢驗登入頁面下選擇檢驗方法為”聚合酶連鎖反應(PCR)”；檢驗結果如為陽性，於大類選擇”貝考克氏菌”，綜合檢驗結果選取”需再採血清檢體作 IFA 確認”；如檢驗為陰性則綜合檢驗結果選取”陰性”。

12 品質管制
12.1 擺放對照組作檢測，陽性與陰性對照組的 C_t 值及 Tm 值需符合設定值。
12.2 遵循 S.O.P 的作業規範與流程，在個別獨立的操作空間內操作避免污染。
12.3 Mx4000 機器定、微量滴管分注器定時做檢測與校正。
12.4 注意檢測套組的使用期限與適當的儲放溫度。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
14.2 Roche. MagNA pure LC system handbook.

15 附錄
15.1 Q 熱檢驗流程圖。
15.2 貝氏考克斯菌核酸檢測(單管即時定量巢式-聚合酶連鎖反應)流程圖。
附錄 15.1 貝氏考克斯菌核酸檢測（單管即時定量巢式-聚合酶鏈鎖反應）流程圖

Q熱檢驗

分子診斷（STN-RT PCR）

IgM/IgG抗體試驗
附錄 15.2 貝氏考克斯菌核酸檢測（單管即時定量巢式-聚合酶鍊鎖反應）流程圖

血清、血液、體液、拭子等檢體 → 細菌 DNA 萃取 → 單管即時定量巢式-聚合酶鍊鎖反應（single tube nested real-time PCR） → 結果判定
1 目的
以免疫螢光抗體方法檢測Q熱抗體以確定病例。

2 適用檢體種類
適用於人體血清檢體。

3 名詞解釋
無。

4 原理概述
利用抗原與抗體之專一性結合的免疫反應，加上二級螢光標識抗體將此反應轉成螢光訊號，而可以透過螢光顯微鏡觀察結果。

5 試劑耗材
5.1 PBS（10 X stock solution）0.1 M pH 7.4（Gibco BRL, USA, Cat. No. 70011-044）。
5.2 螢光標識抗體 FITC-goat anti-human IgG+A+M（H+L chain）（Invitrogen, USA, Cat. No. 62-8311）。
5.3 螢光標識抗體 FITC-goat anti-human IgM（Invitrogen, USA,Cat. No.62-7511）。
5.4 螢光標識抗體 FITC-goat anti-human IgG（Invitrogen, USA, Cat. No.62-7111）。
5.5 Q fever IFA IgM kit（Focus Diagnostics, USA, Cat. No.IF0200M）。
5.6 Q fever IFA IgG kit（Focus Diagnostics, USA, Cat. No.IF0200G）。
5.7 IgG 去除劑（Focus Diagnostics, USA, Cat. No. IF0209）。
5.8 96 孔 U型盤（Greiner Bio-One, Germany, Cat. No.650101）。
5.9 水質：25 ℃蒸餾水或 RO逆滲透可達18 MΩ-CM以上超純水。

6 儀器設備
6.1 螢光顯微鏡。
6.2 37 ℃培養箱。

7 環境設施安全
7.1 避免接觸傳染，所以病人的血清檢體，應在第二級生物安全櫃（class II BSC）內處理。
7.2 檢驗操作在生物安全第二等級（BSL-2）實驗室進行。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A
9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

10 檢驗步驟
10.1 檢驗前處理
10.1.1 將抗原玻片取出並風乾。
10.1.2 試藥回溫。
10.1.3 做 IgM 力價測定時，血清須事先使用 IgG 去除劑處理，以避免 IgG 千擾螢光免疫結果：取 10 μL 待測 IgM 力價之檢體，加入 70 μL IgG 去除劑，以 1：8 稀釋比例混和後，靜置 5 min 備用。

10.2 初步篩選（screening）：以 IFA- anti-human IgG＋A＋M 篩選 1：40 倍之稀釋血清。
10.2.1 將患者血清以 Q 熱專用之 IgG 檢體稀釋液（含 3 % yolk sac）做 1：40 倍稀釋。
10.2.2 將稀釋血清及陽性、陰性對照組血清各取 50 μL 點入 8 孔抗原玻片上。
10.2.3 將玻片置於保濕盒（moisture chamber），並於 37 °C 培養箱作用 30 min。
10.2.4 以 PBS 溶液沖洗玻片後，將玻片浸於 PBS 中，5 min 後再換一次 PBS，並浸泡 5 min。
10.2.5 以蒸餾水沖洗玻片，風乾。
10.2.6 每個孔加二級螢光標幟抗體（FITC-goat anti-human IgG＋A＋M），每滴約 50 μL。
10.2.7 將玻片置於保濕盒，並於 37 °C 培養箱作用 30 min。
10.2.8 以 PBS 溶液沖洗玻片後，將玻片浸於 PBS 中，5 min 後再換一次 PBS，並浸泡 5 min。
10.2.9 以蒸餾水沖洗玻片，風乾。
10.2.10 加封存劑（配方為 PBS：甘油＝1：1）封片後，以螢光顯微鏡 400 倍鏡檢。
10.2.11 結果判定：有螢光反應者為疑似陽性病例，需再做進一步測定力價確認（即進行 IgM & IgG 抗體力價測定）。

10.3 IgM & IgG 抗體力價測定：
10.3.1 血清稀釋
10.3.1.1 IgM 測定：
將已去除IgG之血清檢體以pH 7.4·0.01 M PBS自1：40起做倍稀釋至1：640或以上。
10.3.1.2 IgG 測定
將血清檢體以Q熱專用之IgG検體稀釋液（含3 % yolk sac）做1：40倍稀釋。再以pH 7.4·0.01 M PBS自1：80起做倍稀釋至1：640或以上。
10.3.2 將稀釋血清及陽性、陰性對照組血清各取 50 μL 點入 8 孔抗原玻片上。
10.3.3 將玻片置於保溫盒，並於 37 °C 培養箱作用 30 min。
10.3.4 以 PBS 溶液沖洗玻片後，將玻片浸於 PBS 中，5 min 後再換一次 PBS，並浸泡 5 min。
10.3.5 以蒸餾水沖洗玻片，風乾。
10.3.6 每孔內加二級螢光標幟抗體 (FITC-goat anti-human IgM 或 IgG)，每滴約 50 μL。
10.3.7 將玻片置於保溫盒，並於 37 °C 培養箱作用 30 min。
10.3.8 以 PBS 溶液沖洗玻片後，將玻片浸於 PBS 中，5 min 後再換一次 PBS，並浸泡 5 min。
10.3.9 以蒸餾水沖洗玻片，風乾。
10.3.10 加封存劑封片後，以螢光顯微鏡 400 倍鏡檢。
10.3.11 判定抗體力價。

11 結果判定

11.1 判讀標準

11.1.1 陽性的判定：單支血清 Phase II IgM 力價達 1：80 以上或配對血清 Phase II IgG 力價有 4 倍以上上升者，判為陽性。

11.1.2 陰性的判定：

11.1.2.1 IgM 及 IgG 力價皆低於 1：40 者，判為陰性。

11.1.2.2 1：40 倍稀釋血清之 IFA- anti-human IgG + A + M 初篩（screening）結果為陽性，但血清 Phase II IgM 力價低於 1：80，且配對血清 Phase II IgG 力價無 4 倍以上上升者，判為陰性。

11.1.3 不明（無法判定）：單支血清或配對血清無 IgM 抗體力價，Phase I IgG 力價大於 Phase II IgG 力價，且 Phase I IgG 抗體力價大於 1：640 者，判為不明（無法判定）。

11.2 報告核發：於通報單上紀錄血清學檢測結果並於工作日誌記錄檢驗數量。

11.3 結果登錄：將 IFA 之結果登錄於 LIMS 系統，如為陰性，於血清學檢驗登入頁面下選擇檢驗方法”間接螢光免疫分析-Total(IFA-Total)”之檢驗結果為陰性，並於綜合檢驗結果選取“陰性”；如檢驗為陽性，於血清學檢驗登入頁面下選擇檢驗方法”間接螢光免疫分析-IgG”及”間接螢光免疫分析-IgM”之檢驗結果為陽性或陰性，並填寫其 Titer，最後於綜合檢驗結果選取”陽性”。

12 品質管制

12.1 嚴防病原散佈或污染，工作時帶手套。

12.2 除螢光鑑定試驗步驟外全程作業都要在第二級生物安全操作箱內進行。

12.3 使用過之器材必須加以消毒處理。
衛生福利部疾病管制署傳染病標準檢驗方法

編號：Q熱病原體血清學抗體檢測（IgM 與 IgG, IFA）

頁次：第 774 頁/共 1104 頁

核准日期：
修訂日期：

12.4 每次檢驗應加入陽性、陰性控制組血清。
12.5 遵循 S.O.P 的作業規範與流程，並在個別獨立的操作空間內操作，以避免污染。
12.6 微量滴管分注器定時做校正。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋妥密封，再以121 ℃，30 min高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
14.1 財團法人日本公眾衛生協會。1987。Virus，Chlamydia，Rickettsia 檢查，第三版第三分冊。

15 附錄
15.1 Q熱檢驗流程圖。
15.2 Q熱抗體試驗（免疫熒光抗體法）流程圖。
附錄 15.1 Q 熱檢驗流程圖。
附錄 15.2 Q 熱抗體試驗（免疫螢光抗體法）流程圖

1. 血清
 → 以 PBS 稀釋
 → 滴至抗原玻片上
 → 置 37 ℃ 保濕盒中作用 30 分鐘
 → 以 PBS 浸洗

2. 加 FITC conjugated goat anti-human IgM/G/A 二級抗體
 → 置 37 ℃，30 分鐘後
 → 以 PBS 浸洗

3. 以螢光顯微鏡鏡檢
 → 判定抗體力價
1 目的
檢測疑似病患的血液或組織樣本中是否含有恙蟲病或地方性斑疹傷寒立克次體。

2 適用檢體種類
適用於急性期發病後七日內血液或組織樣本。

3 名詞解釋
無。

4 原理概述
利用細胞培養方法分離恙蟲病及地方性斑疹傷寒立克次體，並以間接免疫熒光法鑑定。

5 試劑耗材
5.1 Ficoll-paque plus（Amersham Biosciences, Sweden, Cat. no. 17-1440-02）。
5.2 DPBS（Dulbecco’s phosphate-buffered saline）(Gibco, USA, Cat. no. 14040-133)。
5.3 MEM 細胞培養基(minimum essential medium; MEM) (Gibco, USA, Cat. no. 11095-080)。
5.4 胎牛血清（fetal calf serum；FCS）(Biological Industries , Israel, Cat. no. 04-001-1A)。
5.5 15 mL 離心管。
5.6 2 mL 保存瓶。
5.7 Shell-vial 培養瓶。
5.8 螢光標識抗體 FITC-goat anti-human IgG ＋ A ＋ M (H ＋ L) (Zymed, USA, Cat. no. 62-8311)。
5.9 DMSO（dimethyl sulfoxide）(Sigma, USA, Cat. no.D2650)。
5.10 水質：25℃ 蒸餾水或 RO 逆滲透去離子可達 18 MΩ・CM 以上超純水。
5.11 Anti-O. tsutsugamushi 56kDa antibody(谷元，台灣, Cat.no. ST5609010)：
2 - 8 ℃ 保存，1,000 倍稀釋。
5.12 病人血清：2 - 8 ℃ 保存，400 倍稀釋。
5.13 細胞株 L929 (ATCC CCL-1)。

6 儀器設備
6.1 倒立顯微鏡。
6.2 螢光顯微鏡。
6.3 37 ℃、CO₂ 培養箱。
6.4 37 ℃ 窯箱。
6.5 離心機。
7 環境設施安全
 7.1 避免吸入及接觸傳染，所以病人的血液或組織檢體，應在第二級生物安全櫃（class II BSC）內處理。
 7.2 檢驗操作在生物安全第三等級（BSL-3）實驗室進行。

8 檢體採集
 參照本署出版之「傳染病檢體採檢手冊」第二版。
 http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowt reeid=6C7C52E7A7D5621A

9 檢體運送及保存
 參照本署出版之「傳染病檢體採檢手冊」第二版。
 http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowt reeid=6C7C52E7A7D5621A

10 檢驗步驟
 10.1 檢驗前處理
 10.1.1 將抗凝固全血，以 Ficoll-paque 分離周邊血液淋巴細胞，最後回溶於 1,000 μL 不含 FCS 的 MEM。
 10.1.2 將分離好的周邊血液淋巴細胞(1,000 μL) 移至 PP 材質保存管，標示號碼及日期，接種細胞後，其餘檢體保存於-70°C。
 10.2 接種
 10.2.1 取培養 1 - 2 天，已成單層之 L929 細胞的 shell-vial 培養瓶，吸除舊有生長培養基，以 DPBS 溶液清洗一次，加入 1 mL MEM-4 % FCS。
 10.2.2 每一檢體接種兩支 shell-vial 細胞培養瓶，每瓶接種 200 μL 周邊血液淋巴細胞。輕輕搖晃使接觸所有細胞。
 10.2.3 於 22 °C，以 700 x g 離心 1 hr。
 10.2.4 以 MEM 清洗兩次後，加入 1mL MEM-4 % FCS。
 10.2.5 培養於 32 °C，5 % CO2 培養箱。
 10.2.6 感染後持續觀察 shell-vial 內細胞情況，如生長培養基顏色過紫則更換或添加生長培養基。
 10.2.7 感染 10 天後，進行 IFA，觀察感染情況。
 10.2.8 感染兩週後，PCR 陽性或 IFA 陽性者，利用 Tip 刮起細胞並以 500 μL 為體積分裝至抗凍管凍藏之。
 10.2.9 若為 PCR 陽性而感染兩週後無病原體生長則將原冰存之檢體細胞冷凍凍解 3 次後（重覆置-70°C→37°C），再行細胞接種 1 - 2 次。
10.3 觀察
10.3.1 自翌日起每天輕搖 shell-vial, 觀察生長培養基顏色變化, 若呈現紅紫色, 則更換或添加新的生長培養基。並觀察玻片上細胞的貼附情形, 受感染的細胞會產生細胞病變（C.P.E.）而造成單層細胞的空隙。
10.3.2 接種細胞產生顯著 C.P.E. 者, 收集細胞及培養液, 立即進行鑑定, 或暫時保存於 4 °C。
10.3.3 細胞未產生顯著 C.P.E. 者, 待培養 10 天後, 一起收集細胞及培養液, 以熒光試劑進行鑑定。

10.4 間接熒光免疫法鑑定
10.4.1 取出 Shell-vial 內的玻片, 待細胞風乾後置入含有 -20 °C 丙酮之玻片槽, 固定 10 min。
10.4.2 取出風乾後以 Anti-O. tsutsugamushi 56kDa antibody 作為一級抗體滴於玻片上（約 20 μL 左右）, 將玻片置於保濕盒（moisture chamber）, 置於 37 °C 恆溫箱反應 60 min。
10.4.3 以含有 0.05 % Tween-20 的 PBS 溶液清洗玻片三次後風乾。
10.4.4 每個玻片加二級熒光抗體 (FITC-goat anti-human IgG＋A＋M)。每滴約 20 μL 左右, 將玻片置於保濕盒, 置於 37 °C 恆溫培養箱反應 30 min。
10.4.5 以含有 0.05 % Tween-20 的 PBS 溶液清洗玻片三次後風乾。
10.4.6 以封存劑（配方為 PBS：甘油=1：1）封片後, 以熒光顯微鏡鏡檢。

11 結果判定
11.1 判讀標準
在熒光顯微鏡下, 陽性檢體所培養出之立克次體, 可呈現圓桿狀且大小相似之綠色菌體, 無綠色菌體即為陰性。
11.2 報告核發：無, 內部登錄處理。
11.3 結果登錄：無, 內部登錄處理。

12 品質管制
12.1 嚴防病原散佈或污染, 工作時帶手套。
12.2 除離心及熒光鑑定試驗步驟外全程作業都要在第二級生物安全操作箱內進行。
12.3 使用過之器材必須加以消毒處理。
12.4 shell-vial 細胞培養時 MEM 應添加 10 % FCS; 感染後 MEM 則添加 4 % FCS。
12.5 培養基中不可添加四環黴素及氯黴素等抗生素。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物, 應先以滅菌袋裝妥密封, 再以 121 °C, 30 min 高壓滅菌後, 依本署廢棄物處理作業程序處理。
14 參考資料

15 附錄
15.1 恙蟲病立克次體分離與鑑定流程圖。
附錄 15.1 恙蟲病立克次體分離與鑑定流程圖

急性期抗凝固全血
以 Ficoll-Paque 分離周邊血液淋巴球

接種於 L929 細胞上

顯微鏡觀察細胞病變 (C.P.E.)

間接免疫螢光法染色

螢光顯微鏡鏡檢

螢光結果為陽性：
則判定病原體分離陽性

螢光結果為陰性：
則判定病原體分離陰性
1 目的
以即時定量聚合酶鍊鎖反應（real-time PCR）分子診斷方法檢測恙蟲病、流行性及地方性斑疹傷寒立克次體核酸。

2 適用檢體種類
適用於病人血液、體液或組織檢體。

3 名詞解釋
Threshold cycle (Ct)：係指 PCR 產物複製的量，累積到足以被偵測到的第一個循環點稱之。換句話說，Ct 的值越小，表示檢體中初始核酸的含量越多。

4 原理概述
利用恙蟲病及斑疹傷寒立克次體專一性之引子（primers），與檢體中之立克次體核酸分子結合配對，並利用 PCR 的複製過程及特殊的熒光定量化學方法偵測 PCR 產物，以決定檢體中是否含有立克次體核酸序列。檢體先以立克次體 16S rRNA 基因、恙蟲病立克次體 56 kDa 外膜蛋白基因以及斑疹傷寒立克次體 17 kDa 基因之引子混合進行篩檢，當檢體呈陽性時，再以不同立克次體基因專一性引子做立克次體種類的鑑定。

5 試劑耗材
5.1 QI Amp DNA blood mini kit（Qiagen, Cat. no. 51106）。
5.1.1 Lysis buffer（AL）。
5.1.2 清洗液（AW1）。
5.1.3 清洗液（AW2）。
5.1.4 萃取液（AVE）。
5.2 QuantiTect SYBR green PCR kit（Qiagen, Cat. no. 204143）。
5.2.1 PCR master mix。
5.2.1.1 QuantiTect SYBR green PCR buffer。
5.2.1.2 HotStarTaq DNA polymerase。
5.2.1.3 dNTP mix including dUTP。
5.2.1.4 SYBR green I。
5.2.1.5 ROX（passive reference dye）。
5.2.2 DNase, RNase-free H2O。

5.3 陽性對照組（positive control DNA）：各種立克次體以 L929 細胞培養 14 天，收取細胞並抽取其 DNA，做為 PCR PC 來源。
5.3.1 Rickettsia typhi（970432）。
5.3.2 R. sibrica。
5.3.3 R. japonica。
5.3.4 R. kato。
5.3.5 R.karp。

5.4 陰性對照組（negative control RNA）：DNase，RNase-free H2O。
5.5 水質：25°C蒸餾水或RO逆滲透可達18MΩ-CM以上超純水。
5.6 定量PCR專用八連排反應管（QPCR 8-strip tubes）（Strategene, USA Cat. no.410022）。
5.7 定量PCR專用八連排反應蓋（QPCR 8-strip caps）（Strategene, USA Cat. no.410024）。
5.8 無菌2μL、20μL、100μL、200μL、1,000μLTips。
5.9 無菌1.5mL微量離心管。
5.10 無粉手套。

6 儀器設備
6.1 第二級生物安全櫃（class II BSC）。
6.2 Mx3000P multiple quantitative PCR system（Strategene, U.S.A.）。
6.3 微量滴管分注器2μL、20μL、100μL、200μL、1,000μL（pipettors）。
6.4 高速離心機。
6.5 4°C冰箱。
6.6 -20°C冷凍櫃。
6.7 高壓滅菌鍋。

7 環境設施安全
7.1 病人血清檢體應在第二級生物安全櫃內處理。
7.2 檢驗操作在生物安全第二等級（BSL-2）實驗室進行。
7.3 應有獨立的操作空間，儘量與操作核酸相關的實驗室分開，以避免污染，影響結果。

8 檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeteid=6C7C52E7A7D5621A

9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeteid=6C7C52E7A7D5621A

10 檢驗步驟
1.1 萃取立克次體DNA
10.1.1 先吸取20μL Protease（or proteinase K）與200μL Lysis buffer（AL）放入1.5mL Microtube，再加入200μL的抗凝固全血檢體，震盪混合，56°C下靜置反應10min。
10.1.2 加入200μL酒精(96 - 100 %)後，震盪混合以抽氣方式(1 min)通過管柱（column），檢體中的DNA 會吸附在管柱底部的膜上。
10.1.3 加清洗液（AW1）750 μL，抽氣1 min，清洗膜上所吸附的雜質。重覆本動作三次，將膜上雜質徹底清洗乾淨。
10.1.4 以清洗液（AW2）750 μL，抽氣1 min，作第二次沖洗，清洗膜上剩餘吸附的雜質。抽氣後再抽氣1 min，兩次，以徹底去除膜上殘留酒精。
10.1.5 加入萃取液（AE）75 μL，室溫靜置5 min，抽氣1 min，取得DNA。

10.2 即時定量聚合酶鍵鎖反應（real-time PCR）。
10.2.1 取5 μL DNA做模板，加入(A)立克次體16S rRNA基因、(B)恙蟲病立克次體56 kDa外膜蛋白基因、(C)斑點熱立克次體17 kDa基因引子組及(D)斑疹傷寒立克次體17 kDa基因引子組（參考附錄15.2），置於冰上。
10.2.2 檢體先進行PCR篩選，篩選時用兩個反應管，一反應管加入引子(A+B)，另一反應管加入引子(C+D)。若其中有任何反應管為陽性時，則再重新萃取立克次體DNA進行Real-time PCR確認其陽性反應。若篩選結果疑似為恙蟲病立克次體（僅(A+B)反應陽性），則確認時用兩個反應管，一反應管加入引子(A)，另一反應管加入(B)，兩個反應管皆為陽性時，即確認為恙蟲病立克次體PCR陽性。若篩選結果疑似為斑疹傷寒或斑點熱立克次體（篩選時(A+B)，(C+D)皆為陽性反應），則確認時用兩個反應管，一反應管加入引子(C)，另一反應管加入(D)，以區分其為斑點熱或斑疹傷寒立克次體之感染。
10.2.3 加入反應溶液(成分如下表)，調整反應總體積至50 μL。

<table>
<thead>
<tr>
<th>初始濃度</th>
<th>加入體積</th>
<th>最終濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 X QuantiTect SYBR Green PCR MASTER Mix PCR buffer</td>
<td>25 μL</td>
<td>1X</td>
</tr>
<tr>
<td>Primer</td>
<td>Variable</td>
<td>參考附錄15.2</td>
</tr>
<tr>
<td>Rnase-free H2O</td>
<td>Variable</td>
<td></td>
</tr>
</tbody>
</table>

10.2.4 即時定量聚合酶鍵鎖反應（Real-Time PCR）：使用Mx3000Pquantitative PCR system（Stratagene, USA）。
10.2.4.1 Taq polymerase activation：95 ℃，15 min。
10.2.4.2 Denaturation：94 ℃，15 sec。
10.2.4.3 Annealing：55 ℃，30 sec。
10.2.4.4 Extension：72 ℃，20 sec。
10.2.4.5 77 ℃，30 sec。收集螢光值。
10.2.4.6 重複10.2.4.3至10.2.4.6步驟45 cycle。
10.2.5 Melting curve analysis:
10.2.5.1 95 °C，1 min。
10.2.5.2 68 °C→90 °C+1 °C /30 sec/cycle。
10.2.5.3 重複 10.2.5.2 步驟 45 cycles。

11 結果判定
11.1 判斷標準
11.1.1 以 MxPro 軟體分析結果，可以從 Amplification plots 與 Tm 值作
判斷，結果是陽性或陰性。
11.1.2 在陽性對照與陰性對照組的 Ct 值符合設定值下，凡樣品經恙蟲
病或斑疹傷寒立克次體專一性引子之 Ct 值小於 40 者，判為恙
蟲病或斑疹傷寒陽性。
11.1.3 觀看 Melting curve 時，一般來說，須 Tm 值＞80 °C 的 PCR 產
物，才為較具專一性之產物，而＜75 °C 之 PCR 產物，通常為
非專一性的產物。

11.2 報告核發：
11.2.1 恙蟲病及斑疹傷寒病原體核酸檢測方法：螢光定量聚合酶-連鎖
反應（real-time PCR）
11.2.2 結果：陽性。
11.2.3 結果：陰性。

11.3 結果登錄：將檢體檢驗數據結果登錄於檢驗紀錄表，送請實驗室主管
檢討確認，再依實驗室資訊管理系統（LIMS）之操作步驟，將檢驗結
果登錄於系統，陳送指定之實驗室主管審核複校，發出正式檢測報告。

12 品質管制
12.1 每次進行實驗時皆有對照組，陽性對照組與陰性對照組的 Ct 值需符合
設定值。
12.2 實驗過程遵循 S.O.P 的作業規範與流程，並在個別獨立的操作空間內操
作，以避免污染。
12.3 Mx3000P 機器定時作檢測與校正。
12.4 Pipetman 做定時的校正。
12.5 注意檢測套組的使用期限與適當的儲放溫度。

13 廢棄物處理
検驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥
密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
14.1 Shu PY, Chang SF, Kuo YC, Yueh YY, Chien LJ, Sue CL, Lin TH, Huang
green I based real-time reverse transcription-PCR assay for dengue virus. J
Clin Microbiol 41: 2408-2416.

15 附錄
15.1 立克次體鑑定（即時定量聚合酶鍊鎖反應）流程圖。
15.2 立克次體診斷用引子組序列表。
附錄 15.1 立克次體鑑定（即時定量聚合酶鍵鎖反應）流程圖

抗凝固全血

立克次體 DNA 萃取

Real-time PCR 篩選陽性樣本

結果判定

PCR 結果為陰性：則判定立克次體核酸陰性

立克次體 DNA 萃取

Real-time PCR 區分恙蟲病或斑疹傷寒立克次體

恙蟲病立克次體核酸陽性

斑疹傷寒立克次體核酸陽性
附錄 15.2 立克次體診斷用引子組序列表

A. 立克次體 16S rRNA gene consensus primers

| 16sRNAOTF7 | 5’- CCA GYG GGT RAT GCC GGG AAC TAT -3’ | 300 nM |
| 16sRNAOTR6 | 5’- GGC AGT GTG TAC AAG GCC CGA GAA -3’ | 300 nM |

B. 感冒病(ST)立克次體 56kDa 外膜蛋白 gene specific primers

| RST-14F | 5’- CCA TTT GGT GGT ACA TTA GCT GCA GGT -3’ | 300 nM |
| RST-6R | 5’- TCA CGA TCA GCT ATA CTT ATA GGC A -3’ | 300 nM |

C. 斑點熱(SFG)立克次體 17 kDa gene specific primers

| 17kDa 142F | 5’- GGT ATG AAT AAA CAA GGT ACA GGA AC -3’ | 300 nM |
| 17kDa 447R | 5’- ATA TTG ACC AGT GCT ATT TCT ATA AG -3’ | 300 nM |

D. 斑疹傷寒(TG)立克次體 17 kDa gene specific primers

| 17kDa 139F | 5’- GGG TGG TAT GAA CAA ACA AGG GAC TG -3’ | 300 nM |
| 17kDa 133F | 5’- TGG TCA GAG TGG TAT GAA CAA ACA AG -3’ | 300 nM |
| 17kDa 378R | 5’- CGC CAT TCT ATG TTA CTA CCG CTA GG -3’ | 300 nM |
1 目的

以免疫萤光抗体方法检测恙虫病抗体以确定病例。

2 適用檢體種類

適用於人體血清檢體。

3 名詞解釋

無。

4 原理概述

利用抗原與抗體之專一性結合的免疫反應，加上二級螢光標幟抗體將此反應轉成螢光訊號，而可以透過螢光顯微鏡觀察結果。

5 試劑耗材

5.1 PBS（10X stock solution）0.1 M pH 7.4（Gibco BRL, USA, Cat. no. 70011-044）。

5.2 螢光標幟抗體 FITC-goat anti-human IgG+A+M（H+L chain）(Zymed, USA, Cat. no. 62-8311)。

5.3 螢光標幟抗體 FITC-goat anti-human IgM (Zymed, USA,Cat. no.62-7511)。

5.4 螢光標幟抗體 FITC-goat anti-human IgG (Zymed, USA, Cat. no.62-7111)。

5.5 自製 21 孔恙蟲病抗原玻片（國際標準株 Gilliam、Kato、Karp）。

5.6 IgG 去除劑（Focus Diagnostics, USA, Cat. no. IF0209）。

5.7 96 孔U型盤（Greiner Bio-One, Germany, Cat. no.650101）。

5.8 50 mL 貯液槽（Costar, USA, Cat. no.4870）。

5.9 水質：25 ℃蒸餾水或 RO 逆滲透去離子可達 18 MΩ-CM 以上超純水。

5.10 Positive control for O. tsutsugamushi（Scimedx Corporation, USA, Cat.no. CC066）：2 - 8 ℃保存、直接使用不需稀釋。

5.11 Rickettsiae universal negative control（Scimedx Corporation, USA, Cat. no. CC076）：2 - 8 ℃保存、直接使用不需稀釋。

6 儀器設備

6.1 螢光顯微鏡。

6.2 37 ℃溫箱。

7 環境設施安全

7.1 避免接觸傳染，所以病人的血清檢體，應在第二級生物安全櫃（class II BSC）內處理。

7.2 檢驗操作在生物安全第二等級（BSL-2）實驗室進行。
8 檢體採集
 參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

9 檢體運送及保存
 參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

10 檢驗步驟
 10.1 檢驗前處理
 10.1.1 將抗原玻片取出並風乾。
 10.1.2 試藥回溫。
 10.1.3 做 IgM 力價測定時，血清須事先使用 IgG 去除劑處理，以避免 IgG 干擾熒光免疫結果：取 10 μL 待測 IgM 力價之檢體，加入 70 μL IgG 去除劑，以 1：8 稀釋比例混和後，靜置 5 min 備用。

10.2 初步篩選（screening）：以 IFA- anti-human IgG＋A＋M 篩選 1：40 倍之稀釋血清。
 10.2.1 將患者血清於 pH 7.4 之 0.01 M PBS 做 1：40 倍稀釋。
 10.2.2 將稀釋血清及陽性、陰性對照組血清各取 20 μL 點入 21 孔抗原玻片上。
 10.2.3 將玻片置於保濕盒（moisture chamber），並於 37 ℃ 恆溫箱作用 30 min。
 10.2.4 以 PBS 溶液沖洗玻片後，將玻片浸於 PBS 中，5 min 後再換一次 PBS，並浸泡 5 min。
 10.2.5 以蒸餾水沖洗玻片，風乾。
 10.2.6 每個孔加二級螢光標幟抗體（FITC-goat anti-human IgG＋A＋M），每滴約 20 μL。
 10.2.7 將玻片置於保濕盒，並於 37 ℃ 恆溫箱作用 30 min。
 10.2.8 以 PBS 溶液沖洗玻片後，將玻片浸於 PBS 中，5 min 後再換一次 PBS，並浸泡 5 min。
 10.2.9 以蒸餾水沖洗玻片，風乾。
 10.2.10 加封存劑（配方為 PBS：甘油 = 1：1）封片後，以螢光顯微鏡 400 倍鏡檢。
 10.2.11 結果判定：有熒光反應者為疑似陽性病例，需再做進一步測定力價確認（即進行 IgM & IgG 抗體力價測定）。

10.3 IgM & IgG 抗體力價測定：
 10.3.1 血清稀釋
 10.3.1.1 IgM 測定：
 將已去除 IgG 之血清檢體以 pH 7.4，0.01 M PBS 自 1：40 起做 2 倍稀釋至 1：640 或以上。
10.3.1.2 IgG 測定：
將血清檢體以 pH 7.4，0.01 M PBS 自 1:40 起做 2 倍稀釋至 1:640 或以上。

10.3.2 將稀釋血清及陽性、陰性對照組血清各取 20 μL 點入 21 孔抗原玻片上。

10.3.3 將玻片置於保濕盒，並於 37 ℃ 恆溫箱作用 30 min。

10.3.4 以 PBS 溶液沖洗玻片後，將玻片浸於 PBS 中，5 min 後再換一次 PBS，並浸泡 5 min。

10.3.5 以蒸餾水沖洗玻片，風乾。

10.3.6 每孔內加二級螢光標幟抗體 (FITC-goat anti-human IgM 或 IgG)，每滴約 20 μL。

10.3.7 將玻片置於保濕盒，並於 37 ℃ 恆溫箱作用 30 min。

10.3.8 以 PBS 溶液沖洗玻片後，將玻片浸於 PBS 中，5 min 後再換一次 PBS，並浸泡 5 min。

10.3.9 以蒸餾水沖洗玻片，風乾。

10.3.10 加封存劑封片後，以螢光顯微鏡 400 倍鏡檢。

10.3.11 判定抗體力價。

11 結果判定

11.1 判讀標準

11.1.1 陽性的判定：若單支血清 IgM 有 1:80 以上，且 IgG 有 1:320 以上，可判為陽性。或配對血清 IgG 力價有 4 倍以上上升者，可判為陽性。

11.1.2 陰性的判定：對血清 IgM 以及 IgG 力價皆低於 1:40 者，可判為陰性。

11.1.3 未確定需再採檢：若單支血清 1:40 倍稀釋之 IFA-anti-human IgG＋A＋M 初步篩選 (screening) 結果為陰性，或結果為陽性但血清 IgM 力價低於 1:80，則判為未確定，需再採檢。

11.1.4 不明 (無法確定)：配對血清 IgG 力價無 4 倍以上上升者，判為不明 (無法確定)。

11.2 報告核發：

11.2.1 恙蟲病抗體：陰性。

11.2.2 恙蟲病抗體：未確定需再採檢。

11.2.3 恙蟲病抗體：陽性。

11.2.4 恙蟲病抗體：不明 (無法確定)。

11.3 結果登錄：將檢體檢驗數據結果登錄於檢驗紀錄表，送請實驗室主管檢討確認，再依實驗室資訊管理系統 (LIMS) 之操作步驟，將檢驗結果登錄於系統，陳送指定之實驗室主管審核複校，發出正式檢測報告。

12 品質管制

12.1 嚴防病原散佈或污染，工作時帶手套。

12.2 除螢光鑑定試驗步驟外全程作業都要在第二級生物安全操作箱內進行。
12.3 使用過之器材必須加以消毒處理。
12.4 每次檢驗應加入陽性、陰性對照組血清。
12.5 遵循 S.O.P 的作業規範與流程，並在個別獨立的操作空間內操作，以避免污染。
12.6 微量滴管分注器定期做校正。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
14.1 財團法人日本公眾衛生協會。1987。Virus、Chlamydia、Rickettsia 檢查。
第三版第三分冊。

15 附錄
15.1 患蟲病檢驗流程圖。
15.2 患蟲病原體抗體試驗（免疫螢光抗體法）流程圖。
附錄 15.1 恙蟲病檢驗流程圖

恙蟲病檢驗

病原體分離

分子診斷（real-time PCR）

IgM/IgG抗體試驗
附錄 15.2 恙蟲病病原體抗體試驗（免疫螢光抗體法）流程圖

血清

以 PBS 稀釋

滴至抗原玻片上

置 37 °C 保濕盒中作用 30 分鐘

以 PBS 浸洗

加 FITC conjugated goat anti-human IgM/G/A 二級抗體

置 37°C，30 分鐘後，以 PBS 浸洗

以熒光顯微鏡鏡檢

判定抗體力價
目的
以間接免疫螢光法檢測地方性斑疹傷寒立克次體(Rickettsia typhi)抗體以確定病人感染地方性斑疹傷寒。

適用檢體種類
適用於人體血清檢體。

名詞解釋
無。

原理概述
利用抗原與抗體之專一性結合的免疫反應，加上二級螢光標幟抗體將此反應轉成螢光訊號，而可以透過螢光顯微鏡觀察結果。

試劑耗材
5.1 檢測試劑
5.1.1 PBS（10 X stock solution）0.1 M pH 7.4。
5.1.2 螢光標幟抗體 FITC-goat anti-human IgG +A + M （H+L chain）。
5.1.3 螢光標幟抗體 FITC-goat anti-human IgM。
5.1.4 螢光標幟抗體 FITC-goat anti-human IgG。
5.1.5 地方性斑疹傷寒螢光抗原玻片（R. typhi IFA slide）。
5.1.6 IgG 去除劑。
5.1.7 R. typhi positive control serum：2 - 8 ℃ 保存、直接使用不需稀釋。
5.1.8 Rickettsiae Universal Negative Control：2 - 8 ℃ 保存、直接使用不需稀釋。
5.1.9 水質：25 °C 蒸餾水或 RO 逆滲去離子透可達 18 MΩ-CM 以上超純水。

5.2 耗材
5.2.1 96-well U 型盤。
5.2.2 50 mL 儲液槽。

儀器設備
6.1 螢光顯微鏡。
6.2 37℃ 溫箱。

環境設施安全
7.1 避免接觸傳染，所以病人的血清檢體，應在第二級生物安全櫃（class II BSC）內處理。
7.2 檢驗操作在生物安全第二等級（BSL-2）實驗室進行。
8 檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

10 檢驗步驟
10.1 檢體前處理
10.1.1 將抗原玻片取出並風乾。
10.1.2 試藥回溫。
10.1.3 做 IgM 力價測定時，血清須事先使用 IgG 去除劑處理，以避免 IgG 干擾螢光免疫結果：取 10 μL 待測 IgM 力價之檢體，加入 70 μL IgG 去除劑，以 1:8 稀釋比例混和後，靜置 5 min 備用。

10.2 步驟
初步篩選（screening）: 以 IFA- anti-human IgG＋A＋M 篩選 1：40 倍之稀釋血清。
10.2.1 將患者血清以 pH 7.4 之 0.01 M PBS 做 1：40 倍稀釋。
10.2.2 將稀釋血清及陽性、陰性對照組血清各取 50 μL 點入 12 孔抗原玻片上。
10.2.3 將玻片置於保濕盒（moisture chamber），並於 37 ℃ 恆溫箱作用 30 min。
10.2.4 以 PBS 溶液沖洗玻片後，將玻片浸於 PBS 中，5 min 後再換一次 PBS，並浸泡 5 min。
10.2.5 以蒸餾水沖洗玻片，風乾。
10.2.6 每個孔加二級螢光標幟抗體（FITC-goat anti-human IgG＋A＋M），每滴約 50 μL。
10.2.7 將玻片置於保濕盒，並於 37 ℃ 恆溫箱作用 30 min。
10.2.8 以 PBS 溶液沖洗玻片後，將玻片浸於 PBS 中，5 min 後再換一次 PBS，並浸泡 5 min。
10.2.9 以蒸餾水沖洗玻片，風乾。
10.2.10 加封存劑（配方為 PBS：甘油＝1：1）封片後，以螢光顯微鏡 400 倍鏡檢。
10.2.11 結果判定：有螢光反應者為疑似陽性病例，需再做進一步測定力價確認（即進行 IgM & IgG 抗體力價測定）。
IgM & IgG 抗體力價測定:
10.2.12 血清稀釋
10.2.12.1 IgM 測定：
 將已去除 IgG 之血清檢體以 pH 7.4, 0.01 M PBS 自 1:40 起做 2 倍稀釋至 1:160 或以上。
10.2.12.2 IgG 測定：
 將血清檢體以 pH 7.4, 0.01 M PBS 自 1:40 起做 2 倍稀釋至 1:640。
10.2.13 將稀釋血清及陽性、陰性對照組血清各取 50 μL 點入 12 孔抗原玻片上。
10.2.14 將玻片置於保濕盒, 並於 37°C 恆溫箱作用 30 min。
10.2.15 以 PBS 溶液沖洗玻片後，將玻片浸於 PBS 中，5 min 後再換一次 PBS，並浸泡 5 min。
10.2.16 以蒸餾水沖洗玻片，風乾。
10.2.17 每孔內加二級螢光標幟抗體 (FITC-goat anti-human IgM 或 IgG)，每滴約 50 μL。
10.2.18 將玻片置於保濕盒, 並於 37°C 恆溫箱作用 30 min。
10.2.19 以 PBS 溶液沖洗玻片後，將玻片浸於 PBS 中，5 min 後再換一次 PBS，並浸泡 5 min。
10.2.20 以蒸餾水沖洗玻片，風乾。
10.2.21 加封存劑封片後，以螢光顯微鏡 400 倍鏡檢。
10.2.22 判定抗體力價。

11 結果判定
11.1 判讀標準
11.1.1 陽性的判定：若單支血清 IgM 有 1:80 以上，且 IgG 有 1:320 以上，可判為陽性。或配對血清 IgG 力價有 4 倍以上上升者，可判為陽性。
11.1.2 陰性的判定：配對血清 IgM 以及 IgG 力價皆低於 1:40 者，可判為陰性。
11.1.3 損定需再採檢：若單支血清 1:40 倍稀釋之 IFA- anti-human IgG + A + M 初步篩選（screening）結果為陰性，若結果為陽性但血清 IgM 力價低於 1:80，則判為未確定，需再採檢。
11.1.4 不明（無法確定）：配對血清 IgG 力價無 4 倍以上上升者，判為不明（無法確定）。

11.2 報告核發
11.2.1 斑疹傷寒抗體：陰性。
11.2.2 斑疹傷寒抗體：未確定需再採檢。
11.2.3 斑疹傷寒抗體：陽性。
11.2.4 斑疹傷寒抗體：不明（無法確定）。
11.3 結果登錄

將檢體檢驗數據結果登錄於檢驗紀錄表，送請實驗室主管檢討確認，再依實驗室資訊管理系統 (LIMS) 之操作步驟，將檢驗結果登錄於系統，陳送指定之實驗室主管審核複校，發出正式檢測報告。

12 品質管制

12.1.1 嚴防病原散佈或污染，工作時帶手套。
12.1.2 除螢光鑑定試驗步驟外全程作業都要在第二級生物安全操作箱內進行。
12.1.3 使用過之器材必須加以消毒處理。
12.1.4 每次檢驗應加入陽性、陰性控制組血清。
12.1.5 遵循 S.O.P 的作業規範與流程，並在個別獨立的操作空間內操作，以避免污染。
12.1.6 微量滴管分注器定期做校正。

13 廢棄物處理

檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121°C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

14.1 財團法人日本公眾衛生協會。1987。Virus、Chlamydia、Rickettsia 檢查，第三版
14.2 第三分冊。

15 附錄

15.1 斑疹傷寒檢驗流程圖。
15.2 斑疹傷寒抗體試驗（免疫螢光抗體法）流程圖。
附錄 15.1 斑疹傷寒檢驗流程圖。

斑疹傷寒檢驗

- 病原體分離
- 分子診斷（real-time PCR）
- IgM/IgG抗體試驗
附錄 15.2 斑疹傷寒抗體試驗（免疫螢光抗體法）流程圖。

血清

以 PBS 稀釋

滴至抗原玻片上

置 37°C 保濕盒中作用 30 分鐘

以 PBS 浸洗

加 FITC conjugated goat anti-human IgM/G/A 二級抗體

置 37°C，30 分鐘後以 PBS 浸洗

以螢光顯微鏡鏡檢

判定抗體力價
1 目的
檢測疑似病患的組織檢體或體液中是否含有萊姆病病菌。

2 適用檢體種類
適用於病患出現遊走性紅斑的皮膚組織，神經系統症狀的腦脊髓液或關節病變的關節囊液等檢體。

3 名詞解釋
無。

4 原理概述
利用培養方法分離萊姆病病原體並以聚合酶鏈鎖反應法（PCR）鑑定。

5 試劑耗材
5.1 BSK-H培養液（Sigma Corp., Cat no. B8291）。
5.2 無菌 2 μL、20 μL、100 μL、200 μL、1,000 μL Tips。
5.3 無菌 1.5 mL 微量離心管。
5.4 無菌拋棄式研磨棒。
5.5 水質：25 ℃蒸餾水或 RO 逆滲透可達 18 MΩ-CM 以上超純水。
5.6 陽性對照組（positive control DNA）：Borrelia burgdorferi（ATCC 35210）。
5.7 陰性對照組（negative control DNA）：DNase，RNase-free H₂O。
5.8 水質：25 ℃蒸餾水或 RO 逆滲透可達 18 MΩ-CM 以上超純水。
5.9 PCR 專用八連排反應管。
5.10 PCR 專用八連排反應蓋。
5.11 2X PCR Master mix。
5.12 引子序列 23SN1：5'-ACCATAGACTCTATTACCTTGAC-3'。
5.13 引子序列 23SC1：5'-TAAGCTGACTAATACCTACC-3'。

6 儀器設備
6.1 35 ℃、CO₂ 培養箱。
6.2 手術剪刀。
6.3 不鏽鋼鎚子。
6.4 手術刀 1 柄，no.4。
6.5 手術刀片，no.23。
6.6 離心機。
6.7 生物安全櫃。
6.8 桌上型離心機。
6.9 4 ℃冰箱。
6.10 -20 ℃冷凍櫃。
6.11 微量吸管 Pipetman：需 1,000 μL、200 μL、2 μL 等三種規格。
6.12 核酸增幅儀。
6.13 DNA 電泳膠體觀察照相設備。
6.14 暗視野顯微鏡。

7 環境設施安全
7.1 病人的皮膚組織、腦脊髓液和關節囊液，應在第二級生物安全櫃（class II BSC）內處理。
7.2 檢驗操作在生物安全第二等級（BSL-2）實驗室進行。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

10 檢驗步驟
10.1 檢驗前處理
將皮膚組織研磨成碎屑。
10.2 分離培養
10.2.1 檢體接種：
 10.2.1.1 取出 50 μL 的腦脊髓液或關節囊液接種於 4.5 mL 的 BSK-H 培養液。
 10.2.1.2 研磨後的皮膚組織加入 100 μL BSK-H 培養液，混合後取出並接種於 4.5 mL 的 BSK-H 培養液。
10.2.2 培養：置於 35 ℃，5 % 二氧化碳培養箱培養。
10.2.3 觀察：每週以暗視野顯微鏡觀察一次，至少需培養 8 - 12 週，有可疑螺旋體則進行鑑定。
10.3 鑑定
10.3.1 暗視野顯微鏡觀察：呈細長螺旋狀，螺旋稀疏而不規則，約有 5 - 10 個扭轉。行特異的螺旋旋轉運動方式。
10.3.2 繼代培養：從初代培養液分別吸取 0.1、0.5 與 1 mL 之菌液，接種於三管 4.5 mL 的 BSK-H 培養液，置於 35 ℃，5 % 二氧化碳培養箱培養，用以放大菌量便於進行 PCR 鑑定。
10.3.3 PCR 鑑定：
 10.3.3.1 選擇生長密度最高的培養管，吸取 1.2 mL 的菌液置於 1.5 mL 微量離心管中，以 13,000 rpm 離心 10 min，撿去液體後添加 100 μL 無菌水，100 ℃ 煮沸 10 min 後，10,000 rpm 離心 5 min，取上清液作為 PCR 反應模板 DNA。
10.3.3.2 PCR 反應混和物配製如下：

<table>
<thead>
<tr>
<th>Component</th>
<th>Final conc. or volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template (陽性 DNA, 水, 檢體)</td>
<td>2 µL</td>
</tr>
<tr>
<td>Each primer (10 µM)</td>
<td>1 µL</td>
</tr>
<tr>
<td>2x master mix</td>
<td>25 µL</td>
</tr>
<tr>
<td>加無菌水</td>
<td>21 µL</td>
</tr>
</tbody>
</table>

10.3.3.3 放入儀器中進行反應，反應條件設定：
10.3.3.4 95 °C / 2 min，1 cycle。
10.3.3.5 95 °C / 30s，56 °C / 30s，72 °C / 30s，30 cycles。
10.3.3.6 PCR 產物以 1：10 稀釋，取 1µL 進行第二次 PCR 反應（條件同第一次）。
10.3.3.7 PCR 電泳分析，若電泳分析發現具 380 - 400 bp 之產物，須送定序加以確認。

11 結果判定
11.1 判讀標準：根據細菌型態、運動方式、PCR 鑑定與定序結果進行病原分離的結果，判讀是陽性或是陰性。
11.2 報告核發：萊姆病陽性，萊姆病陰性。
11.3 結果登錄：將検體之検驗結果登錄於實驗室資訊系統，經 PI 核准報告後發佈。

12 品質管制
12.1 判定感染應配合臨床症狀，分離菌株之菌型態特性。
12.2 PCR 以陽性菌株 DNA 做對照組檢驗比較，必要時可利用 16S DNA 加以鑑別。

13 廢棄物處理
檢體、廢液、及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

15 附錄
15.1 萊姆病病原分離與鑑定流程圖。
附錄 15.1 萊姆病病原菌分離與鑑定流程圖

1. 皮膚與體液檢體
2. 分離培養
3. 有螺旋體樣菌
 - PCR 鑑定
 - 陽性判定
 - 陰性判定
4. 無螺旋體樣菌
1 目的
篩檢萊姆病抗體。

2 適用檢體種類
適用於符合萊姆病病徵之病患血清檢體。

3 名詞解釋
無。

4 原理概述
利用合成的短鏈胺基酸鏈（C6 peptide）為抗原，與病人血清中之萊姆病特異性抗體結合，以酵素標幀抗體間接地將此反應轉成顏色訊號，由全自動酵素免疫分析儀讀取結果。

5 試劑耗材
5.1 Immunetics C6 B. burgdorferi（lyme）ELISA kit: Immunetics, USA., Cat no. DK-E352-096。
 5.1.1 96 孔微反應槽，吸附 C6 peptide 抗原。
 5.1.2 10 倍清洗液。
 5.1.3 檢體稀釋液。
 5.1.4 山羊抗人 IgG/IgM 酵素結合抗體（horseradish peroxidase）。
 5.1.5 陽性標準液。
 5.1.6 陰性標準液。
 5.1.7 臨界校正液。
 5.1.8 呈色劑（TMB 受質）。
 5.1.9 終止液。
 5.2 無菌微量吸管尖（tip）: 100 μL、1,000 μL。
 5.3 無菌蒸餾水。
 5.4 96 孔 U 型微量滴定盤。
 5.5 可拋棄式無菌塑膠手套。

6 儀器設備
6.1 全自動酵素免疫分析儀（ELISA reader）: 450 nm 波長，與 630 nm 波長。
 6.2 微量吸管（pipetteman）: 1,000 μL、300 μL、30 μL。
 6.3 8 爪微量吸管。
 6.4 計時器。

7 環境設施安全
於生物安全第二等級（BSL-2）實驗室之設施內操作。
衛生福利部疾病管制署傳染病標準檢驗方法

編號：
葉克病病原菌抗體檢測
（ELISA）

核准日期：年 月 日
修訂日期：年 月 日

第 806 頁/共 1104 頁

8 檢體採集
8.1 血清檢體沒有添加抗凝劑，沒有溶血且量不少於 200 μL。
8.2 參照本署出版之「傳染病檢體採檢手冊」第二版。
 http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869
 &nowtreeid=6C7C52E7A7D5621A

9 檢體運送及保存
 運送及保存參照本署出版之「傳染病檢體採檢手冊」第二版。
 http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

10 檢驗步驟
10.1 試藥回溫。
10.2 96 孔 U 型微量滴定盤各孔格加入 200 μL 檢體稀釋液。
 10.2.1 第一個孔格加入 10 μL 陽性標準液。
 10.2.2 第二個孔格加入 10 μL 陰性標準液。
 10.2.3 第三、四、五孔格各加入 10 μL 臨界校正液。
 10.2.4 其餘各孔格加入 10 μL 血清檢體。
10.3 各吸取 100 μL 稀釋後的液體，分別加入於各微反應槽，室溫反應 30 min。
10.4 每個微反應槽加入 300 μL 清洗液清洗，重複清洗四次。
10.5 每個微反應槽加入 100 μL 山羊抗人 IgG/IgM 之酵素結合抗體，室溫反應 25 min。
10.6 每個微反應槽加入 300 μL 清洗液清洗，重複清洗四次。
10.7 加入 100 μL 受質，室溫反應 4 min。
10.8 加入 100 μL 中止液。
10.9 於 5 min 內以全自動酵素免疫分析儀讀取 450 nm 之吸光值，參考濾片（reference filter）設定為 630 nm。

11 結果判定
11.1 判讀標準：計算各血清檢體的莱姆指數，並根據萊姆指數進行判讀。
 各個檢體的萊姆指數計算方式為：血清檢體吸光值 ÷（臨界校正液吸光值之平均值 ÷ 2.150）。
 11.1.1 當萊姆指數 ≤ 0.9：為陰性反應，判為抗體陰性。
 11.1.2 當萊姆指數界於 0.91 - 1.09：為不確定反應，需繼以西方墨點法確認。
 11.1.3 當萊姆指數 ≥ 1.1：為陽性反應，需繼以西方墨點法確認。
11.2 報告核發：萊姆病抗體未確定，萊姆抗體陽性，萊姆病抗體陰性。
11.3 結果登錄：將檢體之檢驗結果登錄於實驗室資訊系統，經 PI 核准報告後發佈。
12 品質管制
若陽性標準液、陰性標準液或臨界校正液之吸光值未達下述之標準時，必須重做檢驗。
12.1 陽性標準液吸光值須大於 1.2。
12.2 陰性標準液吸光值須小於 0.18。
12.3 臨界校正液吸光值須界於 0.4 - 2.0。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
14.2 Immunetics® C6 B. burgdorferi (lyme) ELISA kit 說明書，Cat. no. DK-E352-096, Immunetics, USA.

15 附錄
15.1 萊姆病抗體試驗流程圖。
附錄 15.1 萊姆病抗體試驗流程圖

血清檢體 → 酵素免疫分析法檢驗

萊姆指數＞0.90 → 西方墨點法確認

萊姆指數≤0.9 → 陰性判定
1 目的
檢測萊姆病抗體。

2 適用検體種類
適用於經酵素免疫分析法篩檢出，需要再確認之病患血清検體。

3 名詞解釋
無。

4 原理概述
利用電泳將伯氏疏螺旋體（Borrelia burgdorferi）菌體蛋白，依照分子量大小分開，並轉漬於尼龍膜上。以尼龍膜上的抗原與病人血清進行專一性結合的免疫反應，加上酵素標幷抗體將此反應轉成顏色訊號，得以觀察血清與特定蛋白的反應結果。

5 試劑耗材
5.1 B. burgdorferi (IgG) MARBLOT STRIP TEST SYSTEM：Cat. No. 40-5065G，MarDx，USA。
 5.1.1 B. burgdorferi IgG 試藥條。
 5.1.2 陰性標準液。
 5.1.3 B. burgdorferi IgG 陽性標準液。
 5.1.4 B. burgdorferi IgG 弱陽性標準液。
 5.1.5 10 倍抗體稀釋液/清洗液。
 5.1.6 10 倍抗人類 IgG 酵素結合抗體（alkaline phosphatase conj.）。
 5.1.7 呈色液。
5.2 B. burgdorferi (IgM) MARBLOT STRIP TEST SYSTEM：Cat. No. 40-5065M，MarDx，USA。
 5.2.1 B. burgdorferi IgM 試藥條。
 5.2.2 陰性標準液。
 5.2.3 B. burgdorferi IgM 陽性標準液。
 5.2.4 B. burgdorferi IgM 弱陽性標準液。
 5.2.5 10 倍抗體稀釋液/清洗液。
 5.2.6 10 倍抗人類 IgM 酵素結合抗體（alkaline phosphatase conj.）。
 5.2.7 呈色液。
5.3 無菌微量吸管尖（tip）：200 μL、1,000 μL。
5.4 血清瓶：1 L。
5.5 水質：25 ℃ 蒸餾水或 RO 逆滲透可達 18 MΩ-CM 以上超純水。
5.6 檢體反應槽。
5.7 手套。
5.8 紙巾。
儀器設備
6.1 鐳子。
6.2 水平搖盪器。
6.3 微量吸管（pipettes）：200 μL、1,000 μL。
6.4 分注器。
6.5 真空幫浦。

環境設施安全
於生物安全第二等級（BSL-2）實驗室之設施內操作。

檢體採集
8.1 血清檢體沒有添加抗凝劑，沒有溶血且量不少於 200 μL。
8.2 參照本署出版之「傳染病檢體採檢手冊」第二版。
 http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869
 &nowtreeid=6C7C52E7A7D5621A

檢體運送及保存
9.1 低溫運送及保存。
9.2 參照本署出版之「傳染病檢體採檢手冊」第二版。
 http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869
 &nowtreeid=6C7C52E7A7D5621A

檢驗步驟
10.1 試藥回溫。
10.2 檢驗前處理
 10.2.1 配製 1 倍抗體稀釋液/清洗液：取 1 份 10 倍抗體稀釋液/清洗液，加入 9 份去離子水之血清瓶。
 10.2.2 配製 1 倍抗人類 IgG 酵素結合抗體：以 9 份 1 倍抗體稀釋液/清洗液與 1 份 10 倍抗人類 IgG 酵素結合抗體作稀釋，需現泡現用。
 10.2.3 配製 1 倍抗人類 IgM 酵素結合抗體：以 9 份 1 倍抗體稀釋液/清洗液與 1 份 10 倍抗人類 IgM 酵素結合抗體作稀釋，需現泡現用。
10.3 同時分開進行 IgG 及 IgM 抗體檢測。
10.4 依試藥條的編號順序取出試藥條，數字部分面朝上依序放入檢體反應槽，避免用手接觸試藥條。
10.5 各檢體反應槽加入 2 mL 抗體稀釋液/清洗液，試藥條需完全浸泡於清洗液中，搖盪 5 min 以上。
10.6 將標準液與檢體分別加入各個檢體反應槽。
 10.6.1 僅於檢驗套組開封後第一次檢驗時使用陽性標準液，加入 80 μL。
 10.6.2 陰性標準液加入 20 μL。
衛生福利部疾病管制署傳染病標準檢驗方法

編號： 萊姆病原菌抗體檢測
核準日期：

頁次：第 811 頁/共 1104 頁
修訂日期：

10.6.3 弱陽性標準液 20 μL。
10.6.4 檢體加入 20 μL。

10.7 置於搖盪器上，室溫反應 30 min，除去液體。
10.8 加入 2 mL 抗體稀釋液/清洗液，搖盪 5 min，除去液體，再重復此步驟二次。
10.9 加入 2 mL 稀釋的抗人類 IgG 酵素結合抗體或稀釋的抗人類 IgM 酵素結合抗體於相對應的檢體反應槽。
10.10 置於搖盪器上，反應 15 min，除去液體。
10.11 加入 2 mL 抗體稀釋液/清洗液，搖盪 5 min，除去液體，再重複此步驟二次。
10.12 加入 2 mL 去離子水，搖盪 1 min，除去液體。
10.13 加入 2 mL 呈色液後置於搖盪器上反應，直到使用弱陽性標準液試藥條出現淡淡的 41 kDa 反應條帶時終止呈色反應。反應時間約在 4 - 12 min 間。
10.14 除去液體，加入 2 mL 去離子水，用手搖盪 3 - 4 次，再重覆此步驟二次。
10.15 取出試藥條置於紙巾上風乾，待完全乾燥後進行結果判讀。

11 結果判定
11.1 陽性判讀標準：
11.1.1 檢體試藥條的條帶顏色，必須比作弱陽性標準液檢測之試藥條上 41 kDa 位置的條帶顏色深，方可判為陽性條帶。
11.1.2 IgG 抗體檢測結果判定：檢體試藥條上位於 93, 66, 58, 45, 41, 39, 30, 28, 23 與 18 kDa 的十個條帶中，任五個以上（含）呈陽性反應，判讀為陽性；任四個條帶以下（含）呈陽性反應，判讀為陰性。
11.1.3 IgM 抗體檢測結果判定：檢體試藥條上位於 41, 39 和 23 kDa 的三個條帶中，任兩個以上（含）呈陽性反應，判讀為陽性；任一個以下（含）呈陽性反應，判讀為陰性。
11.2 報告核發：萊姆病抗體未確定，萊姆病抗體陽性，萊姆病抗體陰性。
11.3 結果登錄：將檢體之檢驗結果登錄於實驗室資訊系統，經 PI 核准報告後發佈。

12 品質管制
12.1 於 IgG 抗體檢測中，若任一標準液條帶反應結果未達下列所述之標準時，必須重做 IgG 抗體檢驗。
12.1.1 陽性標準液試藥條上須可見這些條帶：血清添加確認條帶、酵素結合抗體確認條帶、93, 66, 58, 45, 41, 39, 30, 28, 23 與 18 kDa 條帶。
12.1.2 弱陽性標準液試藥條上須可見這些條帶：血清添加確認條帶、酵素結合抗體確認條帶與 41 kDa 條帶。
12.1.3 陰性標準液試藥條上只能出現這些條帶：血清添加確認條帶與酵素結合抗體確認條帶。
12.2 於 IgM 抗體檢測中，若任一標準液條帶反應結果未達下列所述之標準時，必須重做 IgM 抗體檢驗。
12.2.1 陽性標準液試藥條上須可見這些條帶：血清添加確認條帶、酵素結合抗體確認條帶、41、39 和 23 kDa。
12.2.2 弱陽性標準液試藥條上須可見這些條帶：血清添加確認條帶、酵素結合抗體確認條帶與 41 kDa 條帶。
12.2.3 陰性標準液試藥條上只能出現這些條帶：血清添加確認條帶與酵素結合抗體確認條帶。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
14.2 B. burgdorferi (IgG) MARBLOT STRIP TEST SYSTEM 說明書，Cat. No. 40-5065G（MarDx®）。
14.3 B. burgdorferi (IgM) MARBLOT STRIP TEST SYSTEM 說明書，Cat. No. 40-5065M（MarDx®）。

15 附錄
15.1 萊姆病西方墨點法 IgG 抗體試驗流程圖。
15.2 萊姆病西方墨點法 IgM 抗體試驗流程圖。
附錄 15.1 萊姆病西方墨點法 IgG 抗體試驗流程圖

酵素免疫分析法篩檢需再確認血清檢體

西方墨點法確認

辨識 93, 66, 58, 45, 41, 39, 30, 28, 23, 18 kDa 條帶反應

五個以上（含）陽性條帶 未滿五個陽性條帶

IgG 陽性判定 陰性判定
附錄15.2 萊姆病西方墨點法IgM抗體試驗流程圖

酵素免疫分析法篩檢需再確認血清檢體

西方墨點法確認

辨識41、39、23 kDa條帶反應

兩個以上（含）陽性條帶 未滿兩個陽性條帶

IgM陽性判定 陰性判定
1. 目的
 篩檢兔熱病抗體。

2. 適用檢體種類
 適用於符合兔熱病病徵之病患血清檢體。

3. 名詞解釋
 無。

4. 原理概述
 利用兔熱病菌多醣體，與病人血清中之兔熱病特異性抗體結合，產生凝集反應，直接觀察讀取結果。

5. 試劑耗材
 5.1 試藥
 5.1.1 以 safranin-O 染色的兔熱病菌體多醣體。
 5.1.2 陽性標準液，兔血清、人血清。
 5.1.3 陰性標準液，人血清。
 5.1.4 生理食鹽水。
 5.2 96 孔微量滴定盤，U 型。
 5.3 無菌微量吸管尖 (tip)：10 μL、100 μL。
 5.4 96 孔微量滴定盤封膜。
 5.5 可拋棄式無菌塑膠手套。

6. 儀器設備
 6.1 微量吸管 (Pipetman)：100 μL、30 μL。
 6.2 12 爪微量吸管 (multi-channel Pipetman)：50 μL。
 6.3 37 °C 溫箱。
 6.4 水浴槽。
 6.5 震盪器。
 6.6 第二級生物安全櫃 (class II BSC)。

7. 環境設施安全
 血清檢體處理應於生物安全第二等級 (BSL-2) 實驗室之設施內操作。其餘操作過程則不限定。

8. 檢體採集
 8.1 血清檢體沒有添加抗凝劑，沒有溶血，且量不少於 200 μL。
 8.2 參照本署出版之「傳染病檢體採檢手冊」第二版。
 http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A
衛生福利部疾病管制署傳染病標準檢驗方法

編號：兔熱病抗體檢測（微量平板法）

核准日期：年 月 日

修訂日期：年 月 日

9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBE8F269&nowtreeid=6C7C52E7A7D5621A

10 檢驗步驟
10.1 檢驗前處理
檢體以 3,500 rpm 離心 10 min，分離出血清備用。

10.2 試藥回溫。

10.3 96 孔微量滴定盤孔格中每格加入 25 μL 生理食鹽水（A1 孔格除外）。

10.4 將陽性標準液 10 μL 加入 A1 孔格（已加入 90 μL 生理食鹽水），陰性標準液 25 μL 加入 A2 孔格，檢體 25 μL A3 等孔格中。

10.5 將陽性標準液以連續 2 倍稀釋至 1,280 倍、陰性標準液與檢體以連續 2 倍稀釋至 256 倍，最後捨去 H 列多餘之 25 μL 液體。

10.6 覆上 96 孔微量滴定盤封膜，震盪 15 sec。

10.7 放置室溫，隔夜觀察。

10.8 凝集結果記錄
10.8.1 陰性：血球沉澱於孔格底部中心。

10.8.2 陽性：凝集抗原分散於孔格底部，紀錄有產生凝集反應之最高血清稀釋倍數，即為該檢體之抗體效價。

11 結果判定
11.1 判讀標準：當陽性標準液抗體效價高於 160 倍，陰性標準液無抗體效價時，且急性期與恢復期檢體之抗體效價相差達 4 倍（含）以上，則判定為野兔熱抗體陽性。

11.2 報告核發：兔熱病抗體陽性，兔熱病抗體不明（無法確定），兔熱病抗體陰性。

11.3 結果登錄：將檢體之檢驗結果登錄於實驗室資訊系統，經 PI 核准報告後發佈。

12 品質管制
若陽性標準液或陰性標準液之抗體效價倍數未達上述之標準時，必須重做檢驗。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
略。

15 附錄
15.1 兔熱病抗體試驗流程圖。
附錄 15.1 兔熱病抗體試驗流程圖

血清檢體

微量平板法檢驗

凝集

效價判定

未凝集

陰性判定
目的（兔熱病病原體鑑定）
鑑定菌株是否為兔熱病病原體。

適用檢體種類
用於分離菌株。

名詞解釋
無。

原理概述
以聚合酶鏈鎖反應（polymerase chain reaction, PCR）法進行鑑定。

試劑耗材
5.1 2X PCR Master mix。
5.2 Primer: TUL4-435，10 μM。
5.3 Primer: TUL4-863，10 μM。
5.4 Primer: F5，10 μM。
5.5 Primer: F11，10 μM。
5.6 PCR 專用八連排反應管。
5.7 PCR 專用八連排反應蓋。
5.8 TBE 緩衝液。。
5.9 陽性對照：本實驗採用 Francisella tularensis；陰性對照：以水作陰性對照。
5.10 2% 電泳膠體。
5.11 水質：25 ℃ 蒸餾水或 RO 逆滲透可達 18 MΩ-CM 以上超純水。
5.12 無菌微量吸管尖（tip）：1,000 μL、200 μL、10 μL。
5.13 無菌微量離心管：1.5 mL，0.2 mL。
5.14 手套。
5.15 PBS（phosphate buffered saline）。
5.16 100 bp 核酸標定物。

儀器設備
6.1 微量吸管（pipette man）：1,000 μL、300 μL、30 μL。
6.2 震盪器。
6.3 核酸增幅儀。
6.4 電泳槽。
6.5 DNA 電泳膠體觀察照相設備。
6.6 水浴槽。
6.7 冰桶。
6.8 離心機。
6.9 微量離心機。
6.10 第二級生物安全櫃（class II BSC）。
7 環境設施安全
7.1 於生物安全第二等級 (BSL-2) 實驗室之設施內操作。
7.2 菌株處理、PCR 反應混合物配製、PCR 反應進行、電泳皆需於獨立區域操作。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

10 檢驗步驟
10.1 萃取核酸：萃取每批核酸應同時以水作萃取品管樣品。
10.1.1 刮取數個可疑菌體之菌落放入含 100 μL 無菌水的 1.5 mL 微量離心管中，以 10,000 rpm 離心 5 min，除去上清液。加入 1 mL PBS 清洗。以 10,000 rpm 離心 5 min，除去上清液。加入含 100 μL 無菌水的 1.5 mL 微量離心管中，100 ℃煮沸 10 min 後，10,000 rpm 離心 5 min，取上清液作為 PCR 反應模板 DNA。
10.2 PCR 鑑定
10.2.1 PCR 反應混和物配製如下：
<table>
<thead>
<tr>
<th>Component</th>
<th>Final conc.</th>
<th>Or volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template（陽性 DNA、水、檢體）</td>
<td>2 μL</td>
<td></td>
</tr>
<tr>
<td>Each primer (10 μM)</td>
<td>1 μL</td>
<td></td>
</tr>
<tr>
<td>2X PCR Master mix</td>
<td>25 μL</td>
<td></td>
</tr>
<tr>
<td>加無菌水</td>
<td>21 μL</td>
<td></td>
</tr>
</tbody>
</table>
10.2.2 放入儀器中進行反應，反應條件設定：
10.2.2.1 95 ℃/10min，1 Cycle。
10.2.2.2 94 ℃/30s，60 ℃/60s，72 ℃/60s，30 Cycles。
10.2.2.3 72 ℃/300s，1 Cycle。
10.2.2.4 維持在 4 ℃。
10.2.3 PCR 電泳分析，若電泳分析發現 TUL4 引子具 386 bp 之產物，F5/F11 引子具 1104 bp之產物，須送定序加以確認。
11 結果判定
11.1 判讀標準：根據 PCR 鑑定、電泳分析與定序結果進行判讀。
11.2 報告核發：兔熱病陽性，兔熱病陰性。
11.3 結果登錄：將檢體之檢驗結果登錄於實驗室資訊系統，經 PI 核准報告後發佈於網路報告系統。

12 品質管制
12.1 電泳結果之檢視，應以 100 bp Marker 會在洋菜膠上呈現出 100 - 1,000 bp 的 Ladder band，並以此作片段大小之識別依據。
12.2 Primer TUL4 其陽性對照之結果需符合設定值，即有 386 bp 之片段，才可進行研判否則需重做檢驗。
12.3 Primer F5/F11 其陽性對照之結果需符合設定值，即有 1104 bp 之片段，才可進行研判否則需重做檢驗。
12.4 陰性對照與萃取品管樣品之結果均需符合設定值，即不能有增幅片段，才可進行研判否則需重做檢驗。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
附錄 15.1 兔熱病原菌鑑定流程圖。

疑似菌株 → 聚合酶鏈鎖反應

以 primer TUL4 與 primer F5/F11 檢驗

有 386 bp、1104 bp → 綜合研判為陽性
無 285 bp、無 563 bp → 綜合研判為陰性
附錄 15.2 兔熱病診斷用引子組序列表

TUL4-435： 5’- GCTGTATCATCATTTAAAACTGCTG -3’
TUL4-863： 5’- TTGGGAAGCTTTGTACATGGCACC -3’
F5： 5’- CCTTTTTGAGTTTCGCTCC -3’
F11： 5’- TACCAGTTGGAAACGACTGT -3’
目的
在疑似受感染個案之採集檢體中，分離與鑑定是否存在水痘病毒。

適用檢體種類
適用於水泡液及水泡底部細胞。

名詞解釋
無。

原理概述
選擇適當的細胞株（MRC-5）培養水痘病毒，經三次繼代培養後，最後再以抗水痘病毒單株抗體螢光染色的方法確認。

試劑耗材
5.1 試劑
5.1.1 Growth medium（由含 10% FBS、0.1 mM non-essential amino acid、1.0 mM sodium pyruvate 與 1 X pen-strep solution 之 MEM 組成）。
5.1.1.1 MEM/EBSS
5.1.1.1.1 With 2.0 mM L-glutamine。
5.1.1.1.2 With Earle’s balance salts。
5.1.1.2 MEM non-essential amino acid solution（100X）。
5.1.1.2.3 0.1 μM sterile filtered。
5.1.1.3 Sodium pyruvate 100 mM solution
5.1.1.3.4 With 11.0 mg/mL sodium pyruvate。
5.1.1.3.5 0.1 μM sterile filtered。
5.1.1.4 Fetal bovine serum（FBS）：以 56 °C Heat inactivate 後開封，以 15 mL 臨心管分裝，-20 °C 儲存。
5.1.1.5 Pen-Strep solution（100 X）。
5.1.1.5.6 with 10,000 units/mL penicillin G。
5.1.1.5.7 with 10,000 μg/mL streptomycin sulfate in 0.85 % saline，開封後以 15 mL 離心管分裝，-20 °C 儲存。
5.1.2 Sample pretreat medium（由含 2 X pen-strep solution 之 DMEM 組成）。
5.1.3 Maintain medium（由含 2% FBS 與 1X pen-strep solution 之 DMEM 組成）。
5.1.4 Trypsin-EDTA
5.1.4.1 With 0.05 % trypsin。
5.1.4.2 With 0.53 mM EDTA in Hanks’balanced salt solution（HBSS）without Ca++ and Mg++，開封後以 15 mL 離心管分裝，-20 °C 儲存。
5.1.5 Hank’s balanced salt solution（HBSS）。
5.1.6 Varicella-Zoster virus, Glycoprotein I 单株抗体：Chemicon，MAB8612。
5.1.7 Gt X Ms IgG FITC：Chemicon，5008，USA，store at 2 - 8 °C。
5.1.8 Mounting fluid：Chemicon，5013，USA，store at 2 - 8 °C。
5.1.9 Tween 20/sodium azide，100X：Chemicon，5037，USA，store at 2-8°C。
5.1.10 PBS packet：Chemicon，5087，USA，store at 2 - 8 °C。
5.1.11 IFA wash solution：將5.1.9試劑溶於1 L dist.H2O再加入5.1.8試劑以乾淨密封容器室溫儲放。
5.1.12 MRC-5細胞株：由ATCC所購入之細胞株Vero：CCL-171。

5.2 耗材
5.2.1 25-cm² Culture vessels（T-25）。
5.2.2 24孔盤。
5.2.3 Pipette：1 mL、5 mL、10 mL、25 mL。
5.2.4 200 μL Tip。
5.2.5 3 mL無菌塑膠吸管。
5.2.6 1.5 mL Eppendorf。
5.2.7 載玻片、蓋玻片。
5.2.8 無菌螺旋試管：2 mL、4 mL。
5.2.9 無菌離心管：15 mL、50 mL。
5.2.10 5 mL 針筒。
5.2.11 0.45 μM 針頭過濾器。
5.2.12 抗凍標籤紙。
5.2.13 油性細字筆。

6 儀器設備
6.1 第二級生物安全櫃（class II BSC）。
6.2 37 ℃ 二氧化碳培養箱。
6.3 倒立相差顯微鏡。
6.4 螢光顯微鏡（Zeiss Axioskop 2 plus）。
6.5 水浴槽。
6.6 電動輔助吸管。
6.7 4 ℃ 冰箱。
6.8 -20 ℃、-80 ℃ 冷凍櫃。
6.9 乾浴器。

7 環境設施安全
於生物安全第二等級（BSL-2）實驗室之設施內操作。
衛生福利部疾病管制署傳染病標準檢驗方法

編號：

水痘病毒分離與鑑定

核准日期：年月日

修訂日期：年月日

第825頁/共1104頁

8 檢體採集

參照本署出版之「傳染病檢體採檢手冊」第二版。

http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

9 檢體運送及保存

參照本署出版之「傳染病檢體採檢手冊」第二版。

http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

10 檢驗步驟

10.1 檢體編號：收件檢體依通報疾病及種類編號。

10.2 檢驗前處理

10.2.1 開啓第二級生物安全櫃之紫外光照射操作檯面20 min。

10.2.2 將 5.1.1-5.1.5 試劑先置於37 °C 回溫或解凍。

10.2.3 檢體前處理

水泡液：棉棒充分攪拌後於塑膠管壁旋轉擠乾取出，將溶液吸出置於2 mL 無菌試管保存，可直接接種細胞或暫時置於-80 °C 保存。

10.3 檢驗步驟：

10.3.1 接種：取24孔盤長滿單層之MRC-5細胞，吸出Growth medium，接種檢體100 μL，輕輕搖動使檢體佈滿細胞層，置於37 °C 含5 % CO₂的培養箱培養，其間約隔15 min，即輕輕搖動 plate，使檢體能均勻散布於細胞層並防止細胞層乾燥。1 hr 後加入 1 mL Maintain medium，置於37 °C 含5 % CO₂的培養箱培養。

10.3.2 培養至7天後，繼代培養。步驟如下：以3 mL 無菌吸管刮取細胞層後同培養液一起收集於1.5 mL Eppendorf，混合均勻後取100 μL 接種於新的24孔盤的單層MRC-5 cell。

10.3.3 再繼續培養7天後進行IF A 鑑定。

10.3.4 間接螢光免疫法鑑定

10.3.4.1 取1 mL 受感染細胞的懸浮液於小離心管中，以3,000 rpm 離心15 min。

10.3.4.2 取出上清液另存於乾淨試管，沉澱之細胞加入0.5 - 1 mL PBS，以 Pipette 上下混合均勻。

10.3.4.3 取10 μL 點入21孔玻片（需含末感染細胞以為陰性對照），待細胞乾燥後置入含有4 °C 丙酮之玻片槽，固定10 min。

10.3.4.4 用無菌水以 1 : 100 稀釋5.1.6 Varicella-Zoster, Glycoprotein I 單株抗體。

10.3.4.5 取出風乾後滴一滴10.3.4.4 Varicella-Zoster 單株抗體，將玻片置於 Moisture chamber，置於37 °C 恆溫箱30 min。
10.3.4.6 以 5.1.11 IFA wash solution 清洗玻片後置於乾浴器烘乾。
10.3.4.7 每個孔加一滴 5.1.7 Gt X Ms IgG FITC。將玻片置於 Moisture chamber，置於 37 °C 恆溫箱 30 min。
10.3.4.8 重覆 10.3.4.6。
10.3.4.9 以 5.1.8 Mounting fluid 封片後，以熒光顯微鏡鏡檢。細胞呈現紅色為陰性反應，呈現蘋果綠為陽性。
10.4 檢驗後處理：生物安全櫃操作檯面以 75 %酒精擦拭，並以紫外光照射 20 min。

11 結果判定
11.1 判讀標準：經 Varicella-Zoster IFA 測定有綠色熒光反應細胞者，判定為陽性。
11.2 報告核發：水痘病毒分離陽性，水痘病毒分離陰性。
11.3 結果登記：完成檢驗後，將檢驗結果登記於附錄 15.3 病毒培養觀察紀錄表、附錄 15.4 瑠光鑑定紀錄表，檢驗結果填寫於檢體送驗單之”檢驗結果”欄，並上網登錄於實驗室資訊管理系統，傳送實驗室主管審核，待審核通過後發佈結果。

12 品質管制
12.1 除離心及瑩光鑑定試驗步驟外全程作業都要在第二級生物安全櫃內進行。
12.2 二氧化碳培養箱內壁每月要定期以抗黴菌劑擦拭及水盤添加抑菌劑的無菌水以保持培養箱內溼度。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋妥善密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

15 附錄
15.1 水痘病毒分離與鑑定流程圖。
15.2 細胞繼代培養紀錄表。
15.3 病毒培養觀察紀錄表。
15.4 瑠光鑑定紀錄表。
15.5 水痘病毒檢驗判定總流程圖。
附錄 15.1 水痘病毒分離與鑑定流程圖

水泡液及水泡底部細胞

接種 MRC-5 細胞

寶光免疫法（IFA）鑑定

寶光顯微鏡鏡檢

細胞呈現蘋果綠寶光

是

水痘病毒分離陽性

否

水痘病毒分離陰性
15.2 細胞繼代培養紀錄表

衛生福利部疾病管制署研究檢驗及疫苗研製中心
細胞繼代培養紀錄表

<table>
<thead>
<tr>
<th>Cell</th>
<th>Transfer Date/time</th>
<th>Person in charge</th>
<th>Flask no</th>
<th>Container</th>
<th>Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Date/time</td>
<td>Person in charge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Date/time</td>
<td>Person in charge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Date/time</td>
<td>Person in charge</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

檢驗者：
實驗室主管：
附錄 15.3 病毒培養觀察紀錄表

<table>
<thead>
<tr>
<th>Date</th>
<th>Exp. Pass-1</th>
<th>Exp. Pass-2</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample ID</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Generation</td>
<td>M.M.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inoculum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absorption</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

附錄 15.4 螢光鑑定紀錄表

衛生福利部疾病管制署研究檢驗及疫苗研製中心

螢光鑑定紀錄表

<table>
<thead>
<tr>
<th>Date：</th>
<th></th>
</tr>
</thead>
</table>

Date：

<table>
<thead>
<tr>
<th>Date：</th>
<th></th>
</tr>
</thead>
</table>

檢驗者：

實驗室主管：
附錄 15.5 水痘病毒檢驗判定總流程圖

水泡液

病毒分離與鑑定

接種 MRC-5 細胞

每隔 7 天繼代培養，共繼代二次

間接免疫蛍光法 (IFA)

細胞呈現蘋果綠熒光

是

水痘病毒陽性

否

水痘病毒陰性

PCR 檢測

血清

IgM，IgG

IgM EIA
IgG EIA

詳見水痘血清學檢驗及結果判定流程圖

血清學檢驗結果與細胞分離或 PCR 結果，有任何一者為陽性，則判為陽性
1 目的
以分子生物學的技術利用反轉錄酶-巢式聚合酶鏈反應（RT-nested PCR）來直接檢測標本中是否有水痘病毒。

2 適用標本種類
適用之標本種類包括水泡液、水泡底部細胞、腦脊髓液等。

3 名詞解釋
無。

4 原理概要
RT-PCR: 利用分子生物學技術 RT-PCR 高敏感度的方法來檢測標本中的水痘病毒 DNA。RT-PCR 之原理為設計專一性之引子（primers），把標本中的病毒 DNA 擴增放大。

5 試劑耗材
5.1 檢測試劑
5.1.1 Viral RNA Extraction Kit。
5.1.2 PCR Kit。
5.1.3 TBE buffer（Tris-borate/EDTA electrophoresis buffer）。
5.1.4 陽性對照組(positive control): 採用水痘病毒株作對照; 陰性對照組(negative control): 以水作陰性對照。
5.1.5 Agarose。

5.2 耗材
5.2.1 DEPC 水。
5.2.2 無菌 PCR 反應管。
5.2.3 無菌細濾式 10 µl, 20 µl, 100 µl, 200 µl, 1000 µl 微量滴管。
5.2.4 無菌 1.5 ml 微量離心管。
5.2.5 手套。

6 儀器設備
6.1 PCR thermal cycler。
6.2 電泳槽。
6.3 DNA 電泳膠體觀察設備。
6.4 10 µl, 20 µl, 100 µl, 200 µl, 1000 µl 微量滴管分注器。

7 環境設施安全
採用獨立的操作空間，將 RNA 或 DNA 有關的實驗室分開，以避免污染，影響結果。

8 檢體採集
參照本署出版之「傳染病標本採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A
9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
9111接收=6C7C52E7A7D5621A

10 檢驗步驟
10.1 檢體前處理
10.1.1 檢體編號：核對檢驗單之個案與檢體是否相符，給予疾病編號。
10.1.2 水泡液、腦脊髓液：無特殊前處理，取 200 L，其餘保存於 -80 ℃。

10.2 步驟
10.2.1 萃取病毒 DNA（以 Qiagen QIAamp viral DNA mini kit 為例）
10.2.1.1 取 20 L Proteinase K 於 1.5 mL 微量離心管，依序加入檢體 200 L 與 Buffer AL 混合均勻。
10.2.1.2 56 ℃加熱 10 min。
10.2.1.3 短暫離心（spin down），後加入 200 酒精（96 % - 100 %）混合均勻。
10.2.1.4 短暫離心（spin down）後，將液體移置 Spincolumn。
以 8,000 rpm 離心 1 min 後丟棄濾液收集管。
10.2.1.5 更換新的收集管後加入 500 L Buffer AW1，於 8,000 rpm 離心 1 min 後丟棄濾液收集管。
10.2.1.6 更換新的收集管加加入 500 L Buffer AW2，以 14,000 rpm 離心 3 min 後丟棄濾液收集管。
10.2.1.7 更換新的收集管後再以 14,000 rpm 離心 1 min，以徹底去除膜上殘留酒精。
10.2.1.8 更換新的 1.5 mL 微量離心管加入 200 L Buffer AE，
置於室溫 1 min，以 8,000 rpm 離心 1 min 後收集濾液（DNA）。
10.2.2 聚合酶鏈鎖反應（PCR）（以 Qiagen Qiagen HotStarTaq PCR kit 為例）
10.2.2.1 取 5 L RNA 為模版，加入引子組（primers 參考附錄 15-2）與 RT-PCR 試劑，反應總體積 50 l，反應溶液成分如下：

<table>
<thead>
<tr>
<th>成分</th>
<th>体积（µl）</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNase-free H₂O</td>
<td>18.0 µl</td>
</tr>
<tr>
<td>2 X Master mix</td>
<td>25.0 µl</td>
</tr>
<tr>
<td>Forward primer gpO1（10 µM）</td>
<td>1.0 µl</td>
</tr>
<tr>
<td>Reverse primer gpO2（10 µM）</td>
<td>1.0 µl</td>
</tr>
<tr>
<td>DNA sample</td>
<td>5.0 µl</td>
</tr>
<tr>
<td></td>
<td>50.0 µl</td>
</tr>
</tbody>
</table>
衛生福利部疾病管制署傳染病標準檢驗方法

編號：

水痘病毒核酸檢測

核准日期：年 月 日

修訂日期：年 月 日

頁次：第 834 頁/共 1104 頁

10.2.2.2 使用 PCR thermal cycle，設定反應條件如下
10.2.2.2.1 Taq 活化作用，95°C 15 分鐘。
10.2.2.2.2 Denaturation，95°C 30 秒。
10.2.2.2.3 Annealing，65°C 30 秒。
10.2.2.2.4 Extension, 72°C 60 秒。
10.2.2.2.5 重複 10.2.2.2.2 至 10.2.2.2.4 步驟 30 cycle。
10.2.2.2.6 Final extension, 72°C 5 分鐘。

10.2.3 巢式聚合酶鏈鎖反應(nested PCR) (Qiagen HotStarTaq PCR Kit 為例)
10.2.3.1 取 3 µl 10.2.2 步驟所得的 RT-PCR 反應產物做模板，加入引子組 (primers 參考引子組序列表) 與 PCR 試劑，反應總體積 25 µl，反應溶液成分如下:
RNase-free H₂O 20.0 µl
2 X Master Mix 25.0 µl
Forward primer gpI1 (10 µM) 1.0 µl
Reverse primer gpI2 (10 µM) 1.0 µl
DNA sample 3.0 µl
50.0 µl

10.2.3.2 使用 PCR thermal cycle，設定反應條件如下:
10.2.3.2.1 Taq 活化作用，95°C 15 分鐘。
10.2.3.2.2 Denaturation，94°C 30 秒。
10.2.3.2.3 Annealing，65°C 30 秒。
10.2.3.2.4 Extension, 72°C 60 秒。
10.2.3.2.5 重複 10.2.3.2.2 至 10.2.3.2.4 步驟 30 cycle。
10.2.3.2.6 Final extension, 72°C 5 分鐘。

10.2.4 膠片電泳分析
10.2.4.1 製備 1.5% 洋菜膠：1.5 g agarose 溶於 100 ml (1 X) TBE buffer。
10.2.4.2 選擇 100 bp DNA size Marker：5µl (2 ng/µl)。
10.2.4.3 取二次產物 5 µl 及 100bp Marker, 混合 1 µl Safe-Green Nucleic Acid Stain (eg :abm -Cat.No.G108-G)。
10.2.4.4 進行電泳分離：100V，30 min。
10.2.4.5 使用 UV light 觀察，並照相紀錄。

11 結果判定
11.1 判讀標準
RT-PCR:取 nested RT-PCR 產物各 5µL，在 1.5% 洋菜膠進行分析，檢視分析結果。水痘第一次增幅產物片段約 680 bp，第二次增幅產物片段約 480 bp，若出現上述 PCR 產物，檢驗結果為陽性。
11.2 報告核發：水痘病毒 PCR 陽性，水痘病毒 PCR 陰性。
11.3 結果登錄：完成檢驗後，將檢驗結果填寫於檢體送驗單之“檢驗結果欄”，並上網登錄於實驗室資訊管理系統，傳送實驗室主管審核，待審核通
過後發佈結果。
12 品質管制
 12.1 每次進行實驗時皆有陽性及陰性對照組。
 12.2 實驗過程遵循 S.O.P 的作業規範與流程，並在個別獨立的操作空間內操
 作，以避免污染。
 12.3 微量吸管分注器做定期的校正。

13 廢棄物處理
 檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥
 密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
 Ito M, Nishihara H, Mizutani K, Kitamura K, Ihara T, Kamiya H, Sakurai M.
 1995. Detection of varicella-zoster virus (VZV) DNA in throat swabs and
 peripheral blood mononuclear cells of immunocompromised patients with herpes

15 附錄
 15.1 水痘病毒鑑定流程圖。
 15.2 水痘病毒診斷用引子及探針組序列表
附錄 15-1 水痘病毒鑑定流程圖

水泡液、腦脊髓液 → 病毒 DNA 萃取 → Nested PCR 檢測 → 結果判定
附錄 15-2 水痘病毒診斷用引子及探針組序列表

一、Nested RT-PCR First round RT-PCR primer
 gpO1 : 5’- CCGTATATGAGCCTTACTACCATTCC -3’
 gpO2 : 5’- GAGTTCATCAACAGTGCTCGTG -3’

二、Nested RT-PCR Second round nested-PCR primer
 gpI1: 5’- TATGGCCACGTAATGATTATGATGG -3’
 gpI2: 5’- CCACGTCTTGAAAGCATGTTGTATG -3’
目的
利用間接免疫酵素分析法（indirect ELISA，indirect enzyme-linked immunosorbent assay）檢測人體是否有水痘專一性 IgM 抗體。

適用檢體種類
血清（serum）或血漿（plasma）。

名詞解釋
無。

原理概述
利用間接酵素免疫分析法。檢體先以 RF absorbent 吸附，以除去類風濕因子及 IgG，降低所測試 IgM 反應的干擾。再利用吸附有水痘病毒抗原的微量盤與待測血清中具有的水痘專一性 IgM 抗體作用一段時間，清洗掉未結合的物質然後加上 Anti-human IgM/POD conjugate，再反應一段時間後清洗掉未結合的物質，最後加上無色受質 TMB 作用 30 min，受質經 Conjugate 上的酵素催化後，轉換為藍色，最後再加上終止液終止反應，此時有反應的微量盤會變成黃色。以吸光光度計測定 450 nm 波長的吸光值，以 650 nm 為參考波長。

試劑耗材
5.1 試劑
5.1.1 「Enzygnost anti-VZV-virus/IgM：Dade Behring，OWLW 15，Germany，4 °C 儲存」。
5.1.1.1 Anti-VZV virus/IgM test plate：2 x 6 strips。
5.1.1.2 Anti-VZV virus reference P/P：0.65 mL。
5.1.1.3 Anti-VZV virus reference P/N：0.45 mL。
5.1.1.4 Sample buffer POD：2 x 50 mL。
5.1.1.5 Anti-human IgM/POD conjugate（μ-chain specific）：1 mL。
5.1.1.6 Conjugate buffer microbiol：4 x 12.5 mL。
5.1.1.7 RF Absorbent：4 x for 5 mL。
5.1.1.8 Polyethylene bag for storing unused test strip。
5.1.1.9 Barcode table of value。
5.1.2 「Supplementary reagents for enzygnost/TMB：Dade Behring，OUVP 17，Germany，4 °C 儲存」。
5.1.2.1 Washing solution POD：3 x 100 mL。
5.1.2.2 Colour solution blue for enzygnost：1 x 12.5 mL。
5.1.2.3 Buffer/substrate TMB：4 x 30 mL。
5.1.2.4 Chromogen TMB：4 x 3 mL。
5.1.2.5 Stopping solution POD：2 x 100 mL。
5.1.2.6 Adhesive foils for microtiter plates：24 pcs。
5.1.2.7 Empty bottle for the working Chromogen solution: 1 pcs.
5.1.2.8 Instruction for use: 1 pcs.

5.2 耗材
5.2.1 Tips: 200 μL, 1,000 μL。
5.2.2 1.5 mL Eppendorf。
5.2.3 4 mL Tube。
5.2.4 2 mL 螺旋試管。
5.2.5 抗凍標籤紙。
5.2.6 油性簽字筆。

6 儀器設備
6.1 單爪 Pipetman: 20 μL, 200 μL, 1,000 μL。
6.2 八爪 Pipetman: 200 μL。
6.3 電動分注器：50 - 1,000 μL。
6.4 Microplate washer。
6.5 Microplate reader。
6.6 小型離心機。
6.7 37 °C 溫箱。
6.8 振盪混合器。

7 環境設施安全
於生物安全第二等級（BSL-2）實驗室之設施內操作。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

10 檢驗步驟
10.1 檢體編號：核對檢驗單之個案與檢體是否相符，給予疾病編號。
10.2 檢驗前處理
10.2.1 將血液分裝於 1.5 mL Eppendorf, 以小型離心機離心 3 - 5 min,
收集血清或血漿於 2 mL 螺旋試管。
10.2.2 記錄檢體於檢驗盤上之相對應位置，如附錄 15.1。
10.2.3 配置 Working RF absorbent: 一瓶 RF absorbent 以 5 mL 蒸餾水溶解。
10.2.4 配置 Working wash solution：用蒸餾水以 1：20 的比例稀釋 5.1.2.1 Washing solution POD。
10.2.5 配置 Working conjugate solution：1 份 5.1.1.5 Anti-human IgM/POD conjugate + 50 份 5.1.1.6 Conjugate buffer microbiol。
10.2.6 配置 Working Chromogen solution：1 份 5.1.2.4 Chromogen TMB + 10 份 5.1.2.3 Buffer/substrate TMB。
10.2.7 Microplate washer 先以配置好的 Working wash solution 進行 Prime 指令，使管路充滿 Working wash solution。

10.3 檢驗步驟
10.3.1 血清稀釋至加到微量盤的步驟詳如附錄 15.2。
10.3.2 封上 5.1.2.6 Adhesive foils，置放 37 °C溫箱培養 60 min。
10.3.3 啟動 Microplate washer 以 Wash solution 清洗三次。
10.3.4 每個孔加入 100 μL Working conjugate solution。
10.3.5 置放 37 °C溫箱培養 60 min。
10.3.6 啟動 Microplate washer 以 Wash solution 清洗三次。
10.3.7 每個孔加入 100 μL Working Chromogen solution。
10.3.8 室溫，避光，培養 30 min。
10.3.9 每個孔加入 100 μL Stopping solution。
10.3.10 用 Microplate reader 測定 450 nm 吸光度，以 650 nm 做為參考波長。

10.4 檢驗後處理
10.4.1 Microplate washer 以蒸餾水進行二次 Prime，以去除殘存之 Wash solution，防止管路結晶阻塞。
10.4.2 使用後的 Tips、Eppendorf、Microplate strip，滅菌後丟棄。
10.4.3 Microplate washer、Microplate reader 關機。

11 結果判定
11.1 判定標準

<table>
<thead>
<tr>
<th>計算</th>
<th>判定</th>
<th>判定標準</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔA=A_{antigen}-A_{control antigen}</td>
<td>陽性（positive）</td>
<td>ΔA>0.2</td>
</tr>
<tr>
<td></td>
<td>陰性（negative）</td>
<td>ΔA<0.1</td>
</tr>
<tr>
<td></td>
<td>未確定（equivocal）</td>
<td>0.1≦ΔA≦0.2</td>
</tr>
</tbody>
</table>

11.2 報告核發：水痘 IgM 陽性，水痘 IgM 陰性，水痘 IgM 未確定。
11.3 結果登錄：完成檢驗後，將檢驗結果登錄於附錄 15-4 水痘 ELISA 實驗記錄表，檢驗結果填寫於檢體送驗單之"檢驗結果欄"，並上網登錄於實驗室資訊管理系統，傳送實驗室主管審核，待審核通過後發佈結果。

12 品質管制
12.1 Qualitative evaluation：ΔA_{Reference P/P} ≧ 0.2。
12.2 Quantitative evaluation
 12.2.1 Lower margin ≦ ΔA_{Reference P/P} ≦ upper margin。
12.2.2 任一 $\Delta A_{\text{Reference P/P}}$ 介於 Reference P/P 平均值 ±20%。

12.3 Measurement correction: 利用 Reference P/P 來校正實驗值，改善結果的再現性。

12.4 計算範例

<table>
<thead>
<tr>
<th></th>
<th>ΔA</th>
<th>0.474</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference P/P, at start of series</td>
<td>ΔA</td>
<td>0.388</td>
</tr>
<tr>
<td>With margins?</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Reference P/P, at end of series</td>
<td>ΔA</td>
<td>0.431</td>
</tr>
<tr>
<td>With margins?</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Mean value</td>
<td>ΔA</td>
<td>0.518</td>
</tr>
<tr>
<td>Reference P/P, nominal value</td>
<td>ΔA</td>
<td>0.518</td>
</tr>
<tr>
<td>Correction factor 0.518:0.431</td>
<td>=</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Corrected $\Delta A_{\text{待測血清}} = 1.2 \times \Delta A_{\text{待測血清}}$

註：upper、lower margin、nominal value 詳見 5.1.1(9)，為 lot-specific。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121°C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
Dade Behring 公司操作說明書。

15 附錄
15.1 檢體排列位置圖。
15.2 檢體稀釋至加入微量盤步驟圖。
15.3 水痘病毒 IgM 抗體試驗（間接酵素免疫分析法）流程圖。
15.4 水痘 ELISA 實驗紀錄表。
15.5 水痘 ELISA 血清學檢驗及結果判定流程圖。
附錄 15.1 檢體排列位置圖

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>B</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>C</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>D</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>E</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>F</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>G</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>H</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

1. 從 C1 開始置放待測檢體。
2. Reference P/P 除 A1 位置固定外，另一 Reference P/P 位置視檢體量而定，在最後一個試劑條 H 對應位置。
附錄 15.2 檢體稀釋至加入微量盤步驟圖

- **400 μL Sample Buffer POD**
- **200 μL Sample Buffer POD**
- **IgG**
- **IgM**
- **Ag**
- **CoAg**
- **Predilution tubes or wells (1:21)**
- **After 15 min at RT, 150 μL each**
- **Test dilution 1:231**
- **Test dilution 1:42**
- **20 μL each Sample Buffer POD (additional 1:11 dilution)**
附錄15.3 水痘病毒IgM抗體試驗（間接酵素免疫分析法）流程圖

1. 檢體（血清，發病3-28日內）

2. 取等量稀釋檢液與RF處理15分鐘

3. 加150μL經RF處理之檢體及稀釋之參考血清P/P及P/N至覆有病毒抗原/細胞對照抗原的一組微量盤

4. 37℃, 1小時

5. Wash後，加入100μL結合酵素之抗IgM抗體

6. 37℃, 1小時

7. Wash後，加入100μL酵素受質使之呈色

8. 室溫，30分鐘

9. 加入100μL反應終止液

10. 1小時內

以Microplate Reader 450 nm測定OD值以650 nm做為參考波長
水痘ELISA实验纪录表

<table>
<thead>
<tr>
<th>Name</th>
<th>Well</th>
<th>Sample No.</th>
<th>ΔA</th>
<th>Corrected ΔA</th>
<th>Result</th>
<th>Well</th>
<th>Sample No.</th>
<th>ΔA</th>
<th>Corrected ΔA</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1A</td>
<td>P/P</td>
<td></td>
<td></td>
<td></td>
<td>1A</td>
<td>P/N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>in-house P</td>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>in-house P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Validation Check

1. P/P ≥ 0.2
2. P/P within lower and upper margin
3. Individual P/P within ±20% mean P/P

Kit Batch:
Expiry:
Lower margin:
Upper margin:
Nominal Value:
Mean P/P:
Correction Factor:

Validation Check

1. P/N ≥ 0.5
2. P/N within lower and upper margin
3. Individual P/N within ±20% mean P/N

Kit Batch:
Expiry:
Lower margin:
Upper margin:
Nominal Value:
Mean P/N:
Correction Factor:

Result Interpretation

(-)Negative < 0.10
(+)POSITIVE > 0.20
(+/-)EQUIVOCAL: 0.10-0.20

檢驗者:
實驗室主管:
附錄 15.5 水痘病毒血清學檢驗結果判定流程圖

血清

IgM EIA test

IgG EIA test

IgM：+ IgG：+或– IgM：– IgG：– IgM：± IgM：– IgG：±

陽性

以前曾經感染或接種疫苗

未確定，間隔七日以後再採檢

未確定，間隔七日以後再採檢

1. 第二次檢體仍為IgM及IgG陰性者判為陰性
2. 第二次檢體為IgM陽性或IgG陽轉者判為陽性

1. 第二次檢體IgM為陽性或IgG抗體有顯著上升者判為陽性
2. IgM抗體為陰性或±，而IgG抗體未顯著上升者判為陰性
1. **目的**
 利用間接免疫酵素分析法（indirect ELISA，indirect enzyme-linked immunosorbent assay）檢測人體是否有水痘專一性 IgG 抗體。

2. **適用檢體種類**
 血清（serum）或血漿（plasma）。

3. **名詞解釋**
 無。

4. **原理概述**
 利用間接酵素免疫分析法。利用 96 孔微量盤底覆有水痘病毒抗原的測試盤與待測血清中具有的水痘專一性 IgG 抗體作用 1 hr，清洗掉未結合的物質然後加上 Anti-human IgG/POD conjugate，再反應 1 hr，清洗掉未結合的物質，最後加上無色受質 TMB 作用 30 min，經 Conjugate 上的酵素催化，轉換為藍色，最後再加上終止液終止反應，此時有反應的位置會變成黃色，以吸光度計測定 450 nm 波長的吸光值，以 650 nm 為參考波長。

5. **試劑耗材**

 5.1 **試劑**
 5.1.1 「Enzygnost anti-VZV-virus/IgG：Dade Behring，OWLT 15，Germany，4 °C 儲存」
 5.1.1.1 Anti-VZV virus/IgG test plate：2 x 6 Strips。
 5.1.1.2 Anti-VZV virus reference P/N：0.4 mL。
 5.1.1.3 Sample buffer POD：2 x 50 mL。
 5.1.1.4 Anti-human IgG/POD conjugate：1 mL。
 5.1.1.5 Conjugate buffer microbiol：4 x 12.5 mL。
 5.1.1.6 Polyethylene bag for storing unused test strip。
 5.1.1.7 Barcode table of value。
 5.1.2 「Supplementary reagents for enzygnost/TMB：Dade Behring，OUVP 17，Germany，4℃ 儲存」。
 5.1.2.1 Washing solution POD：3 x 100 mL。
 5.1.2.2 Colour solution blue for enzygnost：1 x 12.5 mL。
 5.1.2.3 Buffer/substrate TMB：4 x 30 mL。
 5.1.2.4 Chromogen TMB：4 x 3 mL。
 5.1.2.5 Stopping solution POD：2 x 100 mL。
 5.1.2.6 Adhesive foils for microtiter plates：24 pcs。
 5.1.2.7 Empty bottle for the working Chromogen solution：1 pcs。
 5.1.2.8 Instruction for use：1 pcs。

 5.2 **耗材**
 5.2.1 Tips：200 μL、1,000 μL。
 5.2.2 1.5 mL Eppendorf。
衛生福利部疾病管制署傳染病標準檢驗方法

编号：
核准日期：年 月 日
修訂日期：年 月 日

<table>
<thead>
<tr>
<th>頁次</th>
<th>848</th>
<th>共 1104 頁</th>
</tr>
</thead>
</table>

5.2.3 4 mL Tube。
5.2.4 2 mL 螺旋試管。
5.2.5 抗凍標籤紙。
5.2.6 油性簽字筆。

6 儀器設備
6.1 單爪 Pipetman：20 μL、200 μL、1,000 μL。
6.2 八爪 Pipetman：200 μL。
6.3 電動分注器：50-1,000 μL。
6.4 Microplate washer。
6.5 Microplate reader。
6.6 小型離心機。
6.7 37 ℃ 溫箱。
6.8 振盪混合器。

7 環境設施安全
於生物安全第二等級（BSL-2）實驗室之設施內操作。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

10 檢驗步驟
10.1 檢體編號：核對檢驗單之個案與檢體是否相符，給予疾病編號。
10.2 檢驗前處理
10.2.1 將血液分裝於 1.5 mL Eppendorf，以小型離心機離心 3 - 5 min，收集血清或血漿於 2 mL 螺旋試管。
10.2.2 記錄檢體於檢驗盤上之相對應位置，如附錄 15.1。
10.2.3 配置 Working wash solution：用蒸餾水以 1 : 20 的比例稀釋 5.1.2.1 Washing solution POD。
10.2.4 配置 Working conjugate solution：1 份 5.1.1.5 Anti-human IgG/POD conjugate + 50 份 5.1.1.6 Conjugate buffer microbiol。
10.2.5 配置 Working Chromogen solution：1 份 5.1.2.4 Chromogen TMB + 10 份 5.1.2.3 Buffer/substrate TMB。
10.2.6 Microplate washer 先以配置好的 Working wash solution 進行 Prime 指令，使管路充滿 Working wash solution。
衛生福利部疾病管制署傳染病標準檢驗方法

編號：

水痘病毒 IgG 抗體檢測
(Indirect ELISA)

核准日期：年 月 日

修訂日期：年 月 日

頁次：第 849 頁/共 1104 頁

10.3 檢驗步驟
10.3.1 血清稀釋至加到微量盤的步驟詳如附錄 15.2。
10.3.2 封上 5.1.2.6 Adhesive foils，置放 37℃溫箱培養 60 min。
10.3.3 啓動 Microplate washer 以 Wash solution 清洗三次。
10.3.4 每個孔加入 100 μL Working conjugate solution。
10.3.5 置放 37℃溫箱培養 60 min。
10.3.6 啓動 Microplate washer 以 Wash solution 清洗三次。
10.3.7 每個孔加入 100 μL Working Chromogen solution。
10.3.8 室溫，避光，培養 30 min。
10.3.9 每個孔加入 100 μL Stopping solution。
10.3.10 用 Microplate reader 測定 450 nm 吸光度，以 650 nm 做為參考波長。

10.4 檢驗後處理
10.4.1 Microplate washer 以蒸餾水進行二次 Prime，以去除殘存之 Wash solution，防止管路結晶阻塞。
10.4.2 使用後的 Tips、Eppendorf、Microplate strip，滅菌後丟棄。
10.4.3 Microplate washer、Microplate reader 關機。

11 結果判定
11.1 判讀標準

<table>
<thead>
<tr>
<th>計算</th>
<th>判定</th>
<th>判定標準</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔA=A_{antigen}-A_{control antigen}</td>
<td>陽性（positive）</td>
<td>ΔA>0.2</td>
</tr>
<tr>
<td></td>
<td>陰性（negative）</td>
<td>ΔA<0.1</td>
</tr>
<tr>
<td></td>
<td>未確定（equivocal）</td>
<td>0.1≦ΔA≦0.2</td>
</tr>
</tbody>
</table>

11.2 報告核發：水痘 IgG 陽性，水痘 IgG 陰性，水痘 IgG 未確定。
11.3 結果登錄：完成檢驗後，將檢驗結果登錄於附錄 15-4 水痘 ELISA 實驗記錄表，檢驗結果填寫於檢體送驗單之“檢驗結果欄”，並上網登錄於實驗室資訊管理系統，傳送實驗室主管審核，待審核通過後發佈結果。

12 品質管制
12.1 Qualitative evaluation：ΔA_{Reference P/N}≦0.5。
12.2 Quantitative evaluation。
12.2.1 Lower margin≦ΔA_{Reference P/N}≦upper margin。
12.2.2 任一 ΔA_{Reference P/N} 介於 Reference P/N 平均值±20%。
12.3 Measurement correction：利用 Reference P/N 來校正實驗值，改善結果的再現性。
計算範例

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference P/N, at start of series</td>
<td>ΔA 1.374</td>
</tr>
<tr>
<td>With margins ?</td>
<td>yes</td>
</tr>
<tr>
<td>Reference P/N, at end of series</td>
<td>ΔA 1.188</td>
</tr>
<tr>
<td>With margins ?</td>
<td>yes</td>
</tr>
<tr>
<td>Mean value</td>
<td>ΔA 1.281</td>
</tr>
<tr>
<td>Reference P/P, nominal value</td>
<td>ΔA 1.024</td>
</tr>
<tr>
<td>Correction factor 1.024:1.281</td>
<td>= 0.8</td>
</tr>
<tr>
<td>Corrected ΔA 待測血清 = 0.8 x ΔA 待測血清</td>
<td></td>
</tr>
</tbody>
</table>

註：upper、lower margin、nominal value 詳見 5.1.1.7，為 lot-specific。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
Dade Behring 公司操作說明書。

15 附錄
15.1 檢體排列位置圖。
15.2 檢體稀釋及加入微量盤步驟圖。
15.3 水痘病毒 IgG 抗體試驗（間接酵素免疫分析法）流程圖。
15.4 水痘 ELISA 實驗紀錄表。
15.5 水痘 ELISA 血清學檢驗及結果判定流程圖。
附錄15.1 檢體排列位置圖

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>B</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>C</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>D</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>E</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>F</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>G</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>H</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

Reference P/N 除 A1 位置固定外，另一 Reference P/N 位置視檢體量而定，在最後一個試劑條 H 對應位置。

1. 從 C1 開始置放待測檢體。
2. Reference P/N 除 A1 位置固定外，另一 Reference P/N 位置視檢體量而定，在最後一個試劑條 H 對應位置。
附錄 15.2 檢體稀釋至加入微量盤步驟圖

400 µL Sample Buffer POD

20 µL test sample or reference

Predilution tubes or wells (1 : 21)

200 µL RF Absorbent

IgG

IgM

After 15 min at RT, 150 µL each

200 µL each Sample Buffer POD

Ag CoAg

Test dilution 1 : 231

Inside plate

Ag CoAg

Test dilution 1 : 42
附錄 15.3 水痘病毒 IgG 抗體試驗（間接酵素免疫分析法）流程圖

檢體（血清或血漿）

1:21稀釋後取 20 μl
加入下列微量盤

覆有病毒抗原/細胞對照抗原的一組微量盤，先加入 200 μl 的稀釋液

37℃，1小時

Wash 後，加入 100 μl 結合酵素之抗 IgG 抗體

37℃，1小時

Wash 後，加入 100 μl 酵素受質使之呈色

室溫，30 分鐘

加入 100 μl 反應終止液

1 小時內

以 Spectrophotometer 450 nm 測定 OD 值
以 650 nm 做為參考波長
水痘 ELISA 實驗紀錄表

<table>
<thead>
<tr>
<th>Name</th>
<th>Well</th>
<th>Sample No.</th>
<th>ΔA</th>
<th>Corrected ΔA</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1A</td>
<td>P/P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>in-house P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

檢驗者：實驗室主管：

<table>
<thead>
<tr>
<th></th>
<th>VZV IgM</th>
<th>VZV IgG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Validation Check

1. P/P ≥ 0.2
2. P/P within lower and upper margin
3. Individual P/P within ±20 % mean P/P

Kit Batch：
Expiry：
Lower margin：
Upper margin：
Nominal Value：
Mean P/P：
Correction Factor：

Kit Batch：
Expiry：
Lower margin：
Upper margin：
Nominal Value：
Mean P/N：
Correction Factor：

Result Interpretation

(-) Negative < 0.10 (+) POSITIVE > 0.20 (+/-) EQUIVOCAL: 0.10-0.20
附錄 15.5 水痘病毒血清學檢驗結果判定流程圖

血清

IgM EIA test IgG EIA test

IgM：+ IgM：- IgM：± IgM：–

IgG：+或– IgG：– IgG：+ IgG：±

陽性 以前曾經感染或接種疫苗 未確定，間隔七日以後再採檢

未確定，間隔七日以後再採檢

1. 第二次檢體仍為 IgM 及 IgG 陰性者判為陰性
2. 第二次檢體為 IgM 陽性或 IgG 陽轉者判為陽性

1. 第二次檢體 IgM 為陰性或 IgG 抗體有顯著上升者判為陰性
2. IgM 抗體為陰性或±，而 IgG 抗體未顯著上升者判為陰性
1 目的
建立分子生物學檢驗方法，以利法定傳染病弓形蟲（Toxoplasma gondii）個案確認及防疫工作之進行。

2 適用検體種類
血液、腦脊髓液、組織、羊水、臍帶血検體。

3 名詞解釋
無。

4 原理概述
針對弓形蟲的B1基因設計引子對，以巢式（nested）兩階段式（two step）以增加敏感度，引子的特異性經由BLAST程式對GenBank資料庫進行搜尋比對及PCR產物直接定序而確認。

5 試劑耗材
5.1 檢測試劑
5.1.1 核酸萃取試劑組：QIAamp Tm blood/tissue kit（Qiagen）。
5.1.1.1 清洗緩衝液 I（wash buffer I）。
5.1.1.2 清洗緩衝液 II（wash buffer II）。
5.1.1.3 溶解緩衝液（lysis buffer）。
5.1.1.4 萃取緩衝液（elution buffer）。
5.1.2 PCR 試劑
5.1.2.1 10 μM primer。
5.1.2.2 10 X PCR buffer。
5.1.2.3 1.25 mM dNTP（dGTP, dCTP, dTTP, dATP）。
5.1.2.4 25 mM MgCl₂。
5.1.2.5 AmpliTaq Gold DNA polymerase（5 units/μL）。
5.1.2.6 純水（pure water）。
5.1.3 電泳分析試劑。
5.1.3.1 洋菜膠（agarose）。
5.1.3.2 1X TBE 電泳緩衝液：1X TBE（tris-borate-EDTA）buffer。
5.1.3.3 DNA 分子量指標：100 bp Ladder marker。
5.1.3.4 染色液：0.5 μg/mL Ethidium bromide。

5.2 耗材
5.2.1 1.5mL 離心管

6 儀器設備
6.1 控溫震盪加熱器。
6.2 高速離心機。
6.3 聚合酶鍊鎖反應器：96-Well GeneAmp® PCR system 9700（Applied Biosystems, CA, USA）。
6.4 電泳槽（Mupid II）。
6.5 紫外線照相系統。

7 環境設施安全
無。

8 檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

10 檢驗步驟
10.1 檢體前處理
10.1.1 將檢體分裝於冷凍保存管，以冷凍標籤依序標示。

10.2 步驟
10.2.1 檢體 DNA 萃取：採用 QIAampTM blood kit（Qiagen），依據其標準步驟萃取 DNA。

10.2.2 第一階段 PCR：
10.2.2.1 配置 PCR 反應混合液，每一檢體所需反應液成分如下：

<table>
<thead>
<tr>
<th>PCR 試劑</th>
<th>體積(μL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 μM TG1 primer</td>
<td>1</td>
</tr>
<tr>
<td>10 μM TG2 primer</td>
<td>1</td>
</tr>
<tr>
<td>10 X PCR buffer</td>
<td>4.5</td>
</tr>
<tr>
<td>1.25 mM dNTP</td>
<td>6</td>
</tr>
<tr>
<td>25 mM MgCl2</td>
<td>1.5</td>
</tr>
<tr>
<td>AmpliTaq gold (5 U/μL)</td>
<td>0.5</td>
</tr>
<tr>
<td>Pure water</td>
<td>5.5</td>
</tr>
<tr>
<td>總體積</td>
<td>20.0</td>
</tr>
</tbody>
</table>

10.2.2.2 分裝 20 μL PCR 反應混合液至 0.2 mL 薄壁 PCR 反應管。

10.2.2.3 每一 PCR 反應管加入 5 μL 檢體 DNA。

10.2.2.4 將 PCR 反應管置入聚合酶鍊鎖反應器進行反應（總體積 25 μL）：
10.2.3 第二階段 PCR：

10.2.3.1 配置 PCR 反應混合液，每一検體進行 A、B 兩次反應

分別包括以下成分：

<table>
<thead>
<tr>
<th>PCR 試劑</th>
<th>體積 (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 µM TG3 primer</td>
<td>1</td>
</tr>
<tr>
<td>10 µM TG4 primer</td>
<td>1</td>
</tr>
<tr>
<td>10X PCR buffer</td>
<td>4.5</td>
</tr>
<tr>
<td>1.25 mM dNTP</td>
<td>6</td>
</tr>
<tr>
<td>25 mM MgCl₂</td>
<td>1.5</td>
</tr>
<tr>
<td>AmpliTaq gold (5 U/µL)</td>
<td>0.5</td>
</tr>
<tr>
<td>Pure water</td>
<td>5.5</td>
</tr>
<tr>
<td>總體積</td>
<td>20.0</td>
</tr>
</tbody>
</table>

10.2.3.2 分裝 PCR 反應混合液 20.0 µL 至 0.2 mL 薄壁 PCR 反應管。

10.2.3.3 每一 PCR 反應管加入 5.0 µL 第一階段 PCR 產物。

10.2.3.4 將 PCR 反應管置入聚合酶鍵鎖反應器進行反應（總體積 25 µL）：

<table>
<thead>
<tr>
<th>PCR 反應期</th>
<th>溫度(°C)</th>
<th>時間 (分: sec)</th>
<th>循環數</th>
</tr>
</thead>
<tbody>
<tr>
<td>酵素活化</td>
<td>94</td>
<td>5:00</td>
<td>1</td>
</tr>
<tr>
<td>DNA 解離 Primer 粘合聚合反應</td>
<td>94</td>
<td>01:00</td>
<td>01:00</td>
</tr>
<tr>
<td>後聚合反應</td>
<td>72</td>
<td>10:00</td>
<td>1</td>
</tr>
<tr>
<td>停止反應</td>
<td>4</td>
<td>∞</td>
<td>1</td>
</tr>
</tbody>
</table>

10.2.4 PCR 產物電泳分析：

10.2.4.1 配製 2 %洋菜膠片 (含 1 倍 TBE 電泳緩衝液)。

10.2.4.2 電泳分析: 將第二階段 PCR 反應 A 及 B 管等量混合，取 10 µL 置於洋菜膠片，與 2.5 µL 100bp Ladder marker 一併於 100 伏特電壓下 (1 倍 TBE 電泳緩衝液)，電泳 30 min。

10.2.4.3 膠片染色：將洋菜膠片置於 0.5 µg/mL Ethidium bromide 染色 10 min，繼以蒸餾水脱色 10 min。

10.2.4.4 將膠片置於紫外線照相系統，擷取圖片，記錄結果。
11 結果判定

11.1 判讀標準

11.1.1 以第二階段 PCR 反應產物長度與 DNA 分子量指標比較判讀。

11.1.2 T. gondii 陽性：97 bp。（附錄 13.1）。

11.1.3 於傳染病通報系統內輸入檢驗結果：在病原體檢驗方法項目中選擇，「聚合酶鍵鎖反應」，在檢驗結果項目中輸入陽性（T. gondii）或陰性（未分離到病原體）。

11.2 報告核發：於傳染病通報系統內輸入檢驗結果：在病原體檢驗方法項目中選擇，聚合酶鍵鎖反應，在檢驗結果項目中輸入陽性或陰性。

11.3 結果登錄：將檢體之檢驗結果於檢體送驗單並加蓋檢驗者印章，送報告簽署人審核及蓋章，並登錄於網路報告系統。

12 品質管制

12.1 每次操作應包含陽性及陰性對照檢體。

12.2 陽性對照檢體：T. gondii ATCC 蟲株。

12.3 陰性對照：純水。

12.4 每次操作時加以記錄，並定期由寄生蟲實驗室室主管審閱。

13 廢棄物處理

檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

14.1 Hurtado A. Aduriz G. Moreno B. Barandika J. Garcia-Perez AL (2001)
Single tube nested PCR for the detection of Toxoplasma gondii in fetal tissues from naturally aborted ewes. Veterinary Parasitology, 102, p17-27.

15 附錄

15.1 弓形蟲分子生物學確認檢驗所用引子之序列。
附錄15.1 弓形蟲分子生物學確認檢驗所用引子之序列

<table>
<thead>
<tr>
<th>Category</th>
<th>Primer pairs(forward+reverse)</th>
<th>PCR product size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st step PCR</td>
<td>5’-CCTTTGAAATCCCAAGCAAAAACATGAG-3’</td>
<td>194 bp</td>
</tr>
<tr>
<td></td>
<td>5’-GCGAGCCAAGACATCCATTGCTGA-3’</td>
<td></td>
</tr>
<tr>
<td>2nd step PCR</td>
<td>5’-GTGATAGTATCGAAAGGTAT-3’</td>
<td>97 bp</td>
</tr>
<tr>
<td></td>
<td>5’-ACTCTCTCTCAATGTTCCCT-3’</td>
<td></td>
</tr>
</tbody>
</table>
1. 目的
在採自疑似受感染個案之檢體中，檢測是否存在抗弓形蟲（Toxoplasma gondii）抗體IgM及IgG。

2. 適用檢體種類
適用於血清或血漿檢體。

3. 名詞解釋
無。

4. 原理概述
結合酵素免疫分析（EIA）和螢光檢測法（enzyme-linked fluorescent assay, ELFA），透過SPR（solid phase receptacle）在分析中當做固相及吸量液體裝置。所有檢測步驟由儀器自動執行。反應試劑在SPR內外抽吸若干次。在Vidas®Toxo IgM kit，血清檢體於稀釋過程後，其中的IgM會被SPR內预先吸附之多株抗體捕捉。抗弓形蟲IgM可經去活化的弓形蟲抗原（RH strain）特異性偵測，該抗原可與標示Alkaline phosphatase的抗弓形蟲單株抗體anti-30結合，酵素會催化螢光受質（4-methylumbelliferyl phosphate）水解為4-methylumbelliferone。結果可於波長450 nm測量吸光度值。在Vidas®Toxo IgG kit，血清或血漿檢體於稀釋過程後，抗弓形蟲IgG會被SPR內預先吸附之弓形蟲抗原捕捉。標示Alkaline phosphatase的小鼠抗人類IgG會與吸著於SPR壁上之人類IgG結合。最後加入的螢光受質（4-methylumbelliferyl phosphate）可被酵素催化水解為4-methylumbelliferone。結果可於波長450 nm測量吸光度值。

5. 試劑耗材
5.1 檢測試劑:
<table>
<thead>
<tr>
<th>60 TXG Strips</th>
<th>Ready-to-use</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 TXG SPRs 2x30</td>
<td>Ready-to-use</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C1 control TXG 陽性對照</th>
<th>含抗弓形蟲抗體IgG的人血清*+蛋白穩定劑+疊氮化鈉1g/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2 control TXG 陰性對照</td>
<td>含抗弓形蟲抗體IgG的人血清*+蛋白穩定劑+疊氮化鈉1g/L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S1 Standard TXG 校正液</th>
<th>含抗弓形蟲抗體IgG的人血清*（按2nd WHO國際標準）+蛋白穩定劑+疊氮化鈉1g/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1MLE card</td>
<td>含有工廠總校正資料的規格單，供校正用。</td>
</tr>
<tr>
<td>1Package insert</td>
<td>操作說明。</td>
</tr>
</tbody>
</table>
5.2 耗材
5.2.1 SPR 固相包被針
5.2.1.1 在 Vidas®Toxo IgM kit，SPR 內部已吸附山羊抗人類μ-chain 抗體；在 Vidas®Toxo IgG kit，內部已吸附弓形蟲細胞膜和細胞質抗原（RH Sabin 株）。
5.2.1.2 每一個 SPR 都被標 TXG 條碼。
5.2.1.3 只需從保存袋中取出需要數目的 SPR 即可。打開後務必將保存袋重新密封好。

5.2.2 試劑條
5.2.2.1 試條上有 10 個孔，上面有貼有標籤的金屬薄片密封。
5.2.2.2 標籤包括條碼，條碼指示所進行試驗的類型，試劑盒批號和有效日期。
5.2.2.3 第一個孔的金屬薄片被打孔，以利檢體的放入。
5.2.2.4 每個試劑條的最後一個孔是一個比色皿（cuvette），可以在其中進行螢光測定。試劑條其餘的反應孔則含有分析需要的各種試劑。

6 儀器設備
6.1 Mini-Vidas 分析儀
6.2 微量吸管（pipetteman）：1,000 μL、200 μL、100 μL。
6.3 振盪器（vortexer）。
6.4 離心機
6.5 4°C 冰箱。
6.6 -20°C 冷凍櫃。
6.7 高壓滅菌鍋。

7 環境設施安全
於生物安全第二等級（BSL-2）實驗室之設施內操作。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BEBF869&nowtreeid=6C7C52E7A7D5621A

9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BEBF869&nowtreeid=6C7C52E7A7D5621A

10 檢驗步驟
10.1 檢體前處理
10.1.1 將檢體分裝於冷凍保存管，以冷凍標籤依序標示。
10.2 步驟

10.2.1 確定該試劑標準曲線已設立好且為有效期限內。品管結果落於可接受範圍內。
10.2.2 核對檢體與檢驗單者資料無誤。
10.2.3 將檢體放入離心機中離心（3,000 rpm、10 min）。
10.2.4 從冰箱試劑盒中取出一個試劑條（strip）及一支 SPR（取出後務必將包裝密封條壓緊，以免受潮）。小心不要碰觸到試劑條進行比色反應的區域（最後一個槽位）。
10.2.5 取 100 μL 檢體加入試劑條第一個檢體置放位置。
10.2.6 選擇一個測試室狀況為『Available』可進行新檢體分析的測試室（例如 Section A）作為測試検體之用，將測試室灰色門往上打開，小心平緩的沿著凹槽將試劑條推入最底部。
10.2.7 打開 SPR 置放管外門，比照先前試劑條放置位置將 SPR 放入 SPR 置放槽內。
10.2.8 依所放置検體之測試室，按【Start】鍵開始工作鍵。
10.2.9 待測試完成後，儀器會自動列印報告，顯示結果。
10.2.10 將使用過之試藥條及 SPR 丟棄，並將報告黏貼於檢驗單上後將報告發出。

11 結果判定

11.1 判讀標準

11.1.1 IgM 判讀

<table>
<thead>
<tr>
<th>指數</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>i < 0.55</td>
<td>陰性</td>
</tr>
<tr>
<td>0.55 ≤ i < 0.65</td>
<td>可疑</td>
</tr>
<tr>
<td>i ≥ 0.65</td>
<td>陽性</td>
</tr>
</tbody>
</table>

11.1.2 IgG 判讀

<table>
<thead>
<tr>
<th>滴定量：IU/mL</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td><4</td>
<td>陰性</td>
</tr>
<tr>
<td>4≤滴定量<8</td>
<td>可疑</td>
</tr>
<tr>
<td>≥8</td>
<td>陽性</td>
</tr>
</tbody>
</table>

11.2 報告核發：

11.2.1 IgG 陽性且 IgM 陽性，則弓形蟲抗體陽性。
11.2.2 兩次 IgG 抗體四倍上升，則弓形蟲抗體陽性。
11.2.3 IgG 陽性且 IgM 陰性，則弓形蟲抗體為非急性期陽性。
11.2.4 IgM 及 IgG 陰性，則弓形蟲抗體陰性。

11.3 結果登錄：

11.3.1 將檢體之檢驗結果登錄於弓形蟲紀錄表及檢體送驗單並加蓋檢驗者印章，送報告簽署人審核及蓋章，並登錄於網路報告系統。
12 品質管制
12.1 每一試劑組附陽性對照液（C1）及陰性對照液（C2）各一瓶，在試劑或儀器經過變動更換後操作此二標準液，以確保儀器能夠偵測標準值。
12.2 試劑批號更換時，於重新設立標準曲線後，需執行 C1, C2 品管檢體。
12.3 工程師保養儀器或更換零件後，需執行 C1, C2 品管液。
12.4 標準曲線經 14 天過期後，需重新設立標準曲線，並執行 C1, C2 品管液。
12.5 品管檢體在拆封後，需盡快操作使用完畢，以確保試劑效能。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
14.1 Biomerieux mini-Vidas 原廠操作手冊。

15 附錄
15.1 弓形蟲抗體檢測流程圖。
15.2 弓形蟲抗體檢測紀錄表。
附錄 15.1 弓形蟲抗體檢測流程圖

1. 核對檢體及檢驗單姓名
2. 取檢體 100 μL 放入試劑條中
3. 將試劑條放入下方反應盤上
4. 取出 SPR 放入儀器上方置放處
5. 依照放置位置輸入檢體條碼
6. 將報告列印紙貼於檢驗單上
7. 將報告輸入電腦中發出
附錄 15.2 弓形蟲抗體檢測紀錄表

<table>
<thead>
<tr>
<th>個案編號</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>送驗單位</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

第一次檢體

<table>
<thead>
<tr>
<th>種類：</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>血清</td>
<td></td>
<td></td>
</tr>
<tr>
<td>血液</td>
<td></td>
<td></td>
</tr>
<tr>
<td>其他</td>
<td></td>
<td></td>
</tr>
<tr>
<td>備註：</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 檢體編號 | | |
| 收件日期 | | |
| 檢驗日期 | | |
| 檢體採檢運送狀況適當 | | |
| 是 | | |
| 否 | | |

<table>
<thead>
<tr>
<th>檢驗結果</th>
<th>IgG</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IgM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

第二次檢體

<table>
<thead>
<tr>
<th>種類：</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>血清</td>
<td></td>
<td></td>
</tr>
<tr>
<td>血液</td>
<td></td>
<td></td>
</tr>
<tr>
<td>其他</td>
<td></td>
<td></td>
</tr>
<tr>
<td>備註：</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 檢體編號 | | |
| 收件日期 | | |
| 檢驗日期 | | |
| 檢體採檢運送狀況適當 | | |
| 是 | | |
| 否 | | |

<table>
<thead>
<tr>
<th>檢驗結果</th>
<th>IgG</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IgM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

附註

| 綜合結果 | | |

報告日期

檢驗者： | | 實驗室主管：
1 目的
在採自疑似受感染個案之成對血清檢體中，檢測（Toxoplasma gondii）抗體IgG對抗原親和能力。

2 適用檢體種類
適用於血清或血漿檢體

3 名詞解釋
無。

4 原理概述
分析原理結合了兩步驟免疫三明治法與ELFA（Enzyme Linked Fluorescence Assay）。固相包被針（SPR，Solid Phase Receptacle）在檢測時有移液裝置及固相的作用，檢測所用試劑為即用型的，預先分配在密封試劑條中。
所有分析步驟都由儀器自動進行。將檢體移至含有弓漿蟲抗原並共軛有鹼性磷酸酶的槽中，檢體與共軛物的混合物多次移入及移出SPR，這樣的流程可使抗體與SPR內壁固定好的抗原結合，並且與共軛物形成三明治，未結合的成分在沖洗步驟中被清除。成功地進行兩檢測步驟，每個步驟中的受質（4-Methyl-umbelliferylphosphate）多次移入及移出SPR，共軛酵素水解受質成熒光產物（4-Methyl-umbelliferone），該產物的熒光在450 nm下測量。熒光強度與樣品中出現的抗原濃度成正比。
在分析的最後，結果由儀器根據儲存在記憶體中的校準曲線自動計算，最後列印結果。

5 試劑耗材
5.1 檢測試劑：

<table>
<thead>
<tr>
<th>30 TXGA 雙試劑條</th>
<th>STR</th>
<th>即用試劑</th>
</tr>
</thead>
<tbody>
<tr>
<td>TXGA SPRs 2 x 30</td>
<td>SPR</td>
<td>即用試劑</td>
</tr>
<tr>
<td>TXGA SPRs n</td>
<td>SPR</td>
<td>SPR內部包被弓漿蟲抗原，RH Sabin株(鼠)</td>
</tr>
</tbody>
</table>

| TXGA High avidity control 1 x 2 mL(液體) | C1 | 含抗弓漿蟲抗體IgG的人血清*+蛋白穩定劑+1 g/l 突氯化鈉信賴範圍標示在MLE卡上：“Control C1 (+) Test Value Range”後。
相對熒光值（RFV）信賴範圍標示在MLE卡上：“C1 Ref RFV Range”後。
| TXGA Low avidity control 1 x 2.5 mL(液體) | C2 | 含抗弓漿蟲抗體IgG的人血清*+蛋白穩定劑+0.9 g/l 突氯化鈉 |
| Sample diluent 1 x 13 mL(液體) | S1 | 含蛋白穩定劑的人血清+1 g/l 突氯化鈉 |
| 1 MLE 卡 | | 含有工廠總校正資料的規格單，供校正用 |
| 1 包裝說明書 | | |
5.2 耗材
5.2.1 SPR（固相包被針）
SPR 內部包被植株營和細胞質抗原，從袋中僅取用所需的 SPR 並將袋子封好。

5.2.2 雙試劑條
試劑條包含 10 個有標示貼箔的試劑孔，標示上的條碼包含分析代碼、試劑組號碼與末效期。貼箔的第一個孔已穿孔，以利於送入檢體，每個試劑條的最後一個孔是一個用於讀取熒光的比色杯，中間的所有試劑孔包含用於分析時所需的不同試劑。

5.2.3 參考試劑條說明（左）：

<table>
<thead>
<tr>
<th>孔號</th>
<th>試劑</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>樣本孔</td>
</tr>
<tr>
<td>2</td>
<td>稀釋液：Tris（50 mmol/l，pH 7.4）+ 蛋白質和化學穩定劑 + 0.9g/L 穀氮化鈉（600 μl）</td>
</tr>
<tr>
<td>3</td>
<td>預沖洗緩衝液：Tris（50 mmol/l，pH 7.4）+ 蛋白質和化學穩定劑 + 0.9g/L 穀氮化鈉（600μL）。</td>
</tr>
<tr>
<td>4-5-7-8</td>
<td>沖洗緩衝液：Tris（50 mmol/l，pH 7.4）+ 蛋白質和化學穩定劑 + 0.9g/L 穀氮化鈉（600 μL）</td>
</tr>
<tr>
<td>6</td>
<td>偶合物：鈉性磷酸酶標記的單株抗人 IgG 抗體（鼠） + 0.9g/L 穀氮化鈉（400 μL）</td>
</tr>
<tr>
<td>9</td>
<td>血清稀釋劑：Tris（50 mmol/l，pH 7.4）+ 蛋白質和化學穩定劑 + 0.9g/L 穀氮化鈉（400μL）。</td>
</tr>
<tr>
<td>10</td>
<td>含受質的比色杯：磷酸 4-甲基傘形酮（0.6 mmol/l）+ 二乙醇胺* (DEA)(0.62 mol/L 或 6.6 %，PH9.2) +1g/L 穀氮鈉（300 μL）</td>
</tr>
</tbody>
</table>

刺激性試劑：
- R36：對眼睛有刺激性。
- S26：在與眼睛接觸的情況下，立即用大量的水清洗並就醫。

5.2.4 參考試劑條說明（右）：

<table>
<thead>
<tr>
<th>孔號</th>
<th>試劑</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>樣本孔</td>
</tr>
<tr>
<td>2</td>
<td>稀釋液：Tris（50 mmol/l，pH 7.4）+ 蛋白質和化學穩定劑 + 0.9g/L 穀氮化鈉（600 μl）</td>
</tr>
<tr>
<td>3</td>
<td>預沖洗緩衝液：Tris（50 mmol/l，pH 7.4）+ 蛋白質和化學穩定劑 + 0.9g/L 穀氮化鈉（600μL）。</td>
</tr>
<tr>
<td>4-5</td>
<td>沖洗緩衝液：TRIS 緩衝液（50mmol/l，pH7.4）+ 離解試劑 + 蛋白質和化學穩定劑 + 0.9g/L 穀氮化鈉（600μl）</td>
</tr>
<tr>
<td>7-8</td>
<td>沖洗緩衝液：TRIS 緩衝液（50mmol/l，pH7.4）+ 蛋白質和化學穩定劑 + 0.9g/L 穀氮化鈉（600μl）</td>
</tr>
</tbody>
</table>
衛生福利部疾病管制署傳染病標準檢驗方法

編號: 弓形蟲 IgG 親和力試驗 (IgG avidity test)

核准日期: 年 月 日
修訂日期: 年 月 日
頁次: 第 869 頁/共 1104 頁

6 儀器設備
 6.1 Mini-Vidas 分析儀。
 6.2 微量吸管 (pipetteman): 1,000 μL、200 μL、100 μL。
 6.3 振盪器 (vortexer)。
 6.4 離心機。
 6.5 4°C 冰箱。
 6.6 -20 °C 冷凍櫃。
 6.7 高壓滅菌鍋。

7 環境設施安全
於生物安全第二等級 (BSL-2) 實驗室之設施內操作。

8 檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

10 檢驗步驟
 10.1 檢體前處理
 10.1.1 將檢體分裝於冷凍保存管，以冷凍標籤依序標示。
 10.2 步驟
 10.2.1 稀釋檢體
 10.2.2 使用 VIDAS Toxo IgG Avidity 抗體親抗原性試劑分析任何樣品前，必須先使用 VIDAS Toxo IgG II (ref. 30210) 進行測試，且須為陽性（Titer > =8 IU/ml）。
 10.2.3 只有使用此技術測定的 IgG titer 才可以用來計算得到 15 IU/ml 滴定度的稀釋係數。
10.2.4 稀釋係數的計算：要用 VIDAS Toxo IgG 抗體親抗原性測試樣品，需要通過稀釋，使樣本的滴定度達到 15 IU/ml。稀釋係數（d）計算如下：

\[d = \frac{VIDAS Toxo IgG II 滴定度 IU/ml}{15} \]

10.2.5 按照稀釋係數在稀釋液中稀釋樣品，然後使用 VIDAS Toxo IgG Avidity 抗體親抗原性直接測試。

10.2.6 從冰箱中只取出所需試劑並讓其回復至室溫至少 30 分鐘。

10.2.7 對於每一個待測的檢體，均從試劑盒中取出一個雙試劑條和兩個 SPR，取出所需的 SPR 後確保儲存袋重新密封好，SPR 封包內有保存劑，變色時表示 SPR 變質；變質之 SPR 請勿使用，以確保檢驗之品質。

10.2.8 在試劑條上標示檢體編號。

10.2.9 各加入 100μL 檢體到兩個檢體孔。

10.2.10 將加好檢體的試劑條和 SPR 放進 section A、B 中。

10.2.11 在檢驗單上寫上位置號碼，例如 A1。

11. 結果判定

11.1 判讀標準

<table>
<thead>
<tr>
<th>抗體親抗原性</th>
<th>閾值與說明</th>
</tr>
</thead>
<tbody>
<tr>
<td><0.200</td>
<td>低抗體親抗原性 IgG</td>
</tr>
<tr>
<td>0.200≤i <0.300</td>
<td>邊界抗體親抗原性 IgG</td>
</tr>
<tr>
<td>≥0.300</td>
<td>高抗體親抗原性 IgG</td>
</tr>
</tbody>
</table>

11.2 報告核發：

11.2.1 大於或等於 0.300 的抗體親抗原性指數能夠排除少於 4 個月的最近的感染。此結果應使用 2 或 3 周後採集的第二個樣品做系統化確認。

11.2.2 低於 0.300 的指數不能排除少於 4 個月的最近的感染。

11.3 結果登錄：

11.3.1 將檢體之檢驗結果登錄於弓形蟲紀錄表及檢體送驗單並加蓋檢驗者印章，送報告簽署人審核及蓋章，並登錄於網路報告系統。
12 品質管制
12.1 品管液名稱：VIDAS Control (2 level)。
12.2 保存方法：TXG Controls 可在 2-8℃下保存至有效期限，不可冷凍。
12.3 品管頻率：開新試劑盒時。
12.4 步驟：
 12.4.1 吸取品管液 C1，C2 注入雙試劑條的樣品孔各 100μL。
 12.4.2 至儀器主熒幕。
 12.4.3 Sample ID 輸入“C1”、“C2”。
 12.4.4 選擇”TXG A”測試項目。
 12.4.5 Available 表示測試室為正常可用，隨時可放入試劑條，進行測試。
 12.4.6 依所放置檢體之測試室，例如 Section A，按下【A】鍵，熒幕上即出現測試室 A 的工作表。
 12.4.7 將使用過之試藥條及 SPR 丢棄，並將品管結果登錄於品管紀錄表上。
 12.4.8 品管檢體在拆封後，需盡快操作使用完畢，以確保試劑效能。

13 廢棄物處理
檢測過程之物品、廢液及剩餘樣本等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121°C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
14.1 Biomerieux mini-Vidas 原廠操作手冊。
1 目的
検測流感病毒病原體。

2 適用檢體種類
適用之檢體種類包括咽喉拭子、鼻咽拭子、鼻咽抽出液、支氣管肺泡灌洗液等。

3 名詞解釋
無。

4 原理概述
利用流感病毒可感染 MDCK 細胞株之特性，進行病毒病原體之培養，以流感病毒之專一性抗體，以間接或直接熒光免疫法 (IFA) 標記熒光染劑後，觀察細胞染上熒光與否，以進行病毒型別的鑑定。

5 試劑耗材
5.1 試劑
5.1.1 緩衝液：PBS，GibcoBRL，美國。
5.1.2 DMEM 培養基：GibcoBRL，美國。
5.1.2.1 生長培養基：添加 10% 胎牛血清，100 U/mL 抗生素。
5.1.2.2 維持培養基：添加 100 U/mL 抗生素，2.0 μg/mL 之 tpck-trypsin，不添加胎牛血清。
5.1.3 胰蛋白酶：Tpck treated trypsin，Sigma。
5.1.4 IFA 用之一級及二級抗體。
5.1.5 WHO 提供之流感病毒鑑定試劑組。

5.2 耗材
5.2.1 25T 細胞培養盒。
5.2.2 75T 細胞培養盒。
5.2.3 5 mL 針筒。
5.2.4 0.45 μM 針筒用過濾膜。
5.2.5 刻度吸管：10 mL、5 mL、1 mL。
5.2.6 21 孔熒光檢測玻片。
5.2.7 96 孔 U 型底孔盤。
5.2.8 96 孔盤封盤膠膜。
5.2.9 八爪分注器。
5.2.10 手套、口罩等個人安全防護用品。

6 儀器設備
6.1 第二級生物安全櫃。
6.2 35 ℃ 二氧化碳恆溫培養箱。
6.3 高速離心機。
6.4 倒立顯微鏡。
6.5 熒光顯微鏡。
7 環境設施安全
7.1 季節性流感於生物安全第二等級（BSL-2）實驗室，H5N1 與 H7N9 於生物安全第三等級（BSL-3）實驗室之設施內操作。
7.2 除離心及螢光染色試驗步驟外全程作業都要在第二級生物安全櫃（classII BSC）內進行。

8 檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

10 檢驗步驟
10.1 接種
10.1.1 取已接種於 culture tube 並長滿平面之 MDCK 細胞，吸除舊有生長培養基，以不含 Mg 氫子的 PBS 溶液清洗兩次後，加入同量含有 2.0 μg/mL Tpck-trypsin 維持培養基。
10.1.2 每一檢體接種 2 支 Culture tube，每支 Tube 接種 100 μL 檢體，培養於 35 °C，CO₂ 培養箱 7 - 10 日。

10.2 觀察
10.2.1 自接種後翌日起每天以倒立顯微鏡觀察細胞形態。
10.2.2 接種細胞產生 50 %以上細胞病變者（CPE 達二至三價），收集細胞及培養液，立即進行鑑定。
10.2.3 細胞未產生顯著病變者，待培養 10 日後一起收集細胞及培養液，以螢光試劑進行盲染（blind stain）。

10.3 間接螢光免疫法鑑定（以 Chemicon respiratory viral screen kit 為例）。
10.3.1 將 Culture tube 以 4 °C，3,000 rpm 離心 15 min，上清液分別存於容積 4 mL 的塑膠小瓶。
10.3.2 經離心沉澱之細胞加入與原培養基等量之 PBS，以吸量管上下混合數次後，將細胞懸浮液移至另一塑膠小管。
10.3.3 分別將各管細胞取 20 - 30 μL 點入 21 孔玻片，待細胞於室溫下風乾後置入含有 4 °C 丙酮之玻片槽，固定 10 min。
10.3.4 取出風乾後以 Respiratory reagent 一級抗體滴於每個孔（每滴約 20 μL 左右），將玻片置於 Moisture chamber，置於 37 °C 恆溫培養箱 30 min。
10.3.5 以含有 1% Tween 20 之 PBS 溶液清洗玻片三次後 10 min 風乾。
10.3.6 每個孔加二級螢光抗體（FITC）。每滴約 20 μL 左右，將玻片置於 Moisture chamber，置於 37 °C 恆溫培養箱 30 min。

10.3.7 以含 1 % Tween 20 之 PBS 溶液清洗玻片三次後風乾並以 Mounting fluid 封片。

10.3.8 流感病毒經螢光抗體鑑定為陽性之檢體，則重複步驟 10.3.3，並做兩個重複，分別滴上 Influenza A 及 Influenza B 之一級抗體，將玻片置於 Moisture chamber，置於 37 °C 恆溫培養箱 30 min。

10.3.9 重複 10.3.5 至 10.3.8 步驟，以螢光顯微鏡鏡檢，鑑定分離株為 A 型或 B 型流感病毒。

10.3.10 有關 Chemicon respiratory viral screen kit 之注意事項請參閱附錄。

10.4 血球凝集試驗

10.4.1 取 U 形底的 96 孔盤，於第二列至第八列加入 50 μL 的 PBS 溶液。

10.4.2 於第一列加入 100 μL 的病毒抗原原液，Negative control 行則以 100 μL PBS 取代抗原。

10.4.3 取第一列的抗原 50 μL 加入第二列，以微量吸管充份混合後，再取 50 μL 加入第三列，如此序列稀釋至第八列。

10.4.4 分別加入以 PBS 稀釋的 0.75 % 的天竺鼠紅血球 50 μL/孔，以手輕微搖晃孔盤後，之後以膠膜封住孔盤，置於室溫或 4 °C 下靜置 30 - 60 min，之後記錄結果。

10.4.5 進行血球凝集抑制試驗前，須先以 PBS 溶液稀釋抗原原液至每 50 μL 稀釋液中含有 8 HA unit 的抗原。（1 HA unit 約為 10^7 個病毒量）

10.5 血球凝集抑制試驗

10.5.1 取 U 形底的 96 孔盤，於第二列至第八列加入 25 μL 的 PBS 溶液。

10.5.2 於第一列加入 50 μL 的各標準病毒株的標準抗血清，Negative control 行則以 25 μL PBS 取代抗血清。

10.5.3 取第一列的抗體 25 μL 加入第二列，以微量吸管充份混合後，再取 25 μL 加入第三列，如此序列稀釋至第八列。

10.5.4 分別加入 25 μL 已稀釋至 8 HA unit/50 μL 的待測抗原及標準抗原，以手輕微搖晃孔盤後，置於室溫下反應 10 - 15 min。

10.5.5 加以 PBS 稀釋的 0.75 % 的天竺鼠紅血球 50 μL/孔，之後以膠膜封住孔盤，至於室溫或 4 °C 下靜置 30 - 60 min，之後記錄結果。

10.6 檢驗後處理

病毒液置於抗低溫之保存管，存於 4 °C 或 -80 °C，螢光玻片存於 -20 °C，其餘廢液及檢驗器具均以高溫滅菌銷毀。
11 結果判定

11.1 判讀標準

11.1.1 依據 10.3 鑑定結果，經螢光顯微鏡鏡檢，螢光顯微鏡鏡檢細胞呈現蘋果綠螢光則為陽性，紅色則為陰性。

11.1.2 依據依據 10.5 鑑定結果，血球凝集抑制試驗以紅血球無凝集反應孔數最高者為所判定之型別。

11.1.3 綜合結果判定標準：符合 10.3 或 10.5 之檢測結果為陽性者，均可判定為流感病毒陽性。

11.2 報告核發：流感病毒陽性，流感病毒陰性。

11.3 結果登錄：完成檢驗後，將檢驗結果填寫於檢體送驗單之“檢驗結果”欄，並將檢驗結果上網登錄於實驗室資訊管理系統，傳送實驗室主管審核，待審核通過後發佈結果。

12 品質管制

12.1 實驗室每半年進行內部檢驗能力評估，每季進行人員檢驗流程熟悉度檢視。

13 廢棄物處理

檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

15 附錄

15.1 流感病毒分離與鑑定總流程圖。

15.2 細胞繼代紀錄表。

15.3 流感病毒感染觀察紀錄表。

15.4 流感病毒螢光鑑定紀錄表。

15.5 HA/HI 紀錄表。

15.6 Chemicon respiratory viral screen kit 之注意事項。
附錄 15.1 流感病毒分離與鑑定總流程圖

發病三日內檢體

咽喉拭子檢體處理

接種MDCK細胞

細胞產生病變(CPE)

否

是

細胞產生病變(CPE)

否

是

IFA法檢測細胞有蘋果綠螢光

否

是

IFA法檢測細胞有蘋果綠螢光

否

是

上清液之血球凝集

陽性反應達8 HA

否

是

判定流感病毒陰性

血球凝集抑制反應陽性

是

判定流感病毒陽性

發病三日內檢體
附錄 15.2 細胞繼代紀錄表

細胞繼代紀錄表

<table>
<thead>
<tr>
<th>Cell:</th>
<th>Transfer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date:</td>
<td>Person in charge:</td>
</tr>
<tr>
<td>Cell:Seeded on</td>
<td>Container:</td>
</tr>
<tr>
<td>Medium:</td>
<td></td>
</tr>
<tr>
<td>Appearance:</td>
<td></td>
</tr>
<tr>
<td>PBS (−):</td>
<td>Trypsin-EDTA:</td>
</tr>
<tr>
<td>Medium at this transfer:</td>
<td></td>
</tr>
<tr>
<td>Procedure:</td>
<td></td>
</tr>
<tr>
<td>Discard old GM:</td>
<td>Add the Trypsin-EDTA mixture to monolayer</td>
</tr>
<tr>
<td></td>
<td>Trypsinization at Rt temperature for min</td>
</tr>
<tr>
<td></td>
<td>Remove the trypsin-EDTA, add mL of fresh GM</td>
</tr>
<tr>
<td></td>
<td>Disperse cells by gentle pipetting</td>
</tr>
<tr>
<td></td>
<td>Final cell numbers mL</td>
</tr>
<tr>
<td></td>
<td>Above suspension of cells was seeded as follows</td>
</tr>
<tr>
<td></td>
<td>Number</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Incubated at 37°C CO₂ incubator</td>
<td></td>
</tr>
<tr>
<td>Remarks:</td>
<td></td>
</tr>
<tr>
<td>檢驗者：</td>
<td>實驗室主管：</td>
</tr>
</tbody>
</table>
附錄 15.3 流感病毒感染觀察紀錄表

衛生福利部疾病管制署研究檢驗及疫苗研製中心
流感病毒感染觀察紀錄表

<p>| | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Cell:
G.M.:
M.M.:
Inoculum:

檢驗者：
實驗室主管：
附錄 15.4 流感病毒螢光鑑定紀錄表

衛生福利部疾病管制署研究檢驗及疫苗研製中心

流感病毒螢光鑑定紀錄表

<table>
<thead>
<tr>
<th>檢驗者</th>
<th>實驗室主管</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

檢驗者：

實驗室主管：
附錄 15.5 HA/HI 結果紀錄表

衛生福利部疾病管制署研究檢驗及疫苗研製中心

<table>
<thead>
<tr>
<th>HA/HI Test Form</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>試驗項目</td>
<td></td>
</tr>
<tr>
<td>抗原</td>
<td></td>
</tr>
<tr>
<td>日期</td>
<td></td>
</tr>
<tr>
<td>保存溫度</td>
<td></td>
</tr>
<tr>
<td>紅血球</td>
<td></td>
</tr>
<tr>
<td>採血日期</td>
<td></td>
</tr>
<tr>
<td>保存溫度</td>
<td></td>
</tr>
<tr>
<td>備註</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

檢驗者： 實驗室主管：
附錄 15.6 Chemicon respiratory viral screen kit 之注意事項

（1）樣品穩定性及保存方式（stability and storage）
當儲存於 2–8 °C 的情況下，在 kit 標記的使用期限內試劑均可維持穩定的品質，試劑勿置於過高或過低的溫度環境中，已過使用期限的試藥切勿再繼續使用。
若實驗中發現熒光值降低，可能是抗體或是接合劑產生變質情況，在每一次實驗進行過程中均須有陽性對照組以確保試劑及染色過程無誤。若經過測試螢光染色的效果仍然不佳，則建議更換試劑組。

（2）A 型及 B 型流感病毒陽性之檢體，被螢光染色部位包含細胞核或細胞質或二者皆有細胞核的亮度較為均勻，而細胞質的螢光亮度隨大顆包涵體存在的位置而呈較為點狀的分布。

（3）試劑之專一性測試（Specificity）
美國七個臨床實驗室測試呼吸道檢體經細胞培養後以 Chemicon respiratory viral acreen 檢測試劑專一性，結果如下表：

<table>
<thead>
<tr>
<th>MONOCLONAL ANTIBODIES</th>
<th>Adeno</th>
<th>RSV</th>
<th>Influ A</th>
<th>Influ B</th>
<th>Para 1</th>
<th>Para 2</th>
<th>Para 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>True Positive</td>
<td>43</td>
<td>66</td>
<td>11</td>
<td>4</td>
<td>11</td>
<td>5</td>
<td>28</td>
</tr>
<tr>
<td>False Positive</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>True Negative</td>
<td>602</td>
<td>580</td>
<td>635</td>
<td>642</td>
<td>635</td>
<td>641</td>
<td>618</td>
</tr>
<tr>
<td>False Negative</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sensitivity (%)</td>
<td>97.7</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Specificity (%)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Predictive Value Positive %</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Predictive Value Negative %</td>
<td>99.8</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
目的

以分子生物學的技術利用反轉錄酶-聚合酶連鎖反應（RT-PCR）與即時定量RT-PCR來檢測體中是否有流感病毒。

適用檢體種類

適用之檢體種類包括咽喉拭子、鼻咽拭子、鼻咽抽出液、支氣管肺泡灌洗液等。

名詞解釋

無。

原理概述

4.1 RT-PCR：
利用分子生物學技術 RT-PCR 高敏感度的方法來檢測體中的流感病毒 RNA。RT-PCR之原理為設計專一性之引子（primers），把體中的病毒 RNA 反轉錄成 DNA，並將擴增放大。

4.2 即時定量 RT-PCR：
此系統的定量原理是利用一標記兩種熒光的 DNA 探針來偵測聚合酶連鎖反應的產物。此 DNA 探針的 5’端標記一報告染劑 (reporter dye)，3’端則標記一遮蔽染劑 (quencher dye)，完整的 DNA 探針其報告染劑所散發出的熒光會被遮蔽染劑所掩蓋。當聚合酶進行延伸反應（extension phase）時，具有從 5’端 DNA 切割活性的 DNA 聚合酶將探針切割，使得 5’端報告染劑與 3’端遮蔽染劑分開，遮蔽效應被破壞，此時即可偵測到熒光反應。

試劑耗材

5.1 QIAamp viral RNA kit。
5.2 Qiagen PCR core kit。
5.3 TBE buffer (tris-borate/EDTA electrophoresis buffer)。
5.4 陽性對照組（positive control）：採用已知流感病毒培養液對照；陰性對照組（negative control）：採用以水作陰性對照。
5.5 試劑 TaqMan one-step RT-PCR master mix reagents (SN: 4309169) 4 °C 保存與 LightCycler 480 RNA master hydrolysis probes (Roche, Cat. no. 04 991 885 001). TaqMan exogenous internal positive control(VIC) (SN: 4308323) -20 °C 保存。
5.6 Optical 96 well reaction plate (part number N801-0560)。
5.7 Optical plate adhesive covers (part number 4311971)。
5.8 Agarose。
5.9 DEPC 水。
5.10 無菌 PCR 反應管。
5.11 無菌 2 μL, 20 μL, 100 μL, 200 μL, 1,000 μL tips。
5.12 無菌 1.5 mL 微量離心管。
5.13 手套。
衛生福利部疾病管制署傳染病標準檢驗方法

編號：流感病毒核酸檢測（real-time PCR）

核准日期： 年 月 日
修訂日期： 年 月 日

頁次：第 883 頁/共 1104 頁

6 儀器設備
6.1 PCR thermal cycler。
6.2 即時定量偵測儀（如 ABI system, Bio-rad system, LightCycler system 等）。
6.3 電泳槽。
6.4 DNA 電泳膠體觀察設備。
6.5 2 μL, 20 μL, 100 μL, 200 μL, 1,000 μL Pipetman。

7 環境設施安全
採用獨立的操作空間，將 RNA 或 DNA 有關的實驗室分開，以避免污染，影響結果。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

10 檢驗步驟
10.1 檢體前處理
10.1.1 檢體編號：核對檢驗單之個案與檢體是否相符，給予編號。
10.1.2 咽喉拭子、鼻咽拭子等檢體
10.1.2.1 棉棒充分攪拌後於塑膠管壁旋轉擠乾取出。
10.1.2.2 分裝並標示號碼及日期，保存於-80 °C。
10.2 萃取病毒 RNA
10.2.1 取 140 μL 的檢體，加入 560 μL Lysis buffer（AVL），震盪混
合，室溫靜置反應 10 min。
10.2.2 加入純酒精 560 μL 終止反應。
10.2.3 將上述混合液分兩次加入通管柱（column），並以離心（8,000
rpm·1 min）方式加速混合液通過濾膜，檢體中如有 RNA 存在，
會吸附在管柱底部的濾膜上。
10.2.4 以清洗液（AW1）500 μL，離心 8,000 rpm，1 min，作第一次
沖洗，清洗膜上所吸附的雜質。
10.2.5 以清洗液（AW2）500 μL，離心 14,000 rpm，3 min，作第二次
沖洗，清洗膜上剎餘吸附的雜質。
10.2.6 離心 14,000 rpm，1 min，以徹底去除膜上殘留酒精。
10.2.7 加入 50 μL DEPC 水，室溫靜置 1 min，在 4 °C 離心 8,000 rpm，1 min，取得 RNA。

10.3 FluA/B 即時反轉錄酶－聚合酶鍵鎖反應

10.3.1 ABI 系統

10.3.1.1 試劑添加量
2 X Master mix buffer 12.5 μL
FluA-F primer（10 μM） 1.0 μL
FluA-R primer（10 μM） 1.0 μL
FluB-F primer（10 μM） 1.0 μL
FluB-R primer（10 μM） 1.0 μL
FluA probe（5 μM） 0.5 μL
FluB probe（5 μM） 0.5 μL
RNA enzyme mix 0.67 μL
RNase-free water 1.83 μL
template 5.0 μL

25.0 μL

10.3.1.2 Real-time RT-PCR 反應條件
10.3.1.2.1 RT reaction：48 °C，30 min。
10.3.1.2.2 Taq activation：9 °C，10 min。
10.3.1.2.3 PCR reaction：95 °C，15 s；60 °C，1 min（45 cycles）。

10.3.2 Roche 系統

10.3.2.1 試劑添加量
RNase-free water 0.3 μL
FluA-F primer（10 μM） 1.0 μL
FluA-R primer（10 μM） 1.0 μL
FluB-F primer（10 μM） 1.0 μL
FluB-R primer（10 μM） 1.0 μL
FluA probe（5 μM） 0.5 μL
FluB probe（5 μM） 0.5 μL
Enzyme master mix 7.4 μL
Enhancer 1.0 μL
Activator 1.3 μL
RNA sample 5.0 μL

Total 20.0 μL

10.3.2.2 Real-time RT-PCR 反應條件
10.3.2.2.1 RT reaction：63 °C，3 min。
10.3.2.2.2 Taq activation：95 °C，30 sec。
10.3.2.2.3 PCR reaction：95 °C，10 sec；58 °C，30 sec；72 °C，3 sec（45 replication cycles）。
10.4 FLUA H1/H3 即時反轉錄酶－聚合酶鍊鎖反應

10.4.1 試劑添加量

<table>
<thead>
<tr>
<th></th>
<th>用量</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNase-free water</td>
<td>2.8 µL</td>
</tr>
<tr>
<td>Forword primer (10 μM)</td>
<td>1.0 µL</td>
</tr>
<tr>
<td>reverse primer (10 μM)</td>
<td>1.0 µL</td>
</tr>
<tr>
<td>probe (5 μM)</td>
<td>0.5 µL</td>
</tr>
<tr>
<td>Enzyme master mix</td>
<td>7.4 µL</td>
</tr>
<tr>
<td>Enhancer</td>
<td>1.0 µL</td>
</tr>
<tr>
<td>Activator</td>
<td>1.3 µL</td>
</tr>
<tr>
<td>RNA sample</td>
<td>5.0 µL</td>
</tr>
<tr>
<td>Total</td>
<td>20.0 µL</td>
</tr>
</tbody>
</table>

10.4.2 Real-time RT-PCR 反應條件

10.4.2.1 RT reaction：63 °C，3 min。

10.4.2.2 Taq activation：95 °C，30 sec。

PCR reaction：95 °C，10 sec；58 °C，30 sec；72 °C，3 sec (45 replication cycles)。

10.5 檢驗後處理

檢驗完成後之檢體與廢液，於高溫高壓滅菌器滅菌後，依感染性醫療廢棄物處理。檢驗後之剩餘檢體依序裝入檢體架內保存。

11 結果判定

11.1 判讀標準

11.1.1 Real-time RT-PCR：若 FLUA 或 FLUB 有螢光訊號產生，即可判定為該型流感陽性。

11.1.2 RT-PCR：RT-PCR 產物各取 5 µL，在 1.5 %洋菜膠進行分析，檢視分析結果。增幅產物片段若為約 1200 bp，則判定為 A 型流感 H1 亞型，增幅產物片段若為約 550 bp，則判定為 A 型流感 H3 亞型。

11.2 報告核發：流感病毒陰性，A 流感病毒 SWH1 real-time PCR 陽性，A 流感病毒 H3 real-time PCR 陽性，B 流感病毒 real-time PCR 陽性。

11.3 結果登錄：完成檢驗後，將檢驗結果填寫於檢體送驗單之“檢驗結果欄”，並上網登錄於實驗室資訊管理系統，傳送實驗室主管審核，待審核通過後發佈結果。

12 品質管制

12.1 陽性對照組：陽性對照組 RNA 之 Ct 值應介於 25~26 間。

12.2 陰性對照組：陰性對照組(二次水)需無任何螢光訊號產生。

12.3 若檢驗結果不符合上述任一品質管制要點，該結果不可作為檢驗結果判讀依據，檢體需重新檢驗。
13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

15 附錄
15.1 流感病毒診斷用引子組序列表。
15.2 注意事項
以 Heparin 為抗凝劑的血漿或溶血檢體可能會干擾 Taq polymerase 的作用，降低檢驗敏感性。
附錄 15.1 流感病毒診斷用引子組序列表

Real-time RT-PCR

FluA-F 5’- AAG ACC AAT CCT GTC ACC TCT GA -3’
FluA-R 5’- CAA AGC GTC TAC GCT GCA GTC C -3’
FluB-F 5’- GAG ACA CAA TTG CCT ACC TGC TT -3’
FluB-R 5’– TTC TTT CCC ACC GAA CCA AC -3’
FluA probe FAM -5’ TTC TTT GTG TTC AGC TCT ACC GT 3’-TAMRA
FluB probe VIC(HEX)-5’AGA AGA TGG AGA AGG CAA AGC AGA ACT AGC 3’-TAMRA(BBQ)

SWH1 forward primer: GTG CTA TAA ACA CCA GCC TYC CA
SWH1 reverse primer: CGG GAT ATT CCT TAA TCC TGT RGC
SWH1 probe: FAM-CA GAA TAT ACA TCC RGT CAC AAT TGG ARA A-BBQ

H3 forward primer: TGC TAC TGA GCT GGT TCA GAG T
H3 reverse primer: AGG GTA ACA GTT GCT GTR GGC
H3- probe: FAM-AGA TGC TCT ATT GGG AGA CC-BBQ
目的
利用蛋白質電泳與西方墨點法檢測通報個案腦脊髓液檢體中的蛋白質14-3-3的表現量，並綜合相關臨床病症做病例的研判。

2 適用檢體種類
通報疑似庫賈氏症的腦脊髓液檢體(CSF)。

3 名詞解釋
無。

4 原理概述
4.1 經相關文獻報導，有(93.6%)庫賈氏症患者的於發病過程中，其原本存在於正常人體細胞中的蛋白質14-3-3會大量表現於腦脊髓液中，因此該蛋白質可為一檢測之生物標誌。
4.2 該檢驗檢驗技術的敏感度90 - 97 %，專一性87 - 100 %。
4.3 先利用蛋白質電泳將腦脊髓液中的所有蛋白質進行分離，再利用對Protein14-3-3具有專一性之抗體與CSF檢體中之蛋白質14-3-3結合反應，並在冷光偵測儀下檢測蛋白質14-3-3是否有大量表現。

5 試劑耗材
5.1 檢測試劑
5.1.1 蛋白質電泳專用試劑
5.1.1.1 Tris-glycine SDS sample buffer (2 X)。
5.1.1.2 2-mecaptoethanol (2-ME)。
5.1.1.3 Pre-cast gel (4 - 20 %) Tris-glycine, 1.5mm x 10 well。
5.1.1.4 See blue plus 2 pre-stained protein standard。
5.1.1.5 Tris-glycine SDS running buffer (10 X)。
5.1.2 西方墨點法專用試劑
5.1.2.1 iBlot® transfer stack, PVDF regular。
5.1.2.2 Skim milk。
5.1.2.3 Tris-glycine transfer buffer (10 X) (Tris base 7.28 g, Glycine 36 g, ddH2O 500ml)。
5.1.2.4 PVDF membrane-immobilon-P。
5.1.2.5 Tris-Glycine transfer buffer (1x): Tris-Glycine transfer buffer (10x) 100 mL, methanol 200 mL, ddH2O 700 mL。
5.1.2.6 Methanol (HPLC grade)。
5.1.2.7 TTBS 5 X (tris base 30g, NaCl 22.5 g, Tween-20 2.5 mL, ddH2O 配至 500 mL)。
5.1.2.8 Blocking buffer tris base 12 g, NaCl 9 g, ddH2O 配至 1 L。
5.1.2.9 一級抗體:14-3-3β (K-19) Primary antibody (rabbit IgG)。
5.1.2.10 二级抗体: Goat-anti-rabbit IgG-HRP, SantaCruz Cat no. SC-2004。
5.1.3 阳性对照组: Positive 14-3-3 Sigma Ab-1 control (MS-11185-PCL, Neomarkers, CA, USA)。
5.1.4 阴性对照组: Sample loading buffer。
5.2 耗材
5.2.1 無菌 10 μL、20 μL、100 μL、200 μL、1,000 μL Tips。
5.2.2 無菌 1.5 mL Eppendorf。
5.2.3 無粉手套。

6 器材设备
6.1 2.5 μL、10 μL、100 μL、200 μL、1,000 μL Pipeteman。
6.2 第二级生物安全箱 (class B II BSC)。
6.3 直立式 Mini-cell 蛋白质电泳槽 (含全湿式转印夹)。
6.4 電源供应器。
6.5 半乾式转浸槽 (iBlot® dry blotting system)。
6.6 水平震盪器。
6.7 乾浴槽。

7 環境設施安全
7.1 檢體箱開封及檢體狀態確認應在生物安全操作櫃中進行。
7.2 檢驗操作在生物安全第三等級 (BSL-3) 負壓實驗室進行，並依本中心台南生物安全第三等級實驗室訂定之標準操作程序書執行業務。
7.3 實驗人員需穿戴 N95 口罩、實驗防護衣及雙層手套、遮蔽頭髮之髮帽及鞋套。
7.4 病人 CSF 檢體分裝與檢驗應在第二級生物安全箱內處理。
7.5 實驗完畢須在生物安全箱中噴灑消毒劑，於 10 min 之後擦拭並打開紫外線燈以維護生物安全箱之潔淨。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

9 檢體運送與保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

10 檢驗步驟
10.1 去活化腦脊髓液檢體中的蛋白質
10.1.1 生物安全操作櫃(BSC)先鋪一層吸水紙。
10.1.2 再將檢體與所需之試劑移至 BSC 依序放好。
10.1.3 準備 2 X Sample buffer 與 2-mecaptoethanol (2-ME)。
10.1.4 標示檢體編號、陽性對照組、蛋白質分子標誌與陰性對照組於 1.5 mL 離心管蓋上。
10.1.5 配置 Sample loading buffer（SLB），其配方如下：
10.1.6 16.2 μL of 2 X Sample buffer +1.8 μL of 2-mecaptoethanol
10.1.7 =18 μL SLB
10.1.8 檢體（S）取 18 μL 加入含有 18 μL SLB 的 1.5 mL 離心管中。
10.1.9 陽性對照組（PC）與陽性病人檢體對照組（PP）取 2 μL 加入含有 34 μL SLB 的離心管中，陰性對照組（NC）為 SLB。
10.1.10 蛋白質分子標誌（M）取 7 μL 加入含有 29 μL SLB 的 1.5 mL 離心管中。10.1.6-10.1.8 簡易配製如下表：

<table>
<thead>
<tr>
<th>檢體編號</th>
<th>Sample</th>
<th>M</th>
<th>PC</th>
<th>PP</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
<th>NC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vol（μL）</td>
<td>7</td>
<td>2</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>SLB（μL）</td>
<td>29</td>
<td>34</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>36</td>
</tr>
</tbody>
</table>
10.1.11 混合均勻後轉至乾浴槽 100 °C，5 min。
10.1.12 加熱去活化結束後轉至 4 °C 冰箱靜置 5 min。
10.1.13 取出商用含有電泳膠片的卡夾（pre-cast gel），並將卡夾下方的白色膠帶撕掉，架置於直立式 Mini-cell 蛋白質電泳槽。
10.1.14 配製 400 mL 1X 電泳溶液（tris-glycine SDS running buffer），並加入以架置好之直立式蛋白質電泳槽中，溶液蓋過內槽的 Loading well 即可，外槽電泳溶液適量蓋過底下白金電極即可。
10.1.15 拔掉電泳膠上的齒模，將整個電泳槽移入 BSC 中，並小心依序取出 10.1.6-10.1.8 處理後的樣本，緩慢加入電泳膠片的孔中。
10.1.16 蓋上上蓋，並依正負極顏色插入電源供應器中，先設定電壓 120 V 通電 1 小時，之後增加電壓至 150 V 通電 1 小時。
10.2 西方墨點法檢測（直立式 Mini-cell 蛋白質電泳槽(含全濕式轉印夾)）
10.2.1 先配製 800 mL 的轉漬溶液。
10.2.2 取用適當大小的盒子（約 7 cm × 12 cm × 4 cm）將 PVDF 膜放置其中，加入一定量的甲醇浸泡 30 sec，再進入去離子水 30 sec，最後與濾紙、海棉等必要輔助器材浸泡於轉漬溶液 10 分鐘，並放置於 BSC 中。
10.2.3 取出全濕式轉印夾，如下圖。將浸泡於轉漬溶液的海綿（2 片）與濾紙取出，先放 2 片海綿於底部的負極，再其上加一片濾紙。
10.2.4 蛋白質電泳完成後關閉電源，取用一個 PP 浸泡盤放入 BSC 中，並將整個電泳槽移置浸泡盤上，槽內之緩衝溶液倒入 BSC 內的廢液桶中。

10.2.5 小心含有電泳膠的卡夾取下，並使用原廠配附的鏟子將卡夾分開。將膠片上方含有孔部分的膠片剷除，並使用鏟子將膠體取下。

10.2.6 將取下的膠片放置於 10.2.3 的濾紙上方，再將 PVDF 膜蓋於電泳膠片上，再依序覆蓋一片濾紙、2 片海綿（如下圖）。並小心將氣泡去除。

10.2.7 將架置好全濕式轉印夾放入電泳槽內，並加入使適量之轉漬溶液於轉印夾中，不需過滿。加入約 650 mL 的去離子水，水的高度約兩公分即可。

10.2.8 蓋上上蓋，設定電壓 25 V，進行 2 hr 的蛋白質轉漬。

10.2.9 先配製 20 mL 含有 5% Skim milk 的 Blocking 緩衝液。

10.2.10 先取出轉印夾，將其中的緩衝液到入廢液桶中，並放置於一層新的吸水紙上，依序將海綿、濾紙取出。

10.2.11 將完成轉漬的 PVDF 膜放入含有 10.2.9 緩衝液的有蓋子的容器。
衛生福利部疾病管制署傳染病標準檢驗方法

編號：

庫賈氏病標蛋白檢測(WB)

核准日期：年月日

修訂日期：年月日

頁次：第892頁/共1104頁

10.2.12 反應完成前 5 min，配製 20 mL 含有 5 % Skim milk 與一級抗體:14-3-3β(K-19) Primary antibody(rabbit IgG)的 Blocking 緩衝液。

10.2.13 反應 1 小時後，將 10.2.11 的緩衝液到入廢液桶中，加入 10.2.12 的緩衝液，並放置於水平震盪器上以 30 rpm 進行反應 2 小時。

10.2.14 反應完成前 5 分鐘，配製 20 mL 含有 5 % Skim milk 與二級抗體:Goat-anti-rabbit IgG-HRP 的 Blocking 緩衝液。

10.2.15 反應 2 小時後，將 10.2.13 的緩衝液到入廢液桶中，加入適量 TTBS 緩衝液清洗 PVDF 膜，並放置於水平震盪器上以 30 rpm 反應 5 分鐘，該步驟須進行三次。

10.2.16 清洗結束後，加入 10.2.14 的緩衝液，並放置於水平震盪器上以 30 rpm 進行反應 1 小時。

10.2.17 重複 10.2.15 的步驟。並將清洗液倒乾淨。

10.2.18 配製 ECL 溶液 6 mL，與 PVDF 膜反應 1 min。

10.2.19 妥善以保鮮膜將 PVDF 包覆起來，放入卡夾中避光。

10.2.20 進暗房進行 X-Ray 底片曝光或使用冷光偵測曝光 1 - 5 分鐘。

11 結果判定

11.1 劃讀標準

膠片中檢體蛋白顯影位置如與陽性對照組、陰性病人檢體對照組(PP)位置一致，則判定為 14-3-3 蛋白質西方墨點法檢測陽性。

11.2 報告核發

西方墨點法陽性，西方墨點法陰性。

11.3 結果登錄

完成檢驗後，將檢驗結果登錄於「蛋白質 14-3-3 檢測紀錄表」及「檢體送驗單」並加蓋檢驗者印章，送實驗室主管審核及蓋章，並登錄於網路報告系統。

12 品質管制

12.1 室內品管

12.1.1 控制組

12.1.1.1 Positive control：Positive 14-3-3 Sigma Ab-1 control。

12.1.1.2 Sample loading buffer。

12.1.2 每次試驗應執行品管測試。

12.1.3 品管測試結果 Positive control，Negative control。

12.1.4 品管測試結果若有違背品管允收標準應依矯正及預防措施作業程序，加以矯正，必要時採取預防措施。

13 廢棄物處理

13.1 可拋棄、可燃之實驗廢棄物

13.1.1 所有反應過後產生的緩衝液皆需倒入內含有 4 層滅菌袋包裝廢
液桶中，俟検验结束後将滅菌袋绑好，整袋放入滅菌桶中。

13.1.2 操作所存留廢液與耗材等感染性事業廢棄物，應先以滅菌袋裝妥密封並貼上滅菌帶，整桶連同包裝好之醫療廢棄物放入雙門高溫高壓滅菌鍋中，以 134 °C，18 min 高壓滅菌。

13.1.3 滅菌後之廢棄物將先暫存於 4 °C 冰箱中，由具甲級醫療廢棄物處理廠商固定每週收取並記錄於表單。

13.2 可重複使用器具消毒處理流程：

13.2.1 新配製之 1N NaOH（40 g NaOH 溶於 1 L 的去離子水中），以吸水紙沾取 1N NaOH，擦拭電泳槽（因槽體不耐鹼性溶液的長時間浸泡），其餘器具須浸泡於 1N NaOH 溶液中 1 小時。

13.2.2 消毒過後的器具泡在含有去離子水的容器中，換水清洗數次，可以酸鹼指示試紙確認器具表面是否回復中性。

14 參考資料

14.1 庫賈氏病及其他人類傳播性海綿樣腦症感染控制與病例通報指引手冊。

14.2 本署實驗室廢棄物清理流程及圖解。

15 附錄

15.1 庫賈氏症蛋白質 14-3-3 標準檢驗方法流程圖。

15.2 庫賈氏症蛋白質 14-3-3 實驗紀錄表。
附錄 15.1 庫賈氏症蛋白質 14-3-3 標準檢驗方法流程圖

CSF 檢體收件

100 °C 加熱 5 分鐘去活化

蛋白質 SDS-PAGE 2 小時

蛋白質轉滲 2 小時

1 級抗體雜交反應 2 小時

2 級抗體雜交反應 1 小時

ECL 反應 1 分鐘

暗房壓片／冷光儀檢測

結果判定
附錄 15.2 庫賈氏症蛋白質 14-3-3 實驗紀錄表

衛生福利部疾病管制署研究檢驗及疫苗研製中心
庫賈氏症蛋白質 14-3-3 實驗紀錄表

檢驗日期：

<table>
<thead>
<tr>
<th>样品編號</th>
<th>M</th>
<th>PC</th>
<th>PP</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
<th>NC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vol (μL)</td>
<td>7</td>
<td>2</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>SLB (μL)</td>
<td>29</td>
<td>34</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>36</td>
</tr>
</tbody>
</table>

結果判定（P/N）

膠片日期

<table>
<thead>
<tr>
<th>膠片編號</th>
<th>年</th>
<th>月</th>
<th>日</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

（西元/月日/第幾片）
如於 2010 年 10 月 1 日進行 1 片膠片的西方墨點實驗即為 2010100101

膠片黏貼處

註：陽性為 P，陰性為 N。

檢驗者：

實驗室主管：

表單編號：
1 目的
将疑似库贾氏病病人送验之血液标本进行核酸萃取与 PRNP 基因型别分析，以确认是否为遗传型库贾氏病。

2 適用检体種類
適用於病人血液。

3 名詞解釋
PRNP 基因转译後為人類 Prion 蛋白質，经过证实该基因发生有意义之突变後，将提高 Prion 蛋白質變異之可能性，进而造成遺傳型库贾氏病。

4 原理概述
藉由萃取血液內白血球 DNA，與採用專一性之引子（Primers），PRNP 基因 PCR 方法複製增多放大，經基因定序，並與参考序列比对确认是否有突变。

5 試劑耗材
5.1 檢測試劑 Quick-gDNA Blood MiniPrep（Zymo research Cat. No.D3073）。
5.1.1 Genomic Lysis Buffer
5.1.2 DNA Pre-Wash Buffer
5.1.3 g-DNA Wash Buffer
5.1.4 DNA Elution Buffer
5.1.5 Zymo-Spin™ IIC Columns
5.1.6 Collection Tubes
5.2 核酸引子
PR01（5’-TGATACCATGCTATGACATTTTC-3’）
PR01（5’-TGATACCATGCTATGACATTTTC-3’）
5.3 核酸增幅試劑 All-in-One Advanced PCR Mix (Cat. No.PT-TMM-AD-RTU)
5.4 Agarose(琼胶)、0.5X TBE (電泳缓冲液)
5.5 對照組核酸
5.5.1 陽性對照組（Positive Control DNA），含 PRNP 基因序列之 Human DNA。
5.5.2 陰性對照組（Negative Control DNA），DNase 或 RNase-free H2O。
5.6 耗材
5.6.1 定量 PCR （QPCR 8-strip Tubes）
5.6.2 定量 PCR 專用八連排反應蓋
5.6.3 無菌 2 μL、20 μL、100 μL、200 μL、1,000 μL 吸管尖
5.6.4 無菌 1.5 mL 微量離心管
5.6.5 手套
6 儀器設備
 6.1 第二級生物安全櫃（Class II BSC）。
 6.2 聚合連鎖反應儀
 6.3 微量滴管分注器
 6.4 離心機
 6.5 DNA 電泳槽
 6.6 微波爐
 6.7 UV 燈箱
 6.8 4°C冰箱
 6.9 -20°C冷凍櫃
 6.10 高壓滅菌器

7 環境設施安全
 7.1 為避免操作之核酸污染，所以病人血液檢體應在第二級生物安全櫃（Class II BSC）內處理。
 7.2 後續核酸檢驗可在生物安全第二等級（BSL-2）實驗室操作。
 7.3 應有獨立的操作空間與操作 DNA 有關的實驗室分開，以避免污染。

8 檢體採集
 參照本署出版之「傳染病檢體採檢手冊」第二版。
 http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

9 檢體運送及保存
 參照本署出版之「傳染病檢體採檢手冊」第二版。
 http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

10 檢驗步驟
 10.1 檢體前處理
 10.1.1 檢體編號登錄。
 10.1.2 血液檢體於離心 400*g, 10 分鐘，如無法得到澄清之上清液，需再重複離心。
 10.1.3 取上清液，並小心吸取沉積於血液上層之白血球移入新的 1.5 mL 離心管。
 10.1.4 含有血球之血漿離心 2800*g, 10 分鐘。
 10.1.5 將上層血漿移到新離心管中保存於-20°C冷凍櫃，下層白血球部分存放入-20°C冷凍櫃保存。
 10.2 核酸萃取步驟
 10.2.1 取出含有白血球之檢體。
 10.2.2 加入 400 μL Genomic Lysis Buffer，利用分注滴管充分混合，並靜置 10 分鐘。
10.2.3 取出 Zymo-Spin™ IIC Column 放在 Collection Tube 上，並將經 lysis buffer 處理過之檢體加入 Zymo-Spin™ IIC Column 內，並以 10,000rpm 離心 1 分鐘。

10.2.4 將 Zymo-Spin™ IIC Column 移至新的 Collection Tube，並加入 200 μL DNA Pre-WashBuffer，並以 10,000rpm 離心 1 分鐘。

10.2.5 倒掉下層液，並加入 500 μL g-DNA Wash Buffer，並以 10,000rpm 離心 1 分鐘。

10.2.6 將上管 Zymo-Spin™ IIC Column 移至新的 1.5mL 離心管，並加入 100 μL DNA Elution Buffer，静置 5 分鐘，並以 10,000 rpm 離心 3 分鐘。

10.2.7 丢掉上管 Zymo-Spin™ IIC Column，並將含有 DNA 之離心管放入-20℃冷凍櫃保存待用。

10.3 核酸增幅與電泳分析

10.3.1 取 1 μL DNA 做模板，加入偵測的 PRNP 引子組置於冰上。

10.3.2 加入反應溶液（成分如附表），調整反應總體積至 20 μL。

<table>
<thead>
<tr>
<th>初始濃度</th>
<th>加入體積(μL)</th>
<th>最後濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-in-One Advanced PCR Mix</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PR01(10μM)</td>
<td>0.5</td>
<td>250nM</td>
</tr>
<tr>
<td>PR02(10μM)</td>
<td>0.5</td>
<td>250nM</td>
</tr>
<tr>
<td>Sample gDNA</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>RNase-free H2O</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

10.3.3 使用聚合連鎖反應儀上機。

10.3.3.1 Denaturation：94 ℃，15 秒。
10.3.3.2 Annealing：58 ℃，30 秒。
10.3.3.3 Extension：72 ℃，30 秒。
10.3.3.4 重複 10.3.3.1 至 10.3.3.3 步驟 34 cycle。
10.3.3.5 Extension：72 ℃，10 分鐘。Iuu

10.3.4 取 0.5X TBE 緩衝液配置 1.5% agarose 瓊膠，並於微波爐加熱至沸騰，並倒入製作織體的模具內。

10.3.5 將配置好汁織體放入電泳槽內，並於槽內加入適量之 0.5X TBE 緩衝液體，並將 PCR 產物取 2μL 與 2μL loading buffer 混合，再加入織體上方孔洞內。

10.3.6 以 100V 電壓下進行電泳 30 分鐘，將織體片於 UV 燈箱內確認產物有無與片段大小是否符合預期。

10.3.7 聯絡定序廠商收件。

11 結果判定

11.1 判讀標準

定序後之基因片段以軟體 BioEdit 開啟，並與參考序列比對分析是否產生突變。
11.2 報告核發
 於通報單上紀錄核酸分析結果。

11.3 結果登錄
 將定序之結果登錄於 LIMS 系統，於病原檢驗登入頁面下選擇檢驗方法為核酸分析，檢驗結果為檢體保留，並於備註欄補充 PRNP 基因之結果或發生突變胺基酸之位點。

12 品質管制
 所使用試劑皆應於有效期內用完。

13 廢棄物處理
 檢驗過程之物品、廢液及剎餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
 無

15 附錄
 無
1 目的
分離與鑑定布氏桿菌，以確定病例與感染源。

2 適用檢體種類
人體全血(抗凝固全血)。

3 名詞解釋
無。

4 原理概述
以培養基分離培養細菌後，依據菌落形態、細菌生理特徵、生化反應特性檢測等方法原理鑑定之。

5 試劑耗材
5.1 BAP（blood agar plate）：CMP，台灣。
5.2 Brucella agar：BD，美國。
5.3 BHIA（Brain Heart Infusion Agar）：BD，美國。
5.4 血液培養瓶：BD，美國。
5.5 革蘭氏染色液（Gram stain solution）：Difco，美國。
5.6 API 20 E 生化鑑定套組：BioMerieux，法國。
5.7 載玻片。
5.8 無菌接種環（針）。
5.9 3 mL 無菌塑膠吸管。
5.10 無菌（含濾棉）微量吸管尖（tip）：200μl。
5.11 無菌針筒：5ml、10ml。

6 儀器設備
6.1 37℃ 二氧化碳培養箱。
6.2 光學顯微鏡：能放大至 1000X 油鏡。

7 環境與設施安全
於生物安全第三等級（BSL-3）實驗室之設施內操作。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A
行政院衛生署疾病管制局傳染病標準檢驗方法

編號：布氏桿菌分離與鑑定

核准日期：
修訂日期：

頁次：第901頁/1104頁

10 検驗步驟
10.1 検體前處理
 実験室於收到検體及送験單後，先行核對検體種類、姓名、數量等資料
 正確與否，並依序登錄於紀錄簿。
10.2 分離培養
 10.2.1 人體血液検体以無菌微量吸管各吸取100 μL分別接種於BAP、
 BHIA、Brucella agar 培養基上。
 10.2.2 另以無菌針筒吸取血液検体注入血液培養瓶(1:5~1:10 比例)。
 10.2.3 培養：35℃ 5％CO₂ 培養箱培養。
 10.2.4 觀察：每天觀察 BAP、BHIA、Brucella agar plate 生長情形，經
 2~3 天後，觀察有無可疑菌落，如有即進行鑑定。
 10.2.5 另血液培養瓶經培養後，每天觀察生長情形，如有生長(混濁)，
 則以無菌針筒吸取血液培養瓶內之培養液，接種於BAP、BHIA、
 Brucella agar 培養基上。
 10.2.6 重複 10.2.3~10.2.4 步驟。
10.3 鑑定
 10.3.1 菌落型態及染色
 10.3.1.1 菌落型態：布氏桿菌在培養基上，呈現平滑凸起，小
 而半透明菌落。
 10.3.1.2 菌落染色觀察：挑選可疑單一菌落型態作革蘭氏染色，
 符合形狀不一之革蘭氏陰性桿菌或球桿菌，無雙極性，
 單一或成對，進行後續鑑定。
 10.3.2 依照 API 20 E 生化鑑定步驟進行鑑定。
 10.3.3 並由 API 細菌鑑定检索电脑軟體查詢菌種名稱。

11 結果判定
11.1 陽性判定標準：符合下列結果判定為布氏桿菌陽性
 11.1.1 菌落型態：培養基上，呈現平滑凸起，小而半透明菌落。
 11.1.2 革蘭氏染色：不定性之革蘭氏陰性桿菌或球桿菌、無雙極性、
 單一或成對。
 11.1.3 API 20E 生化鑑定：經鑑定結果為 POSSIBILITY OF Brucella
 spp。
 11.1.4 進一步 Real-time PCR 鑑定。
 11.2 報告核發：布氏桿菌陽性、布氏桿菌陰性。

12 品質管制
12.1 培養基
 12.1.1 測試時間：每一批號由廠商提供品質管制文件，實驗室每季進
 行一次品管測試。
 12.1.2 測試菌株：Brucella melitensis ATCC 23456。
 12.1.3 測試方法：使用新鮮的測試菌，取適量接種於培養基，35℃ 5
 % CO₂ 培養 2~3 天。
12.1.4 觀察結果：菌落型態或測試反應符合布氏桿菌反應特性。

12.2 試劑套組
12.2.1 測試時間：每一批號由廠商提供品質管制文件，每次進行一
次品管測試。
12.2.2 測試菌株：Brucella melitensis ATCC 23456。
12.2.3 測試方法：使用新鮮的測試菌，依操作手冊說明進行試驗。
12.2.4 觀察結果：試驗結果需符合陽性判定結果。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋妥善
密封，再以 121℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
14.1 蔡文城。2010。實用臨床微生物診斷學：嗜氧性革蘭氏陰性桿菌的鑑定
（布氏桿菌屬），第十版，九州圖書文物有限公司，台灣。
14.2 API 20 E 操作手冊。

15 附錄
15.1 布氏桿菌分離與鑑定流程圖
15.2 布氏桿菌分離與鑑定紀錄表
附錄 15.1 布氏桿菌分離與鑑定流程圖

血液

接種血液培養瓶

接種於BAP、BIHA與Brucella agar，於35℃ 5% CO₂培養

培養基上，
呈現平滑凸起，小而半透明菌落

革蘭氏染色

無疑似菌落

不定性之革蘭氏陰性小桿菌或球桿菌，無雙極性，單一或成對

API20E
生化鑑定

布氏桿菌分子生
物學基因檢測

布氏桿菌平流式
篩檢分析法

陰性

陽性

布氏桿菌陰性

布氏桿菌陽性
附錄15.2 布氏桿菌分離與鑑定紀錄表

<table>
<thead>
<tr>
<th>項目</th>
<th>是</th>
<th>否</th>
<th>是</th>
<th>否</th>
<th>是</th>
<th>否</th>
<th>是</th>
<th>否</th>
</tr>
</thead>
<tbody>
<tr>
<td>檢體編號或姓名</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>檢體種類（採檢日期）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>檢體採樣運送狀況適當</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>布氏桿菌在培養基上, 呈現平滑凸起, 小而半透明菌落</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>形狀不一之革蘭氏陰性桿菌或球桿菌、無雙極性、單一或成對</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>API 20E 生化鑑定結果</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>布氏桿菌分子生物學基因檢測結果</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>布氏桿菌平流式篩檢分析法</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1 目的
布氏桿菌血清抗體之檢驗。

2 適用檢體種類
本方法適用於實驗室中布氏桿菌病血清抗體檢驗。

3 名詞定義
OIEISS：國際標準血清（OIE international standards Serum）。
RBT：玫瑰苯試驗（Rose Bengal test），為一種簡單的點凝集試驗，使用之抗原添加色素玫瑰苯，並使用低pH的緩衝環境（pH 3.65 ± 0.05）。
MAT：微量凝集試驗（microplate agglutination test），利用已定量之抗原與抗體反應，形成抗原抗體複合物並沉澱於96孔微盤底部之特性所發展之試驗方法。

4 原理概述
利用抗原抗體血清學之交互作用，以流產布氏桿菌之抗原檢測出受感染者之特異性抗體，而發展出平板凝集試驗以及微量凝集試驗等血清學檢測方法。

5 試劑耗材
5.1 實驗室標準血清：利用OIEISS為參考物質，實驗室保存之陽性測試血清。
5.2 Phenol saline（0.5 % phenol in 0.85 % NaCl溶液）。
5.3 玫瑰苯試驗用抗原（Brucella abortus RBT antigen）：Veterinary Laboratory Agency, United Kingdom，4 °C避光保存。
5.4 微量凝集試驗用抗原（Brucella abortus MAT antigen）：日本農業食品產業技術綜合研究機構，4 °C保存。
5.5 0.25% Safranin solution。
5.6 玻璃棒或塑膠棒。
5.7 玻片或塑膠板。
5.8 U 型底96孔盤。
5.9 96孔盤封膜。
5.10 無菌 tip：需1,000 μL、200 μL與10 μL等三種規格。

6 儀器設備
6.1 -70 °C冷凍冰庫。
6.2 Pipetman：需1,000 μL、200 μL、10 μL與八爪50μL等四種規格。
6.3 4 °C恆溫冰箱。
6.4 37 °C恆溫培養箱。
6.5 密封保鮮盒。

7 檢體採集
7.1 檢體無添加抗凝劑，血清無溶血且量不少於200μL。
行政院衛生署疾病管制局傳染病標準檢驗方法

編號：布氏桿菌抗體檢測（RBT及CFT）

7.2 參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

8 檢體運送及保存
低溫運送及保存，參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

9 檢驗程序
9.1 玫瑰苯試驗：
9.1.1 玫瑰苯試驗用抗原：使用之抗原濃度在 OIEISS 以 0.5 % Phenol saline 1:45 倍稀釋可產生陽性凝集反應，並且在 OIEISS 以 0.5% Phenol saline 1:55 倍稀釋則為陰性反應。
9.1.2 玫瑰苯試驗操作步驟
9.1.2.1 取測試所需之試劑回溫至室溫。
9.1.2.2 將待測血清 25-30 µL 置於適當之玻片或塑膠板上。
9.1.2.3 將抗原溫和搖勻，滴同量之抗原於待測血清之一側。
9.1.2.4 以塑膠或玻璃棒將抗原及血清充分混勻。
9.1.2.5 室溫下搖晃約 4 min 後判讀。
9.1.2.6 玫瑰苯試驗結果判讀：任何可見之凝集都視為陽性反應，並進行微量凝集試驗作為最終確認，陰性反應則結束檢驗並判定為結果陰性。

9.2 微量凝集試驗：
9.2.1 將實驗所需之試劑自冰箱取出回至室溫備用。
9.2.2 抗原以 0.5% Phenol saline 10 倍稀釋。
9.2.3 加入 1/50 抗原稀釋液體積的 0.25% Safranin solution 至己稀釋的抗原液。
9.2.4 在 96 孔盤上將待測血清、陰性及陽性對照血清以 0.5% Phenol saline 進行 2 倍序列稀釋，使血清的稀釋倍數為 1:5~1:640。
9.2.5 依序加入與血清等量（25ul）之抗原至各 well 中。
9.2.6 封膜並稍微搖晃 96 孔盤約 20 秒。
9.2.7 放入底部鋪有濕擦手紙之保鮮盒中密封，並置於 37 °C 恆溫培養箱中，18~24 小時後觀察。
9.2.8 結果判讀：
9.2.8.1 抗原抗體未凝集-抗原沉降至盤底形成一清晰紅點。
9.2.8.2 抗原抗體凝集-抗原抗體形成網狀結構。
9.2.8.3 產生抗原抗體凝集之最高稀釋倍數即為待測血清之力價。陽性血清抗體力價應高於 1：40。

10 綜合結果判讀如下：
10.1 玫瑰苯試驗陰性或玫瑰苯試驗陽性但微量凝集試驗（抗體力價小於 1：40）均判定為陰性。
10.2 玫瑰苯試驗陽性且微量凝集試驗抗體力價等於或大於 1:40 均判定為陽性。

11 品質管制作業
11.1 本項試驗確定困難時應予複檢。
11.2 複檢時若有需要，可取前一批檢驗合格品，一起測試。
11.3 如有適當機會，可參加實驗室比對或能力試驗。或不定期以標準血清或檢驗合格品進行全程測試以進行控管。

12 參考資料
目的
李斯特菌（Listeria）的分離與鑑定。

檢體種類與採檢容器
2.1 檢體種類：全血、腦脊髓液、羊水、胎盤等無菌部位臨床檢體、肛門拭子或糞便、菌株。
2.2 採檢容器：請參照本署最新版傳染病檢體採檢手冊。

原理概述
以特定培養基分離出Listeria，並利用MALDI-TOF進行菌種鑑定。

檢驗性能特徵
N/A

病人準備
N/A

試劑耗材
6.1 試劑
 6.1.1 MALDI-TOF試劑：HCCA
6.2 耗材
 6.2.1 可拋棄式接種環(針)
 6.2.2 可拋棄式無菌塑膠手套
 6.2.3 血液培養瓶
 6.2.4 培養基
 6.2.3.1 MOX (Modified Oxford agar)
 6.2.3.2 Chromogenic agar
6.3 個人防護耗材
 6.3.1 外科口罩
 6.3.2 手套
 6.3.3 個人防護衣

儀器設備
7.1 第二級生物安全櫃。
 7.1.1 使用前確認具年度合格標籤。
7.2 高壓滅菌鍋
 7.2.1 使用前確認具合格檢測標籤。
7.3 37°C 培養箱(incubator)

環境與設施安全
臨床檢體須於生物安全第二等級(BSL-2)實驗室內操作。

校正程序
9.1 頻率：依中區實驗室各項「儀器設備校正方法暨校正頻率」所明定之各項儀器設備之校正方法與頻率進行之。
9.2 校正液：N/A
9.3 校正步驟：N/A
9.4 數據儲存：N/A
9.5 校正量測追溯：詳見個別校正報告之記載
9.6 允收標準：詳見個別儀器設備之允收標準

10 品質管制
10.1 內部品管：N/A
10.2 外部品管：N/A

11 檢驗步驟
11.1 檢體前處理
11.1.1 細菌分離培養步驟於生物安全操作櫃內操作。

11.2 分離培養
11.2.1 血液：將血液檢體8-10mL接種於血液培養瓶中(血液培養瓶瓶蓋先以70%酒精消毒)，於35℃有氧狀態下培養7-10天，每天觀察。培養基若成混濁狀，即將培養液混合均勻並取出接種於MOX或Chromogenic agar，於35±2℃培養箱培養26±2小時。
11.2.2 腦脊髓液、羊水、胎盤等無菌部位體液：先3,000 rpm離心5-10分鐘，取沉澱物接種於MOX或Chromogenic agar，於35±2℃培養箱培養26±2小時。
11.2.3 肛門拭子或糞便、菌株：接種於MOX或Chromogenic agar，於35±2℃培養箱培養26±2小時。
11.2.4 檢查MOX上是否有大約1 mm白色Listeria 典型菌落或Chromogenic agar 上是否有大約1 mm綠色Listeria 典型菌落，若沒有典型菌落則繼續於35±2℃培養箱培養26±2小時。

11.3 鑑定
11.3.1 MALDI-TOF 菌種鑑定：挑取1-5 個典型菌落至BHI培養基，放置於35±2℃培養8-24小時後，依“疾管署 RDC·SOP-R3-E09 微生物鑑定質譜儀標準操作程序”操作進行MALDI-TOF菌種鑑定。

11.4 檢驗後處理
11.4.1 廢棄物處理：檢驗過程之物品、微生物及剩餘檢體等感染性事業廢棄物，應先以標有生物危險標誌的專用紅色廢棄袋妥密密封，貼上化學指示劑，再以121℃ 高壓(每平方公分1.06 公斤以上壓力)，滅菌60 分鐘後，由合約清理廠商處理。

12 干擾與交互反應
N/A

13 結果判定
13.1 判讀標準
依根據MALDI-TOF菌種鑑定結果進行LIMS 檢驗報告核發。
13.2 報告核發
Listeria monocytogenes 陽性、Listeria sp. 陽性、Listeria 陰性
13.3 結果登錄
將檢體的檢驗結果登錄於實驗室資訊系統(LIMS)，經PI 核准後發佈報告。

14 生物參考區間/臨床決策值
N/A

15 檢驗結果的可報告區間
N/A
16 結果超出量測區間之操作說明
N/A
17 危急值/異常值
N/A
18 臨床意義
19 變異的潛在來源
N/A
20 參考文件
20.1 RDC-QP-1601 安全衛生作業程序。
20.2 衛生福利部疾病管制署專業版。
20.3 USDA. (2013). Isolation and Identification of Listeria monocytogenes from Red Meat, Poultry and Egg Products, and Environmental Samples.
21 附錄
21.1 李斯特菌分離與鑑定流程圖
附錄 21.1 李斯特菌分離與鑑定流程圖

血液

接種於血液培養瓶

37°C 7 - 10 天

接種於 MOX 或 Chromogenic agar

35 ± 2°C 26 ± 2 小時

挑取 1-5 個典型菌落至 BHI 培養基 無疑似菌落

35 ± 2°C 8 - 24 小時

MALDI- TOF 菌種鑑定

Listeria monocytogenes 陽性 Listeria sp. 陽性 Listeria sp. 陰性

腦脊髓液、羊水、胎盤等無菌部位臨床檢體、肛門拭子或糞便、菌株
1 目的
檢測疑似病患的血液或組織中是否含有裂谷熱病毒。

2 適用檢體種類
適用於病患急性期發病七日內血液檢體或組織檢體。

3 名詞解釋
Rift Valley Fever：裂谷熱病毒。

4 原理概述
利用非洲綠猴腎臟上皮細胞株 Vero E6 於組織培養盤中接種病患血清或組織研磨液，於 37 ℃培養箱中培養 7 日，取其細胞於 12 孔玻璃片上，加入抗裂谷熱病毒多株抗體及螢光標記的山羊抗兔抗體，於螢光顯微鏡下檢查，測定是否有裂谷熱病毒。

5 試劑耗材
5.1 EMEM 細胞培養液（(Eagles’ minimum essential medium)，含 10 %胎牛血清【FBS】及 1 %三合一抗生素【PSA】)(EMEM Gibco, USA, Cat. No. 51200-046) (FBS, fetal bovine serum, Certified, Heat-Inactivated, Cat. No. 10082-147) (PSA, Pen-Strep-Ampho Sol., Gibco, USA, Cat. No. 15070-063)。(trypsin, 0.25 % (1 X) with EDTA 4Na, liquid, Gibco, USA, Cat No. 25200-056)。
5.2 非洲綠猴腎臟上皮細胞株 Vero E6 (ATCC No. CCL-81)。
5.3 裂谷熱病毒（合成蛋白）：以合成蛋白作為裂谷熱病毒之陽性對照組。
5.4 多源抗體：裂谷熱病毒多源抗體。
5.5 FITC-goat anti-rabbit IgG（Invitrogen, USA, Cat. No. 81-6111）。
5.6 丙酮（Acetone, Merck, Germany, Cat. No. : 1.00020）。
5.7 磷酸鹽緩衝液（PBS, Gibco, USA, Cat. No. 14200-075）及水（H₂O）。
5.8 甘油緩衝液（Merck, Germany, Cat. No. 1.04093）。
5.9 96 孔培養盤。
5.10 50 mL 的離心管。
5.11 12 孔玻璃片（BioMerieux., France, Cat. no. 7-571-1）。
5.12 蓋玻片。
5.13 無菌 20 μL、200 μL、1,000 μL 之吸管尖。

6 儀器設備
6.1 37 ℃ CO₂ 培養箱（Napco, USA, Model 5430）。
6.2 第 III 級生物安全櫃（La Calhene, France）。
6.3 第 II 級生物安全櫃（steril GARD III Advance, USA, Baker Company）。
6.4 螢光顯微鏡（Olympus, Japan, IX71）。
6.5 5 - 40 μL、40 - 200 μL、200 - 1,000 μL Pipette。
6.6 -20 °C 及-80 °C 冷凍櫃（Thermo Scientific, USA）。
7 環境設施安全
7.1 於生物安全等級實驗室內檢體分裝、去活化。檢體操作在生物安全等級 BSL-2 plus 實驗室進行。
7.2 水質：25 °C 蒸餾水或 RO 還滲透可達 18 MΩ-CM 以上超純水。

8 檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 Vero E6 細胞以 Eagles' minimum essential medium（EMEM，內含 10% 加熟去活化胎牛血清）在 37 °C、5% CO₂ 的條件下培養。
10.2 細胞貼附後，改以 2% EMEM 做繼代培養。
10.3 送檢樣本先經過濾除去雜質後，上清液以 EMEM 培養液調整成 10% 的懸浮液。
10.4 以 100 μL 之該懸浮液，於 37 °C 接種至 70% 細胞滿的 25 cm² 的培養瓶。
10.5 接種 2 hr 後，再加入 5 mL 2% EMEM 培養液，置入 37 °C、5% CO₂ 培養箱培養，每兩週做一次繼代培養。
10.6 先吸出上層培養液，以 0.25% Trypsine-EDTA 處理分離細胞，再混入原吸出之培養液，再將 1/3 量置入新的 25 cm² 培養瓶，並以 2% EMEM 補足至 5 mL，另 1/3 置於-70 °C 冷存，另 1/3 量留做免疫螢光檢測用。
10.7 置 37 °C 5% CO₂ 培養箱培養 7 天。
10.8 將適量經 Trypsin-EDTA 處理分離下來的 Vero-E6 細胞，滴至 12 孔玻片上，置於抽氣櫃中抽乾。
10.9 而後以-20 °C 1:1 之甲醇/丙酮溶劑固定 2 min，再放入抽氣櫃以揮發甲醇/丙酮固定液。
10.10 此檢體抹片可保存於-20 °C 冰箱中或直接染色。
10.11 以 PBS 沖洗各 well 後，在抹片上加上 25 μL 抗裂谷熱病毒單株抗體(1：100 in PBS)。
10.12 將抹片放置在潮濕的培養皿中，置於 37 °C 溫箱 30 min。
10.13 於 37 °C 反應 30 min，以 PBS 重複浸洗 3 次，每次各 5 min。
10.14 在室溫中將玻璃片以冷風吹乾或陰乾。
10.15 將抹片加上 25 μL 螢光 FITC 標記之山羊抗兔抗體（FITC-Goat Anti-Rabbit IgG (1：100 in PBS)，於 37 °C 反應 30 min。
10.16 以 PBS 複浸洗 3 次，每次各 5 min。
10.17 滴上甘油緩衝液，然後以蓋玻片覆蓋。
10.18 以螢光顯微鏡檢查。

11 結果判定
11.1 判讀標準
11.1.1 在螢光顯微鏡下將檢測樣體與 Positive control 及 Negative control 比對判讀。
11.1.2 當樣體呈現陽性時在螢光顯微鏡下可見黃綠色之細胞；當樣體呈現陰性時在螢光顯微鏡下無綠色細胞僅可見到細胞陰影。
11.2 報告核發：病原體分離(陽性)、病原體分離(陰性)
11.3 結果登錄：將樣體之檢驗結果登錄於檢體送驗單並加蓋檢驗者印章，送報告簽署人審核及蓋章，並登錄於網路報告系統。

12 品質管制
12.1 嚴防病原散佈或污染，工作時帶手套。
12.2 實驗過程遵循 S.O.P 的作業規範與流程，檢體需在 BSL-4 實驗室內操作，以避免污染。
12.3 生物安全櫃及培養箱定期做校正及維護。
12.4 置於 37 ℃ 温箱染色時應注意保持溼度。
12.5 必須要有未感染病毒之細胞及感染病毒之細胞分別做為陽性與陰性對照組。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘樣體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序辦理。

14 參考資料

15 附錄
15.1 裂谷熱病毒分離與鑑定流程圖。
附錄 15.1 裂谷熱病毒分離與鑑定流程圖

患者發病七日內血清

病毒分離組織培養

血清稀釋 20 倍
2 倍連續稀釋至 160 倍
接種 Vero E6 細胞株

37°C CO2 培養箱培養 7 天

裂谷熱病毒螢光抗體檢驗

陽性

RT-PCR 再確認

陰性

判定

重複接種一次
1 目的
檢測裂谷熱病毒基因。

2 適用檢體種類
適用於符合裂谷熱病毒病徵之病患血清檢體。

3 名詞解釋
Rift Valley fever virus：裂谷熱病毒。

4 原理概述
其技術原理是將待測的病毒 RNA 序列經反轉錄酶（reverse transcriptase）的作用轉錄成 cDNA，再利用 PCR 技術將基因片段以幾何級數倍增的方式增加到數十萬倍。若以 Real Time PCR 儀器進行時，則是 PCR 反應面進行時，機器就利用熒光偵測技術與電腦分析並記錄 PCR 的反應結果，因此能以熒光曲線即時呈現檢驗結果。

5 試劑耗材
5.1 檢體稀釋液（PBS pH 7.2/0.05 % Tween 20/0.5 % BSA）。
5.2 QIAamp viral RNA 抽取試劑組。
5.3 Qiagen one-step RT-PCR kit。
5.4 Real-time PCR 儀器 LightCycler 所需之檢體毛細管。
5.5 LightCycler FastStart DNA master SYBR green I（Cat. no. 03 003 230 001）。
5.6 Nuclease-free（RNase/DNase-free）無菌微量吸管尖（tip）：5 μL、10 μL、200 μL。
5.7 Nuclease-free（RNase/DNase-free）無菌蒸餾水。
5.8 可拋棄式無菌 Nuclease-free（RNase/DNase-free）塑膠手套。
5.9 病毒基因製備：
國內至今為止並無第四級病毒感染之病例報告，更因此類病毒受到國際的管制無法獲得這些第四級病毒做為參考病毒。所以這些病毒抗原之製備，則需靠人工合成基因之方式獲得，本實驗方法之陽性對照組由裂谷熱病毒之合成 G2 基因取代完整病毒。
5.10 引子與探針的合成：
裂谷熱病毒的引子與探針合成，在選定偵側的病毒序列後（G2 gene），参照文獻及利用 Roche 公司所出的 Probe design software 2.0 進行引子與探針序列之設計，之後再送交廠商合成。
六 儀器設備
6.1 The LightCycler instrument system。
6.2 微量吸管（pipette）：5 μL、10 μL、200 μL。
6.3 8爪微量吸管。
6.4 全自動清洗器。
6.5 計時器。
6.6 37 °C 水浴箱。

七 環境設施安全
於生物安全第四等級（BSL-4）實驗室之設施內操作。

八 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

九 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

十 檢驗步驟
10.1 檢驗前檢體處理
檢體以2,000 rpm 離心30 min，分離出上清液備用。
10.2 血清檢體病毒或細胞培養病毒液 RNA 之萃取：
使用 Quagen 廠牌之 QIAamp Viral RNA 抽取試劑組，依廠牌步驟指示，
略述如下。
10.2.1 取140 μL 血清加入560 μL AVL 溶液。
10.2.2 室溫靜置10 min。
10.2.3 再加入560 μL 絕對酒精，混勻後，10,000 rpm 轉速離心使通過
QIAamp spin column。
10.2.4 繼以500 μL AW 溶液清洗管柱兩次。
10.2.5 最後以80 ℃之60 μL RNase-free ddH2O 沖流出病毒 RNA。
10.3 反轉錄-聚合酵素連鎖反應（reverse transcription-PCR）：
10.3.1 在由細胞培養液或血清檢體萃取出之 RNA 溶液中，加入上、
10.3.2 短暫離心收集溶液於管底。

10.3.3 取 20 μL 此模版/引子溶液於 0.2 mL 離心管中。

10.3.4 並加入 5 μL 10X 緩衝液（500 mM KCl, 100mM Tris-HCl, pH8.3, 15 mM MgCl₂, 0.01 % (v/v) gelatin）4 μL 2.5 mM dNTPs（BRL）, 0.5 μL 0.1M DTT（dithiothreitol）, 0.5 μL 核糖核酸酵素抑制劑（ribonuclease inhibitor, RNAsin, 10 U/μL, BRL）, 0.5 μL SuperScript™ II reverse transcriptase（RNase H-, 20U/μL, BRL）, 0.5 μL AmpliTaq DNA polymerase（5 U/μL, Perkin Elmer）。

10.3.5 以 RNase-free ddH₂O 無菌水將總體積補至 50 μL。

10.3.6 混合均勻後，於 LightCycler 進行反轉錄反應，以製作出 cDNA。

10.4 Real-Time PCR Amplification

10.4.1 製備試劑:

10.4.1.1 製備 LightCycler FastStart DNA master SYBR green I, 10 X conc.:

將 LightCycler FastStart enzyme（colorless cap）取出 10 μL 加入一管 LightCycler FastStart DNA master SYBR green I, 10 X conc.（green cap）中，可進行 32 tests（保存於 4 °C 可放置 1 週）。

10.4.1.2 製備 Primer:

以 H₂O 將 Forward 及 Reverse primer 溶解，使其濃度為 100 μM，再以 H₂O 將 primer 稀釋至最終濃度 5 M。

10.4.2 製備 Real Time PCR Mix:

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA template</td>
<td>4 μL</td>
</tr>
<tr>
<td>5 M forward primer (F)</td>
<td>2 μL x Z</td>
</tr>
<tr>
<td>5 M reverse primer (R)</td>
<td>2 μL x Z</td>
</tr>
<tr>
<td>LightCycler FastStart DNA master SYBR green I, 10 X conc.</td>
<td>2 μL x Z</td>
</tr>
<tr>
<td>25 mM MgCl₂ stock solution</td>
<td>2 μL x Z</td>
</tr>
<tr>
<td>H₂O</td>
<td>8 μL x Z</td>
</tr>
</tbody>
</table>

Total 20 μL

(Z = 總反應數 + 1)

以微量吸管混合均勻，勿 Vortex。

10.4.3 取 16 μL 的 Real time PCR Mix 至 LightCycler 專用毛細管中。

10.4.4 加入 DNA template 各 4 μL。

10.4.5 將各毛細管封上專用蓋子。

10.4.6 離心 700 × g, 5 sec（或 spin down）。

10.4.7 將毛細管依序放入檢體轉盤。

10.4.8 Run real-time PCR：
衛生福利部疾病管制署傳染病標準檢驗方法

<table>
<thead>
<tr>
<th>編號：</th>
<th>裂谷熱病毒核酸檢測</th>
<th>核準日期：年月日</th>
</tr>
</thead>
<tbody>
<tr>
<td>頁次：第919頁/共1104頁</td>
<td>（Real-time RT-PCR）</td>
<td>修訂日期：年月日</td>
</tr>
</tbody>
</table>

【Pre-incubation】
95 °C 10 min 1 cycle

【Amplification】
Denaturing 95 °C 10 sec
Annealing 55 °C 10 sec 45 cycles
Extension 72 °C 25 sec

【Melting curve analysis】
Denaturing 95 °C 0 sec
Annealing 65 °C 15 sec
Melting 95 °C 0 sec
Slope = 0.1 °C/sec
Acquisition mode: continuous

【Cooling】
40 °C 30 sec

10.4.9 利用儀器軟體中的 melting curve analysis 分析 PCR 產物，亦可進一步利用洋萊膠電泳技術分析 PCR 產物。

11 結果判定：
11.1 判讀標準：45 個 PCR 循環加上 Tm 曲線的鑑定過程在 30 min 內，經螢光放反应分析即可得到結果。並將陽性對照組之模板 DNA 用量為 100 ng、10 ng、1 ng、100 pg、10 pg、1 pg 等核酸濃度，測定核酸與循環數之標準曲線，可應用於檢體之定量分析。
11.2 報告核發：有螢光曲線產生、melting curve analysis 分析正確，則可判 定為陽性。
11.3 結果登錄：將檢體之檢驗結果登錄於檢體送驗單並加蓋檢驗者印章， 送報告署核簽署人審核及蓋章，並登錄於網路報告系統。

12 品質管制
略。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

15 附錄
15.1 裂谷熱病毒基因檢測分析法流程圖。
附錄 15.1 裂谷熱病毒基因檢測 (real-time RT-PCR) 流程圖

阳性判定：具有螢光曲線產生，並且 Melting curve 分析與陽性對照組一致。

未確定判定：螢光曲線產生過晚（超過 40 個 Cycles 之後）。

陰性判定：無螢光曲線產生，或 Melting curve 分析與陽性對照組不一致。

再重複 PCR 確認（使用不同基因之引子）或以免疫偵測法確認。
衛生福利部疾病管制署傳染病標準檢驗方法

編號：

裂谷熱病毒抗體檢測（ELISA）

頁次：第 921 頁/共 1104 頁

核准日期：

修訂日期：

1 目的
檢測裂谷熱病毒抗體。

2 適用檢體種類
適用於符合裂谷熱病毒病徵之病患血清檢體。

3 名詞解釋
無。

4 原理概述
利用裂谷熱病毒合成蛋白作為抗原，與病患血清進行抗原抗體反應，以酵素標識抗體間接地將此反應轉成顏色訊號，由全自動酵素免疫分析儀讀取結果。

5 試劑耗材
5.1 清洗液 PBST（PBS pH 7.2 含 0.05 % Tween 20）。
5.2 檢體稀釋液（PBST 含 0.5 % BSA）。
5.3 已吸附裂谷熱病毒合成蛋白之 96 孔微量滴定盤。
5.4 抗人類 IgM 之 HRP（horseradish peroxidase）酵素結合抗體（peroxidase conjugated affinity purified anti-human IgM μ【goat】），Sigma，USA。
5.5 HRP 穩定液（HRP stabilizer），Sigma，USA。
5.6 呈色劑（TMB 受質）Sigma，USA。
5.7 終止液（2M H₂SO₄），Merck，Germany。
5.8 陽性裂谷熱病毒合成蛋白標準液。
5.9 無菌蒸餾水。
5.10 八連排血清稀釋管。
5.11 八連排血清稀釋架。
5.12 無菌微量吸管尖（tip）：10 μL、200 μL、1,000 μL。
5.13 96 孔微量滴定盤封膜。
5.14 可拋棄式無菌塑膠手套。

6 儀器設備
6.1 第二級生物安全櫃（class II BSC）。
6.2 全自動酵素免疫分析儀（ELISA reader）。
6.3 全自動清洗器。
6.4 微量吸管（pipettemen）：1,000 μL、100 μL、30 μL。
6.5 8 爪微量吸管。
6.6 計時器。
6.7 37 °C 溫箱。
7 環境設施安全
於生物安全第四等級實驗室內檢體分裝、去活化。於生物安全第二等級 (BSL-2) 實驗室之設施內操作。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢驗前血清處理
 10.1.1 檢體以 2,000 rpm 離心 10 min，分離出血清備用。
10.2 酵素免疫分析盤處理
 10.2.1 將 96 孔酵素免疫分析盤加入 100 μL 1:2,000 稀釋之病毒抗原混合液。
 10.2.2 將製備抗原之 96 孔酵素免疫分析盤靜置於 4 °C，隔夜後即可使用。把製備備好的酵素免疫分析盤先以 Washing machine 以磷酸緩衝液 PBST 洗淨。
 10.2.3 酵素免疫分析盤注入清洗液放置 5 min，以 PBST 清洗 3 次。
10.3 陽性對照血清 (亦即陽性標準液)
 10.3.1 陽性對照血清乃利用裂谷熱病毒合成蛋白所生成之兔子多源抗體。
 10.3.2 操作方式與待測血清相同，但使用不同種源的二級抗體 (goat anti-rabbit IgG-HRP, Cappel)。
 10.3.3 作為酵素免疫分析盤 coating 裂谷熱蛋白是否良好的對照組。
10.4 待測血清
 10.4.1 將待測血清以 10 %脫脂乳 (skimmed milk) 以 1:100 濃度稀釋，分別加入 100 μL 稀釋血清於盤中之對照組及實驗組中。
 10.4.2 分別加入稀釋後之血清検體，各檢體需二重複試驗。
 10.4.3 於 37 °C 中作用 1 hr 後，以 PBST 清洗酵素免疫分析盤。
 10.4.4 以 PBS 清洗 4 次，拍乾酵素免疫分析盤。
 10.4.5 在酵素免疫分析盤中之孔內，各加入 100 μL 以 1:2,000 稀釋之第二抗體 (goat anti-human IgM-HRP, Cappel)。
 10.4.6 再置於 37 °C 反應 1 hr。
 10.4.7 以清洗液清洗 4 次，拍乾酵素免疫分析盤。
 10.4.8 清洗酵素免疫分析盤後，每孔加入 100 μL 之呈色劑 (TMB-0.035 % H₂O₂, in citrate-citrate buffer, pH 5.5) 置於室溫於黑暗中作用 15 - 20 min。
10.4.9 每孔加入 50 μL 反應終止溶液（2 M H2SO4）。
10.4.10 以分光光度計 OD450 测其吸光值。

11 結果判定
11.1 判讀標準：將 OD450 值高於陰性對照組之平均值加 3 倍標準差者，視為陽性反應。
11.2 報告核發：裂谷熱病毒抗體（陽性）、裂谷熱病毒抗體（陰性）。
11.3 結果登錄：將檢體之檢驗結果登錄於檢體送驗單並加盖檢驗者印章，送報告簽署人審核及蓋章，並登錄於網路報告系統。

12 品質管制
每次執行陽性及陰性對照血清。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

15 附錄
15.1 裂谷熱病毒抗體試驗-酵素免疫分析法流程圖。
附錄 15.1 裂谷熱病毒抗體試驗-酵素免疫分析法流程圖

吸附裂谷熱病毒合成抗原 96 孔 ELISA 微孔盤前

待測血清 80 倍稀釋及陽性標準液處理後，置入酵素免疫分析盤

37 ℃，1 小時
清洗液清洗 4 次

酵素免疫分析盤孔內加入抗人類 IgM 之酵素結合抗體，100 μL/well

37 ℃，1 小時
清洗液清洗 4 次

酵素免疫分析盤孔內加入 TMB，100 μL/well

室溫 4 min

酵素免疫分析盤孔內加入 Stop solution，100 μL/well

ELISA reader：BioTek μQuant，用 450 nm
讀取 OD 值

陽性判定：OD_{450} 值高於陰性對照組平均值加 3 倍標準差者，視為陽性反應

陰性判定：OD_{450} 值低於陰性對照組平均值加 3 倍標準差者，視為陰性反應

再以 Real-time PCR 確認
目的
検測疑似病患的血液或組織中是否含有馬堡病毒。

適用檢體種類
適用於病患急性期發病七日內血液檢體或組織檢體。

名詞解釋
Marburg Virus：馬堡病毒。

原理概述
利用非洲綠猴腎臟上皮細胞株 Vero E6 於組織培養盤中接種病患血清或組織研磨液，於 37 °C 培養箱中培養 7 日，取其細胞於 12 孔玻璃片上，加入抗馬堡病毒多株抗體及螢光標記的山羊抗兔抗體，於螢光顯微鏡下檢查，測定是否有伊波拉病毒。

試劑耗材
5.1 EMEM 細胞培養液（Eagles' minimum essential medium），含 10% 胎牛血清【FBS】及 1% 三合一抗生素【PSA】
EMEM Gibco, USA, Cat. no. 51200-046
FBS, fetal bovine serum, certified, heat-inactivated, Cat. no. 10082-147
PSA, Pen-Strep-Ampho Sol., Gibco USA, Cat. no. 15070-063
Trypsin, 0.25 % with EDTA 4Na, liquid, Gibco, USA, Cat no. 25200-056。
5.2 非洲綠猴腎臟上皮細胞株 Vero E6（ATCC no. CCL-81）。
5.3 馬堡病毒（合成蛋白）：以合成蛋白作為馬堡病毒之陽性對照組。
5.4 多株抗體：抗馬堡病毒多株抗體。
5.5 FITC-goat anti-rabbit IgG（Invitrogen, USA, Cat. no. 81-6111）。
5.6 丙酮（acetone, Merck, Germany, Cat. no. 1.00020）。
5.7 磷酸鹽緩衝液（PBS, Gibco USA, Cat. no. 14200-075）及水（H2O）。
5.8 甘油緩衝液（Merck, Germany, Cat. No. 1.04093）。
5.9 96 孔培養盤。
5.10 50 mL 的離心管。
5.11 12 孔玻璃片（BioMerieux., France, Cat. No. 7-571-1）。
5.12 蓋玻片。
5.13 無菌 20 μL、200 μL、1,000 μL 之吸管尖。

儀器設備
6.1 37 °C CO2 培養箱（NAPCO, USA, Model 5430）。
6.2 第 III 級生物安全櫃（La Calhene, France）。
6.3 第 II 級生物安全櫃（SterilGARD III Advance, USA, Baker Company）。
6.4 螢光顯微鏡（Olympus, Japan, IX71）。
6.5
5 - 40 μL、40 - 200 μL 及 200 - 1,000 μL Pipette。
6.6
-20 °C 及-80 °C 冷凍櫃（Thermo Scientific, USA）。

7 環境設施安全
7.1 於生物安全第四等級實驗室內檢體分裝、去活化。檢驗操作在生物安全等級 BSL-2 plus 試驗室進行。
7.2 水質：25 °C 蒸餾水或 RO 逆滲透可達 18 MΩ-CM 以上超純水。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 Vero E6 細胞以 Eagles' minimum essential medium（EMEM，內含 10 % 加熱去活化胎牛血清）在 37 °C，5 % CO2 的條件下培養。
10.2 細胞貼附後，改以 2 % FBS EMEM 做繼代培養。
10.3 送檢樣本先經過濾除去雜質後，上清液以 EMEM 培養液調整成 10 % 的懸浮液。
10.4 以 100 μL 之該懸浮液，於 37 °C 接種至 70 %細胞滿的 25 cm² 的培養瓶。
10.5 接種 2 hr 後，再加入 5 mL 2 % FBS EMEM 培養液，置入 37 °C，5 % CO2 培養箱培養，每兩週做一次繼代培養。
10.6 先吸出上層培養液，以 0.25 % Trypsin-EDTA 處理分離細胞，再混入原吸出之培養液，而後將 1/3 量置入新的 25 cm² 培養瓶，並以 2 % EMEM 補足至 5 mL，置 37 °C 5 % CO2 培養箱培養 7 天。
10.7 另 1/3 置於-70 °C 冷凍，另 1/3 量留做免疫螢光檢測用。
10.8 將適量經 Trypsin-EDTA 處理分離下來的 Vero-E6 細胞，滴至 12 孔玻片上，置於抽氣櫃中抽乾。
10.9 而後以-20 °C 1：1 之甲醇/丙酮溶劑固定 2 min，再放入抽氣櫃以揮發甲醇/丙酮固定液。
10.10 此檢體抹片可保存於-20 °C 冰箱中或直接染色。
10.11 以 PBS 沖洗各 well 後，在抹片上加上 25 μL 抗馬堡病毒單株抗體（1：100 in PBS）。
10.12 將抹片放置在潮濕的培養皿中，置於 37 °C 溫箱 30 min。
10.13 於 37 °C 反應 30 min，以 PBS 重複浸洗 3 次，每次各 5 min。
10.14 在室溫中將玻片以冷風吹乾或陰乾。
10.15 將抹片加上 25 μL 螢光 FITC 標記之山羊抗兔抗體 (FITC-goat anti-rabbit
IgG (1 : 100 in PBS)，於 37 ℃ 反應 30 min。
10.16 以 PBS 重複浸洗 3 次，每次各 5 min。
10.17 滴上甘油緩衝液，然後以蓋玻片覆蓋。
10.18 以螢光顯微鏡檢查。

11 結果判定
11.1 判讀標準
11.1.1 在螢光顯微鏡下將檢測檢體與 Positive control 及 Negative
control 比對判讀。
11.1.2 當檢體呈現陽性時在螢光顯微鏡下可見黃綠色之細胞；當檢體
呈現陰性時在螢光顯微鏡下無綠色細胞僅可見到細胞陰影。
11.2 報告核發：馬堡病毒分離(陽性)、馬堡病毒分離(陰性)。
11.3 結果登錄：將檢體之檢驗結果登錄於檢體送驗單並加蓋檢驗者印章，
送報告簽署人審核及蓋章，並登錄於網路報告系統。

12 品質管制
12.1 嚴防病原散佈或污染，工作時帶手套。
12.2 實驗過程遵循 S.O.P 的作業規範與流程，檢體需在 BSL-4 實驗室內操
作，以避免污染。
12.3 生物安全櫃及培養箱定期做校正及維護。
12.4 置於 37 ℃ 溫箱染色時應注意保持溼度。
12.5 必須要有未感染病毒之細胞及感染病毒之細胞分別做為陰性與陽性對
照組。

13 廢棄物處理
13.1 檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌
袋裝妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作
業程序辦理。

14 參考資料
14.1 Johnson ED, Johnson BK, Silverstein D, Tukei P, Geisbert TW, Sanchez
AN, Jahrling PB. 1996. Characterization of a new Marburg virus isolated
Johnston J. 1978. Epidemiologic investigation of Marburg virus disease,

15 附錄
15.1 馬堡病毒分離與鑑定流程圖。
附錄 15.1 馬堡病毒分離與鑑定流程圖

患者發病七日內血清

病毒分離組織培養

血清稀釋 20 倍
2 倍連續稀釋至 160 倍
接種 VERO E6 細胞株

37 ℃ CO₂ 培養箱培養 7 天

馬堡病毒螢光抗體檢驗

陰性

重複接種一次

陽性

RT-PCR 再確認

陰性

判定
1 目的
検測馬堡病毒核酸。

2 適用検體種類
適用於符合馬堡病毒病徵之病患血清檢體。

3 名詞解釋
Marburg virus：馬堡病毒。

4 原理概述
其技術原理是將待測的病毒 RNA 序列經反轉錄酶（Reverse Transcriptase）的作用轉錄成 cDNA，再利用 PCR 技術將基因片段以幾何級數倍增的方式增加到數十萬倍，若以 Real Time PCR 儀器進行時，則是 PCR 反應一面進行時，機器就利用熒光偵測技術與電腦分析並記錄 PCR 的反應結果，因此能以熒光曲線即時呈現檢驗結果。

5 試劑耗材
5.1 檢體稀釋液（PBS pH 7.2/0.05 % Tween 20/0.5 % BSA）。
5.2 QIAamp viral RNA 抽取試劑組。
5.3 Qiagen one-step RT-PCR kit。
5.4 Real-Time PCR 儀器 LightCycler 所需之檢體毛細管。
5.5 LightCycler FastStart DNA master SYBR green I（Cat. no. 03 003 230 001）。
5.6 Nuclease-free（RNase/DNase-free）無菌微量吸管尖（tip）：5 µL、10 µL、200µL。
5.7 Nuclease-free（RNase/DNase-free）無菌蒸餾水。
5.8 可拋棄式無菌 Nuclease-free（RNase/DNase-free）塑膠手套。
5.9 病毒基因製備：
5.10 國內直至目前為止並無第四級病毒感染之病例報告，更因此類病毒受到國際協會的管制，無法獲得這些第四級病毒做為參考病毒。所以這些病毒抗原之製備，需靠人工合成基因之方式獲得，本實驗方法之陽性對照組由馬堡病毒之合成 VP40 基因取代完整病毒。
5.11 引子與探針的合成：
馬堡病毒的引子與探針合成，在選定偵側的病毒序列後（VP40 gene），參照文獻及利用 Roche 公司所出的 Probe design software 2.0 進行引子與探針序列之設計，之後再送交廠商合成。
衛生福利部疾病管制署傳染病標準檢驗方法

編號：馬堡病毒核酸検測

核准日期：年月日

修訂日期：年月日

頁次：第930頁／共1104頁

<table>
<thead>
<tr>
<th>Filovirus (L gene Synthesis Marburg/Ebola)</th>
</tr>
</thead>
<tbody>
<tr>
<td>引子名稱</td>
</tr>
<tr>
<td>VP40 Forward</td>
</tr>
<tr>
<td>VP40 Reverse</td>
</tr>
</tbody>
</table>

6 儀器設備
- The LightCycler Instrument System。
- 微量吸管（pipetmen）：5 μL、10 μL、200 μL。
- 8爪微量吸管。
- 全自動清洗器。
- 計時器。
- 37°C水浴箱。

7 環境設施安全
送検樣本在 P4 實驗室的隔離箱分裝後，必需經去活性處理才可將檢體送出一般實驗室進行血清學測試，如經 Guanidine Thiocynate 溶液中進行病毒核酸抽取及 PCR 等實驗，而只有操作活病毒的實驗如病毒培養、動物實驗等才需進入 BSL-4 實驗室操作。

8 檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢驗前檢體處理
- 在接獲疑似第四級病毒檢體時，先將裝運檢體之容器以 UV 燈照射 20 分鐘，BSL-4 實驗室工作人員在實驗室操作時打開拿出檢體，在隔離箱內將送檢樣本（血液或尿液）經過濾處理後分裝為三部份：
 - 10.1.2.1 感染細胞株進行病毒培養。
 - 10.1.2.2 加入 Guanidine thiocynate 溶液中進行病毒核酸抽取及 RT-PCR 之實驗。
 - 10.1.2.3 加入最終濃度為 10% 福馬林中進行抗原之檢測。
10.1.3 在細胞株觀察到有細胞病變時，將細胞外溶液或細胞加入 Guanidine thiocynate 溶液中進行病毒核酸抽取及 RT-PCR 或 real-time RT-PCR 之實驗，一部份將細胞加入最終濃度為 10% 福馬林中進行免疫抗原之診斷、以刮杓將細胞刮下後加入最終濃度為 10% 福馬林中進行細胞內免疫抗原之診斷或加入 Glutaldehyde 中進行電子顯微鏡觀察等各種相關之診斷實驗。

10.2 血清檢體病毒或細胞培養病毒液 RNA 之萃取：
使用 Qiagen 廠牌之 QIAamp Viral RNA 抽取試劑組，依廠牌步驟指示，略述如下：
10.2.1 取 140 μL 血清加入 560 μL AVL 溶液。
10.2.2 室溫靜置 10 min。
10.2.3 再加入 560 μL 絕對酒精，混勻後，10,000 rpm 轉速離心使通過 QIAamp spin column。
10.2.4 續以 500 μL AW 溶液清洗管柱兩次。
10.2.5 最後以 80 °C 之 60 μL RNase-free ddH₂O 沖流出病毒 RNA。

10.3 反轉錄反應（reverse transcription）：
10.3.1 在由細胞培養液或血清檢體萃取出之 RNA 溶液中，加入上、下端引子（100 μL）後，將此混合物於 90 °C 加熱 5 min，置於冰上 3 min，
10.3.2 短暫離心收集溶液於管底。
10.3.3 取 20 μL 此模版/引子溶液於 0.2 mL 离心管中。
10.3.4 並加入 5 μL 10 X 緩衝液（500 mM KCl, 100 mM tris-HCl, pH 8.3, 15 mM MgCl₂, 0.01 % (v/v) gelatin），4 μL 2.5 mM dNTPs（BRL），0.5 μL 0.1 M DTT（dithiothreitol），0.5 μL 核糖核酸酵素抑制劑（ribonuclease inhibitor, RNAsin, 10 U/μL, BRL），0.5μL SuperScript™ II reverse transcriptase（RNase H-, 20 U/μL, BRL）。
10.3.5 以 RNase-free ddH₂O 無菌水將總體積補至 50 μL。
10.3.6 混合均勻後，於 LightCyler 進行反轉錄反應。

10.4 Real-Time PCR Amplification

10.4.1 製備試劑:
10.4.1.1 製備 LightCycler FastStart DNA master SYBR green I, 10X conc.:
將 LightCycler FastStart enzyme（colorless cap）取出 10 μL 加入一管 LightCycler FastStart DNA master SYBR green I, 10 X Conc.（green cap）中，可進行 32 Tests（保存於 4 °C 可放置 1 週）。
10.4.1.2 製 Primer：
以 H₂O 將 forward 及 reverse primer 溶解，使其濃度為 100 μM，再以 H₂O 將 primer 稀釋至最終濃度 5 μM。
10.4.2 製備 Real Time PCR Mix:

<table>
<thead>
<tr>
<th>Component</th>
<th>Final Conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA template</td>
<td>4 μL</td>
</tr>
<tr>
<td>5' M Forward primer (F)</td>
<td>2 μL x Z</td>
</tr>
<tr>
<td>5' M Reverse primer (R)</td>
<td>2 μL x Z</td>
</tr>
<tr>
<td>LightCycler FastStart DNA master SYBR green I, 10X conc.</td>
<td>2 μL x Z</td>
</tr>
<tr>
<td>25 mM MgCl₂ stock solution</td>
<td>2 μL x Z</td>
</tr>
<tr>
<td>H₂O</td>
<td>8 μL x Z</td>
</tr>
<tr>
<td>Total</td>
<td>20 μL</td>
</tr>
</tbody>
</table>

(Z = 總反應數 + 1)

以微量吸管混合均勻，勿 vortex。

10.4.3 取 16 μL 的 Real Time PCR Mix 至 LightCycler 專用毛細管中。

10.4.4 加入 DNA template 各 4 μL。

10.4.5 將各毛細管封上專用蓋子。

10.4.6 離心 700 × g，5 sec（或 spin down）。

10.4.7 將毛細管依序放入檢體轉盤。

10.4.8 Run Real-Time PCR:

【Pre-incubation】

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>95°C</td>
<td>10 min</td>
<td>1 cycle</td>
</tr>
</tbody>
</table>

【Amplification】

<table>
<thead>
<tr>
<th>Step</th>
<th>Temperature</th>
<th>Time</th>
<th>Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denaturing</td>
<td>95°C</td>
<td>10 sec</td>
<td></td>
</tr>
<tr>
<td>Annealing</td>
<td>55°C</td>
<td>10 sec</td>
<td>45 cycles</td>
</tr>
<tr>
<td>Extension</td>
<td>72°C</td>
<td>25 sec</td>
<td></td>
</tr>
</tbody>
</table>

Acquisition mode: single

【Melting curve analysis】

<table>
<thead>
<tr>
<th>Step</th>
<th>Temperature</th>
<th>Time</th>
<th>Slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denaturing</td>
<td>95°C</td>
<td>0 sec</td>
<td>0.1°C/sec</td>
</tr>
<tr>
<td>Annealing</td>
<td>65°C</td>
<td>15 sec</td>
<td></td>
</tr>
<tr>
<td>Melting</td>
<td>95°C</td>
<td>0 sec</td>
<td></td>
</tr>
</tbody>
</table>

Acquisition mode: continuous

【Cooling】

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>40°C</td>
<td>30 sec</td>
</tr>
</tbody>
</table>
11.2 報告核發：有螢光曲線產生，melting curve analysis 分析正確，則可判定為陽性。
11.3 結果登錄：將檢體之檢驗結果登錄於檢體送驗單並加蓋檢驗者印章，送報告簽署人審核及蓋章，並登錄於網路報告系統。

12 品質管制
12.1 嚴防病原散佈或污染，工作時帶手套。
12.2 實驗過程遵循 S.O.P 的作業規範與流程，並在 BSL-2 plus 實驗室內操作，以避免污染。
12.3 生物安全櫃及培養箱定期做校正及維護。
12.4 必須要有未感染病毒之細胞及感染病毒之細胞分別做為陰性與陽性對照組。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

15 附錄
15.1 馬堡病毒核酸檢測分析法流程圖。
附錄 15.1 馬堡病毒核酸檢測 (real-time RT-PCR) 流程圖

病毒檢體前處理 → 檢體 RNA 萃取 → Reverse transcription reaction → Real-time PCR Reaction → Melting curve analysis

陽性判定：
具有螢光曲線產生，並且 Melting curve 分析與陽性對照組一致。
再以免疫偵測法確認

未確定判定：
螢光曲線產生過晚（超過 40 個 Cycles 之後）。
再重複 PCR 確認（使用不同基因之引子）或以免疫偵測法確認

陰性判定：
無螢光曲線產生，或 Melting curve 分析與陽性對照組不一致。
醫療福利部疾病管制署傳染病標準檢驗方法

<table>
<thead>
<tr>
<th>編號：</th>
<th>馬堡病毒抗體檢測（ELISA）</th>
<th>核准日期：年 月 日</th>
<th>修訂日期：年 月 日</th>
</tr>
</thead>
<tbody>
<tr>
<td>頁次：第 935 頁/共 1104 頁</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. **目的**
 檢測馬堡病毒抗體。

2. **適用檢體種類**
 適用於符合馬堡病毒病徵之病患血清檢體。

3. **名詞解釋**
 無。

4. **原理概述**
 利用馬堡病毒合成蛋白作為抗原，與病患血清進行抗原抗體反應，以酵素標
 識抗體間接地將此反應轉成顏色訊號，由全自動酵素免疫分析儀讀取結果。

5. **試剤耗材**
 5.1 清洗液 PBST（PBS pH 7.2 含 0.05 % Tween 20）。
 5.2 檢體稀釋液（PBST 含 0.5 % BSA）。
 5.3 已吸附馬堡病毒合成蛋白之 96 孔微量滴定盤。
 5.4 抗人類 IgM 之 HRP（horseradish peroxidase）酵素結合抗體（peroxidase
 conjugated affinity purified anti-human IgM μ【goat】），Sigma，USA。
 5.5 HRP 穩定液（HRP stabilizer），Sigma，USA。
 5.6 呈色劑（TMB 受質）Sigma，USA。
 5.7 終止液（2 M H₂SO₄），Merck，Germany。
 5.8 陽性馬堡病毒合成蛋白標準液。
 5.9 無菌蒸餾水。
 5.10 八連排血清稀釋管。
 5.11 八連排血清稀釋架。
 5.12 無菌微量吸管尖（tip）：10 μL、200 μL、1,000 μL。
 5.13 96 孔微量滴定盤封膜。
 5.14 可拋棄式無菌塑膠手套。

6. **儀器設備**
 6.1 第二級生物安全櫃（class II BSC：SterilGARD III Advance, Baker
 Company, USA）。
 6.2 全自動酵素免疫分析儀（ELISA reader：BioTek Quant, USA）。
 6.3 全自動清洗器。
 6.4 微量吸管（pipettemen）：1,000 μL、100 μL、30 μL。
 6.5 8 爪微量吸管。
 6.6 計時器。
 6.7 37 ℃ 溫箱。
7 環境設施安全
於生物安全第四等級（BSL-4）實驗室內檢體分裝、去活化。於生物安全第二等級（BSL-2）實驗室之設施內操作。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nodeid=6C7C52E7A7D5621A。

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nodeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢驗前血清處理
10.1.1 檢體以 2,000 rpm 離心 10 min，分離出血清備用。
10.2 酵素免疫分析盤處理
10.2.1 將 96 孔酵素免疫分析盤加入 100 μL 1：2000 稀釋之病毒抗原混合液。
10.2.2 將製備抗原之 96 孔酵素免疫分析盤靜置於 4 ℃，隔夜後即可使用。把製備備好的酵素免疫分析盤先以 washing machine 以磷酸緩衝液 PBST 洗淨。
10.2.3 酵素免疫分析盤注入清洗液放置 5 min，以 PBST 清洗 3 次。
10.3 陽性對照血清（亦即陽性標準液）
10.3.1 陽性對照血清乃利用馬堡病毒合成蛋白所生成之兔子多源抗體。
10.3.2 操作方式與待測血清相同，但使用不同種源的二級抗體（goat anti-rabbit IgG-HRP, Cappel）。
10.3.3 作為酵素免疫分析盤 coating 馬堡蛋白是否良好的對照組。
10.4 待測血清
10.4.1 將待測血清以 10 %脫脂乳（skimmed milk）以 1：100 濃度稀釋，分別加入 100 μL 稀釋血清於盤中之對照組及實驗組中。
10.4.2 分別加入稀釋後之血清檢體，各檢體需二重複試驗。
10.4.3 於 37 ℃ 中作用 1 hr 後，以 PBST 清洗酵素免疫分析盤。
10.4.4 以 PBS 清洗 4 次，拍乾酵素免疫分析盤。
10.4.5 在酵素免疫分析盤中之孔內，各加入 100 μL 以 1：2,000 稀釋之第二抗體（goat anti-human IgM-HRP）。
10.4.6 再置於 37 ℃ 反應 1 hr。
10.4.7 以清洗液清洗 4 次，拍乾酵素免疫分析盤。
10.4.8 清洗酵素免疫分析盤後，每孔加入 100 μL 之呈色劑（TMB-0.035 % H₂O₂, in citrate buffer, pH 5.5）置於室溫於黑暗中作用 15 - 20 min。
10.4.9 每孔加入 50 μL 反應終止溶液 (2 M H₂SO₄)。
10.4.10 以分光光度計 OD₄₅₀ 測其吸光值。

11 結果判定
11.1 判讀標準：將 OD₄₅₀ 值高於陰性對照組之平均值加 3 倍標準差者，視為陽性反應。
11.2 報告核發：馬堡病毒抗體(陽性)、馬堡病毒抗體(陰性)。
11.3 結果登錄：將檢體之檢驗結果登錄於檢體送驗單並加蓋檢驗者印章，送報告簽署人審核及蓋章，並登錄於網路報告系統。

12 品質管制
每次執行陽性及陰性對照血清。

13 廢棄物處理
檢體過程之物品、液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

15 附錄
15.1 馬堡病毒抗體試驗-酶免分析法流程圖。
附錄 15.1 馬堡病毒抗體試驗（酵素免疫分析法）流程圖

吸附馬堡病毒合成抗原 96 孔 ELISA 微孔盤前處理

待測血清 80 倍稀釋及陽性標準液處理後，置入酵素免疫分析盤

37 °C，1 小時清洗液清洗 4 次

酵素免疫分析盤孔內加入抗人類 IgM 之酵素結合抗體，100 μL/well

37 °C，1 小時清洗液清洗 4 次

酵素免疫分析盤孔內加入 TMB，100 μL/well

室溫 15~20 min

酵素免疫分析盤孔內加入 Stop solution，100 μL/well

ELISA reader：BioTek μQuant，用 450 nm 讀取 OD 值

陽性判定：OD_{450} 值高於陰性對照組平均值加 3 倍標準差者，視為陽性反應

陰性判定：OD_{450} 值低於陰性對照組平均值加 3 倍標準差者，視為陰性反應

再以 Real-time PCR 確認
1 目的
檢測疑似病患的血液或組織中是否含黃熱病毒。

2 適用檢體種類
適用於急性期發病病患七病日內血液檢體或組織檢體。

3 名詞解釋
無

4 原理概述
利用白線斑蚊細胞株於細胞培養盤中接種病患血清或組織研磨液，於28℃培養箱中培養7日，取其細胞於24孔玻璃片上，加入抗黃熱病毒單株抗體及螢光標記的山羊抗鼠抗體，於螢光顯微鏡下檢查，測定是否有黃熱病毒。

5 試劑耗材
5.1 檢測試劑
5.1.1 檢測試劑 RPMI 細胞培養液。
5.1.2 白線斑蚊細胞株。
5.1.3 黃熱病毒（17D，疫苗株）：黃熱病毒以C6/36細胞培養7天，取上清液，當黃熱病毒來源。
5.1.4 單株抗體 抗黃病毒單株抗體（ATCC HB-112）。
5.1.5 FITC-goat anti-mouse IgG。
5.1.6 丙酮
5.1.7 磷酸鹽緩衝液
5.1.8 甘油緩衝液
5.2 耗材
5.2.1 96孔培養盤。
5.2.2 50 mL 的離心管。
5.2.3 24孔玻璃片
5.2.4 蓋玻片
5.2.5 無菌250μL、1,250μL之吸管尖

6 儀器設備
6.1 28℃ CO₂培養箱。
6.2 37℃ CO₂培養箱。
6.3 第 II 級生物安全櫃。
6.4 螢光顯微鏡。
6.5 吹風機。
6.6 5～40 ul Pipette 及 40～200 ul Pipette。
6.7 -20℃及-80℃冷凍櫃。
<table>
<thead>
<tr>
<th>頁次：第 940 頁/共 1104 頁</th>
<th>黃病毒病毒分離與鑑定</th>
<th>核准日期：年 月 日</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 環境設施安全</td>
<td>7.1 檢驗操作在生物安全第二等級（BSL-2）實驗室進行。</td>
<td>7.2 水質：25℃蒸餾水或 RO 逆滲透去離子可達 18 MΩ-CM 以上超純水。</td>
</tr>
<tr>
<td>8 檢體採集</td>
<td>參照本署出版之「傳染病檢體採檢手冊」第二版。 http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。</td>
<td></td>
</tr>
<tr>
<td>9 檢體運送及保存</td>
<td>參照本署出版之「傳染病検體採檢手冊」第二版。 http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。</td>
<td></td>
</tr>
<tr>
<td>10 檢驗步驟</td>
<td>10.1 檢體前處理</td>
<td>10.2 步驟</td>
</tr>
<tr>
<td>10.2.1 在 96 孔細胞培養盤中將患者血清 5ul 以細胞培養液做 20、40、80、160 倍連續稀釋，每孔加入 50ul 之 2 倍連續稀釋血清。每孔中再加入 100ul C6/36 細胞懸浮液於 flask 75T，加 15 ml 培養液（RPMI 1640，含 5% FCS 及 1% PSA）培養約 3-4 天，以細胞括杓括下細胞→以血球計數器計算細胞量。配製成 1×10^6/ml 細胞懸浮液</td>
<td>10.2.2 置 28℃ 5% CO2 培養箱培養 7 天。</td>
<td></td>
</tr>
<tr>
<td>10.2.3 將每一孔中培養液移至另一無菌盤中，置於-80℃保存。</td>
<td>10.2.3 將每一孔中培養液移至另一無菌盤中，置於-80℃保存。</td>
<td></td>
</tr>
<tr>
<td>10.2.4 取 20 μL PBS 刮下培養盤中之細胞，在 24 孔玻璃片上做抹片。</td>
<td>10.2.4 取 20 μL PBS 刮下培養盤中之細胞，在 24 孔玻璃片上做抹片。</td>
<td></td>
</tr>
<tr>
<td>10.2.5 於室溫中風乾後，置於-20℃丙酮固定 10 min。</td>
<td>10.2.5 於室溫中風乾後，置於-20℃丙酮固定 10 min。</td>
<td></td>
</tr>
<tr>
<td>10.2.6 取出 24 孔玻璃片陰乾。</td>
<td>10.2.6 取出 24 孔玻璃片陰乾。</td>
<td></td>
</tr>
<tr>
<td>10.2.7 此檢體抹片可保存於-20℃冰箱中或直接染色。</td>
<td>10.2.7 此檢體抹片可保存於-20℃冰箱中或直接染色。</td>
<td></td>
</tr>
<tr>
<td>10.2.8 在抹片上加上 25 μL 抗黃病毒單株抗體。</td>
<td>10.2.8 在抹片上加上 25 μL 抗黃病毒單株抗體。</td>
<td></td>
</tr>
<tr>
<td>10.2.9 將抹片放置在潮濕的培養皿中，置於 37℃溫箱 30 min。</td>
<td>10.2.9 將抹片放置在潮濕的培養皿中，置於 37℃溫箱 30 min。</td>
<td></td>
</tr>
<tr>
<td>10.2.10 將抹片取出並以磷酸鹽緩衝液（換三次）洗去多餘之抗體。</td>
<td>10.2.10 將抹片取出並以磷酸鹽緩衝液（換三次）洗去多餘之抗體。</td>
<td></td>
</tr>
<tr>
<td>10.2.11 以蒸餾水沖洗。</td>
<td>10.2.11 以蒸餾水沖洗。</td>
<td></td>
</tr>
<tr>
<td>10.2.12 在室溫中將玻璃片以冷風吹乾或陰乾。</td>
<td>10.2.12 在室溫中將玻璃片以冷風吹乾或陰乾。</td>
<td></td>
</tr>
<tr>
<td>10.2.13 將抹片加上 25 μL 螢光標記之山羊抗鼠抗體（FITC-goat anti-mouse IgG）。</td>
<td>10.2.13 將抹片加上 25 μL 螢光標記之山羊抗鼠抗體（FITC-goat anti-mouse IgG）。</td>
<td></td>
</tr>
<tr>
<td>10.2.14 重複 10.2.9 至 10.2.12。</td>
<td>10.2.14 重複 10.2.9 至 10.2.12。</td>
<td></td>
</tr>
<tr>
<td>10.2.15 滴上甘油緩衝液，然後以蓋玻片覆蓋。</td>
<td>10.2.15 滴上甘油緩衝液，然後以蓋玻片覆蓋。</td>
<td></td>
</tr>
<tr>
<td>10.2.16 以螢光顯微鏡檢查。</td>
<td>10.2.16 以螢光顯微鏡檢查。</td>
<td></td>
</tr>
</tbody>
</table>
11 結果判定

11.1 判讀標準

11.1.1 在螢光顯微鏡下將檢測檢體與 Positive control 及 Negative control 比對判讀。

11.1.2 當檢體呈現陽性時在螢光顯微鏡下可見黃綠色之細胞；當檢體呈現陰性時在螢光顯微鏡下無綠色細胞僅可見到細胞陰影。

11.2 報告核發：無，內部登錄處理。

11.3 結果登錄：無，內部登錄處理。

12 品質管制

12.1 嚴防病原散佈或污染，工作時帶手套。

12.2 實驗過程遵循 S.O.P 的作業規範與流程，並在 BSL-2 實驗室內操作，以避免污染。

12.3 生物安全櫃及培養箱定期做校正及維護。

12.4 置於 37 °C 溫箱染色時應注意保持溼度。

12.5 C6/36 培養溫度不可超過 32°C。

12.6 必須要有未感染病毒之細胞及感染病毒之細胞分別做為陽性與陰性對照組。

13 廢棄物處理

檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121°C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

15 附錄

15.1 黃熱病毒分離與鑑定流程圖
附錄 15.1 黃熱病毒分離與鑑定流程圖

患者發病七日內血清

病毒分離細胞培養

血清稀釋 20 倍
2 倍連續稀釋至 160 倍
接種 C6/36 細胞株

28 ℃ CO₂ 培養箱培養 7 天

螢光抗體法檢測黃熱病毒

陰性

陽性

重複接種一次

分型

判定

分型
1 目的
 以反轉錄－聚合酶鏈鎖反應（RT-PCR）分子診斷方法檢測疑似病患的血清檢體是否含有黃熱病病毒核酸。

2 適用檢體種類
 血清。

3 名詞解釋
 Threshold cycle (Ct)：係指 PCR 產物複製的量，累積到足以被偵測到的第一個循環點稱之。換句話說，Ct 的值越小，表示檢體中初始 DNA/RNA 的含量越多。

4 原理概述
 利用對黃熱病病毒具有專一性之引子（primers）與檢體中之病毒核酸分子結合配對，並利用 RT-PCR 的複製過程及特殊的螢光定量化學方法偵測 RT-PCR 產物，以決定檢體中是否含有黃熱病病毒核酸序列，所用之引子選自於黃熱病病毒之保守性序列（conserved sequences）。

5 試劑耗材
 5.1 檢測試劑
 5.1.1 病毒 RNA 萃取試劑套組。
 5.1.2 SYBR green 定量反轉錄－聚合酶鏈鎖反應單步驟試劑套組。
 5.2 耗材
 5.2.1 檢體瓶。
 5.2.2 無菌吸管。
 5.2.3 定量 PCR 專用八連排反應管及蓋。
 5.2.4 無菌過濾器 10 μL, 20 μL, 100 μL, 200 μL, 1,000 μL 吸管頭。
 5.2.5 無菌 1.5 mL 微量離心管。
 5.2.6 無粉手套。

6 儀器設備
 6.1 第 II 級生物安全箱。
 6.2 即時多重定量 PCR 偵測系統。
 6.3 10 μL, 20 μL, 40 μL, 100 μL, 200 μL, 1,000 μL 微量滴管分注器。
 6.4 高速離心機。
 6.5 真空抽氣機。
 6.6 冰箱：4 ºC。
 6.7 冷凍槽：-20 ºC。
 6.8 高壓滅菌鍋。

7 環境設施安全
 7.1 病人血清檢體應在第 II 級生物安全箱（BSL-2）內處理。
7.2 檢驗操作在生物安全第二等級（BSL-2）實驗室進行。
7.3 應有獨立的操作空間，盡量與操作 DNA 有關的實驗室分開，以避免污染，影響結果。

8 檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體前處理
10.1.1 裝有靜脈血的無菌真空試管以 2,000 轉離心 10 分鐘，以無菌吸管將血清吸入檢體瓶內旋緊瓶蓋。
10.1.2 檢體瓶上標註檢體標號。
10.1.3 檢體處理好後置 2-8°C 冰箱冷藏。
10.2 步驟
10.2.1 萃取病毒 RNA，依據所使用試劑製造業者的操作手冊進行。
10.2.2 單步驟即時定量反轉錄－聚合酶鍵鎖反應，取 5 μL RNA 做模版，加入漢他病毒專一性引子組（參考附錄 15.1），並依據所使用試劑製造業者的操作手冊，加入其他所需試劑，調整反應總體積至 25 μL。
10.2.3 單步驟即時定量反轉錄－聚合酶鍵鎖反應程式設定：
10.2.3.1 RT 作用：50 °C，30 min。
10.2.3.2 Taq polymerase activation：95 °C，15 min。
10.2.3.3 Denaturation：95°C，15 sec。
10.2.3.4 Annealing：55 °C，30 sec。
10.2.3.5 Extension：72 °C，20 sec。
10.2.3.6 77°C，30 sec，收集螢光值。
10.2.3.7 重複 10.2.3.3 至 10.2.3.6 步驟 45 Cycle。
10.2.4 Melting curve analysis：
10.2.4.1 95 °C，1 min。
10.2.4.2 以 0.2°C/秒速率降溫至 68°C，收集螢光值。

11 結果判定
11.1 判讀標準
11.1.1 陽性對照組的 Ct 值需小於或等於 30，Tm 值需大於或等於 79°C。
11.1.2 陰性對照組的 Ct 值需大於或等於 40，Tm 值需小於 79℃，Ct 值或 Tm 值有一項符合上述要求即可。
11.1.3 陽性對照組或陰性對照組其中之一不符合設定值時，則重新實驗。
11.1.4 在陽性對照與陰性對照組符合設定值下，Ct 值小於 35、Tm 值大於或等於 79℃者，判為黃熱病病毒陽性，反之則判為黃熱病病毒陰性。

11.2 報告核發
11.2.1 黃熱病病原體檢驗方法：螢光定量聚合酶連鎖反應（real-time PCR）
11.2.2 結果：陽性。
11.2.3 結果：陰性。

11.3 結果登錄：將檢體檢驗數據結果登錄於檢驗紀錄表，送請實驗室主管檢討確認，再依實驗室資訊管理系統（LIMS）之操作步驟，將檢驗結果登錄於系統，陳送指定之實驗室主管審核複校，發出正式檢測報告。

12 品質管制
12.1 每次進行實驗時皆有對照組，陽性對照組與陰性對照組的 Ct 值需符合設定值。
12.2 實驗過程遵循標準檢驗方法的作業規範與流程，並在個別獨立的操作空間內操作，以避免污染。
12.3 即時多重定量 PCR 偵測系統定時作檢測與校正。
12.4 微量滴管分注器定期校正。
12.5 注意試劑套組的使用期限與適當的儲放溫度。

13 廢棄物處理
檢驗過程中之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

15 附錄
15.1 黃熱病病毒診斷用引子組序列表。
附錄 15.1 黃熱病病毒診斷用引子組序列表

<table>
<thead>
<tr>
<th>yellow fever virus specific primer</th>
<th>參與反應的濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>YF-NS5-F GCA CGG ATG TAA CAG ACT GAA GA</td>
<td>200 nM</td>
</tr>
<tr>
<td>YF-NS5-R CCA GGC CGA ACC TGT CAT</td>
<td>200 nM</td>
</tr>
</tbody>
</table>
1 目的
黄熱病毒 IgM 和 IgG 抗體檢測。

2 適用檢體種類
適用於病人血清檢體。

3 名詞解釋
無。

4 原理概述
利用 Capture IgM 與 IgG 酵素免疫分析法，測定病人血清中之黃熱病毒特異性抗體。

5 試劑耗材
5.1 Dilution buffer: Casein blocking buffer (Sigma, Product no. C7594, USA)
-5 % Normal rabbit serum (Equitech-Bio, Inc, Cat. no. SR-0500, USA)
-0.05 % Tween-20 (Amresco, Cat. no. 0777, USA), pH 7.2。
5.2 Washing buffer: PBS- 0.05 % Tween-20, pH 7.2。
5.3 Human positive and negative control sera
5.3.1 黃熱病陽性對照血清 (以 dilution buffer 1：100 稀釋)。
5.3.2 日本腦炎陽性對照血清 (以 dilution buffer 1：100 稀釋)。
5.3.3 陰性對照血清 (以 dilution buffer 1：100 稀釋)。
5.4 去活化病毒細胞培養液 (病毒經 C6/36 細胞培養 5 - 7 天，收集上清液，
經 UV 照射 1 hr，分裝後保存於-80 ℃ 冷凍櫃)
5.4.1 黃熱病毒：YFV, strain 17D。
5.4.2 日本腦炎病毒：JEV, strain JaGAR。
5.5 抗黃病毒屬外套抗原 (envelope) 單株抗體腹水 (Glyconex, Cat. no.
FL0232, Taiwan)。
5.6 山羊抗小鼠 IgG 抗體-鹼性磷酸酶結合體 (goat anti-mouse IgG-AP
conjugate, Jackson, Code no. 115-006-071, USA)
5.7 Substrate reagent, p-Nitrophenyl-phosphate (p-NPP) (Chemicon, USA, Cat.
no. ES009-500 mL)。
5.8 96 孔微量滴定盤
5.8.1 Anti-human IgM 真空乾燥盤 (coated with goat anti-human IgM，
台灣尖端公司)。
5.8.2 Anti-human IgG 真空乾燥盤 (coated with goat anti-human IgG，
台灣尖端公司)。
5.9 八連排稀釋管。
5.10 透棄式 250 μL、1,000 μL 吸管尖。
5.11 手套。
6 儀器設備
 6.1 第 II 級生物安全櫃（class II BSC）。
 6.2 全自動酵素免疫分析儀（Tecan, Genesis workstation 150, Germany）。
 6.3 微量滴管分注器 2 μL、20 μL、100 μL、200 μL、1,000 μL (pipettors)。
 6.4 震盪器。
 6.5 冰箱：4 °C。
 6.6 冷凍櫃：-20 °C。
 6.7 高壓滅菌鍋。

7 環境設施安全
 7.1 病人血清檢體應在第 II 級生物安全櫃內處理。
 7.2 檢驗操作在生物安全第二等級（BSL-2）實驗室進行。

8 檢體採集
 參照本署出版之「傳染病檢體採檢手冊」第二版。
 http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
 參照本署出版之「傳染病檢體採檢手冊」第二版。
 http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
 10.1 檢體編號登錄。
 10.2 黃熱病與日本腦炎病毒的細胞培養液分別以 Dilution buffer 不同倍稀釋後，各取等量混合加入 1：1,000 之抗黃病毒屬抗原單株抗體腹水 FL0232。
 10.3 山羊抗小鼠 IgG 抗體-鹼性磷酸酶結合體以 Dilution buffer 1：2,000 稀釋。
 10.4 取待測血清 7 μL 加入 Dilution buffer 0.7 mL 稀釋 100 倍。
 10.5 取 0.1 mL 待測血清 (步驟 10.4) 及陰性、陽性對照血清 (試劑耗材 5.3)，加入 Coating goat anti-human IgM 及 Coating goat anti-human IgG 之 96 孔真空乾燥盤。
 10.6 置於 37 °C 溫箱，搖盪 30 min，然後以 Washing buffer 清洗 4 次。
 10.7 取 0.1 mL 含抗黃病毒屬抗原單株抗體腹水 FL0232 之黃熱病病毒細胞培養稀釋液及日本腦炎細胞培養稀釋液（步驟 10.2）分別加入 96 孔真空乾燥盤。
 10.8 置於 37 °C 溫箱，搖盪 30 min，然後以 Washing buffer 清洗 4 次。
 10.9 取 0.1 mL 山羊抗小鼠 IgG 抗體-鹼性磷酸酶結合體稀釋液（步驟 10.3）加入 96 孔真空乾燥盤。
 10.10 置於 37 °C 溫箱，搖盪 30 min，然後以 Washing buffer 清洗 4 次。
10.11 取 0.1 mL/孔呈色劑（p-NPP）加入 96 孔微量滴定盤中呈色。
10.12 置於 37 ℃ 温箱，搖盪 40 min。
10.13 置微量滴定盤於酵素免疫分析儀裡，以雙波長 405、630 nm 測定吸光度（OD405-630）。

11 結果判定
11.1 判讀標準
11.1.1 若血清檢體之黃熱病毒特異性 IgM 抗體之 OD 值大於 0.5，且黃熱病毒 IgM OD 值/日本腦炎病毒 IgM OD 值大於或等於 2，判為黃熱病 IgM 陽性。
11.1.2 若血清檢體之黃熱病毒特異性 IgG 抗體之 OD 值大於 0.5，判為黃熱病 IgG 陽性。
11.1.3 黃熱病陽性對照血清應符合 IgM OD 值＞1.0，IgG OD 值＞0.5。
11.1.4 日本腦炎陽性對照血清應符合 IgM OD 值＞1.0，IgG OD 值＞0.5。
11.1.5 陰性對照血清應符合 IgM OD 值＜0.2，IgG OD 值＜0.2。

11.2 報告核發:
11.2.1 檢驗方法：黃熱病毒 IgM 和 IgG 抗體檢測。
11.2.2 結果：陽性。
11.2.3 結果：陰性。

11.3 結果登錄：將檢體檢驗數據結果登錄於檢驗紀錄表，送請實驗室主管檢討確認，再依實驗室資訊管理系統（LIMS）之操作步驟，將檢驗結果登錄於系統，陳送指定之實驗室主管審核複校，發出正式檢測報告。

12 品質管制
12.1 應於有效期內使用，同一批號試劑，第一次使用時取一組進行試驗，之後每隔 3 - 6 個月再取一組進行試驗。
12.2 每次檢驗應加入陽性及陰性控制組血清。
12.3 遵循 S.O.P 的作業規範與流程，並在個別獨立的操作空間內操作，以避免污染。
12.4 微量滴管分注器定期做校正。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

15. 附錄
15.1 黃熱病毒 IgM 及 IgG 抗體試驗（酵素免疫分析法）流程圖。
附錄 15.1 黃熱病毒 IgM 及 IgG 抗體試驗（酵素免疫分析法）流程圖

96 孔微量真空乾燥盤 Coated with anti-human IgM
96 孔微量真空乾燥盤 Coated with anti-human IgG

待測血清及陰性、陽性對照血清 1：100 稀釋

取含抗黃病毒屬抗原單株抗體腹水 FL0232 之黃熱病毒細胞培養稀釋液及日本腦炎病毒細胞培養稀釋液，分別加入 96 孔真空乾燥盤

山羊抗小鼠 IgG 抗體-礆性磷酸酶結合一：1,000 稀釋

p-NPP 呈色劑

以酵素免疫分析儀，測定雙波長 405、630 nm 之吸光度（OD₄₀₅₋₆₃₀）

列印結果

結果判定
1. 目的
檢測疑似病患的血液或組織中是否含有伊波拉病毒。

2. 適用檢體種類
適用於病患急性期發病七日內血液檢體或組織檢體。

3. 名詞解釋
Ebola virus：伊波拉病毒。

4. 原理概述
利用非洲綠猴腎臟上皮細胞株 Vero E6 於組織培養盤中接種病患血清或組織研磨液，於 37 °C 培養箱中培養 7 日，取其細胞於 12 孔玻璃片上，加入抗伊波拉病毒多株抗體及螢光標記的山羊抗兔抗體，於螢光顯微鏡下檢查，測定是否有伊波拉病毒。

5. 試劑耗材
5.1 EMEM 細胞培養液（Eagles' minimum essential medium），含 10 % 胎牛血清【FBS】及 1 % 三合一抗生素【PSA】
EMEM, GIBCO, USA, Cat. No. 51200-046
FBS, fetal bovine serum, certified, heat-inactivated, Cat. no. 10082-147
PSA, Pen-Strep-Ampho Sol., Gibco, USA, Cat. no. 15070-063
trypsin, 0.25 % with EDTA 4Na, liquid, Gibco, USA, Cat no. 25200-056。
5.2 非洲綠猴腎臟上皮細胞株 Vero E6 (ATCC no. CCL-81)。
5.3 伊波拉病毒（合成蛋白）：以合成蛋白作為伊波拉病毒之陽性對照組。
5.4 多株抗體：抗伊波拉病毒多株抗體。
5.5 FITC-Goat Anti-Rabbit IgG（Invitrogen, USA, Cat. no. 81-6111）。
5.6 丙酮（Acetone, Merck, Germany, Cat. no. : 1.00020）。
5.7 磷酸鹽緩衝液（PBS, Gibco, USA, Cat. no. 14200-075）及水（H2O）。
5.8 甘油緩衝液（Merck, Germany, Cat. no. 1.04093）。
5.9 96 孔培養盤。
5.10 50 mL 的離心管。
5.11 12 孔玻璃片（BioMerieux., France, Cat. No. 7-571-1）。
5.12 蓋玻片。
5.13 無菌 20 µL、200 µL、1,000 µL 之吸管尖。

6. 儀器設備
6.1 37 °C CO₂ 培養箱（Napco, USA, Model 5430）。
6.2 第 III 級生物安全櫃（La Calhene, France）。
6.3 第 II 級生物安全櫃（SterilGARD III Advance, USA, Baker Company）。
6.4 螢光顯微鏡（Olympus, Japan, IX71）。
6.5 5 - 40 µL、40 - 200 µL、200 - 1,000 µL Pipette。
6.6 -20 °C 及 -80 °C 冷凍櫃（Thermo Scientific, USA）。
7 環境設施安全
7.1 檢驗操作在生物安全等級 BSL-2 plus 實驗室進行。
7.2 水質：25 ℃蒸餾水或 RO 逆滲透可達 18 MΩ-CM 以上超純水。

8 檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 Vero E6 細胞以 Eagles' minimum essential medium（EMEM，內含 10 % 加熱去活化胎牛血清）在 37 ℃，5 % CO2 的條件下培養。
10.2 細胞貼附後，改以 2 % FBS EMEM 做繼代培養。
10.3 送檢樣本先經過濾除去雜質後，上清液以 EMEM 培養液調整成 10 % 的懸浮液。
10.4 以 100 μL 之該懸浮液，於 37 ℃接種至 70 %細胞滿的 25cm² 培養瓶。
10.5 接種 2 hr 後，再加入 5mL 2 % FBS EMEM 培養液，置入 37 ℃，5 % CO2 培養箱培養，每兩週做一次繼代培養。
10.6 先吸出上層培養液，以 0.25 % Trypsine-EDTA 處理分離細胞，再混入原吸出之培養液，而後將 1/3 量置入新的 25 cm² 培養瓶，並以 2 % FBS EMEM 補足至 5 mL，置 37 ℃，5 % CO2 培養箱培養 7 天。
10.7 另 1/3 置於-70 ℃凍存，另 1/3 量留做免疫螢光檢測用。
10.8 將適量經 Trypsine-EDTA 處理分離下來的 Vero-E6 細胞，滴至 12 孔玻片上，置於抽氣櫃中抽乾。
10.9 而後以-20 ℃ 1：1 之甲醇/丙酮溶剤固定 2 min，再放入抽氣櫃以揮發甲醇/丙酮固定液。
10.10 此檢體抹片可保存於-20 ℃冰箱中或直接染色。
10.11 以 PBS 沖洗各孔後，在抹片上加上 25 μL 抗伊波拉病毒單株抗體（1：100 in PBS）。
10.12 將抹片放置在潮濕的培養皿中，置於 37 ℃ 溫箱 30 min。
10.13 於 37 ℃ 反應 30 min，以 PBS 重複浸洗 3 次，每次各 5 min。
10.14 在室溫中將玻璃片以冷風吹乾或陰乾。
10.15 將抹片加上 25 μL 螢光 FITC 標記之山羊抗兔抗體（FITC-goat anti-rabbit IgG（1：100 in PBS）, 於 37 ℃ 反應 30 min。
10.16 以 PBS 重複浸洗 3 次，每次各 5 min。
10.17 滴上甘油緩衝液，然後以蓋玻片覆蓋。
10.18 以螢光顯微鏡檢查。
結果判定

11.1 判讀標準
 11.1.1 在螢光顯微鏡下將檢測檢體與 Positive control 及 Negative control 比對判讀。
 11.1.2 當檢體呈現陽性時在螢光顯微鏡下可見黃綠色之細胞；當檢體呈現陰性時在螢光顯微鏡下無綠色細胞僅可見到細胞陰影。

11.2 報告核發：伊波拉病毒分離(陽性)、伊波拉病毒分離(陰性)。

11.3 結果登錄：將檢體之檢驗結果登錄於檢體送驗單並加蓋檢驗者印章，送報告簽署人審核及蓋章，並登錄於網路報告系統。

品質管制

12.1 嚴防病原散佈或污染，工作時帶手套。
12.2 實驗過程遵循 S.O.P 的作業規範與流程，檢體需在 BSL-4 實驗室內操作，以避免污染。
12.3 生物安全櫃及培養箱定期做校正及維護。
12.4 置於 37 ℃ 溫箱染色時應注意保持溼度。
12.5 必須要有未感染病毒之細胞及感染病毒之細胞分別做為陰性與陽性對照組。

廢棄物處理

13.1 檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

參考資料

附錄

15.1 伊波拉病毒分離與鑑定流程圖。
附錄 15.1 伊波拉病毒分離與鑑定流程圖

患者發病七日內血清

病毒分離組織培養

血清稀釋 20 倍
2 倍連續稀釋至 160 倍
接種 VERO E6 細胞株

37 ℃ CO₂ 培養箱培養 7 天

伊波拉病毒螢光抗體檢驗

陽性

重複接種一次

陰性

RT-PCR 再確認

陰性

判定
1 目的
檢測伊波拉病毒核酸。

2 適用檢體種類
適用於符合伊波拉病毒病徵之病患血清檢體。

3 名詞解釋
Ebola virus：伊波拉病毒。

4 原理概述
其技術原理是將待測的病毒 RNA 序列經反轉錄酶（reverse transcriptase）的作用轉錄成 cDNA，再利用 PCR 技術將基因片段以幾何級數倍增的方式增加到數十萬倍，若以 Real Time PCR 儀器進行時，則是 PCR 反應一面進行時，機器就利用熒光偵測技術與電腦分析並記錄 PCR 的反應結果，因此能以螢光曲線即時呈現檢驗結果。

5 試劑耗材
5.1 檢體稀釋液 (PBS pH 7.2/0.05 % Tween 20/0.5 % BSA)。
5.2 QIAamp viral RNA 抽取試劑組。
5.3 Qiagen one-step RT-PCR kit。
5.4 Real-time PCR 儀器 LightCycler 所需之檢體毛細管。
5.5 LightCycler FastStart DNA master SYBR green I (Cat. no. 03 003 230 001)。
5.6 Nuclease-free (RNase/DNase-free) 無菌微量吸管尖（tip）：5 μL、10 μL、200 μL。
5.7 Nuclease-free（RNase/DNase-free）無菌蒸餾水。
5.8 可拋棄式無菌 Nuclease-free（RNase/DNase-free）塑膠手套。
5.9 病毒基因製備：
國內直至目前為止並無第四級病毒感染之病例報告，更因此類病毒受到國際協會的管制，無法獲得這些第四級病毒做為參考病毒。所以這些病毒抗原之製備則需靠人工合成基因之方式獲得，本實驗方法之陽性對照組由伊波拉病毒之合成 L 基因取代完整病毒。
5.10 引子與探針的合成；
伊波拉病毒的引子與探針合成，在選定側的病毒序列後（L gene），依照文獻及利用 Roche 公司所出的 Probe design software 2.0 進行引子與探針序列之設計，之後再送交廠商合成。
衛生福利部疾病管制署
傳染病標準檢驗方法

編號：伊波拉病毒核酸檢測
（Real-time RT-PCR）

核准日期：年 月 日
修訂日期：年 月 日

頁次：第 957 頁/共 1104 頁

<table>
<thead>
<tr>
<th>Filovirus (L gene Synthesis Ebola virus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>引子名稱</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Filo A-13213-34 Forward</td>
</tr>
<tr>
<td>Filo B-13631-01 Reverse</td>
</tr>
</tbody>
</table>

6 儀器設備
6.1 The LightCycler instrument Ssystem。
6.2 微量吸管（pipettemen）：5 μL、10 μL、200 μL。
6.3 8 爪微量吸管。
6.4 全自動清洗器。
6.5 計時器。
6.6 37 °C 水浴箱。

7 環境設施安全
送檢樣本在 BSL-4 實驗室的隔離箱分裝後，必需經去活性處理才可將檢體送
出一般實驗室進行血清學測試，如經 Guanidine Thiocynate 處理才可進入分生
（BSL-2）實驗室進行病毒核酸抽取及 PCR 等實驗，而只有操作活病毒的實
驗如病毒培養、動物實驗等才需進入 BSL-4 實驗室操作。

8 檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
reeid=6C7C52E7A7D5621A。

9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
reeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢驗前檢體處理
10.1.1 檢體以 2,000 rpm 離心 30 min，分離出土清液備用。
10.1.2 在接獲疑似第四級病毒檢體時，先將裝運檢體之容器以 UV 燈
照射 20 min，BSL-4 實驗室工作人員在實驗室操作將容器打開
拿出檢體，在隔離箱內將送檢樣本（血液或尿液）經過濾處理
後分裝為三部份：
10.1.2.1 感染細胞株進行病毒培養。
10.1.2.2 加入 Guanidine thiocynate 溶液中進行病毒核酸抽取及
RT-PCR 之實驗。
10.1.2.3 加入最終濃度為 10 % 福馬林中進行抗體檢測。
10.1.3 在細胞株觀察到有細胞病變時，將細胞外溶液或細胞加入 Guanidine thiocyanate 溶液中進行病毒核酸抽取及 RT-PCR 或 Real-time RT-PCR 之實驗，一部份將細胞加入最終濃度為 10% 福馬林中進行免疫抗原之診斷，以刮杓將細胞刮下後加入最終濃度為 10% 福馬林中進行細胞內免疫抗原之診斷或加入 Glutaldehyde 中進行電子顯微鏡觀察等各種相關之診斷實驗。

10.2 血清檢體病毒或細胞培養病毒液 RNA 之萃取：
使用 Qiagen 廠牌之 QIAamp viral RNA 抽取試劑組，依廠牌步驟指示，略述如下：
10.2.1 取 140μL 血清加入 560μL AVL 溶液。
10.2.2 室溫靜置 10 min。
10.2.3 再加入 560μL 絕對酒精，混勻後，10,000 rpm 轉速離心使通過 QIAamp Spin Column。
10.2.4 續以 500μL AW 溶液清洗管柱兩次。
10.2.5 最後以 80 ℃ 之 60μL RNase-free ddH₂O 沖流出病毒 RNA。

10.3 反轉錄反應（reverse transcription）：
10.3.1 在由細胞培養液或血清檢體萃取出之 RNA 溶液中，加入上、下端引子（100μL）後，將此混合物於 90 ℃ 加熱 5 min，置於冰冷 3 min。
10.3.2 短暫離心收集溶液於管底。
10.3.3 取 20μL 此模版/引子溶液於 0.2 mL 離心管中。
10.3.4 並加入 5μL 10x 緩衝液（500 mM KCl, 100mM Tris-HCl, pH8.3, 15 mM MgCl₂, 0.01 % (v/v) gelatin）, 4μL 2.5 mM dNTPs (BRL), 0.5μL 0.1M DTT（dithiothreitol）, 0.5μL 核糖核酸酵素抑制劑（ribonuclease inhibitor, RNAsin, 10 U/μL, BRL）, 0.5μL SuperScript™II reverse transcriptase（RNase H-, 20 U/μL, BRL）。
10.3.5 以 RNase-free ddH₂O 無菌水將總體積補至 50μL。
10.3.6 混合均勻後，於 LightCycler 進行反轉錄反應。

10.4 Real-time PCR amplification
10.4.1 製備試劑：
10.4.1.1 製備 LightCycler FastStart DNA master SYBR green I, 10 X conc.；
將 LightCycler FastStart enzyme（colorless cap）取出 10 μL 加入一管 LightCycler FastStart DNA master SYBR green I, 10 X conc.（green cap）中，可進行 32 Tests（保存於 4 ℃ 可放置 1 週）。
10.4.1.2 製備 primer：
以 H₂O 將 Forward 及 Reverse primer 溶解，使其濃度為 100μM，再以 H₂O 將 Primer 稀釋至最終濃度 5μM。
10.4.2 製備 Real time PCR mix：
DNA template 4 μL
5 μM Forward primer (F) 2 μL x Z
5 μM Reverse primer (R) 2 μL x Z
LightCycler FastStart DNA Master SYBR Green I, 10X conc. 2 μL x Z
25 mM MgCl₂ stock solution 2 μL x Z
H₂O 8 μL x Z

Total 20 μL

（Z = 總反應數 + 1）
以微量吸管混合均勻，勿 Vortex。

10.4.3 取 16 μL 的 Real time PCR mix 至 LightCycler 專用毛細管中。
10.4.4 加入 DNA template 各 4 μL。
10.4.5 將各毛細管封上專用蓋子。
10.4.6 離心 700 × g，5 sec（或 spin down）。
10.4.7 將毛細管依序放入檢體轉盤。
10.4.8 Run Real-Time PCR：

【Pre-incubation】

95°C 10 min 1 cycle

【Amplification】

Denaturing 95°C 10 sec
Annealing 55°C 10 sec 45 cycles
Extension 72°C 25 sec

Acquisition Mode: single

【Melting curve analysis】

Denaturing 95°C 0 sec
Annealing 65°C 15 sec
Melting 95°C 0 sec
Slope = 0.1°C/sec

Acquisition Mode: continuous

【Cooling】

40°C 30 sec

10.4.9 利用儀器軟體中的 melting curve analysis 分析 PCR 產物，亦可
進一步利用洋菜膠電泳技術分析 PCR 產物。

11 結果判定：

11.1 判讀標準：45 個 PCR 循環加上 Tm 曲線的鑑定過程在 30 min 內，經螢
光放射分析即可得到結果。並將陽性對照組之模板 DNA 用量為 100 ng、
10 ng、1 ng、100 pg、10 pg、1 pg 等核酸濃度，測定核酸與循環數之標
準曲線，可應用於檢體之定量分析。

11.2 報告核發：有螢光曲線產生、melting curve analysis 分析正確，則可判
定為陽性。
11.3 結果登錄：將檢體之檢驗結果登錄於檢體送驗單並加蓋檢驗者印章，送報告簽署人審核及蓋章，並登錄於網路報告系統。

12 品質管制
12.1 嚴防病原散佈或污染，工作時帶手套。
12.2 實驗過程遵循 S.O.P 的作業規範與流程，並在 BSL-2 plus 實驗室內操作，以免避免污染。
12.3 生物安全櫃及培養箱定期做校正及維護。
12.4 必須要有未感染病毒之細胞及感染病毒之細胞分別做為陰性與陽性對照組。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121°C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

15 附錄
15.1 伊波拉病毒核酸檢測分析法流程圖。
附錄 15.1 伊波拉病毒核酸檢測（real-time RT-PCR）流程圖

陽性判定：具有螢光曲線產生，並且 Melting curve 分析與陽性對照組一致。

未確定判定：螢光曲線產生過晚（超過 40 個 Cycles 之後）。

陰性判定：無螢光曲線產生，或 Melting curve 分析與陰性對照組不一致。

再以免疫偵測法確認

再重複 PCR 確認（使用不同基因之引子）或以免疫偵測法確認
目的
检测伊波拉病毒抗體。

適用檢體種類
適用於符合伊波拉病毒病徵之病患血清檢體。

名詞解釋
無。

原理概述
利用伊波拉病毒合成蛋白作為抗原，與病患血清進行抗原抗體反應，以酵素標幟抗體間接地將此反應轉成顏色訊號，由全自動酵素免疫分析儀讀取結果。

試劑耗材

5.1 清洗液 PBST（PBS pH 7.2 含 0.05 % Tween 20）。5.2 檢體稀釋液（PBST 含 0.5 % BSA）。5.3 已吸附伊波拉病毒合成蛋白之 96 孔微量滴定盤。
5.4 抗人類 IgM 之 HRP（Horseradish Peroxidase）酵素結合抗體（Peroxidase Conjugated Affinity Purified Anti-human IgM μ【goat】），Sigma，USA。
5.5 HRP 穩定液（HRP Stabilizer），Sigma，USA。
5.6 呈色劑（TMB 受質）Sigma，USA。
5.7 終止液（2 M H₂SO₄），Merck，Germany。
5.8 陽性伊波拉病毒合成蛋白標準液。
5.9 無菌蒸餾水。
5.10 八連排血清稀釋管。
5.11 八連排血清稀釋架。
5.12 無菌微量吸管尖（tip）：10 μL、200 μL、1,000 μL。
5.13 96 孔微量滴定盤封膜。
5.14 可拋棄式無菌塑膠手套。

儀器設備

6.1 第二級生物安全櫃（Class II BSC：SterigARD III Advance，Baker Company，USA）。
6.2 全自動酵素免疫分析儀（ELISA reader：BioTek Quant，USA）。
6.3 全自動清洗器。
6.4 微量吸管（pipette men）：1,000 μL、100 μL、30 μL。
6.5 8 爪微量吸管。
6.6 計時器。
6.7 37 °C 溫箱。
7 環境設施安全
於生物安全第四等級（BSL-4）實驗室內檢體分裝、去活化。於生物安全第二等級（BSL-2）實驗室之設施內操作。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢驗前血清處理
10.1.1 檢體以 2,000 rpm 離心 10 min，分離出血清備用。

10.2 酵素免疫分析盤處理
10.2.1 將 96 孔酵素免疫分析盤加入 100 μL 1：2000 稀釋之病毒抗原混合液。
10.2.2 將製備抗原之 96 孔酵素免疫分析盤靜置於 4 °C，隔夜後即可使用。把製備備好的酵素免疫分析盤先以 washing machine 以磷酸緩衝液 PBST 洗淨。
10.2.3 酵素免疫分析盤注入清洗液放置 5 min，以 PBST 清洗 3 次。

10.3 陽性對照血清（亦即陽性標準液）
10.3.1 陽性對照血清乃利用伊波拉病毒合成蛋白所生成之兔子多株抗體。
10.3.2 操作方式與待測血清相同，但使用不同種源的二級抗體（goat anti-rabbit IgG-HRP, Cappel）。
10.3.3 作為酵素免疫分析盤 coating 伊波拉蛋白是否良好的對照組。

10.4 待測血清
10.4.1 將待測血清以 10 % 脫脂乳 (skimmed milk) 以 1:100 濃度稀釋，分別加入 100 μL 稀釋血清於盤中之對照組及實驗組中。
10.4.2 分別加入稀釋後之血清檢體，各檢體需二重複試驗。
10.4.3 於 37 ℃ 中作用 1 hr 後，以 PBST 清洗酵素免疫分析盤。
10.4.4 以 PBS 清洗 4 次，拍乾酵素免疫分析盤。
10.4.5 在酵素免疫分析盤中之孔內，各加入 100 μL 以 1：2000 稀釋之第二抗體（goat anti-human IgM-HRP）。
10.4.6 再置於 37 ℃ 反應 1 hr。
10.4.7 以清洗液清洗 4 次，拍乾酵素免疫分析盤。
10.4.8 清洗酵素免疫分析盤後，每孔加入 100 μL 之呈色劑 (TMB-0.035 % H2O2, in Citrate buffer, pH 5.5) 置於室溫於黑暗中作用 15 - 20 min。
10.4.9 每孔加入 50 μL 反應終止溶液（2 M H₂SO₄）。
10.4.10 以分光光度計 OD₄₅₀ 测其吸光值。

11 結果判定
11.1 判讀標準：將 OD₄₅₀ 值高於陰性對照組之平均值加 3 倍標準差者，視為陽性反應。
11.2 報告核發：伊波拉病毒抗體(陽性)、伊波拉病毒抗體(陰性)。
11.3 結果登錄：將檢體之檢驗結果登錄於檢體送驗單並加蓋檢驗者印章，送報告簽署人審核及蓋章，並登錄於網路報告系統。

12 品質管制
每次執行陽性及陰性對照血清。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

15 附錄
15.1 伊波拉病毒抗體試驗（酵素免疫分析法）流程圖。
附錄 15.1 伊波拉病毒抗體試驗（酵素免疫分析法）流程圖

吸附伊波拉病毒合成抗原 96 孔 ELISA 微孔盤

待測血清 100 倍稀釋及陽性標準液處理後，置入酵素免疫分析盤

37 °C，1 小時清洗液清洗 4 次

酵素免疫分析盤孔內加入抗人類 IgM 之酵素結合抗體，100 μL/ well

37 °C，1 小時清洗液清洗 4 次

酵素免疫分析盤孔內加入 TMB，100 μL/well

室溫 15-20 min

酵素免疫分析盤孔內加入 stop solution，100 μL/well

ELISA reader：BioTek μQuant，用 450 nm 讀取 OD 值

陽性判定：OD_{450} 值高於陰性對照組平均值加 3 倍標準差者，視為陽性反應

陰性判定：OD_{450} 值低於陰性對照組平均值加 3 倍標準差者，視為陰性反應

再以 Real-time PCR 確認
1 目的
檢測疑似病患的血液或組織中是否含有拉薩病毒。

2 適用検體種類
適用於病患急性期發病五日內血液檢體或組織檢體。

3 名詞解釋
Lassa virus: 拉薩病毒。

4 原理概述
利用非洲綠猴腎臟上皮細胞株 Vero E6 於組織培養皿中接種病患血清或組織
研磨液，於 37 °C 培養箱中培養 7 日，取其細胞於 12 孔玻璃片上，加入抗拉
薩病毒多株抗體及螢光標記的山羊抗兔抗體，於螢光顯微鏡下檢查，測定是
否有拉薩病毒。

5 試劑耗材
5.1 EMEM 細胞培養液 (Eagles' minimum essential medium)，含 10 %胎牛血
清【FBS】及 1 %三合一抗生素【PSA】
EMEM Gibco, USA, Cat. No. 51200-046
FBS, fetal bovine serum, certified, heat-inactivated, Cat. no. 10082-147
PSA, Pen-Strep-Ampho Sol., Gibco, USA, Cat. no. 15070-063
trypsin, 0.25% with EDTA 4Na, liquid, Gibco, USA, Cat no. 25200-056。
5.2 非洲綠猴腎臟上皮細胞株 Vero E6 (ATCC no. CCL-81)。
5.3 拉薩病毒 (合成蛋白)；以合成蛋白作為拉薩病毒之陽性對照組。
5.4 多株抗體；抗拉薩病毒多株抗體。
5.5 FITC-goat anti-rabbit IgG (Invitrogen, USA, Cat. no. 81-6111)。
5.6 丙酮 (acetone, Merck, Germany, Cat. no：1.00020)。
5.7 磷酸鹽緩衝液 (PBS, Gibco, USA, Cat. no. 14200-075) 及水 (H2O)。
5.8 甘油緩衝液 (Merck, Germany, Cat. no. 1.04093)。
5.9 96 孔培養皿。
5.10 50 mL 的離心管。
5.11 12 孔玻璃片 (BioMerieux., France, Cat. No. 7-571-1)。
5.12 蓋玻片。
5.13 無菌 20 μL、200 μL、1,000 μL 之吸管尖。

6 儀器設備
6.1 37 °C CO2 培養箱 (Napco, USA, Model 5430)。
6.2 第 III 級生物安全櫃 (La Calhene, France)。
6.3 第 II 級生物安全櫃 (SterilGARD III Advance, USA, Baker Company)。
6.4 螢光顯微鏡 (Olympus, Japan, IX71)。
6.5 5 - 40 μL、40 - 200 μL、200 - 1,000 μL Pipette。
6.6 -20 °C 及 -80 °C 冷凍櫃 (Thermo Scientific, USA)。
傳染病標準檢驗方法

編號: 拉薩病毒分離與鑑定

核准日期: 年 月 日

修訂日期: 年 月 日

7 環境設施安全
7.1 於生物安全第四等級 (BSL-4) 實驗室內檢體分裝、去活化。檢驗操作
在生物安全等級 BSL-2 plus 實驗室進行。
7.2 水質: 25°C 蒸餾水或 RO 逆滲透可達 18 MΩ-CM 以上超純水。

8 檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 Vero E6 細胞以 Eagles’ mini mum essential medium (EMEM，內含 10% 加熱去活化胎牛血清) 在 37°C，5% CO2 的條件下培養。
10.2 細胞貼附後，改以 2% FBS EMEM 做繼代培養。
10.3 培養液調整成 10% 的懸浮液。
10.4 以 100 μL 之懸浮液，於 37°C 接種至 70% 細胞滿的 25 cm² 培養瓶。
10.5 接種 2 hr 後，再加入 5ml 2% FBS EMEM 培養液，置入 37°C，5% CO2 培養箱培養，每兩週做一次繼代培養。
10.6 先吸取上層培養液，以 0.25% Trypsine-EDTA 處理分離細胞，再混入原 吸出之培養液，而後將 1/3 量置入新的 25 cm² 培養瓶，並以 2% FBS EMEM 補足至 5 mL，置 37°C 5% CO2 培養箱培養 7 天。
10.7 另 1/3 置於-70°C 冷凍，另 1/3 量留做免疫螢光檢測用。
10.8 將適量經 Trypsin-EDTA 處理分離下來的 Vero-E6 細胞，滴至 12 孔玻片 上，置於抽氣箱中抽乾。
10.9 而後以-20°C 1:1 之甲醇/丙酮溶劑固定 2 min，再放入抽氣箱以揮發甲 醇/丙酮固定液。
10.10 此檢體抹片可保存於-20°C 冰箱中或直接染色。
10.11 以 PBS 沖洗各 well 後，在抹片上加上 25 μL 抗拉薩病毒單株抗體 (1: 100 in PBS)。
10.12 將抹片放置在潮濕的培養皿中，置於 37°C 溫箱 30 min。
10.13 於 37°C 反應 30 min，以 PBS 重複浸洗 3 次，每次各 5 min。
10.14 在室溫中將玻璃片以冷風吹乾或陰乾。
10.15 將抹片加上 25 μL 螢光 FITC 標記之山羊抗兔抗體 (FITC-goat anti-rabbit
IgG (1: 100 in PBS)，於 37°C 反應 30 min。
10.16 以 PBS 重複浸洗 3 次，每次各 5 min。
10.17 滴上甘油緩衝液，然後以蓋玻片覆蓋。
10.18 以螢光顯微鏡檢查。

11 結果判定
11.1 判讀標準
 11.1.1 在螢光顯微鏡下將檢測檢體與 Positive control 及 Negative control 比對判讀。
 11.1.2 當檢體呈現陽性時在螢光顯微鏡下可見黃綠色之細胞；當檢體呈現陰性時在螢光顯微鏡下無綠色細胞僅可見到細胞陰影。
11.2 報告核發：拉薩病毒分離(陰性)、拉薩病毒分離(陽性)。
11.3 結果登錄：將檢體之檢驗結果登錄於檢體送驗單並加蓋檢驗者印章，送報告簽署人審核及蓋章，並登錄於網路報告系統。

12 品質管制
12.1 嚴防病原散佈或污染，工作時帶手套。
12.2 實驗過程遵循 S.O.P 作業規範與流程，檢體需在 BSL-4 實驗室內操作，以避免污染。
12.3 生物安全櫃及培養箱定期做校正及維護。
12.4 置於 37 °C 溫箱染色時應注意保持溼度。
12.5 必須要有未感染病毒之細胞及感染病毒之細胞分別做為陰性及陽性對照組。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序辦理。

14 參考資料

15 附錄
15.1 拉薩病毒分離與鑑定流程圖。
附錄 15.1 拉薩病毒分離與鑑定流程圖

患者發病七日內血清

病毒分離組織培養

血清稀釋 20 倍
2 倍連続稀釋至 160 倍
接種 VERO E6 細胞株

37 °C CO₂ 培養箱培養 7 天

拉薩病毒熒光抗體檢驗

陽性

重複接種一次

RT-PCR 再確認

判定

陰性
<table>
<thead>
<tr>
<th>編號：</th>
<th>拉薩病毒核酸檢測</th>
<th>核准日期：年月日</th>
</tr>
</thead>
<tbody>
<tr>
<td>頁次：第970頁/共1104頁</td>
<td>（Real-time RT-PCR）</td>
<td>修訂日期：年月日</td>
</tr>
</tbody>
</table>

1 目的
檢測拉薩病毒核酸。

2 適用檢體種類
適用於符合拉薩病毒病徵之病患血清檢體。

3 名詞解釋
Lassa virus：拉薩病毒。

4 原理概述
其技術原理是將待測的病毒 RNA 序列經反轉錄酶（reverse transcriptase）的作用轉錄成 cDNA，再利用 PCR 技術將基因片段以幾何級數倍增的方式增加到數十萬倍，若以 Real time PCR 儀器進行時，則是 PCR 反應一面進行時，機器就利用熒光偵測技術與電腦分析並記錄 PCR 的反應結果，因此能以熒光曲線即時呈現檢驗結果。

5 試劑耗材
5.1 檢體稀釋液（PBS pH 7.2/0.05 % Tween 20/0.5 % BSA）。
5.2 QIAamp viral RNA 抽取試劑組。
5.3 Qiagen one-step RT-PCR kit。
5.4 Real-time PCR 儀器 LightCycler 所需之檢體毛細管。
5.5 LightCycler FastStart DNA master SYBR green I（Cat. no. 03 003 230 001）。
5.6 Nuclease-free（RNase/DNase-free）無菌微量吸管尖（tip）：5 µL、10 µL、200 µL。
5.7 Nuclease-free（RNase/DNase-free）無菌蒸餾水。
5.8 可拋棄式無菌 Nuclease-free（RNase/DNase-free）塑膠手套。
5.9 病毒基因製備：
國內直至目前為止並無第四級病毒感染之病例報告，更因此類病毒受到國際協會的管制，無法獲得這些第四級病毒做為參考病毒。所以這些病毒抗原之製備，則需靠人工合成基因之方式獲得，本實驗方法之陽性對照組由拉薩病毒之合成 GPC 基因取代完整病毒。
5.10 引子的合成：
拉薩病毒的引子合成，在選定偵側的病毒序列後（G2 gene），參照文獻及利用 Roche 公司所出的 Probe design software 2.0 進行引子與探針序列之設計，之後再送交廠商合成。
衛生福利部疾病管制署傳染病標準檢驗方法

<table>
<thead>
<tr>
<th>Lassa Virus (GPC gene Synthesis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>引子名稱</td>
</tr>
<tr>
<td>LASV-36E2-5-24 forward</td>
</tr>
<tr>
<td>LASV-80F2-339-11 reverse</td>
</tr>
</tbody>
</table>

6 儀器設備
6.1 The LightCycler instrument system。
6.2 微量吸管（pipettes）: 5 μL、10 μL、200 μL。
6.3 計時器。
6.4 37 °C 水浴箱。

7 環境設施安全
送檢樣本在 BSL-4 實驗室的隔離箱分裝後，必需經去活性處理才可將檢體送出一般實驗室進行血清學測試，如經 Guanidine thiocynate 處理才可進行分生（BSL-2）實驗室進行病毒核酸抽取及 PCR 等實驗，而只有操作活病毒的實驗如病毒培養、動物實驗等才可進入 BSL-4 實驗室操作。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
低溫運送及保存，參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢驗前檢體處理
10.1.1 檢體以 2,000 rpm 離心 30 min，分離出上清液備用。
10.1.2 在接獲疑似第四級病毒檢體時，先將裝運檢體之容器以 UV 燈照射 20 min，BSL-4 實驗室工作人員在實驗室操作將容器打開拿出檢體，在隔離箱內將送檢樣本（血液或尿液）經過濾處理後分裝為三部份：
10.1.2.1 感染細胞株進行病毒培養。
10.1.2.2 加入 Guanidine thiocynate 溶液中進行病毒核酸抽取及 RT-PCR 之實驗。
10.1.2.3 加入最終濃度為 10 %福馬林中進行疑似致病源抗體之檢測。
10.1.3 在細胞株觀察到有細胞病變時，將細胞外溶液或細胞加入 Guanidine thiocynate 溶液中進行病毒核酸抽取及 Real-time RT-PCR 之實驗，一部份將細胞加入最終濃度為 10 %福馬林中進行免疫抗原之診斷，以刮杓將細胞刮下後加入最終濃度為 10 %福馬林中進行細胞內免疫抗原之診斷或加入 Glutaldehyde 中進行電子顯微鏡觀察等各種相關之診斷實驗。

10.2 血清檢體病毒或細胞培養病毒液 RNA 之萃取：
使用 Qiagen 廠牌之 QIAamp viral RNA 抽取試劑組，依廠牌步驟指示，略述如下。
10.2.1 取 140 μL 血清加入 560 μL AVL 液體。
10.2.2 瓶室溫靜置 10 min。
10.2.3 再加入 560 μL 絕對酒精，混勻後，10,000 rpm 轉速離心使通過 QIAamp spin column。
10.2.4 維以 500 μL AW 液體清洗管柱兩次。
10.2.5 最後以 80 ℃之 60 μL RNase-free ddH₂O 沖流出病毒 RNA。

10.3 反轉錄反應 (reverse transcription)：
10.3.1 在由細胞培養液或血清檢體萃取出之 RNA 液體中，加入上、下駁引子（100 μL）後，將此混合物於 90 ℃加熱 5 min，置於冰上 3 min。
10.3.2 短暫離心收集液於管底。
10.3.3 取 20 μL 模版/引子液體於 0.2 mL 离心管中。
10.3.4 並加入 5 μL 10 X 總合液（500 mM KCl, 100 mM Tris-HCl, pH8.3,
15 mM MgCl₂, 0.01 % (v/v) gelatin）4 μL 2.5 mM dNTPs (BRL),
0.5 μL 0.1 M DTT (dithiothreitol)，0.5 μL 核糖核酸酵素抑制劑（ribonuclease inhibitor，RNAsin，10 U/μL，BRL)，0.5 μL SuperScript™ II Reverse transcriptase（RNase H-，20 U/μL BRL）。
10.3.5 以 RNase-free ddH₂O 無菌水將總體積補至 50 μL。
10.3.6 混合均勻後，於 LightCycler 進行反轉錄反應，以製作出 cDNA。

10.4 Real-time PCR amplification

10.4.1 製備試劑：
10.4.1.1 製備 LightCycler FastStart DNA master SYBR green I,
10 X Conc.:
將 LightCycler FastStart enzyme（colorless cap）取出
10 μL 加入一管 LightCycler FastStart DNA master
SYBR green I, 10X Conc.（green cap）中，可進行 32 Tests（保存於 4 ℃ 可放置 1 週）。
10.4.1.2 製備 Primer：
以 H₂O 將 Forward 及 Reverse primer 溶解，使其濃度為
100 μM，再以 H₂O 將 Primer 稀釋至最終濃度 5 μM。
10.4.2 製備 Real time PCR mix:
DNA template 4 μL
5 μM Forward primer (F) 2 μL x Z
5 μM Reverse primer (R) 2 μL x Z
LightCycler FastStart DNA master SYBg green I, 10X conc. 2 μL x Z
25 mM MgCl$_2$ stock solution 2 μL x Z
H$_2$O 8 μL x Z
Total 20 μL

(Z= 總反應數+1)
以微量吸管混合均勻，勿 Vortex。

10.4.3 取 16 μL 的 Real time PCR Mix 至 LightCycler 專用毛細管中。

10.4.4 加入 DNA template 各 4 μL。

10.4.5 將各毛細管封上專用蓋子。

10.4.6 離心 700 × g, 5 sec（或 spin down）。

10.4.7 將毛細管依序放入検體轉盤。

10.4.8 Run real-time PCR:
【Pre-incubation】
95°C 10 min 1 cycle

【Amplification】
Denaturing 95°C 10 sec
Annealing 55°C 10 sec 45 cycles
Extension 72°C 25 sec

Acquisition mode: single

【Melting curve analysis】
Denaturing 95°C 0 sec
Annealing 65°C 15 sec
Melting 95°C 0 sec
Slope=0.1°C/sec

Acquisition mode: continuous

【Cooling】
40°C 30 sec

10.4.9 利用儀器軟體中的 Melting curve analysis 分析 PCR 產物，亦可
進一步利用洋菜膠電泳技術分析 PCR 產物。

11 結果判定:
11.1 判讀標準:
45 個 PCR 循環加上 Tm 曲線的鑑定過程在 30 min 內，經螢光放射分析
即可得到結果。並將陽性對照組之模板 DNA 用量為 100 ng、10 ng、1 ng、
100 pg、10 pg、1 pg 等核酸濃度，測定核酸與循環數之標準曲線，可應
用於検體之定量分析。

11.2 報告核發:
有螢光曲線產生、Melting curve analysis 分析正確，則可判定為陽性。
11.3 結果登錄：
將檢體之檢驗結果登錄於檢體送驗單並加蓋檢驗者印章，送報告簽署人審核及蓋章，並登錄於網路報告系統。

12 品質管制
略。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121°C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

15 附錄
15.1 拉薩病毒核酸檢測（real-time RT-PCR）流程圖。
附錄 15.1 拉薩病毒核酸檢測（real-time RT-PCR）流程圖

1. 病毒檢體前處理
2. 檢體 RNA 萃取
3. Reverse transcription reaction
4. Real-time PCR reaction
5. Melting curve analysis

陽性判定：
具有熒光曲線產生，並且 Melting curve 分析與陽性對照組一致。

未確定判定：
熒光曲線產生過晚（超過 40 個 Cycles 之後）。

陰性判定：
無熒光曲線產生，或 Melting curve 分析與陽性對照組不一致。

再以免疫偵測法確認
再重複 PCR 確認（使用不同基因之引子）或以免疫偵測法確認
目的

檢測拉薩病毒抗體。

適用檢體種類

適用於符合拉薩熱病徵之病患血清檢體。

名詞解釋

無。

原理概述

利用拉薩病毒合成蛋白作為抗原，與病患血清進行抗原抗體反應，以酵素標記抗體間接地將此反應轉成顏色訊號，由全自動酵素免疫分析儀讀取結果。

試劑耗材

1. **清洗液** PBST（PBS pH 7.2 含 0.05% Tween 20）。
2. **檢體稀釋液**（PBST 含 0.5% BSA）。
3. 已吸附拉薩病毒合成蛋白之96孔微量滴定盤。
4. **抗人類IgM之HRP（Horseradish Peroxidase）酵素結合抗體**（peroxidase conjugated affinity purified anti-human IgM【goat】），Sigma，USA。
5. **HRP穩定液**（HRP Stabilizer），Sigma，USA。
6. **呈色劑（TMB受質）**Sigma，USA。
7. **終止液**（2 M H₂SO₄），Merck，Germany。
8. **陽性拉薩病毒合成蛋白標準液**。
9. **無菌蒸餾水**。
10. 八連排血清稀釋管。
11. **八連排血清稀釋架**。
12. **無菌微量吸管尖（tip）**：10 μL，200 μL，1,000 μL。
13. 96孔微量滴定盤封膜。
14. **可拋棄式無菌塑膠手套**。

儀器設備

1. **第二級生物安全櫃**（class II BSC：SterilGARD III Advance，Baker Company，USA）。
2. **全自動酵素免疫分析儀**（ELISA reader：BioTek μQuant，USA）。
3. **全自動清洗器**。
4. **微量吸管**（pipettemen）：1,000 μL，100 μL，30 μL。
5. **8爪微量吸管**。
6. **計時器**。
7. **37 °C 溫箱**。
7 環境設施安全
於生物安全第四等級（BSL-4）實驗室內檢體分裝、去活化。於生物安全第二等級（BSL-2）實驗室之設施內操作檢驗。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
低溫運送及保存，參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢驗前血清處理
10.1.1 檢體以 2,000 rpm 離心 10 min，分離出血清備用。

10.2 酵素免疫分析盤處理
10.2.1 將 96 孔酵素免疫分析盤加入 100 μL 1：2000 稀釋之病毒抗原混合液。
10.2.2 將製備抗原之 96 孔酵素免疫分析盤靜置於 4 °C，隔夜後即可使用。把製備備好的酵素免疫分析盤先以 washing machine 以磷酸緩衝液 PBST 洗淨。
10.2.3 酵素免疫分析盤注入清洗液放置 5 min，以 PBST 清洗 3 次。

10.3 陽性對照血清（亦即陽性標準液）
10.3.1 陽性對照血清乃利用拉薩病毒合成蛋白所生成之兔子多株抗體。
10.3.2 操作方式與待測血清相同，但使用不同種源的二級抗體（goat anti-rabbit IgG-HRP, Cappel）。
10.3.3 作為酵素免疫分析盤 coating 拉薩病毒蛋白是否良好的對照組。

10.4 待測血清
10.4.1 將待測血清以 10 % 脫脂乳（skimmed milk）以 1：100 濃度稀釋，分別加入 100 μL 稀釋血清於盤中之對照組及實驗組中。
10.4.2 分別加入稀釋後之血清檢體，各檢體需二重複試驗。
10.4.3 於 37 °C 中作用 1 hr 後，以 PBST 清洗酵素免疫分析盤。
10.4.4 以 PBS 清洗 4 次，拍乾酵素免疫分析盤。
10.4.5 在酵素免疫分析盤中之孔內，各加入 100 μL 以 1：2000 稀釋之第二抗體（goat anti-human IgM-HRP）。
10.4.6 再置於 37 °C 反應 1 hr。
10.4.7 以清洗液清洗 4 次，拍乾酵素免疫分析盤。
10.4.8 清洗酵素免疫分析盤後，每孔加入 100 μL 之呈色劑（TMB-0.035 % H₂O₂，in citrate buffer, pH 5.5）置於室溫於黑暗中作用 15 - 20 min。
10.4.9 每孔加入 50 μL 反應終止溶液（2M H₂SO₄）。
10.4.10 以分光光度計 OD₄₅₀ 測其吸光值。

11 結果判定
11.1 判讀標準：將 OD₄₅₀ 值高於陰性對照組之平均值加 3 倍標準差者，視為陽性反應。
11.2 報告核發：拉薩病毒抗體（陽性）、拉薩病毒抗體（陰性）。
11.3 結果登錄：將檢體之檢驗結果登錄於檢體送驗單並加蓋檢驗者印章，送報告簽署人審核及蓋章，並登錄於網路報告系統。

12 品質管制
每次執行陽性及陰性對照血清。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

15 附錄
15.1 拉薩病毒抗體試驗-酵素免疫分析法流程圖。
附錄 15.1 拉薩病毒抗體試驗 (酵素免疫分析法) 流程圖

吸附拉薩熱病毒合成抗原 96 孔 ELISA 微孔盤

待測血清 100 倍稀釋及陽性標準液處理後，置入酵素免疫分析盤

37 °C，1 小時
清洗液清洗 4 次

酵素免疫分析盤孔內加入抗人類 IgM 之酵素結合抗體，100μL/well

37 °C，1 小時
清洗液清洗 4 次

酵素免疫分析盤孔內加入 TMB，100μL/well

室溫 15 ~ 20 min

酵素免疫分析盤孔內加入 stop solution，100μL/well

ELISA reader：BioTek μQuant, 用 450 nm 讀取 OD 值

陽性判定：OD_{450} 值高於陰性對照組平均值加 3 倍標準差者，視為陽性反應

陰性判定：OD_{450} 值低於陰性對照組平均值加 3 倍標準差者，視為陰性反應

再以 Real-Time PCR 確認
1 目的
在疑似受感染個案之採集檢體中，分離與鑑定是否存在中東呼喚症候群冠狀病毒(MERS-CoV)。

2 適用檢體種類
痰、糞便、咽喉拭子。

3 名詞解釋
無。

4 原理概述
選擇適當的細胞株(Vero E6)培養MERS-CoV病毒，觀測細胞病變(CPE)的出現，最後再以MERS-CoV病毒核酸檢測方法確認。

5 藥劑耗材
5.1 藥劑
5.1.1 Growth medium (由含10 % FBS與1 X pen-strep solution之DMEM組成)。
 5.1.1.1 Dulbecco’s modified eagle medium (DMEM)。
 5.1.1.1.1 With 4,500 mg/L D-glucose (high glucose)。
 5.1.1.1.2 With L-glutamine。
 5.1.1.1.3 Without sodium pyruvate。
 5.1.1.2 Fetal bovine serum (FBS) : 以56 °C Heat inactivate後開封，以15 mL離心管分裝，-20 °C 儲存。
 5.1.1.3 Pen-strep solution (100 X)。
 5.1.1.3.4 With 10,000 units/mL penicillin G。
 5.1.1.3.5 With 10,000 µg/mL streptomycin sulfate in 0.85 % saline，開封後以15 mL離心管分裝，-20 °C 儲存。
5.1.2 Sample pretreat medium (由含2 X pen-strep solution之DMEM組成)。
5.1.3 Maintain Medium (由含2 % FBS與1 X pen-strep solution之DMEM組成)。
5.1.4 Trypsin-EDTA。
 5.1.4.1 With 0.05 % trypsin。
 5.1.4.2 With 0.53 mM EDTA in Hanks’balanced salt solution (HBSS) without Ca^{2+} and Mg^{2+}，開封後以15 mL離心管分裝，-20 °C 儲存。
5.1.5 Vero E6 細胞株。
5.2 耗材：
5.2.1 25-cm² Culture vessels (T-25)。
5.2.2 24 well Plate。
5.2.3 Pipette：1 mL、5 mL、10 mL、25 mL。
5.2.4 200 μL Tip。
5.2.5 3 mL 無菌塑膠吸管。
5.2.6 1.5 mL Eppendorf tube。
5.2.7 無菌螺旋試管：2 mL、4 mL。
5.2.8 無菌離心管：15 mL、50 mL。
5.2.9 5 mL 鈞筒。
5.2.10 0.45 μM 針頭過濾器。
5.2.11 抗凍標籤紙。
5.2.12 油性細字筆。

6 儀器設備
6.1 生物安全櫃（BSC 2B）。
6.2 37 ℃ 二氧化碳培養箱。
6.3 倒立相差顯微鏡。
6.4 水浴槽。
6.5 電動輔助吸管。
6.6 4 ℃ 冰箱。
6.7 -20 ℃、-80 ℃ 冷凍櫃。
6.8 乾浴器。

7 環境設施安全
於生物安全第三等級（BSL-3）實驗室之設施內操作。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體編號：收件檢體依通報疾病及種類編號。
10.2 檢驗前處理
 10.2.1 開啓生物安全櫃之紫外光照射操作枱面 20 min。
 10.2.2 將 5.1.1-5.1.4 試劑先置於 37 ℃ 回溫或解凍。
 10.2.3 檢體前處理
 10.2.3.1 咽喉拭子：加 1.5 mL Sample pretreat medium 至採檢
管充分攪拌，將溶液吸出至 4 mL 殻菌塑膠檢體瓶中，以 5 mL 針筒吸取溶液後，拔去針頭，接上 0.45 μm 過濾器過濾後置於 2 mL 無菌試管保存，接種細胞或暫時置於 -80°C 保存。

10.3 檢驗步驟:

10.3.1 接種: 取長滿單層之 Vero E6 細胞，吸出 Growth medium，接種 100 μL，輕輕搖動使檢體佈滿細胞層，置於 37 °C 含 5 % CO₂ 的培養箱培養，其間約隔 15 min，即輕輕搖動 plate，使檢體能均勻散佈於細胞層並防止細胞層乾燥。1 hr 後加入 1 mL Maintain medium，置於 37 °C 含 5 % CO₂ 的培養箱培養。

10.3.2 每天觀察細胞是否產生細胞病變(CPE)，可培養 7 天，若發現細胞病變，收集細胞培養液，進行病毒核酸檢測方法鑑定確認。

11 結果判定

11.1 判讀標準: 培養液經病毒核酸檢測方法測定為陽性者，判定為陽性。
11.2 報告核發: 中東呼吸症候群冠狀病毒分離陽性，中東呼吸症候群冠狀病毒分離陰性。
11.3 結果登錄: 完成檢驗後，將檢驗結果填寫於檢體送驗單之“檢驗結果欄”，並上網登錄於實驗室資訊管理系統，傳送實驗室主管審核，待審核通過後發佈結果。

12 品質管制

12.1 全程作業都要在生物安全櫃內進行。
12.2 二氧化碳培養箱內壁每月要定期以抗黴菌劑擦拭及水盤添加抑菌劑的無菌水以保持培養箱內溼度。

13 廢棄物處理

檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。
目的
以分子生物學的技術利用反轉錄酶－聚合酶連鎖反應（RT-PCR）檢測檢體中是否有中東呼吸症候群冠狀病毒。

適用檢體種類
適用之檢體種類包括咽喉拭子、鼻咽拭子、鼻咽抽出液、支氣管肺泡灌洗液、痰液等。

名詞解釋
無。

原理概述
即時定量RT-PCR：
此系統的定量原理是利用一標記兩種螢光的DNA探針來檢測聚合酶連鎖反應的產物。此DNA探針的5’端標記一報告染劑（reporter dye），3’端則標記一遮蔽染劑（quencher dye），完整的DNA探針其報告染劑所散發出的螢光會被遮蔽染劑所掩蓋。當聚合酶進行延伸反應（extension phase）時，具有從5’端DNA切割活性的DNA聚合酶將探針切割，使得5’端報告染劑與3’端遮蔽染劑分開，遮蔽效應被破壞，此時即可偵測到螢光反應。

試劑耗材

5.1 試劑
5.1.1 QIAmp viral RNA kit。
5.1.2 LightCycler480RNAmasterhydrolysisprobes（Roche，Cat．no．04991885001）。
5.1.3 TBEbuffer（tris-boratediEDTAelectrophoresisbuffer）。
5.1.4 陽性對照組（positivecontrol）：以建立之H7與N9陽性標準PlasmidDNA作對照；陰性對照組（negativecontrol）：採用H7N9陰性的檢體作對照或以水作陰性對照。
5.1.5 Agarose。
5.1.6 DEPC水。

5.2 耗材
5.2.1 無菌PCR反應管。
5.2.2 無菌2μL,20μL,100μL,200μL,1,000μLTips。
5.2.3 無菌1.5mL微量離心管。
5.2.4 手套。

儀器設備
6.1 即時定量檢測儀（如ABIsystem,Bioradsystem,LightCycler系统等）。
6.2 PCRthermalcycler。
6.3 電泳槽。
6.4 DNA 電泳膠體觀察設備。
6.5 2 μL, 20 μL, 100 μL, 200 μL, 1,000 μL Pipetman。

7 環境設施安全
採用獨立的操作空間，將 RNA 或 DNA 有關的實驗室分開，以避免污染，影響結果。

8 檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

10 檢驗步驟
10.1 檢體前處理
10.1.1 檢體編號: 核對檢驗單之個案與檢體是否相符，給予疾病編號。
10.1.2 血清或添加抗凝剤如 sodium citrate 或 EDTA 的血漿皆可使用
10.1.2.1 檢體的採集量並無嚴格限制。
10.1.2.2 檢體的運送: 4 ℃。
10.1.2.3 採集後之檢體，以 2,000 rpm 離心 10 min，以分離出的血清備用。
10.1.3 咽喉拭子檢體
10.1.3.1 棉棒充分攪拌後於塑膠管壁旋轉擠乾取出。
10.1.3.2 於 4 ℃，2,100 × g 離心 15 min。
10.1.3.3 收集上清液分裝於 2 – 3 支 Cryotube，標示號碼及日期，取 140 μL，其餘保存於 -70 ℃。
10.1.4 痰檢體
10.1.4.1 取 PBS 緩衝液與痰檢體約 1 : 1 的比例混合
10.1.4.2 攪拌使其均質化並於 4 ℃，2,100 × g 離心 15 min。
10.1.4.3 收集上清液，取 140 μL，其餘保存於 -70 ℃。
10.2 萃取病毒 RNA
10.2.1 吸取 140 μL 的檢體，加入 560 μL Lysis buffer (AVL)，震盪混合，室溫靜置反應 10 min。
10.2.2 加入純酒精 560 μL 終止反應。
10.2.3 將上清混合液分兩次加入通管柱 (column)，並以離心 (8,000 rpm·1 min) 方式加速混合液通過濾膜，檢體中如有 RNA 存在，會吸附在管柱底部的濾膜上。
10.2.4 以清洗液 (AW1) 500 μL，離心 8,000 rpm，1 min，作第一次沖洗，清洗膜上所吸附的雜質。
10.2.5 以清洗液（AW2）500 μL，離心 14,000 rpm，3 min，作第二次
沖洗，清洗模上剩餘吸附的雜質。
10.2.6 離心 14,000 rpm，1 min，以徹底去除膜上殘留酒精。
10.2.7 加入 DEPC 水，室溫靜置 9 min，在 4 ℃ 離心 8,000 rpm，1 min，
取得 RNA。
10.3 即時螢光定量轉錄酶－聚合酶鍵鎖反應（real time RT-PCR）(以
LightCycler 480 RNA master hydrolysis probes kit 為例)
10.3.1 試劑添加量
<table>
<thead>
<tr>
<th>成分名稱</th>
<th>量kke</th>
<th>量kke</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNase-free water</td>
<td>2.8 μL</td>
<td>2.8 μL</td>
</tr>
<tr>
<td>upE-Fwd/EMC-Orf1a-Fwd primer (10 μM)</td>
<td>1.0 μL</td>
<td>1.0 μL</td>
</tr>
<tr>
<td>upE-Rev/Orf1a-Rev primer (10 μM)</td>
<td>1.0 μL</td>
<td>1.0 μL</td>
</tr>
<tr>
<td>upE-Prb/EMCOrf1a-Prb probe (5 μM)</td>
<td>0.5 μL</td>
<td>0.5 μL</td>
</tr>
<tr>
<td>Enzyme master mix</td>
<td>7.4 μL</td>
<td>7.4 μL</td>
</tr>
<tr>
<td>Enhancer</td>
<td>1.0 μL</td>
<td>1.0 μL</td>
</tr>
<tr>
<td>Activator</td>
<td>1.3 μL</td>
<td>1.3 μL</td>
</tr>
<tr>
<td>RNA sample</td>
<td>5.0 μL</td>
<td>5.0 μL</td>
</tr>
<tr>
<td>Total</td>
<td>20.0 μL</td>
<td>20.0 μL</td>
</tr>
</tbody>
</table>

10.3.2 Real-time RT-PCR 反應條件
10.3.2.1 RT reaction：63 ℃，3 min。
10.3.2.2 Taq activation：95 ℃，30 sec。
10.3.2.3 PCR reaction：95 ℃，10 sec；58 ℃，30 sec；72 ℃，
3 sec（45 replication cycles）。

10.4 檢驗後處理
檢驗完成後之檢體與廢液，於高溫高壓滅菌器滅菌後，依感染性醫療
廢棄物處理。檢驗後之剩餘檢體依序載入檢體架內保存。

11 結果判定
11.1 判讀標準
Real-time RT-PCR：若 upE 或 EMC 反應有螢光訊號產生，即可判定為
中東呼吸症候群冠狀病毒陽性。
11.2 報告核發：中東呼吸症候群冠狀病毒 real-time PCR 陽性，中東呼吸症
候群冠狀病毒 real-time PCR 陰性。
11.3 結果登錄：完成檢驗後，將檢驗結果填寫於檢體送驗單之”檢驗結果欄”
並上網登錄於實驗室資訊管理系統，傳送實驗室主管審核，待審核通
過後發佈結果。

12 品質管制
12.1 陽性對照組：陽性對照組 RNA之 Ct 值應介於 25~26 之間。
12.2 陰性對照組：陰性對照組(二次水)需無任何螢光訊號產生。
12.3 若檢驗結果不符合上述任一品質管制要點，該結果不可作為檢驗結果
判讀依據，檢體需重新檢驗。
13 廢棄物處理

檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

15 附錄

15.1 中東呼吸症候群冠狀病毒診斷用引子組序列表

15.2 注意事項

15.2.1 以 Heparin 為抗凝劑的血漿或溶血檢體可能會干擾 Taq polymerase 的作用，降低檢驗敏感性。

15.2.2 病毒 RNA 的萃取，除了最後一步 RNA 的洗脫（elution）是在 4 °C 下離心之外，其餘步驟皆可在室溫下進行。

15.2.3 序列分析：將經 RT-PCR 增幅的 DNA 片段作定序分析，並將定序的結果利用 NCBI 的基因庫作序列分析。
15.1 中東呼吸症候群冠狀病毒診斷用引子組序列表

upE-Fwd-5’-GCA ACG CGC GAT TCA GTT-3’
upE-Rev-5’-GCC TCT ACA CGG GAC CCA TA-3’
upE-Prb-5’FAM-CTC TTT ACA TAA TCG CCC CGA GCT CG-TAMRA3’

Orf1a-Fwd-5’-CCA CTA CTC CCA TTT CGT CAG-3’
Orf1a-Rev-5’-CAG TAT GTG TAG TGC GCA TAT AAG CA-3’
Orf1a-Prb-5’FAM-TTG CAA ATT GGC TTG CCC CCA CT-TAMRA3’

ORF1b-Fwd-5’-TTC GAT GTT GAG GGT GCT CAT-3’
ORF1b-Rev-5’-TCA CAC CAG TTG AAA ATC CTA ATT G-3’
ORF1b-Prb-5’FAM-CCC GTA ATG CAT GTG GCA CCA ATG T-TAMRA3’
1 目的
以分子生物學的技術利用反轉錄酶—聚合酶連鎖反應（RT-PCR）檢測檢體中是否有 H7N9 流感病毒。

2 適用檢體種類
適用之檢體種類包括血清、咽喉拭子、鼻咽拭子、鼻咽抽出液、支氣管肺泡灌洗液、痰液等。

3 名詞解釋
無。

4 原理概述
即時定量 RT-PCR：
此系統的定量原理是利用一標記兩種螢光的 DNA 探針來偵測聚合酶連鎖反應的產物。此 DNA 探針的 5’端標記一報告染劑（reporter dye），3’端則標記一遮蔽染劑（quencher dye），完整的 DNA 探針的報告染劑所散發出的螢光會被遮蔽染劑所掩蓋。當聚合酶進行延伸反應（extension phase）時，具有從 5’端 DNA 切割活性的 DNA 聚合酶將探針切割，使得 5’端報告染劑與 3’端遮蔽染劑分開，遮蔽效應被破壞，此時即可偵測到螢光反應。

5 試劑耗材
5.1 試劑
5.1.1 QIAmp viral RNA kit。
5.1.2 LightCycler 480 RNA master hydrolysis probes（Roche, Cat. no. 04 991 885 001）。
5.1.3 TBE buffer（tris-borate/EDTA electrophoresis buffer）。
5.1.4 陽性對照組（positive control）：以建立之 H7 與 N9 陽性標準 Plasmid DNA 作對照；陰性對照組（negative control）：採用 H7N9 陰性的檢體作對照或以水作陰性對照。
5.1.5 Agarose。
5.1.6 DEPC 水。
5.2 耗材
5.2.1 無菌 PCR 反應管。
5.2.2 無菌 2 μL, 20 μL, 100 μL, 200 μL, 1,000 μL Tips。
5.2.3 無菌 1.5 mL 微量離心管。
5.2.4 手套。

6 儀器設備
6.1 即時定量偵測儀（如 ABI system, Bio-rad system, LightCycler system 等）。
6.2 PCR thermal cycler。
6.3 電泳槽。
衛生福利部疾病管制署傳染病標準檢驗方法

編號：H7N9 流感病毒核酸檢測
（Real time RT-PCR）

環保福利部疾病管制署傳染病標準檢驗方法

編號：H7N9 流感病毒核酸檢測
（Real time RT-PCR）

核准日期：年 月 日
修訂日期：年 月 日

頁次：第 989 頁/共 1104 頁

6.4 DNA 電泳膠體觀察設備。
6.5 2 μL, 20 μL, 100 μL, 200 μL, 1,000 μL Pipetman。

7 環境設施安全
採用獨立的操作空間，將 RNA 或 DNA 有關的實驗室分開，以避免污染，影響結果。

8 檢體採集

参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A。

9 檢體運送及保存
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreed=6C7C52E7A7D5621A。

10 檢驗步驟

10.1 檢體前處理
10.1.1 檢體編號：核對檢驗單之個案與檢體是否相符，給予疾病編號。
10.1.2 血清或添加抗凝劑如 sodium citrate 或 EDTA 的血漿皆可使用
10.1.2.1 檢體的採集量並無嚴格限制。
10.1.2.2 檢體的運送：4 ℃。
10.1.2.3 採集後之檢體，以 2,000 rpm 離心 10 min，以分離出的血清備用。
10.1.3 咽喉拭子檢體
10.1.3.1 棉棒充分攪拌後於塑膠管壁旋轉擠乾取出。
10.1.3.2 於 4 ℃，2,100 × g 離心 15 min。
10.1.3.3 收集上清液分裝於 2 - 3 支 Cryotube，標示號碼及日期，取 140 μL，其餘保存於 -70 ℃。
10.1.4 痰檢體
10.1.4.1 取 PBS 緩衝液與痰檢體約 1:1 的比例混合
10.1.4.2 攪拌使其均質化並於 4 ℃，2,100 × g 離心 15 min。
10.1.4.3 收集上清液，取 140 μL，其餘保存於 -70 ℃。

10.2 萃取病毒 RNA
10.2.1 吸取 140 μL 的檢體，加入 560 μL Lysis buffer（AVL），震盪混合，室溫靜置反應 10 min。
10.2.2 加入純酒精 560 μL 終止反應。
10.2.3 將上述混合液分兩次加入通管柱（column），並以離心 (8,000 rpm, 1 min) 方式加速混合液通過濾膜，檢體中如有 RNA 存在，會吸附在管柱底部的濾膜上。
10.2.4 以清洗液（AW1）500 μL，離心 8,000 rpm, 1 min，作第一次沖洗，清洗膜上所吸附的雜質。
10.2.5 以清洗液（AW2）500 μL，離心 14,000 rpm 3 min，作第二次
沖洗，清洗膜上剩餘吸附的雜質。
10.2.6 離心 14,000 rpm，1 min，以徹底去除膜上殘留酒精。
10.2.7 加入 DEPC 水，室溫靜置 9 min，在 4 °C 離心 8,000 rpm 1 min，
取得 RNA。
10.3 即時熒光定量轉錄酶－聚合酶鍵鎖反應（real time RT-PCR）
(以 LightCycler 480 RNA master hydrolysis probes kit 為例)
10.3.1 試剤添加量
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RNase-free water</td>
<td>0.3 μL</td>
</tr>
<tr>
<td>CNIC-H7F/N9 primer（10 μM）</td>
<td>2.0 μL</td>
</tr>
<tr>
<td>CNIC-H7R/N9R primer（10 μM）</td>
<td>2.0 μL</td>
</tr>
<tr>
<td>CNIC-H7P/N9P probe（10 μM）</td>
<td>1.0 μL</td>
</tr>
<tr>
<td>Enzyme master mix</td>
<td>7.4 μL</td>
</tr>
<tr>
<td>Enhancer</td>
<td>1.0 μL</td>
</tr>
<tr>
<td>Activator</td>
<td>1.3 μL</td>
</tr>
<tr>
<td>RNA sample</td>
<td>5.0 μL</td>
</tr>
<tr>
<td>Total</td>
<td>20.0 μL</td>
</tr>
</tbody>
</table>

10.3.2 Real-time RT-PCR 反應條件
10.3.2.1 RT reaction: 63 °C，3 min。
10.3.2.2 Taq activation: 95 °C，30 sec。
10.3.2.3 PCR reaction: 95 °C，10 sec；58 °C，30 sec；72 °C，
3 sec（45 replication cycles）。

10.4 檢驗後處理
檢驗完成後之檢體與廢液，於高溫高壓滅菌器滅菌後，依感染性醫療
廢棄物處理。檢驗後之剩餘檢體依序裝入檢體架內保存。

11 結果判定
11.1 判讀標準
Real-time RT-PCR：若 CNIC-H7 及 CNIC-N9 皆有熒光訊號產生，即可
判定為 H7N9 流感陽性。
11.2 報告核發：H7N9 流感病毒 real-time PCR 陽性，H7N9 流感病毒 real-time
PCR 陰性。
11.3 結果登錄：完成檢驗後，將檢驗結果填寫於檢體送驗單之“檢驗結果欄”
並上網登錄於實驗室資訊管理系統，傳送實驗室主管審核，待審核通
過後發佈結果。

12 品質管制
12.1 陽性對照組：陽性對照組 RNA 之 Ct 值應介於 25~26 之間。
12.2 陰性對照組：陰性對照組(二次水)需無任何熒光訊號產生。
12.3 若檢驗結果不符合上述任一品質管制要點，該結果不可作為檢驗結果
判讀依據，檢體需重新檢驗。
13 廢棄物處理
　檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

15 附錄
15.1 H7N9 病毒診斷用引子組序列表
15.2 注意事項
15.2.1 以 Heparin 為抗凝劑的血漿或溶血檢體可能會干擾 Taq polymerase 的作用，降低檢驗敏感性。
15.2.2 13.2 病毒 RNA 的萃取，除了最後一步 RNA 的洗脫（elution）是在 4 °C 下離心之外，其餘步驟皆可在室溫下進行。
15.2.3 13.3 序列分析：將經 RT-PCR 增幅的 DNA 片段作定序分析，並將定序的結果利用 NCBI 的基因庫作序列分析。

15.1 H7N9 病毒診斷用引子組序列表

CNIC-H7F-5'-AGAAATGAAATGGCTCTCTGTCAA-3'
CNIC-H7R-5'-GGTTTTCTTGTATTTATATGACTTAG-3'
CNIC-H7P-5'FAM-AGATAATGCTCAATCCCGAGATG-BHQ1-3'
CNIC-N9-5'-TGGCAATGACACACTGAGTACGACAGT-3'
CNIC-N9R-5'-ATTACCTGGATAAGGGCTGTTACACT-3'
CNIC-N9P-5'FAM-AGACATCCCGACCAGATGACC-BHQ1-3'
1 目的
檢查食品中毒案件人體檢體中是否含有產腸毒素金黃色葡萄球菌。

2 適用檢體種類
適用於人體糞便、嘔吐物、直腸拭子（Rectal swab）、手部檢體。

3 名詞解釋
無。

4 原理概述
以特定培養基分離培養，並利用生化代謝特性鑑定。

5 試劑耗材
5.1 培養基
5.1.1 BP（baird-parker agar base）plate。
5.1.2 TSA（tryptic soy agar）plate。
5.2 革蘭氏染色液（Gram stain solution）：Difco，美國。
5.3 EDTA 免血漿 for coagulase：Difco，美國。
5.4 Staphylase riagonstic reagent：Oxoid Ltd.，英國。
5.5 API ID 32 STAPH：BioMérieux，法國。
5.6 VITEK 2 革蘭氏陽性菌鑑定卡（VITEK 2 GP）：BioMerieux，法國。
5.7 標準菌株：Staphylococcus aureus ATCC25923 及 S. aureus ATCC6538。
5.8 無菌微量吸管尖（tip）：1,000 μL、200 μL。
5.9 無菌滴管（dropper）：1 mL。
5.10 接種針（環）。
5.11 載玻片。
5.12 馬克法藍氏濁度標準組（McFarland nephelometer standard units）。

6 儀器設備
6.1 37 ℃ 培養箱。
6.2 微量吸管（Pipetman）。
6.3 光學顯微鏡：能放大至 1,000 X 油鏡。

7 環境設施安全
於生物安全第二等級（BSL-2）實驗室之設施內操作。

8 檢體採集
人體糞便、嘔吐物、直腸拭子、手部檢體、鼻腔檢體，參照本署出版之「傳
染病検體検査手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A
9 檢體運送及保存
低溫運送及保存，參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

10 檢驗步驟
10.1 分離培養
10.1.1 檢體接種
10.1.1.1 糞便檢體、嘔吐物：以無菌棉花棒沾取少許或以無菌滴管吸取少許接種於 BP 培養基上。
10.1.1.2 直腸拭子、手部檢體：將輸送培養基上之直腸拭子、手部檢體旋轉接種於 BP 培養基上。
10.1.2 培養：37 °C 培養箱培養。
10.1.3 觀察：24 - 48 hr 後，開始觀察有無可疑菌落，如有即進行鑑定，如無繼續培養及隔日觀察，至少需培養 48 hr。

10.2 鑑定
10.2.1 菌落形態及染色：挑選黑色發亮、圓弧隆起且具透明環之獨立可疑菌落，作革蘭氏染色，符合革蘭氏陽性呈堆狀或葡萄狀球菌，再次接種於 TSA agar，BHI broth，37 °C 培養箱培養 18 - 24 hr 後作生化鑑定。
10.2.2 生化鑑定
10.2.2.1 Staphylase test
於玻片上各滴一滴 Staphylase test reagent 及 Control reagent，再以 loop 取一顆菌落分別在 Staphylase test reagent 及 Control reagent 上塗均勻，以 Loop 輕撥，觀察是否有凝集反應，有凝集則為陽性。
10.2.2.2 Coagulase test（凝固酶試驗）－試管法
如 Staphylase test 有疑問則作 Coagulase test - 取 0.5 mL EDTA 兔血漿置於一乾淨之無菌試管，以接種環取部分菌落接種於兔血漿中，輕搖試管混合，培養在 35 - 37 °C 水浴中，若在 1 - 4 hr 內完全凝結或部分凝結為陽性；若在 4hr 後仍為陰性，則隔夜再判讀，若仍無凝結則為陰性。
10.2.2.4 Catalase test（觸酶試驗）
10.2.2.5挑選 TSA 培養基上菌落進行試驗，金黃色葡萄球菌反應為陽性。
10.2.2.6 API ID 32 STAPH 生化鑑定套組：依照原廠 API ID 32 STAPH（葡萄球菌鑑定組）操作步驟執行。
10.2.2.7 VITEK 2 葡萄球菌陽性菌鑑定卡（VITEK 2 GP）：依照原廠全自動微生物分析儀 VITEK 2 標準操作流程執行。
11 金黃色葡萄球菌腸毒素試驗
 11.1 金黃色葡萄球菌腸毒素檢查
 依照本署「金黃色葡萄球菌腸毒素檢查（乳膠凝集反應法）」檢驗標準方法。

 11.2 金黃色葡萄球菌腸毒素基因鑑定
 依照本署「金黃色葡萄球菌腸毒素基因鑑定（聚合酶鏈鎖反應法）」檢
 驗標準方法。

12 結果判定
 12.1 陽性判定標準：符合革蘭氏陽性堆狀或葡萄狀球菌，Catalase test 陽性，
 Staphylase test 陽性、凝固酶試驗陽性者、API ID 32 STAPH 生化鑑定
 套組或自動微生物分析儀 VITEK 2 GP 反應結果為金黃色葡萄球菌者，
 需加作金黃色葡萄球菌腸毒素試驗，腸毒素陽性即判定為金黃色葡萄
 球菌陽性。

 12.2 陰性判定標準：生化鑑定不符，或腸毒素試驗陰性之金黃色葡萄球菌。

12.2.1 陽性判定標準
 病原檢驗登入：檢驗結果陽性，選擇腸毒素型別（A-E）
 綜合檢驗結果：陽性，非法定傳染病。

 12.2.2 陰性判定標準
 病原檢驗登入：檢驗結果陰性
 綜合檢驗結果：陰性。

12.2.3 陰性判定標準
 病原檢驗登入：檢驗結果陰性
 綜合檢驗結果：陰性。

 12.3 結果登錄：將檢體之檢驗結果登錄於實驗室資訊系統，經 PI 核准報告
 後發佈。

13 品質管制
 13.1 BP plate 之品質管制：

 13.1.1 測試時間：每一批號由廠商提供品質管制文件，實驗室每季進行一次品管測試。

 13.1.2 測試菌株：S. aureus ATCC 25923。

 13.1.3 測試方法：使用新鮮的測試菌，生長在固體營養培養基一天的
 菌，挑菌懸浮於 2 mL 無菌水中，調菌液濁度 0.5 McFarland，
 以 1 μL 的 loop 取菌液依四區畫線接種於測試培養基上，37 ℃
 培養箱培養。

 13.1.4 觀察結果紀錄：預期結果 3-4 天後，可見 1 - 3 mm 菌落，菌落
 至少生長至第三區。

 13.2 TSA plate 之品質管制：

 13.2.1 測試時間：每一批號由廠商提供品質管制文件，實驗室每季進行一次品管測試。
13.2.2 測試菌株：S. aureus ATCC 6538。
13.2.3 測試方法：使用新鮮的測試菌，生長在固體營養培養基一天的菌，挑菌懸浮於 2 mL 無菌水中，調菌液濁度 0.5 McFarland，以 1 μL 的 loop 取菌液依四區畫線接種於測試培養基上，37 °C 培養箱培養。
13.2.4 觀察結果紀錄：預期結果 3 - 4 天後，可見突起大菌落，菌落至少生長至第三區。

14 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

15 參考資料
15.1 蔡文城。2000。實用臨床微生物診斷學，第九版。九州圖書文物有限公司，臺灣。

16 附錄
16.1 金黃色葡萄球菌分離與鑑定檢驗流程圖。
16.2 金黃色葡萄球菌分離與鑑定紀錄表。
附錄 16.1 金黃色葡萄球菌分離與鑑定流程圖

金黃色葡萄球菌分離與鑑定流程圖
金黄色葡萄球菌分離與鑑定紀錄表

<table>
<thead>
<tr>
<th>檢體編號</th>
<th>收件日期</th>
<th>檢驗日期</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>檢體採檢運送狀況適當</th>
<th>是</th>
<th>否</th>
<th>是</th>
<th>否</th>
<th>是</th>
<th>否</th>
<th>是</th>
<th>否</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP 平板上生長型態：黑色、發亮、周圍有明顯透明環之菌落培養/觀察</td>
<td>是</td>
<td>否</td>
<td>是</td>
<td>否</td>
<td>是</td>
<td>否</td>
<td>是</td>
<td>否</td>
</tr>
<tr>
<td>第 2 天</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>第 3 天</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>第 4 天</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>革蘭氏染色：陽性或陰性，球菌或桿菌</th>
<th>陽性</th>
<th>陰性</th>
<th>陽性</th>
<th>陰性</th>
<th>陽性</th>
<th>陰性</th>
<th>陽性</th>
<th>陰性</th>
</tr>
</thead>
<tbody>
<tr>
<td>球菌</td>
<td>桿菌</td>
<td>球菌</td>
<td>桿菌</td>
<td>球菌</td>
<td>桿菌</td>
<td>球菌</td>
<td>桿菌</td>
<td>球菌</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Catalase test：陽性起泡，陰性不起泡</th>
<th>陽性</th>
<th>陰性</th>
<th>陽性</th>
<th>陰性</th>
<th>陽性</th>
<th>陰性</th>
<th>陽性</th>
<th>陰性</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Staphylase test (coagulase test)</th>
<th>凝集</th>
<th>無凝集</th>
<th>無凝集</th>
<th>無凝集</th>
<th>無凝集</th>
<th>無凝集</th>
<th>無凝集</th>
<th>無凝集</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>API ID 32 Staph 或 VITEK 2 GP</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>附註</td>
<td>腸毒素試驗</td>
<td>綜合結果</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

報告日期

檢驗者：

實驗室主管：
目的
偵測金黃色葡萄球菌的腸毒素（staphylococcal enterotoxins）。

適用檢體種類
適用於金黃色葡萄球菌菌株。

名詞解釋
無。

原理概述
利用反轉被動乳膠凝集試驗（RPLA）檢測金黃色葡萄球菌之腸毒素，並鑑定腸毒素型別。

試劑耗材
5.1 Enterotoxin-F：Denka Seiken，日本。

5.1.1 抗體試劑
5.1.1.1 Latex sensitized with anti-enterotoxin A：抗葡萄球菌enterotoxin A之專一性抗體（兔IgG）致敏化之乳膠懸浮液。
5.1.1.2 Latex sensitized with anti-enterotoxin B：抗葡萄球菌enterotoxin B之專一性抗體（兔IgG）致敏化之乳膠懸浮液。
5.1.1.3 Latex sensitized with anti-enterotoxin C：抗葡萄球菌enterotoxin C之專一性抗體（兔IgG）致敏化之乳膠懸浮液。
5.1.1.4 Latex sensitized with anti-enterotoxin D：抗葡萄球菌enterotoxin D之專一性抗體（兔IgG）致敏化之乳膠懸浮液。
5.1.1.5 Latex sensitized with anti-enterotoxin E：抗葡萄球菌enterotoxin E之專一性抗體（兔IgG）致敏化之乳膠懸浮液。

5.1.2 對照試劑
5.1.2.1 Latex control（對照乳膠）：以非免疫之兔子球蛋白致敏化之乳膠懸浮液。
5.1.2.2 Staphylococcal enterotoxin A control（腸毒素 A 對照組）。
5.1.2.3 Staphylococcal enterotoxin B control（腸毒素 B 對照組）。
5.1.2.4 Staphylococcal enterotoxin C control（腸毒素 C 對照組）。
5.1.2.5 Staphylococcal enterotoxin D control（腸毒素 D 對照組）。

編號：金黃色葡萄球菌腸毒素檢測
（RPLA）

核准日期：年月日

修訂日期：年月日
5.1.2.6 Staphylococcal enterotoxin E control（腸毒素E對照組）。

5.1.3 稀釋液：為含有 Bovine serum albumin（牛血清蛋白）及 Sodium hexametaphosphate之 Phosphate buffered saline。

5.2 培養液：BHI（brain heart infusion）broth。
5.3 無菌微量吸管尖（tip）：1,000 μL、200 μL。
5.4 無菌滴管（dropper）：1 mL。
5.5 接種針（環）。
5.6 無菌塑膠手套。
5.7 無菌微量離心管：1.5 mL。
5.8 密閉式保濕盒。

6 儀器設備
6.1 微量吸管（Pipetman）。
6.2 微量離心機。
6.3 震盪器。

7 環境設施安全
於生物安全第二等級（BSL-2）實驗室之設施內操作。

8 檢體採集
無。

9 檢體運送及保存
無。

10 檢驗步驟
10.1 分離培養
10.1.1 檢體接種：將金黃色葡萄球菌接種於5 mL BHI broth。
10.1.2 培養：於37 ℃培養箱，震盪培養18 - 20 hr。
10.2 腸毒素鑑定
10.2.1 取1 mL之細菌培養液（BHI broth）於1.5 mL無菌微量離心管，以13,000 rpm離心1 min，取上清液用於毒素含量分析。
10.2.2 將96孔V型塑膠微量滴盤排好，每一個檢體需要使用5個凹槽。
10.2.3 每個凹槽加入25 μL稀釋液和25 μL檢體上清液，混合均勻後，取25 μL丟棄。
10.2.4 第一個凹槽加入25 μL之抗腸毒素A致敏化的乳膠懸浮液。
10.2.5 第二個凹槽加入25 μL之抗腸毒素B致敏化的乳膠懸浮液。
10.2.6 第三個凹槽加入25 μL之抗腸毒素C致敏化的乳膠懸浮液。
10.2.7 第四個凹槽加入25 μL之抗腸毒素D致敏化的乳膠懸浮液。
10.2.8 第五個凹槽加入25 μL之抗腸毒素E致敏化的乳膠懸浮液。
10.2.9 第六個凹槽加入 25 μL 之對照乳膠懸浮液作陰性對照。
10.2.10 同時以腸毒素 A、B、C、D、E 五型對照組分別加入相對應的
抗腸毒素致敏化的乳膠懸浮液當作陽性對照。
10.2.11 以震盪器將凹槽內容物混合均勻。
10.2.12 滴盤放於潮濕盒中以避免蒸發，並置室溫 18 - 20 hr，第二天觀
察。

11 結果判定
11.1 陽性判定標準：

凝集的形態

(-) (±) (+) (2+) (3+)

11.1.1 凝集強於（+）即為陽性。
11.1.2 含有對照乳膠懸浮液的凹槽應為陰性，但有時會發生非專一性
凝集現象，此時，當檢體加入致敏化乳膠懸浮液之凝集比加入
對照乳膠懸浮液之凝集強時，其反應判為陽性。
11.1.3 符合 11.1.1 及 11.1.2 項則判定為陽性。
11.1.4 若其中有一不符合者，即判定為陰性。

11.2 報告核發 :
11.2.1 腸毒素陽性：

11.2.1.1 病原體分離、鑑定：

11.2.1.1.1 金黃色葡萄球菌陽性及腸毒素型別
(A-E)。
11.2.1.2 綜合研判：陽性非法定傳染病。

11.2.2 腸毒素陰性：

11.2.2.1 病原體分離、鑑定：

11.2.2.1.1 金黃色葡萄球菌陰性。
11.2.2.2 綜合研判：陰性。

11.3 結果登錄：將檢體之檢驗結果登錄於實驗室資訊系統，經 PI 核准報告後發佈。

12 品質管制
12.1 試劑之有效性試驗：所使用試劑皆應於有效期內用完。
12.2 同一批號試劑內容性對照乳膠及陰性對照乳膠，於每一次使用時，皆
須進行對照試驗。不同批號之試劑，不可互用。

13 廢棄物處理

檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥
密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
蔡文城。2000。實用臨床微生物診斷學，第九版。九州圖書文化有限公司，臺灣。

15 附錄
15.1 金黃色葡萄球菌腸毒素測定檢驗流程圖。
15.2 金黃色葡萄球菌腸毒素測定紀錄表。
附錄 15.1 金黃色葡萄球菌腸毒素測定檢驗流程圖
金黃色葡萄球菌毒素測定（乳膠凝集試驗RPLA）流程圖

13,000rpm, 1min
37℃ 震盪培養, 18-20hr
TSA培養基上之新鮮金黃色葡萄球菌（從人體檢體分離培養之菌株）

接種於BHI Broth

取1 mL至1.5 mL無菌管

13,000rpm, 1min

取上清液做為毒素測定用檢體

V型96孔微量滴盤：每個檢體七孔，
最後一孔置入100 μL稀釋液與100 μL檢體，
混合均勻後，取二倍稀釋之檢體至第一到第六孔

第一孔到第五孔，依序加入25 μL敏感化乳膠（Sensitized Latex）
anti-A、anti-B、anti-C、anti-D、anti-E
第六孔加入25 μL對照乳膠（Control Latex）

V型96孔微量滴盤以微量盤振盪器震盪，
使孔內液體混合均勻後，再置入潮濕盒中

室溫靜置，18-20hr

結果判讀

任一凝集 无凝集

金黃色葡萄球菌腸毒素陽性判定
腸毒素A、B、C、D、E

金黃色葡萄球菌腸毒素陰性判定
<table>
<thead>
<tr>
<th>項目</th>
<th>註明</th>
</tr>
</thead>
<tbody>
<tr>
<td>檢體編號</td>
<td>金黃色葡萄球菌腸毒素測定紀錄表</td>
</tr>
<tr>
<td>收件日期</td>
<td></td>
</tr>
<tr>
<td>檢驗日期</td>
<td></td>
</tr>
<tr>
<td>檢驗套組取出回溫</td>
<td>是否是是否是是否是是否是否是是</td>
</tr>
<tr>
<td>套組懸浮液使用前是否充分振盪混合均勻</td>
<td>是否是是否是是否是是否是是</td>
</tr>
<tr>
<td>使用之試劑為同批號</td>
<td>是否是是否是是否是是否是是</td>
</tr>
<tr>
<td>附註</td>
<td></td>
</tr>
<tr>
<td>綜合結果</td>
<td></td>
</tr>
<tr>
<td>報告日期</td>
<td></td>
</tr>
</tbody>
</table>

檢驗者：實驗室主管：
1. 目的
 偉測金黃色葡萄球菌的腸毒素(Staphylococcal enterotoxins)。

2. 適用檢體種類
 適用於已分離培養之金黃色葡萄球菌疑似菌株。

3. 名詞解釋
 無。

4. 原理概述
 利用多重聚合酶連鎖反應(multiplex PCR)檢測金黃色葡萄球菌之特定基因(femA)與合成毒素基因(seA、seB、seC、seD、seE)，以鑑定腸毒素型別。

5. 試劑耗材
 5.1 溶菌酶（Lysostaphin）
 5.2 培養基：TSA（Tryptic Soy Agar plate）
 5.3 聚合酶連鎖試驗 (PCR Assay)
 5.3.1 聚合酶：Green Tag polymerase enzyme
 5.3.2 腸毒素基因核酸引子序列：
 - 腸毒素A
 seA-F: GGTTATCAATGTGCGGGTGG
 seA-R: CGGCACCTTTTTTCTCTTCGG
 - 腸毒素B
 seB-F: GTATGGTGTTGTTAAGCTAGC
 seB-R: CCAAATAGTGAGAGTTAGG
 - 腸毒素C
 seC-F: AGATGAAGTAGTTGATGTATGG
 seC-R: CACACTTTTAGAATCAACCG
 - 腸毒素D
 seD-F: CCAATAATAGGAGAAATAAAAG
 seD-R: ATGGATATTTTTTCTCAGTG
 - 腸毒素E
 seE-F: AAGGTTTTTCACAGGCTCATCC
 seE-R: CTTTTTTTTCTCAGGCTCATCC
 5.3.3 金黃色葡萄球菌之特定基因核酸引子序列：
 femA-F: AAAAACGACATAACAACAGCG
 femA-R: GATAAAGAGAAAAACCAGCAG
 5.3.4 對照組：二次水
 5.4 無菌微量吸管尖(tip): 1,000 μL、200 μL、100μL、10 μL。
 5.5 1uL 接種針 (環)。
 5.6 無菌塑膠手套。
 5.7 無菌微量離心管：1.5 mL、0.5mL。
6 儀器設備
6.1 加熱器
6.2 聚合酶反應器。
6.3 微量吸管(pippetman)。
6.4 微量離心機。

7 環境設施安全
於生物安全第二等級(BSL-2)實驗室之設施內操作。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

10 檢驗步驟
10.1 檢體處理
已分離的菌株；以1μL 接種環取3個新鮮菌落，放入含500μL PBS buffer之1.5mL Eppendorf tube中混勻，放入離心機12000rpm，離心10分鐘，去除上清液，加入200μl PBS buffer混合均勻，加入濃度為1mg/mL之溶菌酶2μL，於37℃反應10分鐘，得到透明澄清之DNA template，放入離心機12000rpm，離心10分鐘，取上清液至另一新Eppendorf tube，保存至-20℃直到測試。

10.2 PCR (seA、seB、seC、seE)反應混合物配製如下：

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA template</td>
<td>2μL</td>
</tr>
<tr>
<td>Green Tag polymerase enzyme</td>
<td>12.5μL</td>
</tr>
<tr>
<td>Each primer (10mM)</td>
<td>0.5μL</td>
</tr>
<tr>
<td>無菌水</td>
<td>6.5μL</td>
</tr>
<tr>
<td>Total volume</td>
<td>25μL</td>
</tr>
</tbody>
</table>

10.3 PCR (seD、femA)反應混合物配製如下：

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA template</td>
<td>1μL</td>
</tr>
<tr>
<td>Green Tag polymerase enzyme</td>
<td>12.5μL</td>
</tr>
<tr>
<td>seD primer (10mM)</td>
<td>1μL</td>
</tr>
<tr>
<td>femA primer (10mM)</td>
<td>0.5μL</td>
</tr>
<tr>
<td>無菌水</td>
<td>8.5μL</td>
</tr>
<tr>
<td>Total volume</td>
<td>25μL</td>
</tr>
</tbody>
</table>
10.4 CR (seA、seB、seC、seE) 反應條件設定
10.4.1 94℃ 5min，1 cycle
10.4.2 94℃ 30sec，48℃ 30sec，72℃ 1min，35 cycles
10.4.3 72℃ 7min，1 cycle
10.4.4 4℃，∞
10.5 PCR (seD、femA) 反應條件設定
10.5.1 94℃ 5min，1 cycle
10.5.2 94℃ 30sec，42℃ 30sec，72℃ 1min，35 cycles
10.5.3 72℃ 7min，1 cycle
10.5.4 4℃，∞
10.6 電泳法分析產物
10.6.1 膠片配製: 2% agarose in 0.5X TBE。
10.6.2 取 5 μL PCR mixture 跑電泳，電泳條件: 0.5X TBE，
10.6.3 100voltage，50min。
10.6.4 膠片染色: 0.5 μg/mL ethidium bromide 染色 20min，水洗 10min
後觀察。
10.7 陽性與陰性對照
10.7.1 試驗陽性對照: 以具 seA、seB、seC、seD、seE 之金黃色葡萄
球菌分離菌株的 DNA template 作為 PCR 反應之陽性對照。反
應條件與分析方法參照 10.2 至 10.6。
10.7.2 試驗陰性對照: Template 以無菌水取代。參照 10.2 至 10.6

11 結果判定
11.1 判讀標準
11.1.1 依據產物片段結果分析
11.1.1.1 femA: 132 bp，若出現此大小片段則可判定可疑菌株
為金黃色葡萄球菌。
seA: 102bp，若出現此大小片段則可判定腸毒素型別
為 A。
seB: 164bp，若出現此大小片段則可判定腸毒素型別
為 B。
seC: 451bp，若出現此大小片段則可判定腸毒素型別
為 C。
seD: 278bp，若出現此大小片段則可判定腸毒素型別
為 D。
seE: 209bp，若出現此大小片段則可判定腸毒素型別
為 E。
11.1.2 若僅有 femA 片段或無上述任何片段，則可判定金黃色葡萄球
菌腸毒素陰性。
11.2 報告核發
將檢驗之檢驗結果紀錄並加蓋檢驗者，送實驗室主管審核及蓋章。
12 品質管制
primer 及 PCR 實驗相關之試劑，應於有效期限內使用。
12.1 測試時間：每一批號之試劑進行一次品管測試。
12.2 測試菌株：使用 ATCC 標準菌株 S. aureus 包含毒素 A~E 之菌株。
12.3 測試方法：使用新鮮的測試菌，生長在固體營養培養基一天的菌，進
行後續 PCR 分析。
12.4 觀察結果紀錄：符合 PCR 之鑑定結果，可分析出所有 A~E 毒素片段及
femA 片段。

13 廢棄物處理
13.1 檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌
袋裝妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作
業程序處理。
13.2 Ethidium bromide 為 carcinogen 倒掉前請加入分解藥劑後再做處理。

14 參考資料
蔡文城，2000，實用臨床微生物診斷學，台北，九州圖書文化有限公司，第
九版。

15 附錄
15.1 金黃色葡萄球菌腸毒素測定檢驗流程圖。
金黃色葡萄球菌腸毒素測定檢驗流程圖

1. 檢樣（培養後已分離之培養菌）
 以1μL接種混和3個新鮮菌落，放入含500μL PBS buffer之1.5mL Eppendorf 中混勻，放入離心機12000rpm，離心10分鐘，取上清液，加入200μL PBS buffer混合均勻，加入濃度為1mg/mL之溶菌酶2μL，於37℃反應10分鐘，放入離心機12000rpm，離心10分鐘，取上清液當作DNA template
 進行PCR反應

2. 電泳法分析產物
 * ftoA: 132bp
 * seA: 102bp
 * seB: 164bp
 * seC: 451bp
 * seD: 278bp
 * seE: 209bp

3. 具有132bp及102bp片段產物
 - 金黃色葡萄球菌腸毒素測定，腸毒素型別為A
 - 金黃色葡萄球菌腸毒素測定，腸毒素型別為B

4. 具有132bp及451bp片段產物
 - 金黃色葡萄球菌腸毒素測定，腸毒素型別為C

5. 具有132bp及278bp片段產物
 - 金黃色葡萄球菌腸毒素測定，腸毒素型別為D

6. 僅有132bp片段產物或均無任何片段產物
 - 際性結果判定
目的

腸炎弧菌的分離鑑定與血清分型。

適用檢體種類

適用於人體糞便、直腸拭子。

名詞解釋

無。

原理概述

以特定培養基分離腸炎弧菌，並利用生化代謝特性及血清學方法鑑定腸炎弧菌與血清型別。

試劑耗材

5.1 培養基

5.1.1 含 1％ NaCl 之 Peptone water pH8.6。
5.1.2 TCBS（thiosulfate citrate bile salt sucrose）培養基。
5.1.3 含 1％ NaCl 之 TSA（tryptic soy agar）plate。
5.1.4 含 1％ NaCl 之 TSIA。
5.1.5 含 1％ NaCl 之 LIA（lysine iron agar）。
5.1.6 SIM（sulfide indole motility agar）。

5.2 API 20E 生化鑑定套組：BioMérieux，法國。
5.3 VITEK 2 革蘭氏陰性菌鑑定卡（VITEK 2 GN）：BioMérieux，法國。
5.4 氧化酶試紙（oxidase strips）：Mast，英國或氧化酶試劑（oxidase reagent）BioMérieux，法國。
5.5 腸炎弧菌 K 抗原血清套組：Seiken，日本。詳見附錄說明
5.6 無菌生理食鹽水：0.85％ NaCl。
5.7 載玻片。
5.8 無菌吸管：3 mL。
5.9 接種針（環）。
5.10 馬克法藍氏濁度標準組（McFarland nephelometer standard units）。

儀器設備

6.1 37 ℃ 培養箱。
6.2 立體解剖顯微鏡：有變焦功能，至少可放大 4.5 X。

環境設施安全

於生物安全第二等級（BSL-2）實驗室之設施內操作。

檢體採集

人體糞便、直腸拭子，參照本署出版之「傳染病檢體採檢手冊」第二版。http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreecid=6C7C52E7A7D5621A
9 檢體運送及保存

低溫運送及保存，參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&newtreeid=6C7C5F5A71D5621A

10 檢驗步驟

10.1 分離培養

10.1.1 檢體接種:

10.1.1.1 糞便、直腸拭子：直接塗抹於 TCBS 培養基上。

10.1.1.2 糞便、直腸拭子：除了直接分離培養外，應將糞便、直腸拭子放入含 1% NaCl 之 Peptone water 內，於 37 ℃ 經 6 - 15 hr 之增菌培養後，再塗抹在 TCBS 培養基上。

10.1.2 培養：37 ℃ 培養箱培養 18 - 24 hr。

10.1.3 觀察：有無可疑菌落，如有則進行鑑定。

10.2 鑑定

10.2.1 於 TCBS 培養基挑取綠色粘稠的可疑菌落，使用接種環接種於含 1% NaCl 之 TSA，並使用接種針以穿刺劃線法接種於含 1 % NaCl TSIA 及 LIA，以穿刺法接種於 SIM，置 37 ℃ 培養箱培養 18 - 24 hr 後，觀察其生化反應及鑑定。

10.2.2 生化鑑定（生化反應判定參照附錄 15.2）

10.2.2.1 三管生化反應常見的結果為 TSIA 呈現 K/A 反應，Gas (−)，H₂S (−)，LIA K/K，Indole (+)，運動性 (+) 時則可能為腸炎弧菌。

10.2.2.2 氧化酶試驗 (Oxidase test)：挑選 TSA 培養基上菌落進行試驗，腸炎弧菌反應為陽性。

10.2.2.3 API 20E 生化鑑定套組：依照原廠 API 20 E（腸內菌鑑定組）操作步驟執行。

10.2.2.4 VITEK 2 革蘭氏陰性菌鑑定卡 (VITEK 2 GN)：依照原廠全自動微生物分析儀 VITEK 2 標準操作流程執行。

10.2.3 血清凝集反應

10.2.3.1 以腸炎弧菌 K 混合 I 至 IX 型多價血清作玻片凝集反應。

10.2.3.2 若多價血清為陽性，次以相對應之次因子血清作玻片凝集反應以決定其型別。

11 結果判定

1.1 陽性判定標準：符合菌落型態、Oxidase 反應陽性、生化反應、血清學腸炎弧菌 K 型別時，即判定為腸炎弧菌陽性。若不符合者，即判定為腸炎弧菌陰性。
11.1 報告核發：腸炎弧菌陽性，腸炎弧菌陰性。
11.2 結果登錄：將檢體之檢驗結果登錄於實驗室資訊系統，經 PI 核准報告後發佈。

12 品質管制
TCBS 培養基之品質管制：
測試時間：每一批號由廠商提供品質管制文件，實驗室每季進行一次品管測試。
測試菌株：使用 ATCC 標準菌株 Vibrio parahaemolyticus。
測試方法：使用新鮮的測試菌，生長在固體營養培養基一天的菌，挑菌懸浮於 2 mL 無菌水中，調菌液濁度 0.5 McFarland，以 1 μL 的 loop 取菌液依四區畫線接種於測試培養基上，37 ℃ 培養箱培養。
觀察結果紀錄：預期結果 1-2 天後，可見 1 - 3 mm 菌落，菌落至少生長至第三區，且菌落型態符合標準鑑定檢果。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
14.2 蔡文城。2000。實用臨床微生物診斷學。第九版。九州圖書文物有限公司，臺灣。第 737-751 頁。

15 附錄
15.1 腸炎弧菌分離與鑑定流程圖。
15.2 生化反應判定表。
15.3 腸炎弧菌分離與鑑定紀錄表。
15.4 腸炎弧菌 K 抗原血清混合型多價血清與次因子血清對照表。
附錄 15.1 腸炎弧菌分離與鑑定流程圖

腸炎弧菌分離與鑑定流程圖

環境檢體（水）

糞便
直腸拭子

接種TCBS agar plate

Peptone water(含1%NaCl)

37℃增菌6-15hr

TCBS ：綠色黏稠菌落

無可疑菌落

含1%NaCl之TSA及TSIA、LIA、SIM

Oxidase test

三管生化反應

腸炎弧菌K多價血清

I至IX凝集試驗

相對應之次因子血清

腸炎弧菌陽性判定

陰性判定

陰性

陽性

符合

不符合

符合

不符合

腸炎弧菌陽性判定

API 20E 或
VITEK 2 GN
附錄 15.2 生化反應判定表

<table>
<thead>
<tr>
<th>試驗</th>
<th>正反應</th>
<th>負反應</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSIA</td>
<td>AS 黃色（斜面酸化）。指利用 Lactose 及 Sucrose 之能力。</td>
<td>紅色或不變色。指不利用 Lactose。</td>
</tr>
<tr>
<td></td>
<td>AB 黃色（基底酸化）或黑色（由於產硫化氫將黃色掩蓋）。指利用 Glucose 之能力。</td>
<td>紅色或不變色。指不利用 Glucose。</td>
</tr>
<tr>
<td></td>
<td>Gas 任何氣泡產生。指產生 CO₂ 及 H₂ 之能力。</td>
<td>無任何氣泡產生。</td>
</tr>
<tr>
<td></td>
<td>H₂S 產生黑色沉澱。</td>
<td>無黑色沉澱。</td>
</tr>
<tr>
<td>LIA</td>
<td>IND 加入 Kovacs indole 試劑 5 滴後，培養基上層呈紅色。</td>
<td>不呈紅色（呈銅色）</td>
</tr>
<tr>
<td>SIM</td>
<td>MOT 細菌生長遠離接種線，培養基呈混濁。</td>
<td>只生長於接種線上。</td>
</tr>
<tr>
<td></td>
<td>IPA 培養基出現棕褐色環。</td>
<td>不出現棕褐色環。</td>
</tr>
<tr>
<td></td>
<td>Oxidase test 紫色</td>
<td>無色（不變色）</td>
</tr>
</tbody>
</table>
附錄 15.3 腸炎弧菌分離與鑑定紀錄表

<table>
<thead>
<tr>
<th>編號</th>
<th>腸炎弧菌分離與鑑定</th>
<th>核准日期：年月日</th>
</tr>
</thead>
<tbody>
<tr>
<td>頁次：第1015頁/共1104頁</td>
<td>腸炎弧菌分離與鑑定</td>
<td>修訂日期：年月日</td>
</tr>
</tbody>
</table>

衛生福利部疾病管制署研究檢驗及疫苗研製中心

腸炎弧菌分離與鑑定紀錄表

| 檢體編號 | 收件日期 | 檢驗日期 | 檢體採檢運送狀況適當 | TCBS agar 綠色粘稠菌落培養/觀察 | Oxidase test：陽性藍色或藍紫色，陰性不變色 | 生化三管(名稱及反應) | TSIA（K/A, GAS -; H2S -） | LIA (+) | SIM（motility +） | SIM（indole +） | 血清凝集試驗：凝集型別 | 腸炎弧菌K混合Ⅰ至IX型多價血清 | 相對應之次因子血清 | API 20E 或 VITEK 2 GN | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | 是 否 是 否 是 否 是 否 是 否 是 否 | 是 否 是 否 是 否 是 否 是 否 | 陽性 陰性 陽性 陰性 陽性 陰性 陽性 陰性 陽性 陰性 | 符合 不符合 符合 不符合 符合 不符合 符合 不符合 符合 不符合 | 否 否 否 否 否 否 否 否 否 | 否 | 否 | 否 | 是 | 否 否 | 否 | 否 | 否 | 否 |
| | | | | | | | | | | | | | | | |

報告日期：

檢驗者：

實驗室主管：
附錄 15.4 腸炎弧菌 K 抗原血清混合型多價血清與次因子血清對照表

<table>
<thead>
<tr>
<th>K 混合</th>
<th>K1</th>
<th>K3</th>
<th>K4</th>
<th>K5</th>
<th>K6</th>
<th>K7</th>
<th>K8</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>K9</td>
<td>K10</td>
<td>K11</td>
<td>K12</td>
<td>K13</td>
<td>K15</td>
<td>K17</td>
</tr>
<tr>
<td>III</td>
<td>K18</td>
<td>K19</td>
<td>K20</td>
<td>K21</td>
<td>K22</td>
<td>K23</td>
<td>K24</td>
</tr>
<tr>
<td>IV</td>
<td>K25</td>
<td>K26</td>
<td>K28</td>
<td>K29</td>
<td>K30</td>
<td>K31</td>
<td>K32</td>
</tr>
<tr>
<td>V</td>
<td>K33</td>
<td>K34</td>
<td>K36</td>
<td>K37</td>
<td>K38</td>
<td>K39</td>
<td>K40</td>
</tr>
<tr>
<td>VI</td>
<td>K41</td>
<td>K42</td>
<td>K43</td>
<td>K44</td>
<td>K45</td>
<td>K46</td>
<td>K47</td>
</tr>
<tr>
<td>VII</td>
<td>K48</td>
<td>K49</td>
<td>K50</td>
<td>K51</td>
<td>K52</td>
<td>K53</td>
<td>K54</td>
</tr>
<tr>
<td>VIII</td>
<td>K55</td>
<td>K56</td>
<td>K57</td>
<td>K58</td>
<td>K59</td>
<td>K60</td>
<td>K61</td>
</tr>
<tr>
<td>IX</td>
<td>K63</td>
<td>K64</td>
<td>K65</td>
<td>K66</td>
<td>K67</td>
<td>K68</td>
<td>K69</td>
</tr>
<tr>
<td></td>
<td>K70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
目的

檢測食物中毒案件或腹瀉群聚事件之疑似受感染者或發病個案，糞便檢體中是否含有諾羅病毒抗原。

適用檢體種類

新鮮糞便檢體。

名詞解釋

無。

原理概述

本酵素免疫分析法的原理主要為利用 Sandwich-type 檢測方式。使用抗諾羅病毒外套膜抗原之單株抗體，已先結合在試劑盤孔上。檢測時，先加入檢體或對照組至試劑盤孔中進行結合反應，再加入經生物素偶合之諾羅病毒抗體，然後加入卵白素過氧化酶偶合物。如果検體內有諾羅病毒，將會在加入受質反應後時呈色。

試劑耗材

5.1 試劑套組：Ridascreen® Norovirus 3rd generation (C 1401), r-biopharm，德國。

5.1.1 96 試孔盤（plate）：12 條微孔條（可分次使用），已接合上抗諾羅病毒單株抗體（NoV-mAb coated plate），試劑（1），保存 4 ℃冰箱。

5.1.2 稀釋液（dilution buffer）：樣品稀釋液，試劑（2），保存 4 ℃冰箱。

5.1.3 清洗液（wash buffer）：10X 濃度，試劑（3），保存 4 ℃冰箱。

5.1.4 陽性對照組：recombinant norovirus antigens，試劑（4），保存 4 ℃冰箱。

5.1.5 諾羅病毒抗體-生物素偶合物：biotin-conjugated anti-NoV Ab，試劑（5），保存 4 ℃冰箱。

5.1.6 卵白素過氧化酶偶合物：streptavidin peroxidase conjugate，試劑（6），保存 4 ℃冰箱。

5.1.7 受質：hydrogen peroxide/TMB solution，試劑（7），保存 4 ℃冰箱。

5.1.8 終止劑：1 N H2SO4，試劑（8），保存 4 ℃冰箱。

5.2 耗材：

5.2.1 微量吸管尖（tip）：200 μL。

5.2.2 無菌冷凍保存管：2.0 mL。

5.2.3 可拋棄式無菌塑膠手套。

5.2.4 口罩。

5.2.5 擦手紙。

5.2.6 膠膜。
5.2.7 黑膠蓋。
5.2.8 滅菌水或去離子水。

6 儀器設備
6.1 第二級生物安全櫃（class II BSC）。
6.2 微量吸管（pipetteman）200 µL。
6.3 震盪器（vortexer）。
6.4 計時器（stop clock）。
6.5 離心機（Kubota 5800）。
6.6 4 ℃冰箱。
6.7 盤式自動洗滌機（ELx 405），Bio-Tex，美國。
6.8 盤式全光譜分析儀（u Quant），Bio-Tex，美國。
6.9 -20 ℃冷凍櫃。
6.10 高壓滅菌鍋。

7 環境設施安全
於生物安全第二等級（BSL-2）實驗室之設施內操作。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

9 檢體運送及儲存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

10 檢驗步驟
10.1 檢體編號
10.2 檢體前處理：
10.2.1 取糞便 1 g 加入 10 mL PBS 及適量玻璃珠，震盪 10 min 混合均勻，調成 10 %均質混合液。
10.2.2 於 4 ℃，3,000 rpm 離心 15 分鐘。
10.2.3 先將無菌冷凍保存管，標示號碼及日期，取出離心後之上清液至該標示之無菌冷凍管，-20 ℃保存。
10.3 檢驗步驟
10.3.1 在實驗進行前將所有的試劑及試孔盤放置室溫（約 20 - 25 ℃）回溫，使用前先搖勻試劑及待測檢體。
10.3.2 加入 100 µL 待測檢體至每個試孔中，預留 2 個試孔，分別加入 100 µL 的陽性或陰性對照組。
10.3.3 加入 100 µL 的試劑（5），於室溫（約 20 - 25 ℃）下反應 60 分鐘。
10.3.4 配製清洗緩衝液：取 1 份 10 倍濃縮清洗液加 9 份蒸餾水，依所需試驗容量配製。

10.3.5 清洗試驗盤：每孔每次至少以大於 300 µL 清洗緩衝液，共約清洗 5 - 7 次，清洗完成後，將試盤側置於乾淨擦手紙上輕輕拍打，以完全除去試孔內殘餘水分。

10.3.6 分別加入 100 µL 的試劑 (6)，於室溫（約 20 - 25 ℃）反應 30 分鐘。

10.3.7 清洗試驗盤：每孔每次至少以大於 300 µL 清洗緩衝液，共約清洗 5 - 7 次，清洗完成後，將試盤側置於乾淨擦手紙上輕輕拍打，以完全除去試孔內殘餘水分。

10.3.8 加入 100 µL 試劑 (7) 於每個試孔內，蓋上黑膠蓋避光放置於室溫（約 20 - 25 ℃）反應作用 15 分鐘。

10.3.9 掀開黑膠蓋，加入 50 µL 試劑 (8) 於每個試孔內以終止酵素呈色反應。

10.3.10 以盤式全光譜分析儀測定每個試孔的吸光度，波長設定 450/620 nm。

10.4 檢驗後處理
10.4.1 完成檢驗後將未用完的試劑組再儲存於 4 ℃冰箱保存。
10.4.2 檢驗後之檢體應依序歸回檢體盒，放置於-80 ℃冰箱保存。
10.4.3 整理清除實驗工作桌面上之抗污紙墊及使用後拋棄之微量吸管、手套、口罩，包裝於廢棄物滅菌塑膠袋。

11 結果判定
11.1 判讀標準
11.1.1 臨界值（cut off value）= Negative control + 0.15。
11.1.2 陰性對照組之吸光值需小於 0.2，陽性對照組之吸光值需大於 0.5。
11.1.3 如果檢體之吸光值大於 1.1 倍臨界值，判定為陽性反應。
11.1.4 若檢體之吸光值小於 0.9 倍臨界值，判定為陰性反應。
11.1.5 檢驗結果由檢驗儀器傳回電腦再列印出檢驗數據結果，並於列印紙上蓋章。

11.2 報告核發：諾羅病毒（陽性）、諾羅病毒（陰性）。
11.3 結果登錄：相關檢驗紀錄及檢體送驗單背面蓋職章，陳核實驗室負責人審核確認，再由本署內部之網站應用系統進入傳染病通報系統輸入檢驗結果。
11.4 檢體送驗單及原始列印檢驗結果歸檔保存。

12 品質管制
應於有效期限內使用，每次進行檢測試驗皆需加入對照組（陰性、陽性），不同批號試劑組，其試劑不可混合使用。
13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

15 附錄
15.1 病毒性腸胃炎檢驗總流程圖。
15.2 諾羅病毒抗原試驗（酵素免疫分析法）流程圖。
15.3 諾羅病毒抗原試驗（酵素免疫分析法）檢體位置記錄表。
附錄 15.1 病毒性腸胃炎檢驗總流程圖。

傳染病通報
【病毒性腸胃炎(食物中毒、病
毒性腹瀉群聚事件、諾羅病
毒、輪狀病毒)】

輪狀病毒
（Rotavirus）

諾羅病毒
（Norovirus）

酵素免疫分析法
分子生物學

陰性 陽性 陰性 陽性

結果判定

酵素免疫分析法
分子生物學
附錄 15.2 諾羅病毒抗原試驗（酵素免疫分析法）流程圖。

1. 加入100μl待測樣本至每個試孔中，預留2個試孔，分別加入100μl的陽性及陰性對照組。
2. 加入100μl Conjugate1，室溫(20-25℃)下反應60分鐘。
3. 清洗試驗盤，每孔至少>300μl/每孔，清洗5-7次。
4. 加入100μl Conjugate2，室溫下反應30分鐘。
5. 清洗試驗盤，每孔至少>300μl/每孔，清洗5-7次。
6. 加入100μl Substrate於每個試孔內，蓋上黑膠蓋避光，於室溫反應作用15分鐘。
7. 加入50μl Stop solution於每個試孔內以終止反應。
8. 使用EIA判讀機於波長450nm下判讀吸光度。
附錄 15.3 諾羅病毒抗原試驗（酵素免疫分析法）檢體位置紀錄表。

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sample 1</td>
<td>Sample 2</td>
<td>Sample 3</td>
<td>Sample 4</td>
<td>Sample 5</td>
<td>Sample 6</td>
<td>Sample 7</td>
</tr>
<tr>
<td>2</td>
<td>Sample 9</td>
<td>Sample 10</td>
<td>Sample 11</td>
<td>Sample 12</td>
<td>Sample 13</td>
<td>Sample 14</td>
<td>Sample 15</td>
</tr>
<tr>
<td>3</td>
<td>Sample 17</td>
<td>Sample 18</td>
<td>Sample 19</td>
<td>Sample 20</td>
<td>Sample 21</td>
<td>Sample 22</td>
<td>Sample 23</td>
</tr>
<tr>
<td>4</td>
<td>Sample 25</td>
<td>Sample 26</td>
<td>Sample 27</td>
<td>Sample 28</td>
<td>Sample 29</td>
<td>Sample 30</td>
<td>Sample 31</td>
</tr>
<tr>
<td>5</td>
<td>Sample 33</td>
<td>Sample 34</td>
<td>Sample 35</td>
<td>Sample 36</td>
<td>Sample 37</td>
<td>Sample 38</td>
<td>Sample 39</td>
</tr>
<tr>
<td>6</td>
<td>Sample 41</td>
<td>Sample 42</td>
<td>Sample 43</td>
<td>Sample 44</td>
<td>Sample 45</td>
<td>Sample 46</td>
<td>Sample 47</td>
</tr>
<tr>
<td>7</td>
<td>Sample 49</td>
<td>Sample 50</td>
<td>Sample 51</td>
<td>Sample 52</td>
<td>Sample 53</td>
<td>Sample 54</td>
<td>Sample 55</td>
</tr>
<tr>
<td>8</td>
<td>Sample 57</td>
<td>Sample 58</td>
<td>Sample 59</td>
<td>Sample 60</td>
<td>Sample 61</td>
<td>Sample 62</td>
<td>Sample 63</td>
</tr>
<tr>
<td>9</td>
<td>Sample 65</td>
<td>Sample 66</td>
<td>Sample 67</td>
<td>Sample 68</td>
<td>Sample 69</td>
<td>Sample 70</td>
<td>Sample 71</td>
</tr>
<tr>
<td>10</td>
<td>Sample 73</td>
<td>Sample 74</td>
<td>Sample 75</td>
<td>Sample 76</td>
<td>Sample 77</td>
<td>Sample 78</td>
<td>Sample 79</td>
</tr>
<tr>
<td>11</td>
<td>Sample 81</td>
<td>Sample 82</td>
<td>Sample 83</td>
<td>Sample 84</td>
<td>Sample 85</td>
<td>Sample 86</td>
<td>Sample 87</td>
</tr>
<tr>
<td>12</td>
<td>Sample 89</td>
<td>Sample 90</td>
<td>Sample 91</td>
<td>Sample 92</td>
<td>Sample 93</td>
<td>Sample 94</td>
<td>NC</td>
</tr>
</tbody>
</table>

PC：陽性對照組。NC：陰性對照組。

檢驗者：

實驗室主管：
衛生福利部疾病管制署傳染病標準檢驗方法

編號：

錄妥病毒分子生物學檢測

核准日期：年 月 日

修訂日期：年 月 日

頁次：第1024頁/共1104頁

目的

檢測食物中毒案件或腹瀉群聚事件之疑似受感染者或發病個案，糞便檢體中
是否含有諾羅病毒核酸。

因諾羅病毒目前無法以細胞培養方式檢測，雖已有市售的酵素免疫法檢測
試劑套組，基於諾羅病毒的基因變化性較大，為使檢測準確性提高，在群聚
事件檢驗時，仍以聚合酵素鏈反應分析為主，以增加結果準確度。

適用檢體種類

新鮮糞便檢體。

名詞解釋

無。

原理概述

諾羅病毒基因的演化分析中發現，較容易形成突變變異以及重組變化，利用
目前在世界各國分析的基因序列比較結果，以 RNA-dependent-RNA
polymerase 和核蛋白 N 端基因序列交界區間較為穩定，本檢測方法之引子對
設計即落在此高穩度區間。

試劑耗材

5.1 檢測試劑

5.1.1 檢體保存液

5.1.2 核酸試劑萃取套組 (內容物會因廠牌不同而有所改變)

5.1.2.1 沖洗緩衝液 I (Wash Buffer I)

5.1.2.2 沖洗緩衝液 II (Wash Buffer II)

5.1.2.3 沖洗緩衝液 III (Wash Buffer III)

5.1.2.4 溶解/吸附緩衝液 (Lysis/Binding Buffer)

5.1.2.5 磁性玻璃微粒懸浮液 (Magnetic Glass Particle Suspension)

5.1.2.6 萃取緩衝液 (Elution Buffer)

5.1.3 PCR 試劑

5.1.3.1 隨意引子 (Random Primer)

5.1.3.2 G1-SKF primer (5’-CTG CCC GAA TTY GTA AAT GA-3’)

5.1.3.3 G1-SKR primer (5’-CCA ACC CAR CCA TTR TAC A-3’)

5.1.3.4 G2-SKF primer (5’-CNT GGG AGG GCG ATC GCA A-3’)

5.1.3.5 G2-SKR primer (5’-CCR CCN GCA TRH CCR TTR TAC AT-3’)

5.1.3.6 10 X PCR Buffer

5.1.3.7 10mM dNTP
5.1.3.8 25mM MgCl2
5.1.3.9 0.1M DTT
5.1.3.10 RNase inhibitor
5.1.3.11 Superscript III
5.1.3.12 Taq polymerase
5.1.3.13 DEPC- H2O

5.1.4 电泳分析試劑
5.1.4.1 洋菜膠 (Agarose)
5.1.4.2 1 X 電泳緩衝液：0.5 X TBE (Tris-Borate-EDTA) buffer
5.1.4.3 DNA 分子量指標：100bp ladder marker
5.1.4.4 染色液：0.5μg/ml ethium bromide

5.2 耗材
5.2.1 1.5 ml 微量離心管
5.2.2 15 ml 離心管
5.2.3 核酸萃取器耗材(內容物會因廠牌不同而有所改變)
5.2.3.1 小試劑槽 (Reagent Tubs small)
5.2.3.2 中試劑槽 (Reagent Tubs medium M20)
5.2.3.3 大試劑槽 (Reagent Tubs large)
5.2.3.4 檢體槽 (Sample Cartrige)
5.2.3.5 反應槽 (Processing Cartridge)
5.2.3.6 吸管保存槽 (Tip Stand)
5.2.3.7 大微量吸管 (Reaction Tips large)
5.2.3.8 小微量吸管 (Reaction Tips small)

6 儀器設備
6.1 控溫加熱振盪器
6.2 高速離心機
6.3 核酸萃取器
6.4 聚合酶連鎖反應器
6.5 電泳槽
6.6 紫外線照相系統

7 環境設施安全
於生物安全第二等級(BSL-2)之實驗室設施內操作。

8 檢體採集
参照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A
衛生福利部疾病管制署傳染病標準檢驗方法

編號：諾羅病毒分子生物學檢測

核准日期：年 月 日

修訂日期：年 月 日

頁次：第 1026 頁/共 1104 頁

9 檢體運送及保存

參照本署出版之「傳染病檢體採檢手冊」第二版。
treeid=6C7C52E7A7D5621A

10 檢驗步驟

10.1 檢體前處理

10.1.1 取 0.5～1.0 g 之糞便檢體至乾淨 15 ml 細管中，加入 10 倍體積的 1XPBS，震盪混合均勻，3000rpm 離心 15 分鐘。

10.1.2 取上清液並分裝至 1.5mL 微量離心管中，分別冷藏及冷凍保存。

10.2 步驟

10.2.1 檢體核酸萃取

10.2.1.1 取 250 μl 離心處理後之檢體上清液至檢體槽 (Sample Cartridge)。

10.2.1.2 將檢體槽置入核酸萃取器中，進行核酸萃取。

10.2.1.3 萃取之核酸溶於 100 μl 萃取緩衝液 (Elute Buffer)，並於 4℃保存。

10.2.2 逆轉錄反應

10.2.2.1 配製逆轉錄反應混合液，每一檢體反應成分內容物如下表。

10.2.2.2 取檢體核酸萃取液 6.8 μl 為模板，至 0.2 ml 薄壁 PCR 反應管中，分別加入 13.2 μl 反應混合液，混合均勻後離心。

<table>
<thead>
<tr>
<th>逆轉錄反應試劑</th>
<th>1X體積 (μL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10X buffer</td>
<td>2</td>
</tr>
<tr>
<td>10mM dNTP</td>
<td>3.2</td>
</tr>
<tr>
<td>25mM MgCl₂</td>
<td>4</td>
</tr>
<tr>
<td>3ug/μl Random Primer</td>
<td>1</td>
</tr>
<tr>
<td>0.1M DTT</td>
<td>2</td>
</tr>
<tr>
<td>RNase inhibitor (40U)</td>
<td>1</td>
</tr>
<tr>
<td>SuperScript III (200U/μl)</td>
<td>0.05</td>
</tr>
<tr>
<td>總體積</td>
<td>20</td>
</tr>
</tbody>
</table>

10.2.2.3 將 PCR 反應管置入聚合鏈鎖反應器進行反應。

10.2.2.4 反應條件為 25℃加熱 10 分鐘，50℃反應 50 分鐘，85℃酵素去活化反應 15 分鐘。

10.2.3 聚合酶連鎖反應
10.2.3.1 配製聚合酶連鎖反應混和液，每一檢體反應成分內容物如下表。

<table>
<thead>
<tr>
<th>聚合酵素鏈反應混合液</th>
<th>1X 體積 (μL)</th>
<th>聚合酵素鏈反應混合液</th>
<th>1X 體積 (μL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GI 型諾羅病毒反應</td>
<td></td>
<td>GI 型諾羅病毒反應</td>
<td></td>
</tr>
<tr>
<td>cDNA</td>
<td>2.5</td>
<td>cDNA</td>
<td>2.5</td>
</tr>
<tr>
<td>10X PCR buffer</td>
<td>2.5</td>
<td>10X PCR buffer</td>
<td>2.5</td>
</tr>
<tr>
<td>2.5mM dNTP</td>
<td>2</td>
<td>2.5mM dNTP</td>
<td>2</td>
</tr>
<tr>
<td>10mM G1-SKF</td>
<td>0.5</td>
<td>10mM G2-SKF</td>
<td>0.5</td>
</tr>
<tr>
<td>10mM G1-SKR</td>
<td>0.5</td>
<td>10mM G2-SKR</td>
<td>0.5</td>
</tr>
<tr>
<td>Taq polymerase (10U/ul)</td>
<td>0.25</td>
<td>Taq polymerase (10U/ul)</td>
<td>0.25</td>
</tr>
<tr>
<td>DEPT-H₂O</td>
<td>16.75</td>
<td>DEPT-H₂O</td>
<td>16.75</td>
</tr>
<tr>
<td>總體積</td>
<td></td>
<td>總體積</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>總體積</td>
<td>25</td>
</tr>
</tbody>
</table>

10.2.3.2 取逆轉錄反應後之 cDNA 2.5 μl 為模板，至 0.2 ml 薄壁 PCR 反應管中，分別加入 22.5 μl 反應混合液，混合均勻後離心。

10.2.3.3 將 PCR 反應管置入聚合酶鏈鎖反應器進行反應。

10.2.3.4 反應條件為 94℃ 加熱 3 分鐘，之後 94℃ 加熱 30 秒，50℃ 反應 2 分鐘，72℃ 反應 1 分鐘，共進行 40 個循環。再於 72℃ 反應 7 分鐘。

10.2.4 PCR 產物電泳分析

10.2.4.1 配製洋菜膠片（含 0.5 X TBE 電泳緩衝液）

10.2.4.2 將凝固後之電泳膠片放入電泳槽中，在第一個孔洞中放入 2.5 μl 100bp ladder marker，分別取 10 μl PCR 反應後之產物，至於膠片後續各孔洞中，於 100 伏特電壓下，泳動 30 分鐘。

10.2.4.3 將膠片以 ethidium bromide 染色 10 分鐘，再以蒸餾水脫色 10 分鐘。

10.2.4.4 將膠片移至紫外線照相系統，擷取圖片並紀錄結果。

11 結果判定

11.1 判讀標準

11.1.1 GI 型諾羅病毒陽性產物大小為 329bp，GII 型諾羅病毒陽性產物大小為 343bp。

11.2 報告核發

11.2.1 諾羅病毒(陽性)

11.3 結果登錄

11.3.1 相關檢驗紀錄及檢體送驗單，陳核實驗室主管審核，由本署 LIMS 系統輸入檢驗結果。

12 品質管制

12.1 每次操作應包含陽性及陰性對照組。
12.2 陽性對照組：含陽性 PCR 反應片段之質體核酸物質。
12.3 陰性對照組：DEPC-H₂O
12.4 每次操作時加以記錄並定期由實驗室負責人審閱。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
1 目的
検測食物中毒案件或腹瀉群聚事件之疑似受感染者或發病個案，糞便檢體中是否含有輪狀病毒抗原。

2 適用檢體種類
新鮮糞便檢體。

3 名詞解釋
無。

4 原理概述
本酵素免疫分析法的原理主要為利用 Sandwich-type 方式加以偵測。所使用之抗輪狀病毒套膜 VP6 抗原之單株抗體，已先結合在試劑盤孔上。反應時，先加入檢體或對照組溶液至試劑盤孔洞中進行結合反應，再加入過氧化酶偶合（conjugated）之抗輪狀病毒單株抗體。如果檢體內有輪狀病毒，將會在加入受質反應後呈色。A 群輪狀病毒是主要感染人類的病毒群，本試劑套組中使用之抗輪狀病毒套膜 VP6 抗原，是以 A 群輪狀病毒株製備。

5 試劑耗材
5.1 試剤套組：Ridascreen® Rotavirus（C 0901），r-biopharm，德國。
5.1.1 96 試孔盤（Plate）：12 微孔條（可分割）已接合上老鼠抗輪狀病毒單株抗體，試劑（1），保存 4°C 冰箱。
5.1.2 老鼠抗輪狀病毒單株抗體-過氧化酶偶合物（conjugated）：含有 0.1％Kathon 防腐劑，溶液呈綠色：試劑（2），保存 4°C 冰箱。
5.1.3 對照組陽性（positive control），不活化的猴子輪狀病毒（SA-11）：試劑（3），保存 4°C 冰箱。
5.1.4 受質（TMB substrate）：試劑（4），保存 4°C 冰箱。
5.1.5 終止液（1 N 硫酸）：試劑（5），保存 4°C 冰箱。
5.1.6 10X 清洗液（wash buffer）：試劑（6）保存 4°C 冰箱。
5.1.7 稀釋液（sample-dilution buffer）：用於稀釋檢體，也用於陰性對照組，含有 0.1％Kathon 防腐劑，溶液呈藍色，試劑（7），保存 4°C 冰箱。

5.2 耗材
5.2.1 微量吸管尖（tip）。
5.2.2 無菌離心管（15 mL）。
5.2.3 無菌微量離心管（tubes）（2 mL）。
5.2.4 無菌吸管（dropper）（2 mL）。
5.2.5 可拋棄式無菌塑膠手套。
5.2.6 口罩。
5.2.7 擦手紙。
5.2.8 黑膠蓋。
儀器設備
6.1 第二級生物安全櫃。
6.2 震盪器 (vortexer)。
6.3 冷凍離心機 (Kubota 5800)。
6.4 微量吸管 (piptteman)。
6.5 4°C 冰箱。
6.6 -80°C 冷凍櫃。
6.7 盤式自動洗滌機 (ELx 405)，Bio-Tex，美國。
6.8 盤式全光譜分析儀 (µ Quant)，Bio-Tex，美國。
6.9 高壓滅菌鍋。

環境設施安全
7 於生物安全第二等級 (BSL-2) 實驗室進行所有檢測之操作流程。

檢體採集
8 參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

檢體運送及儲存
9 參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

檢驗步驟
10 檢體編號。
10.2 檢體前處理：
10.2.1 取糞便 1 g 加入 10 mL PBS 及適量玻璃珠，震盪 10 min 混合均勻，調成 10% 均質混合液。
10.2.2 於 4°C，3,000 rpm 離心 15 min。
10.2.3 先將無菌冷凍保存管，標示號碼及日期，取出離心後之上清液至該標示之無菌冷凍管，-20°C 冷凍保存。
10.3 檢驗步驟
10.3.1 在實驗進行前將所有的試劑及試孔盤放置室溫下（約 20 - 25°C）回溫。
10.3.2 加入 100 μL 待測檢體至每個檢體之試孔中，預留 2 個試孔，各別加入 100 μL 的陽性或陰性對照組。
10.3.3 加入 100 μL 試劑（2），於室溫（約 20 - 25°C）下，反應 60 分鐘。
10.3.4 配製清洗緩衝液：取 1 份 10 X 濃縮清洗液加 9 份蒸餾水，依所需試驗容量配製。
10.3.5 清洗試驗盤，每孔每次至少以大於 300 L 清洗緩衝液清洗，共
約5~7次，每次清洗完成後，將試驗盤倒置於乾淨擦手紙上輕輕拍打，以完全除去試孔內殘餘清洗液。

10.3.6加入100μL試劑(4)於每個試孔內，蓋上黑膠蓋避光放置於室溫(約20~25°C)反應作用15分鐘。

10.3.7掀開黑膠蓋，加入50μL試劑(5)，至每個試孔內以中止酵素呈色反應。

10.3.8以盤式全光譜分析儀測定每個試孔的吸光值，波長設定於450nm。

10.4檢驗後處理
10.4.1完成檢驗後將未用完的輪狀病毒試劑組，繼續儲存於4°C冰箱保存。
10.4.2檢驗後之檢體應依序歸回檢體盒，放置於-80°C冰箱保存。
10.4.3整理清除實驗工作桌面上之抗污紙墊及使用後抛弃之微量吸管、手套、口罩，包裝於廢棄物滅菌塑膠袋。

11結果判定
11.1判讀標準
11.1.1臨界值(cut off value) = Negative control(NC) + 0.15。
11.1.2陰性對照組之吸光值需小於0.2，陽性對照組之吸光值需大於0.8。
11.1.3如果檢體之吸光值大於1.1倍臨界值，判定為陽性反應。
11.1.4若檢體之吸光值小於0.9倍臨界值，判定為陰性反應。
11.1.5檢驗結果由檢驗儀器傳回電腦再列印出檢驗數據結果，並於列印紙上蓋章。

11.2報告核發:輪狀病毒(陽性)。輪狀病毒(陰性)。
11.3結果登錄:相關檢驗紀錄及檢體送驗單背面蓋職章，陳核實驗室負責人審核確認，再由本署內部之網站應用系統進入傳染病通報系統輸入檢驗結果。
11.4檢體送驗單及原始列印檢驗結果自行歸檔。

12品質管制
應於有效期限內使用，每次進行檢測試驗皆需加入對照組(陰性、陽性)。不同批號試劑組，其試劑不可混合使用。

13廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以121°C，30min高壓滅菌後，依本署廢棄物處理作業程序處理。

14參考資料

附錄
15.1 病毒性腸胃炎検驗總流程圖。
15.2 輪狀病毒抗原検驗（酵素免疫分析法）検驗流程圖。
15.3 輪狀病毒抗原試験検體位置記録表。
附錄 15.1 病毒性腸胃炎檢驗總流程圖

傳染病通報
[病毒性腸胃炎(食物中毒、病毒性腹瀉群聚事件、諾羅病毒、輪狀病毒)]

輪狀病毒（Rotavirus）

酵素免疫分析法

分子生物學檢測

陰性 陽性 陰性 陽性

諾羅病毒（Norovirus）

酵素免疫分析法

分子生物學檢測

陰性 陽性 陰性 陽性

結果判定
附錄 15.2 輪狀病毒抗原檢驗（酵素免疫分析法）檢驗流程圖

加入 100 μL 待測檢體至每個檢體之試孔中，預留 2 個試孔，分別加入 100 μL 的陽性及陰性對照組

分別加入 100 μL 的 Conjugate

於室溫反應 60 分鐘

清洗試驗盤

加入 100 μL Substrate 於每個試孔內，蓋上黑膠蓋避光

室溫反應作用 15 分鐘

各加入 50 μL Stop 於每個試孔內以中止酵素呈色反應

使用 EIA 判讀機於波長 450 nm 下判讀吸光度
附錄 15.3 輪狀病毒抗原試驗檢體位置記錄表

衛生福利部疾病管制署研究檢驗及疫苗研製中心
輪狀病毒抗原試驗檢體位置記錄表

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Sample 1</td>
<td>Sample 9</td>
<td>Sample 17</td>
<td>Sample 25</td>
<td>Sample 33</td>
<td>Sample 41</td>
<td>Sample 49</td>
<td>Sample 57</td>
<td>Sample 65</td>
<td>Sample 73</td>
<td>Sample 81</td>
<td>Sample 89</td>
</tr>
<tr>
<td>B</td>
<td>Sample 2</td>
<td>Sample 10</td>
<td>Sample 18</td>
<td>Sample 26</td>
<td>Sample 34</td>
<td>Sample 42</td>
<td>Sample 50</td>
<td>Sample 58</td>
<td>Sample 66</td>
<td>Sample 74</td>
<td>Sample 82</td>
<td>Sample 90</td>
</tr>
<tr>
<td>C</td>
<td>Sample 3</td>
<td>Sample 11</td>
<td>Sample 19</td>
<td>Sample 27</td>
<td>Sample 35</td>
<td>Sample 43</td>
<td>Sample 51</td>
<td>Sample 59</td>
<td>Sample 67</td>
<td>Sample 75</td>
<td>Sample 83</td>
<td>Sample 91</td>
</tr>
<tr>
<td>D</td>
<td>Sample 4</td>
<td>Sample 12</td>
<td>Sample 20</td>
<td>Sample 28</td>
<td>Sample 36</td>
<td>Sample 44</td>
<td>Sample 52</td>
<td>Sample 60</td>
<td>Sample 68</td>
<td>Sample 76</td>
<td>Sample 84</td>
<td>Sample 92</td>
</tr>
<tr>
<td>E</td>
<td>Sample 5</td>
<td>Sample 13</td>
<td>Sample 21</td>
<td>Sample 29</td>
<td>Sample 37</td>
<td>Sample 45</td>
<td>Sample 53</td>
<td>Sample 61</td>
<td>Sample 69</td>
<td>Sample 77</td>
<td>Sample 85</td>
<td>Sample 93</td>
</tr>
<tr>
<td>F</td>
<td>Sample 6</td>
<td>Sample 14</td>
<td>Sample 22</td>
<td>Sample 30</td>
<td>Sample 38</td>
<td>Sample 46</td>
<td>Sample 54</td>
<td>Sample 62</td>
<td>Sample 70</td>
<td>Sample 78</td>
<td>Sample 86</td>
<td>Sample 94</td>
</tr>
<tr>
<td>G</td>
<td>Sample 7</td>
<td>Sample 15</td>
<td>Sample 23</td>
<td>Sample 31</td>
<td>Sample 39</td>
<td>Sample 47</td>
<td>Sample 55</td>
<td>Sample 63</td>
<td>Sample 71</td>
<td>Sample 79</td>
<td>Sample 87</td>
<td>NC</td>
</tr>
<tr>
<td>H</td>
<td>Sample 8</td>
<td>Sample 16</td>
<td>Sample 24</td>
<td>Sample 32</td>
<td>Sample 40</td>
<td>Sample 48</td>
<td>Sample 56</td>
<td>Sample 64</td>
<td>Sample 72</td>
<td>Sample 80</td>
<td>Sample 88</td>
<td>PC</td>
</tr>
</tbody>
</table>

檢驗者：

實驗室主管：
目的

輪狀病毒可以細胞培養方式檢測，但病毒在細胞培養速度相當緩慢，必須轉染多次才可看到較明顯的細胞病變。目前，已有市售的酵素免疫法檢測試劑套組，可以在群聚事件檢驗時進行檢測，而輪狀病毒 RT-PCR 反應的主要目的與應用，主要在於了解目前主要的病毒株型別與流行病學分析。

適用檢體種類

新鮮糞便檢體。

名詞解釋

無。

原理概述

輪狀病毒會引起人體產生免疫抗體反應的抗原為 VP4 與 VP7，VP4 與 VP7的血清型與基因型別間相當一致，為簡化檢測時間，目前多數國家實驗室均使用 RT-PCR 方式取代傳統血清學檢測。

試劑耗材

5.1 檢體保存液

5.2 1.5mL 離心管

5.3 核酸萃取試劑套組：MagNa Pure LC DNA Isolation Kit III

5.3.1 清洗緩衝液 I (Wash Buffer I)。

5.3.2 清洗緩衝液 II (Wash Buffer II)。

5.3.3 清洗緩衝液 III (Wash Buffer III)。

5.3.4 溶解/吸附緩衝液（Lysis/Binding Buffer）。

5.3.5 磁性玻璃為粒懸浮液（Magnetic Glass Particle Suspension）。

5.3.6 萃取緩衝液（Elution Buffer）。

5.4 核酸萃取器（MagNa Pure LC）耗材。

5.4.1 小試劑槽（Reagent Tubs small）。

5.4.2 中試劑槽（Reagent Tubs medium M20）。

5.4.3 大試劑槽（Reagent Tubs large）。

5.4.4 檢體槽（Sample Cartridge）。

5.4.5 反應槽（Processing Cartridge）。

5.4.6 吸管保存槽（Tip Stand）。

5.4.7 大微量吸管（Reaction Tips large）。

5.4.8 小微量吸管（Reaction Tips small）。

5.5 PCR 試劑

5.5.1 隨意引子（Random Primer）。

5.5.2 Beg9 primer

（5’-GGCTTTAAAGAGAGATTCCGTCCTGG-3’）

5.5.3 End9 primer（5’-GGTCACATCATACAATTTCTATCTAGAAG-3’）

5.5.4 con2 primer（5’-ATTTCGGACCATTATACACC-3’）
衛生福利部疾病管制署傳染病標準檢驗方法

5.5.5 con3 primer (5′-TGGCTTCGCCATTTTATAGACA-3′)
5.5.6 10X PCR buffer
5.5.7 10mM dNTP
5.5.8 25mM MgCl2
5.5.9 0.1M DTT
5.5.10 RNase inhibitor
5.5.11 Reverse Transcriptase
5.5.12 Taq polymerase
5.5.13 DEPC-H2O

5.6 電泳分析試劑
5.6.1 洋菜膠 (Agarose)。
5.6.2 1X 電泳緩衝液：0.5XTBE（Tris-Borate-EDTA）buffer
5.6.3 DNA 分子量指標：100bp ladder marker。
5.6.4 染色液：0.5 μg/mL ethium bromide。
5.6.5

6 儀器設備
6.1 控溫加熱振盪器。
6.2 高速離心機。
6.3 核酸萃取器：MagNa Pure LC，Roche，Germany。
6.4 聚合酶連鎖反應器：Biomera，Germany 三槽式核酸增質儀，T3000 型。
6.5 電泳槽 (Mupid II)。
6.6 紫外線照相系統。

7 環境與設施安全
於生物安全第二等級（BSL-2）實驗室之設施內操作。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowt reeid=6C7C52E7A7D5621A

9 檢體保存運送
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowt reeid=6C7C52E7A7D5621A

10 檢驗步驟
10.1 檢體處理：檢體送達後，取 0.5~1.0 g 糞便檢體至乾淨離心管中，加入
10 倍體積的 1XPBS，震盪混合均勻，3000rpm 離心 15 分鐘後，上清液
取出並分裝至 1.5mL 離心管中，分別冷藏及冷凍保存。
10.2 檢體核酸萃取：
10.2.1 將離心處理後之檢體上清液，取 250μL 至檢體槽 (Sample Cartridge)。
10.2.2 將檢體槽置入核酸萃取器中，進行核酸萃取。
10.2.3 萃取之核酸溶於 100μL 萃取緩衝液 (Elute Buffer), 並至於 4℃ 保存。

10.3 逆轉錄反應:
10.3.1 配置逆轉錄反應混合液，每一檢體反應成分內容物如下表。
10.3.2 取検體核酸萃取液 5μL 為模板，至 0.2mL 薄壁 PCR 反應管中，分別加入 1μL 反應混合液，混合勻勻後離心。

<table>
<thead>
<tr>
<th>逆轉錄反應試劑</th>
<th>1X 體積 (μL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5X buffer</td>
<td>4</td>
</tr>
<tr>
<td>10mM dNTP</td>
<td>2</td>
</tr>
<tr>
<td>Random Primer (3ug/ul)</td>
<td>1</td>
</tr>
<tr>
<td>RNase inhibitor (40U)</td>
<td>0.5</td>
</tr>
<tr>
<td>Reverse Transcpitase (20U/ul)</td>
<td>0.5</td>
</tr>
<tr>
<td>DEPC-H₂O</td>
<td>7</td>
</tr>
<tr>
<td>總體積</td>
<td>15</td>
</tr>
</tbody>
</table>

10.3.3 將 PCR 反應管置入聚合酶鎖反應器進行反應。
10.3.4 反應條件為 25℃ 加熱 10 分鐘，50℃ 反應 45 分钟，85℃ 酵素去活化反應 5 分鐘。

10.4 聚合酶鍵反應
10.4.1 配置聚合酶鍵反應混合液，每一檢體反應成分內容物如下表。

<table>
<thead>
<tr>
<th>聚合酶鍵反應混合液</th>
<th>1X 體積 (μL)</th>
<th>聚合酶鍵反應混合液</th>
<th>1X 體積 (μL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VP7 基因</td>
<td>VP4 基因</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cDNA</td>
<td>2.5</td>
<td>cDNA</td>
<td>2.5</td>
</tr>
<tr>
<td>10X PCR buffer</td>
<td>2.5</td>
<td>10X PCR buffer</td>
<td>2.5</td>
</tr>
<tr>
<td>2.5mM dNTP</td>
<td>4</td>
<td>2.5mM dNTP</td>
<td>4</td>
</tr>
<tr>
<td>10 μM Beg9</td>
<td>0.5</td>
<td>10 μM con2</td>
<td>0.5</td>
</tr>
<tr>
<td>10 μM End9</td>
<td>0.5</td>
<td>10 μM con3</td>
<td>0.5</td>
</tr>
<tr>
<td>Taq polymerase (5U/ul)</td>
<td>0.8</td>
<td>Taq polymerase (10U/ul)</td>
<td>0.8</td>
</tr>
<tr>
<td>DEPT-H₂O</td>
<td>14.2</td>
<td>DEPT-H₂O</td>
<td>14.2</td>
</tr>
<tr>
<td>總體積</td>
<td>25</td>
<td>總體積</td>
<td>25</td>
</tr>
</tbody>
</table>

10.4.2 取逆轉錄反應後之 cDNA 2.5μL 為模板，至 0.2mL 薄壁 PCR 反
應管中，分別加入 22.5μL 反應混合液，混合均勻後離心。

10.4.3 將 PCR 反應管置入聚合鏈鎖反應器進行反應。

10.4.4 反應條件為：94℃加熱 3 分鐘。之後 94℃加熱 30 秒，50℃反應 2 分鐘，72℃反應 1 分鐘，共進行 40 個循環。再於 72℃反應 7 分鐘。

10.5 PCR 產物電泳分析：

10.5.1 配置 2%洋菜膠片（含 0.5XTBE 電泳緩衝液）。

10.5.2 將凝固後之電泳膠片放入電泳槽中，在第一個孔洞中放入 2.5μL 100bp ladder marker，分別取 10μL PCR 反應後之產物，至於膠片後續各孔洞中，於 1010 福氏電壓下，泳動 30 分鐘。

10.5.3 將膠片以 ethidiun bromide 染色 10 分鐘，再以蒸餾水脫色 10 分鐘。

10.5.4 將膠片轉移至紫外線照相系統，擷取圖片並紀錄結果。

11 結果判定

11.1 VP7 基因陽性產物大小為 1062bp，VP4 基因陽性產物大小為 877bp。

12 品質管制

12.1 每次操作應包含陽性及陰性對照組。

12.2 陽性對照組：含陽性 PCR 反應片段之質體核酸物質。

12.3 陰性對照組：DEPC-H2O。

12.4 每次操作時加以記錄並定期由實驗室負責人審閱。

13 廢棄物處理

檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 ℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。
目的
鑑定腸道移生(intestinal colonization)或相關環境中 carbapenem 類抗藥性腸桿菌(carbapenem resistant Enterobacteriaceae, CRE)的存在。

適用檢體種類
肛門拭子或相關檢體。

原理及概述
Carbapenem 類抗生素屬於強力的廣效性 β-lactam 類藥物，通常被視為治療多重抗藥性細菌感染症的最後防線；但近年來革蘭氏陰性菌，尤其是腸道菌屬(Enterobacteriaceae)，對 carbapenem 類抗生素產生抗藥性的比例日增，其中最令人擔心的抗藥性機轉係為 carbapenemase 的產生。因為在腸道菌中，產生 carbapenemases 的遺傳基因，絕大部分位於質體上，可在不同的細菌間傳播，因此受到高度關注。本檢測方法提供進行主動監測時，檢驗具有 NDM-1 或 KPC 等 carbapenemase 抗藥基因之腸道移生或環境相關之腸桿菌。

試劑耗材
4.1 TSB（trypticase soy broth）培養液。
4.2 MacConkey agar plate。
4.3 imipenem 或 meropenem 抗生素紙錠(10μg/錠)。
4.4 滅菌蒸餾水。
4.5 改良賀治試驗（modified Hodge test，MHT）
 4.5.1 Müller-Hinton agar plate（MHA）。
 4.5.2 無菌棉棒。
 4.5.3 攜子。
 4.5.4 10 μL 接種環。
 4.5.5 E. coli ATCC 25922
 4.5.6 品管菌：陽性菌株 K. pneumoioae ATCC BAA-1705；陰性菌株 K. pneumoioae ATCC BAA-1706。
4.6 PCR 試驗
 4.6.1 2X PCR master mix（含適當濃度的 Taq polymerase、MgCl₂、dNTP、buffer）。
 4.6.2 NDM-1 所需核酸引子如下：
 NDM-For：GGG CAG TCG CTT CCA ACG GT
 NDM-Rev：CTA GTG CTC AGT GTC GGC A T
 4.6.3 KPC 所需核酸引子如下：
 KPC-Fm：GGT CTA GTT CTG CTG TCT TG
 KPC-Rm：CTT GTC ATC CTT GTT AGG CG
 4.6.4 微量吸管 pipetman
4.7 電泳偵測試劑
 4.7.1 2% agar 膠片。
 4.7.2 6X loading dye。
4.7.3 TBE 缓衝液 pH 8.2～8.3。
4.7.4 核酸標記（100 bp DNA ladder）。
4.7.5 Ethidium bromide 溶液（50μM）。

5 儀器設備
5.1 培養箱。
5.2 震盪型培養箱。
5.3 桌上型離心機。
5.4 生物安全操作箱。
5.5 4℃，-20℃冰箱。
5.6 核酸增幅儀：Biometra。
5.7 振盪器（vortex）。
5.8 電泳槽。
5.9 DNA 電泳膠體觀察照相設備

6 環境設施安全
6.1 檢體或菌株須於生物安全第二級(BSL-2)實驗室之設施內操作。
6.2 菌株處理、PCR 反應混合物配製、PCR 反應進行、電泳皆需於獨立區域操作。

7 檢體採集
7.1 肛門拭子或相關檢體。
7.2 實驗室若無法進行 PCR 實驗，可將增菌後分離出之具 carbapenem 抗藥性之腸桿菌純化菌株，以 cary-blair 拭子沾溼一圈後，置入 cary-blair 保持輸送培養基，以採檢箱立即送至疾病管制署昆陽實驗室進行後續實驗。
7.3 本菌抗藥性高，採檢時應謹慎操作，避免污染環境。

8 檢體運送及保存
8.1 環境檢體符合「醫院多重抗藥性細菌感染事件處理工作指引」之規範，可逕送採檢拭子至疾病管制署昆陽實驗室檢驗。
8.2 Cary-blair 拭子檢體運送，於常溫（22℃-35℃）進行，儘速送驗。

9 檢驗步驟
9.1 Day1
9.1.1 5 mL TSB（trypticase soy broth）培養液內置入1錠 imipenem 或 meropenem 抗生素紙錠。
9.1.2 隨即折入肛門拭子或 cary-blair 拭子，以 35±2℃ 200-300rpm 隔夜震盪培養。
9.2 Day2
9.2.1 取 100μL 混濁之 TSB 培養液，以四區劃法，塗劃於 MacConkey agar plate 上，以 35±2℃ 隔夜培養。
9.3 Day 3

9.3.1 挑選 MacConkey agar plate 上之利用乳糖（lactose-fermenting）的粉红色或红色菌落，在非選擇性培養基（non-selective agar plate）上做次培養，35±2℃隔夜培養。

9.4 Day 4

9.4.1 進行菌種鑑定及藥敏試驗。
9.4.2 進行改良賀治試驗（modified Hodge test，MHT）。
9.4.3 進行抗藥基因檢測。

9.5 改良賀治試驗（modified Hodge test，MHT）

9.5.1 挑選 Blood agar plate 上培養之 E. coli ATCC25922 菌落，以生理食鹽水調製 McFarland 0.5。
9.5.2 取 0.5 mL 加至 4.5 mL TSB（trypsin case soy broth）培養液或生理食鹽水（1:10 稀釋）。
9.5.3 以棉棒在 MHA 上三方向均勻塗劃，在室溫下乾燥 3~10 分鐘。
9.5.4 以滅菌過的棉棒於 MHA 平板中間置上 imipenem 或 meropenem 抗生素紙錠。以 10 μL 接種環挑取 1 loop 隔夜培養之測試菌或品管菌，以劃直線方式從紙錠邊緣劃至平板周間（方式如圖一），35±2℃培養 16-20 小時。
9.5.5 結果判定：檢查測試菌或品管菌劃線與抑制環交接處的加強生長情形。若有加強生長，代表 carbapenemase 陽性；若無加強生長，代表 carbapenemase 陰性；若測試菌之直線周圍呈現清澈，則無法判定結果（如圖二）。

9.6 抗藥基因檢測（NDM-1、KPC 分別進行 PCR）

9.6.1 已滅菌之 1.5mL 窮心管中加入 100μL 滅菌蒸餾水，取agar plate 上之分離菌落製成微濁菌液，約 McFarland No.1 濃度。100℃ 水浴 10 分鐘取出直接置於冰塊內冷卻，4℃ 離心，取上清液當作模版置於-20℃冰箱保存。
9.6.2 PCR 反應物：12.5μL 2×PCR Master Mix，引子最終濃度為 0.2μM，模版 2μL，以二次蒸餾水加到 25μL。
9.6.3 PCR 反應條件：

9.6.3.1 NDM PCR：predenature 95℃ 5 分；denature 94℃ 15 秒，annealing 60℃ 30 秒，extension 72℃ 45 秒，以上 30cycle；post extension 72℃ 5 分；4℃ 保存。

9.6.3.2 KPC PCR：predenature 95℃ 5 分；denature 94℃ 30 秒，annealing 52℃ 40 秒，extension 72℃ 50 秒，以上 30cycle；post extension 72℃ 5 分；4℃ 保存。

9.6.4 PCR 產物之確認：將 5μL 的 PCR 增殖產物加 1μL tracking dye 混合，以 2% 洋菜膠，100 voltage，約 1 小時，進行 minigel 電泳分析。
9.6.5 膠片染色：以 0.5μL/mL ethidium bromide 染色 15 分，水洗 10 分鐘後觀察。
9.6.6 菌株對照組：NDM 陽性菌株可用 NCTC 13443，PCR 產物約
9.6.7 結果判定：NDM 陽性，可見 PCR 產物約 477bp；KPC 陽性，可見 PCR 產物約 798bp。

10 結果判定：
10.1 陽性判定標準：NDM-1 陽性，可見 PCR 產物約 477bp；KPC 陽性，可見 PCR 產物約 798bp。
10.2 報告核發：菌種鑑定名稱、NDM-1 基因陽性；菌種鑑定名稱、KPC 基因陽性；或 PCR 陰性。
10.3 結果登錄：將檢體之檢驗結果登錄於實驗室資訊系統，經 PI 核准報告後發佈。

11 品質管制
11.1 培養基
11.1.1 培養基生長試驗：每一批號由廠商提供品質管制文件。
11.1.2 TSB 培養液於每一批號開封時進行無菌試驗。
11.1.3 平板培養基於每一批號開封時，接種品管菌株，37 °C 培養 18-24 hr 後，觀察生長結果，菌落型態及進行無菌試驗。
11.1.4 品管菌株(E.coli ATCC25922，P. aeruginosa ATCC27853)。

11.2 抗生素紙錠
11.2.1 接種品管菌株於 MHA，37 °C 培養 16-18 hr 後，紀錄抑菌環大小需符合 CLSI guidelines。
11.2.2 品管菌株(E.coli ATCC25922，P. aeruginosa ATCC27853)。

11.3 PCR 反應管：
11.3.1 每次進行實驗時皆有對照組，陽性對照組與陰性對照組需符合結果判定。
11.3.2 實驗過程遵循 S.O.P 的作業規範與流程，並在個別獨立的操作空間內操作，以避免污染。
11.3.3 Pipetman 做定期的校正。
11.3.4 試劑皆應於有效期內用完，並注意試劑儲放溫度。

12 廢棄物處理
12.1 檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121℃，60 min 高壓後，依本署廢棄物處理作業程序。
12.2 Ethidium bromide 為 carcinogen 倒掉前加入分解劑後再作處理。

13 參考資料
informational supplement. M100-S22. CLSI, Wayne, PA.

附圖

圖一: 以 ertapenem 在 MHA 平板操作改良賀治試驗 (modified Hodge test, MHT):
（#1）K. pneumoioae ATCC BAA-1706 呈陰性；（#2）K. pneumoioae ATCC BAA-1705 呈陽性，因其產生 carbapenemase 擴散入培養基水解 ertapenem，因此不能抑制 E. coli ATCC25922 生長，抑制環呈縮入狀；（#3）測試菌呈陽性。

圖二：測試菌之直線周圍呈現清澈，結果無法判定。
（http://jcm.asm.org/content/49/12/4301/F1.expansion.html）
目的
分離與鑑定 VISA/VRSA 菌種並進行抗藥性基因檢測。

適用檢體種類
對 Vancomycin 感受性降低（即 MIC>2 μg/mL）之金黃色葡萄球菌臨床分離株。

名詞解釋
無。

原理概述
以培養基分離培養細菌後，依據菌落形態、細菌生理特徵與生化反應特性等確認菌種；以抗生素感受性試驗確認抗藥性反應；並以 PCR 方法檢測抗藥性基因。

試劑耗材
5.1 BAP（blood agar plate）。
5.2 Mueller Hinton plate。
5.3 Catalase test reagent（3% H₂O₂）。
5.4 Coagulase test reagent 試劑套組。
5.5 Phoenix ID broth，AST broth，indicator。
5.6 Phoenix PMIC/ID 革蘭氏陽性鑑定盤。
5.7 Sensititre water，broth tube。
5.8 Sensititre GPALL1F 鑑定盤。
5.9 E-test strip (Van)。
5.10 QIAamp DNA Mini Kit。
5.11 PCR master mix。
5.12 PCR tube。
5.13 載玻片。
5.14 接種環（針）。
5.15 1 mL 無菌塑膠吸管。
5.16 無菌（含濾棉）微量吸管尖（tip）：100 μL、20 μL。
5.17 無菌棉棒。
5.18 洋菜膠。
5.19 TBE buffer。
5.20 EtBr 染劑。

儀器設備
6.1 37 °C 培養箱。
6.2 Phoenix 微生物鑑定與藥敏試驗儀。
6.3 Trek 微生物藥敏試驗分析儀。
6.4 即時定量聚合酶鍵鎖反應器。
6.5 水浴槽。
6.6 微量吸管（Pipetman）。
6.7 電泳槽裝置。
6.8 紫外光照相系統。

7 環境設施安全
 於生物安全第二等級（BSL-2）實驗室之設施內操作。

8 檢體採集
 參照本署出版之「傳染病檢體採檢手冊」第二版。
 http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

9 檢體運送及保存
 參照本署出版之「傳染病檢體採檢手冊」第二版。
 http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

10 檢驗步驟
 10.1 檢體前處理
 實驗室於收到檢體及送驗單後，先行核對檢體種類、姓名、數量等資料正確與否，並依序登錄於紀錄簿，並於實驗室資訊系統完成收件程序。
 10.2 分離培養
 10.2.1 將收到的臨床分離株接種於 BAP 培養基上。
 10.2.2 培養：37 ℃ 培養箱培養。
 10.2.3 觀察：18 - 24 hr 後，挑選 β-溶血菌落進行菌種鑑定與抗藥性基因檢測。
 10.3 菌種鑑定與抗藥性基因檢測
 10.3.1 生化鑑定
 10.3.1.1 Catalase test
 於載玻片上滴 1 滴試劑（3% H₂O₂），以 1 µL 接種環取適量菌與試劑混和，觀察有無氣泡反應。
 10.3.1.2 Coagulase test
 於試劑套組所附的紙板圓圈內滴入一滴試劑，以 1 µL 接種環取適量菌與試劑混和，觀察有無凝集反應。
 10.3.2 Phoenix 生化與藥敏試驗
 以棉棒沾取適量菌與 ID broth 混和調整成濃度 0.5-0.6 McFarland 之菌液。AST broth 中加入 1 滴 indicator，上下搖混數次混和均勻。取 25 µL 菌液加入 AST broth 上下搖混數次混和均勻。將菌液倒入 PMIC/ID 革蘭氏陰性鑑定盤之左方生化鑑
定反應孔格中，將 AST broth 倒入鑑定盤之右方藥敏鑑定反應孔格中，俟兩邊液體自動流滿孔格中，即可將鑑定盤置入機器中，隔天收取結果報告。

10.3.3 Sensititre 藥敏鑑定
以棉棒沾取適量菌與 water tube 混和調整成濃度 0.5 McFarland 之菌液。取 10 μL 菌液加入 broth 上下搖混數次混和均勻，並置換為白色分注頭。以分注器分注每個洞 50 μL broth 至 96 孔之 GPALL1F 鑑定盤。黏貼上封膜，置入 37 ℃ 培養箱培養 24 小時後以分析儀讀取結果。

10.3.4 E-test 藥敏鑑定
以棉棒沾取適量 Sensititre 藥敏鑑定中加入菌液之 broth，均勻接種於 Mueller Hinton plate，以塗子取 E-test strip 置於培養基上，strip 與培養基密合無氣泡，將培養基置入 37 ℃ 培養 24 小時後讀取結果。

10.3.5 VanA/VanB 基因 PCR 檢測
10.3.5.1 核酸萃取
10.3.5.1.1 在 1.5 mL 離心管中加入 180 μL Buffer ATL，以 1 μL 接種環取約 2-5 個菌落震盪溶解於其中，加入 20 μL Proteinase K，混合均勻。
10.3.5.1.2 將上述離心管置於 56 ℃ 水浴槽，進行溶菌反應作用 2 - 3 hr。
10.3.5.1.3 取出離心管，震盪混合 10 - 15 sec，加入 200 μL Buffer AL，震盪混合 10 - 15 sec 後，置入 70 ℃ 水浴槽，反應作用 10 min。
10.3.5.1.4 取出離心管，加入 200 μL (96 - 100 %) ethanol，震盪混合 10 - 15 sec。
10.3.5.1.5 以微量分注器將上述離心管中的液體移至 QIAamp spin column 中，並以 8,000 rpm 離心 1 min。
10.3.5.1.6 倒掉濾液，換新的 Collection tube，在 Column 中加入 500 μL Buffer AW1，以 8,000 rpm 離心 1 min。
10.3.5.1.7 倒掉濾液，換新的 Collection tube，在 Column 中加入 500 μL Buffer AW2，以 14,000 rpm 離心 3 min。
10.3.5.1.8 倒掉濾液，再以 14,000 rpm 離心 1 min。
10.3.5.1.9 丢棄 Collection tube，將 QIAamp spin column 套上新的 1.5 mL 離心管，加入 100 μL Buffer AE 或無菌水，室溫下靜置 5 min。
10.3.5.1.10 以 8,000 rpm 離心 1 min，所得於離心管中的 DNA 產物，於實驗後放置 -20 ℃ 保存。
衛生福利部疾病管制署傳染病標準檢驗方法

編號：VISA/VRSA 菌種鑑定及抗藥性基因檢測

頁次：第 1048 頁 / 共 1104 頁

10.3.5.2 PCR 反應

10.3.5.2.1 以 PCR 反應檢測 VanA/VanB 基因，以及 nuc 基因（鑑定金黃色葡萄球菌）。PCR 反應以下列配方加入 PCR 反應管中。

<table>
<thead>
<tr>
<th>成分</th>
<th>用量</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR master mixes</td>
<td>25 μL</td>
</tr>
<tr>
<td>Primer (0.4μM)</td>
<td>2 μL</td>
</tr>
<tr>
<td>ddH₂O</td>
<td>21 μL</td>
</tr>
<tr>
<td>DNA Sample</td>
<td>2 μL</td>
</tr>
<tr>
<td>Total</td>
<td>50 μL</td>
</tr>
</tbody>
</table>

Negative control 管應置於最後配製。Positive control 以陽性對照菌株之 DNA sample 加入。

10.3.5.2.2 PCR 反應條件為:

- Pre-denature: 95 ℃, 15 min
- Denature: 94 ℃, 1 min
- Annealing: 54 ℃, 1 min
- Extension: 72 ℃, 1 min
- Post-extension: 72 ℃, 7 min
- Final: 4 ℃, ∞

所得的 PCR 產物保存於 -20 ℃。

10.3.5.2.3 電泳分析 PCR 產物

配製 1.5 %洋菜膠（使用 0.5 % TBE buffer 溶液）。取 5 μL PCR 產物混合 1 μL 6 X loading dye，分注於洋菜膠齒孔中，以電壓 100 V 跑膠 30 - 40 min。以 EtBr 染劑染色 10 min 後，以紫外光照相系統，照相並列印出膠片圖。VanA 基因產物 732 bp，VanB 基因產物 647 bp，nuc 基因產物 218 bp。

11 結果判定

11.1 判讀標準：生化鑑定與藥敏試驗符合下列結果，則判定為 VISA/VRSA 陽性；如有不符合判定為陰性。

11.1.1 生化鑑定：Catalase test 與 coagulast test 皆為陽性反應。

11.1.2 Phoenix 生化與藥敏試驗、Sensititre 藥敏試驗、E-test 藥敏試驗：生化鑑定為金黃色葡萄球菌，藥敏試驗 vancomycin MIC 4-8 g/ml 為 VISA, MIC ≥16 為 VRSA。

11.2 報告核發：VISA/VRSA 陽性，VISA/VRSA 陰性。VISA/VRSA 陽性，下拉可選擇為 VISA 或 VRSA；基因型別下拉可選擇 VanA 或 VanB。

11.3 結果登錄：將檢體之檢驗結果登錄於 VISA/VRSA 菌種鑑定及抗藥性基因檢測檢體送驗單並加蓋檢驗者印章，送報告簽署人審核及蓋章，並登錄於網路報告系統。
12 品質管制

12.1 培養基
測試時間：每一批號由廠商提供品質管制文件，實驗室每季進行一次品管測試。
測試菌株：Staphylococcus aureus ATCC 29213
測試方法：使用新鮮的測試菌，取適量接種於培養基，37°C 隔夜培養。
觀察結果：菌落型態符合菌種特性。

12.2 試劑套組
測試時間：每一批號由廠商提供品質管制文件，每批號進行一次品管測試。
測試菌株：Enterococcus faecalis ATCC 51299 (VanB)。
測試方法：使用新鮮的測試菌，依檢驗方法進行試驗。
觀察結果：試驗結果需符合標準菌株藥敏反應範圍。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121°C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料

Clinical and laboratory standards institute. M100-S22.
Alphabet and Identification of Enterococci and Staphylococci at the Species
14.3 QIAamp DNA Mini Kit操作手冊。

15 附錄

15.1 VISA/VRSA 菌種鑑定及抗藥性基因檢測流程圖
15.2 VISA/VRSA 菌種鑑定及抗藥性基因檢測紀錄表
15.1 VISA/VRSA 菌種鑑定及抗藥性基因檢測流程圖

對於 Vancomycin 感受性降低（即 MIC>2μg/mL）之金黃色葡萄球菌臨床分離株

生化鑑定
Catalse test
Coagulase test

菌株純化

抗藥性基因檢測
PCR 檢測
vanA, vanB

Broth microdilution (Phoenix 生化與與藥敏試驗)

MIC 試驗
Broth microdilution (Sensititre 藥敏試驗)

E-test 藥敏試驗

VA MIC ≤2 μg/ml
陰性(VSSA)

VA MIC 4-8 μg/ml
陽性(VISA)

VA MIC ≥16 μg/ml
陽性(VRSA)
15.2 VISA/VRSA 菌種鑑定及抗藥性基因檢測紀錄表

<table>
<thead>
<tr>
<th>項目</th>
<th>檢體編號或姓名</th>
<th>檢體種類（採檢日期）</th>
<th>檢體採檢運送狀況適當</th>
<th>BAP 培養基上 β-溶血菌落</th>
<th>Catalase test</th>
<th>Coagulase test</th>
<th>Phoenix 生化與藥敏試驗</th>
<th>Sensititre 藥敏試驗</th>
<th>E-test 藥敏試驗</th>
<th>VanA/VanB 基因 PCR 檢測</th>
<th>綜合結果</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>是/否</td>
<td>是/否</td>
<td>是/否</td>
<td>是/否</td>
<td>是/否</td>
<td>是/否</td>
<td>是/否</td>
<td>是/否</td>
<td>是/否</td>
</tr>
</tbody>
</table>

阿群链球菌分離與鑑定

1. **目的**
 在疑似受感染個案之採集検體中，分離與鑑定是否存在 A 群链球菌。

2. **適用検體種類**
 適用於病患血液、腦脊髓液、其他無菌部位検體（如胸膜液、腹膜液等）與
 醫院送驗菌株。

3. **名詞解釋**
 無。

4. **原理概述**
 A 群链球菌即化脓性链球菌（Streptococcus pyogenes），在含綿羊血液培養基
 上生長良好，最適溫度為 35 °C，於生長菌落周圍會形成 β-溶血環，尤其在
 無氧時溶血更明顯。依據其對枯草桿菌素（bacitracin）具有感受性、能夠水
 解 PYR、對 catalase 呈陰性反應及與 Lancefield 分類法之 A 型抗血清有凝集
 現象等特性作鑑定。

5. **試劑耗材**
 - **培養基**：血液培養基（blood agar plate，BAP）：TSA 含 5% 脫纖維綿羊
 血液，CMP，臺灣。
 - **抗血清**：Phadebact Streptococcus test（A、B、C、D、F、G），Boule，
 Sweden。
 - **3 % H₂O₂溶液**：ID color catalase，BioMérieux，France。
 - **PYR（L-pyrrolidonyl aminopeptidase） test reagent**：CMP，臺灣。
 - **枯草桿菌素（bacitracin）紙錠**：Taxo A Discs，BD，USA。
 - **無菌生理食鹽水**：0.85 % NaCl。
 - **標準菌株**：S. pyogenes ATCC 19615 及 S. agalactiae ATCC 13813。
 - **無菌微量吸管尖（tip）**：1,000 μL、200 μL、100 μL。
 - **無菌微量離心管**：1.5 mL。
 - **接種針（環）**。
 - **可拋棄式無菌塑膠手套、口罩**。
 - **振盪器（vortexer）**。
 - **本生燈**。
 - **冷凍櫃**：-20°C。

6. **儀器設備**
 - **第二級生物安全櫃（class II BSC）**。
 - **培養箱**：5 % 二氧化碳、35 °C。
 - **恒溫箱**：37 °C。
 - **冰箱**：4 °C。
 - **冷凍櫃**：-20°C。
 - **微量吸管（pipettemen）**：1,000 μL、200 μL、100 μL。
7 環境設施安全
於生物安全第二等級（BSL-2）實驗室之設施內操作。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

10 檢驗步驟
10.1 檢體編號登錄。
10.2 檢體前處理：痰液檢體必須先均質化，加等量無菌去離子水，再加數顆滅菌玻璃珠震盪 30 sec。
10.3 分離培養
10.3.1 接種：將咽喉拭子檢體、均質化後之痰液、醫院送驗菌株接種於血液培養基上，依四區劃線法將檢體劃開，並於接種處穿刺培養基數次，令 β-溶血現象更為明顯。
10.3.2 培養：35 ℃ 含有 5 % 二氧化碳培養箱培養。
10.3.3 觀察（及次培養）：18 - 24 hr 後，觀察有無可疑菌落，如有直徑約在 0.5 - 1.5 mm，呈黏液狀（mucoid）、光滑（glossy）、灰白色、周圍有明顯溶血環（clear hemolytic zone）之菌落，即環內之紅血球完全被破壞，呈現β-溶血現象，即為可疑菌落，如有則挑取 2 - 5 個菌落次接種至血液培養基上，同 10.3.2 步驟培養 18 - 24 hr 後進行生化及血清凝集鑑定；如無則繼續培養及隔日觀察，至少需培養 48 hr。

10.4 鑑定
10.4.1 生化鑑定
10.4.1.1 Catalase test（觸酶試驗）
依照本署「觸酶試驗」標準檢驗方法（編號：B-50-2006-1.0）。
10.4.1.2 枯草桿菌素感受性試驗
將血液培養基上可疑之單一菌落進行次培養，並於第一劃線區貼上含 0.04 單位枯草桿菌素的紙錠，於 35 ℃ 含有 5 % 二氧化碳培養箱培養 18 - 24 hr 後，若有抑制環存在即為陽性反應。
10.4.1.3 PYR 試驗
挑取 2 - 5 個可疑菌落，塗抹在含有 PYR 基質的紙錠上，各加 1 滴呈色劑，若呈紅色為陽性反應，若呈黃色為陰性反應。
10.4.2 血清凝集鑑定
10.4.2.1 鏈球菌血清型之確認係以乳膠凝集試劑進行，先於白色反應紙卡上標示檢體編號。
10.4.2.2 取出 A、B、C、D、F、G 各血清型及 Negative control 之 Reagent 恢復至室溫，使用前先混搖均勻後，各滴一滴於白色反應紙卡上。
10.4.2.3 取至少 5 個以上的菌落於白色反應紙卡上與試劑混合均勻，1 - 5 min 內，肉眼觀看，與陰性對照比較是否有凝集現象。

11 結果判定
11.1 判讀標準
11.1.1 依據 10.4 鑑定結果，對照下表並紀錄於附錄 15.2 A 群鏈球菌分離與鑑定紀錄表。

<table>
<thead>
<tr>
<th>鑑定試驗名稱</th>
<th>陽性反應</th>
<th>陰性反應</th>
<th>A 群鏈球菌反應</th>
</tr>
</thead>
<tbody>
<tr>
<td>生長於血液培養基上典型菌落外觀特徵</td>
<td>光滑 (glossy)、灰白色、周圍有明顯溶血環</td>
<td>非左述現象</td>
<td>陽性反應</td>
</tr>
<tr>
<td>Catalase 試驗</td>
<td>有氣泡產生</td>
<td>無氣泡產生</td>
<td>陰性反應</td>
</tr>
<tr>
<td>枯草桿菌素感受性試驗</td>
<td>抑制環存在</td>
<td>非左述現象</td>
<td>陽性反應</td>
</tr>
<tr>
<td>PYR 試驗</td>
<td>紅色</td>
<td>不變色</td>
<td>陽性反應</td>
</tr>
<tr>
<td>血清凝集試驗</td>
<td>以 A 型抗血清檢測有凝集現象</td>
<td>非左述現象</td>
<td>陽性反應</td>
</tr>
</tbody>
</table>

11.1.2 綜合結果判斷標準：符合上表 A 群鏈球菌所有反應結果，即判斷為 A 群鏈球菌陽性；若其中一項不符合者，即判斷為 A 群鏈球菌陰性。
11.2 報告核發：β 溶血性 A 群鏈球菌陽性，β 溶血性 A 群鏈球菌陰性。
11.3 結果登錄：完成檢驗後，將檢驗結果登錄於附錄 15.2 猩紅熱病原菌（A 群鏈球菌）分離與鑑定紀錄表，檢驗結果填寫於檢體送驗單之“檢驗結果”欄，並將紀錄表背面蓋職章，相關檢驗紀錄及檢體送驗單陳核實驗室主管審核，俟實驗室主管核章後，再上網登錄於傳染病通報系統。

12 品質管制
12.1 枯草桿菌素感受性試驗之品質管制
12.1.1 應於有效期限內使用，同一批號試劑，第一次使用時取一組進行試驗。
12.1.2 使用陽性反應標準菌株 S. pyogenes ATCC 19615 及陰性反應標準菌株 S. agalactiae ATCC 13813 進行試驗。
12.1.3 試驗結果必須符合陽性反應及陰性反應(判定標準依 11.1 節)，始可使用。
12.2 PYR 試驗之品質管制
 12.2.1 應於有效期內使用，同一批號試劑，第一次使用時取一組進行試驗。
 12.2.2 使用陽性反應標準菌株 S. pyogenes ATCC 19615 及陰性反應標準菌株 S. agalactiae ATCC 13813，進行試驗。
 12.2.3 試驗結果必須符合陽性反應及陰性反應（判定標準依 11.1 節），始可使用。

12.3 血清凝集鑑定之品質管制
 12.3.1 應於有效期內使用，同一批號試劑，第一次使用時取一組進行試驗。
 12.3.2 使用陽性反應標準菌株 S. pyogenes ATCC 19615 及陰性反應標準菌株 S. agalactiae ATCC 13813，進行試驗。
 12.3.3 試驗結果必須符合陽性反應及陰性反應，始可使用。

13 廢棄物處理
 檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
 14.1 蔡文城。2000。實用臨床微生物診斷學，第九版。九州圖書文物有限公司，臺灣。第 483-505 頁。

15 附錄
 15.1 A 群鏈球菌分離與鑑定總流程圖。
 15.2 A 群鏈球菌分離與鑑定紀錄表。
附錄 15.1 A 群鏈球菌分離與鑑定總流程圖

血液 | 腦脊髓液及無菌體液 | 菌株検體
---|---|---
血液培養瓶 | 剛烈震盪或離心
5%綿羊血之血液培養基
35°C 含 5% CO₂ 培養箱
18-24 小時培養
菌落、溶血觀察

光滑（glossy）、灰白色、周圍有明顯 β 溶血環

是 | 否
---|---

繼續 35°C 含 5% CO₂ 培養箱
18-24 小時培養
菌落、溶血觀察

Bacitracin 感受性試驗阳性

否 | 是
---|---

Catalase 試驗阳性

是 | 否
---|---

判讀-β 溶血型 A 群鏈球菌陽性

血清凝集試驗及 PYR 試驗陽性

是 | 否
---|---

判讀-β 溶血型 A 群鏈球菌陰性
附錄 15.2 A群鏈球菌分離與鑑定紀錄表

衛生福利部疾病管制署研究檢驗及疫苗研製中心

A群鏈球菌分離與鑑定紀錄表

<table>
<thead>
<tr>
<th>項目</th>
<th>檢體編號</th>
<th>收件日期</th>
<th>檢驗日期</th>
<th>檢體採檢運送狀況</th>
<th>培養/觀察</th>
<th>第2天</th>
<th>第3天</th>
<th>Catalase test</th>
<th>PYR試驗</th>
<th>Bacitracin感受性試驗</th>
<th>菌體抗血清凝集試驗（圈選凝集型別）</th>
<th>綜合結果</th>
<th>報告日期</th>
<th>附註</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>合適</td>
<td>培養/觀察</td>
<td>第2天</td>
<td>第3天</td>
<td>陽性 陰性 陽性 陰性 陽性 陰性 陽性 陰性</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>是</td>
<td>培養/觀察</td>
<td>第2天</td>
<td>第3天</td>
<td>陽性 陰性 陽性 陰性 陽性 陰性 陽性 陰性</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>否</td>
<td>培養/觀察</td>
<td>第2天</td>
<td>第3天</td>
<td>陽性 陰性 陽性 陰性 陽性 陰性 陽性 陰性</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>否</td>
<td>培養/觀察</td>
<td>第2天</td>
<td>第3天</td>
<td>陽性 陰性 陽性 陰性 陽性 陰性 陽性 陰性</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>否</td>
<td>培養/觀察</td>
<td>第2天</td>
<td>第3天</td>
<td>陽性 陰性 陽性 陰性 陽性 陰性 陽性 陰性</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>否</td>
<td>培養/觀察</td>
<td>第2天</td>
<td>第3天</td>
<td>陽性 陰性 陽性 陰性 陽性 陰性 陽性 陰性</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>否</td>
<td>培養/觀察</td>
<td>第2天</td>
<td>第3天</td>
<td>陽性 陰性 陽性 陰性 陽性 陰性 陽性 陰性</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>否</td>
<td>培養/觀察</td>
<td>第2天</td>
<td>第3天</td>
<td>陽性 陰性 陽性 陰性 陽性 陰性 陽性 陰性</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>否</td>
<td>培養/觀察</td>
<td>第2天</td>
<td>第3天</td>
<td>陽性 陰性 陽性 陰性 陽性 陰性 陽性 陰性</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>否</td>
<td>培養/觀察</td>
<td>第2天</td>
<td>第3天</td>
<td>陽性 陰性 陽性 陰性 陽性 陰性 陽性 陰性</td>
<td>陽性 陰性 陽性 陰性 陰性 陽性 陰性 陰性</td>
<td>陽性 陰性 陽性 陰性 陰性 陽性 陰性 陰性</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>否</td>
<td>培養/觀察</td>
<td>第2天</td>
<td>第3天</td>
<td>陽性 陰性 陽性 陰性 陽性 陰性 陽性 陰性</td>
<td>陽性 陰性 陽性 陰性 陽性 陰性 陽性 陰性</td>
<td>陽性 陰性 陰性 陽性 陰性 陽性 陰性 陰性</td>
<td>陽性 陰性 陰性 陽性 陰性 陽性 陰性 陰性</td>
<td>陽性 陰性 陰性 陽性 陰性 陰性 陽性 陰性</td>
<td>陽性 陰性 陰性 陽性 陰性 陰性 陽性 陰性</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>否</td>
<td>培養/觀察</td>
<td>第2天</td>
<td>第3天</td>
<td>陽性 陰性 陰性 陽性 陰性 陽性 陰性 陰性</td>
<td>陽性 陰性 陰性 陽性 陰性 陽性 陰性 陰性</td>
<td>陽性 陰性 陰性 陽性 陰性 陰性 陽性 陰性</td>
<td></td>
</tr>
</tbody>
</table>

檢驗者：實驗室主管：
1 目的
利用聚合酶链锁反应（PCR）分子诊断方法检測肺炎披衣菌核酸。

2 適用検体種類
病患咽喉、鼻腔黏膜擦抹棉棒。

3 名詞解釋
無。

4 原理概述
利用對肺炎披衣菌具有專一性之引子（primers）與檢體中之細菌核酸分子結
合配對，並利用 Real-time PCR 的複製過程及特殊的螢光定量化學方法偵測
PCR 產物，以決定檢體中是否含有肺炎披衣菌核酸序列。

5 試劑耗材
5.1 試劑
5.1.1 QIAamp viral RNA mini kit（Qiagen，Cat. no. 52906）
5.1.1.1 QIAamp mini spin columns。
5.1.1.2 Collection tubes （2 mL）。
5.1.1.3 Buffer AVL。
5.1.1.4 Buffer AW1。
5.1.1.5 Buffer AW2。
5.1.1.6 Buffer AVE。
5.1.1.7 Carrier RNA（poly A）。
5.1.2 EZ1 DNA Tissue Kit（Qiagen，Cat. no. 953034）
5.1.2.1 Reagent cartridge, tissue。
5.1.2.2 Disposable tip holders。
5.1.2.3 Disposable filter-tips。
5.1.2.4 Sample tubes（2.0 mL）。
5.1.2.5 Elution tubes（1.5 mL）。
5.1.2.6 Buffer G2。
5.1.2.7 Proteinase K。
5.1.3 LightCycler® FastStart DNA MasterPLUS HybProbe（Roche
Applied Science，Cat. no. 03515575001）
5.1.3.1 Master Mix（5 X conc.）：Ready-to-use hot start PCR
Reaction mix（after pipetting 10 mL from vial 1a into one vial 1b）：Contains FastStart Taq DNA Polymerase，
reaction buffer，MgCl₂，SYBR Green I dye，and dNTP mix（with dUTP instead of dTTP）。
5.1.3.1.1 Enzyme（1a，white cap）：1 X vial。
5.1.3.1.2 Reaction mix（1b，green cap）：3 X vial。
5.1.3.2 Water（2，colorless capp）：PCR grade，2 × 1 mL。
5.1.4 陽性對照組 (positive control DNA): *Chlamydia pneumoniae* quantitated bacterial DNA control (Advanced Biotechnologies Inc., 08-932-250, CDC-CWL-011 strain)。

5.1.5 陰性對照組 (negative control DNA): DNase、RNase-free H2O2。

5.2 耗材
5.2.1 LightCycler® Capillaries (20 μL) (Roche Applied Science, Cat. no. 90939001)。
5.2.2 無菌 10 μL、20 μL、100 μL、200 μL、1,000 μL Tips。
5.2.3 無菌 1.5 mL Eppendorf。
5.2.4 無粉手套。

6 儀器設備
6.1 2.5 μL、10 μL、100 μL、200 μL、1,000 μL Pipeteman。
6.2 第二級生物安全箱 (class II BSC)。
6.3 快速核酸純化系統 (BioRobot EZ1 workstation, Qiagen)。
6.4 核酸生化分析儀 (LightCycler® 1.0 Real-time PCR system, Roche Applied Science)。
6.5 LC carousel centrifuge (Roche Applied Science)。

7 環境設施安全
7.1 病人拭子檢體應在第二級生物安全櫃內處理。
7.2 檢驗操作在生物安全第二等級 (BSL-2) 實驗室進行。
7.3 應有獨立的操作空間，盡量與操作 DNA 有關的實驗室分開，以避免污染，影響結果。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

10 檢驗步驟
10.1 萃取細菌 DNA
10.1.1 QIAmp viral RNA mini kit 萃取細菌 DNA 方法
10.1.1.1 於 1.5 mL 的離心管中加入 560 μL 含有 Carrier RNA 的 AVL buffer。
10.1.1.2 再加入 140 μL 拭子標本，用最高速震盪 (vortexing) 15 sec。
10.1.1.3 於室温中（15 - 25 °C）静置 10 min。
10.1.1.4 加入 560 μL 酒精（96 - 100 %）於检体中，高速震荡 15 sec。
10.1.1.5 取出 630 μL 的體積加入 QIAamp mini spin column 中，
6,000 x g (8,000 rpm) 離心 1 min。
10.1.1.6 更換新的離心管，把剩餘的檢體量加QIAamp spin
column 中，重複 10.1.1.5。
10.1.1.7 加入 500 μL 的 Buffer AW1 於 QIAamp mini spin
column 中， 6,000 x g (8,000 rpm) 離心 1 min。
10.1.1.8 更換新的離心管，加入 500 μL 的 Buffer AW2 於
QIAamp mini spin column 中, 20,000 x g (14,000 rpm)
離心 3 min。
10.1.1.9 為避免 Buffer AW2 殘留於 column 中，更換新的離
心管，再 20,000 x g (14,000 rpm) 離心 1 min。
10.1.1.10 更換新的離心管，加入 60 μL 的 Buffer AE，室溫靜
置 1 min，6,000 x g (8,000 rpm) 離心 1 min，將 DNA
溶出。

10.1.2 Qiagen BioRobot EZ1萃取細菌 DNA 方法
10.1.2.1 於生物安全操作台內取出咽喉拭子檢體，14,000 rpm
離心 10 min。
10.1.2.2 取咽喉拭子檢體離心後之底層液 90 μL、G2 Buffer
100 μL、Proteinase K 10-20 μL 後，置於 56°C 乾式恆
溫加熱器，反應作用隔夜。
10.1.2.3 利用 BioRobot EZ1 workstation (Qiagen) 完成核酸萃
取。

10.2 即時定量聚合酶鏈鎖反應（real-time PCR）
10.2.1 取 5 μL DNA 做模板，加入肺炎披衣菌專一引子組 (CP primerF,
CP primerR CP HP1, CP HP2；primers 參考附錄 15.2)，置於冰
上。
10.2.2 加入反應溶液（成分如下表），調整反應總體積至 20 μL。

<table>
<thead>
<tr>
<th></th>
<th>初始濃度</th>
<th>加入體積</th>
<th>最終濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>5X Master mix</td>
<td>4 μL</td>
<td></td>
<td>1X</td>
</tr>
<tr>
<td>CP primerF (10 μM)</td>
<td>0.5 μL</td>
<td>250 nM</td>
<td></td>
</tr>
<tr>
<td>CP primerR (10 μM)</td>
<td>0.5 μL</td>
<td>250 nM</td>
<td></td>
</tr>
<tr>
<td>CP HP1 (4 μM)</td>
<td>0.5 μL</td>
<td>100 nM</td>
<td></td>
</tr>
<tr>
<td>CP HP2 (4 μM)</td>
<td>0.5 μL</td>
<td>100 nM</td>
<td></td>
</tr>
<tr>
<td>Template</td>
<td>5 μL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNase-free H2O</td>
<td>9 μL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>20 μL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
10.2.3 即時定量偵測聚合酶鏈鎖反應 (real-time PCR)：使用 LightCycler® 1.0 real time PCR system (Roche Applied Science)。
10.2.3.1 Taq polymerase activation：95 °C, 7 min。
10.2.3.2 Amplification
10.2.3.2.1 Denaturation：94 °C, 5 sec。
10.2.3.2.2 Annealing：58 °C, 5 sec。
10.2.3.2.3 Extension：72 °C, 20 sec。
10.2.3.2.4 重複10.2.3.2至10.2.3.3歩驟50Cycle。
10.2.3.3 Melting curve
10.2.3.3.5 Denaturation：95 °C, 0 sec。
10.2.3.3.6 Annealing：60 °C, 90 sec。
10.2.3.3.7 Melting：95 °C, 0 sec。
10.2.3.4 Cooling：40 °C, 90 sec。

11 結果判定
11.1 判讀標準
11.1.1 以 LightCycler®軟體分析結果，Tm值與陽性對照組相符者為陽性。
11.1.2 若Tm值與陽性對照組有些許偏差者，以2%琼脂（agarose）電泳方式，觀察膠體中檢體的片段大小是否與標準菌株一致。

11.2 報告核發
肺炎披衣菌陽性，肺炎披衣菌陰性。

11.3 結果登錄
完成檢驗後，將檢驗結果登錄於「肺炎披衣菌核酸檢測紀錄表」(QR-M-05-01)及「檢體送驗單」並加蓋檢驗者印章，送實驗室主管審核及蓋章，並登錄於網路報告系統。

12 品質管制
12.1 Control
12.1.1 Positive control：C. pneumoniae quantitated bacterial DNA control (Advanced Biotechnologies Inc, 08-932-250, CDC-CWL-011 strain)。
12.1.2 Negative control：DNase、RNase-free H2O。

12.2 每次試驗應執行品質測試。
12.3 品管測試結果 Positive control 應為陽性，Negative control 應為陰性。
12.4 品管測試結果若有違背品質管制標準應依矯正及預防措施作業程序，加以矯正，必要時採取預防措施。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。
14 參考資料

15 附錄
15.1 肺炎披衣菌核酸檢測（即時定量偵測-聚合酶鏈鎖反應）流程圖。
15.2 肺炎披衣菌診斷用引子組序列表。
15.3 肺炎披衣菌核酸檢測紀錄表。
附錄 15.1 肺炎披衣菌鑑定（即時定量偵測-聚合酶鍵鎖反應）流程圖

鼻腔、咽喉拭子檢體

BioRobot EZ1 workstation 萃取 DNA
QIAmp viral RNA mini kit 萃取 DNA

於 LightCycler® 1.0 real-time PCR system
進行即時定量偵測聚合酶鍵鎖反應

以 LightCycler®軟體分析結果
附件 15.2 肺炎披衣菌诊断用引子组序列。

<table>
<thead>
<tr>
<th>Chlamydia pneumoniae- specific primers</th>
<th>参与反应的浓度</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP PrimerF 5’- TgA CAA CTg Tag AAA TAC AgC -3’</td>
<td>250 nM</td>
</tr>
<tr>
<td>CP PrimerR 5’- CgC CTC TCT CCT ATA AAT -3’</td>
<td>250 nM</td>
</tr>
<tr>
<td>CP HP1 5’- CCC CAT CTC TTC AGA ATC CCT GCT -3’-FL</td>
<td>100 nM</td>
</tr>
<tr>
<td>CP HP2 LC-5’- TCC TAA Aag CTA gCC CCA gTT C -3’-PH</td>
<td>100 nM</td>
</tr>
</tbody>
</table>
附件 15.3 肺炎披衣菌核酸检测纪录表。

衛生福利部疾病管制署研究检验及疫苗研製中心

肺炎披衣菌核酸检测纪录表

<table>
<thead>
<tr>
<th>面次：第1065面/共1104面</th>
<th>肺炎披衣菌核酸检测 (PCR)</th>
<th>核准日期：年月日</th>
<th>修訂日期：年月日</th>
</tr>
</thead>
</table>

檢验日期：_____年_____月_____日

DNA 萃取

<table>
<thead>
<tr>
<th>DNA 萃取</th>
<th>____年_____月_____日</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA 萃取方法</td>
<td>□ QIAmp Viral RNA mini Kit</td>
</tr>
<tr>
<td></td>
<td>□ BioRobot EZ1 Workstation（EZ1 DNA Tissue Kit）</td>
</tr>
</tbody>
</table>

PCR Mix

<table>
<thead>
<tr>
<th>Component</th>
<th>Stock Conc.</th>
<th>Final Conc.</th>
<th>Volume Per Reaction (µL)</th>
<th>Volume for sample + 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASTER Mix</td>
<td>5X</td>
<td>1X</td>
<td>4 µL</td>
<td>µL</td>
</tr>
<tr>
<td>CP PrimerF</td>
<td>10 µM</td>
<td>250 nM</td>
<td>0.5 µL</td>
<td>µL</td>
</tr>
<tr>
<td>CP PrimerR</td>
<td>10 µM</td>
<td>250 nM</td>
<td>0.5 µL</td>
<td>µL</td>
</tr>
<tr>
<td>CP HP2</td>
<td>4 µM</td>
<td>100 nM</td>
<td>0.5 µL</td>
<td>µL</td>
</tr>
<tr>
<td>RNase-free H₂O</td>
<td>—</td>
<td>—</td>
<td>9 µL</td>
<td>µL</td>
</tr>
<tr>
<td>DNA</td>
<td>—</td>
<td>—</td>
<td>5 µL</td>
<td>—</td>
</tr>
</tbody>
</table>

即時定量偵測聚合酶鏈鎖反應 (Real-Time PCR)

<table>
<thead>
<tr>
<th>面次：第1065面/共1104面</th>
<th>肺炎披衣菌核酸检测 (PCR)</th>
<th>核准日期：年月日</th>
<th>修訂日期：年月日</th>
</tr>
</thead>
</table>

检驗者： 核驗者： 實驗室 PI：

检驗日期：_____年_____月_____日

DNA 萃取：

DNA 萃取方法：

PCR Mix：

即時定量偵測聚合酶鏈鎖反應 (Real-Time PCR)：
衛生福利部疾病管制署傳染病標準檢驗方法

編號：肺炎披衣菌 IgM 及 IgG 抗體檢測

目次：第 1066 頁/共 1104 頁
核准日期：年 月 日
修訂日期：年 月 日

1 目的
利用微量免疫螢光法 (micro-immunofluorescence, MIF) 檢測人體是否有肺炎
披衣菌專一性抗體。

2 適用檢體種類
血清 (serum)。

3 名詞解釋
血清 (serum)：血液凝固後，除去固態成份後的清亮液體，不含纖維蛋白原。

4 原理概述
利用微量免疫螢光法 (micro-immunofluorescence, MIF)，檢測血清中肺炎披衣
菌抗體的表現與否。

5 試劑耗材
5.1 試劑
Chlamydia pneumoniae IgG / IgM Micro-IF Test kit (Ani Labsystems，Cat. no. 6108380)
5.1.1 Antigens dotted slide：20 × 12 well slides。
5.1.2 Sample diluent：50 mL Phosphate buffered saline，pH 7.4 ± 0.2，
proprietary additives and 15 mM sodium azide as preservative。
5.1.3 C. pneumoniae IgG positive control (human)(black cap)：0.30 mL，
diluted human serum，proprietary additives and 15 mM sodium azide as preservative。
5.1.4 C. pneumoniae IgM Positive control (human)(red cap)：0.30 mL，
diluted human serum，proprietary additives and 15 mM sodium azide as preservative。
5.1.5 C. pneumoniae negative control (human)(white cap)：0.30 mL，
diluted human serum，proprietary additives and 15 mM sodium azide as preservative。
5.1.6 Anti-human IgG-FITC-conjugate(rabbit)(black cap)：1 × 2.5 mL
(1 × 2.5 mL)，FITC conjugated anti-human IgG・0.001 % Evan’s
Blue counterstain，proprietary additives and 15 mM sodium azide as preservative。
5.1.7 Anti-human IgM-FITC-conjugate(rabbit)(red cap)：1 × 2.5 mL
(1 × 2.5 mL)，FITC conjugated anti-human IgM・0.001 % Evan’s
Blue counterstain，proprietary additives and 15 mM sodium azide as preservative。
5.1.8 Mounting fluid：7 mL，Glycerol，proprietary additives and 15 mM sodium azide as preservative。
5.1.9 IgG blocking reagent (Ani Labsystems，Cat. no.6106020)。
5.2 耗材
 5.2.1 96 孔盤。
 5.2.2 10 μL、200 μL、1,000 μL Tip。
 5.2.3 1.5 mL Eppendorf。
 5.2.4 4 mL Tube。

6 儀器設備
 6.1 10 μL、200 μL、1,000 μL 單爪 PipetteMan。
 6.2 50 μL、300 μL 八爪 PipetteMan。
 6.3 螢光顯微鏡。
 6.4 潮濕盒。
 6.5 離心機。
 6.6 水浴槽。

7 環境設施安全
 於生物安全第二級 (BSL-2) 實驗室之設施內操作。

8 檢體採集
 參照本署出版之「傳染病檢體採檢手冊」第二版。
 http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

9 檢體運送及保存
 參照本署出版之「傳染病檢體採檢手冊」第二版。
 http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

10 檢驗步驟
 10.1 檢體編號
 核對檢驗單之個案與檢體是否相符，給予疾病編號。
 10.2 檢驗前處理
 10.2.1 血液（不含抗凝劑）放置常溫 30 min 以上，離心 2,000 rpm、
 15 min，取血清至 2 mL 檢體保存管，標示號碼。
 10.2.2 取出實驗所需用量後，將檢體移放-80 °C 冰箱保存。
 10.2.3 血清檢體 56 °C，30 min 不活化。
 10.3 試劑準備
 10.3.1 所有試藥（FITC-conjugate 除外）在使用前請放置於室 (20 - 30 °C) 1 hr 方可使用，不同批號的試藥不可混在一起使用。
 10.3.2 依當日檢體數多寡計算所需取出的玻片數，其餘玻片則儘速密
 封後放回 4 °C 保存。
 10.3.3 所有試藥 (anti-human IgG-FITC-conjugate、anti-human
 IgM-FITC-conjugate 除外) 在使用前請放置於室溫 (20 - 30 °C) 1 hr 方可使用，不同批號的試藥不可混在一起使用。
10.3.4 依當日檢體數多寡計算所需取出的玻片數，其餘玻片則儘速密封後放回 4 °C 保存。

10.4 IgM 檢驗

10.4.1 取檢體血清 2 µL 與 IgG blocking reagent 14 µL 混合均勻 (1:8 稀釋)，於室溫反應 15 min。
10.4.2 再加入血清稀釋液 (diluents) 16 µL 混合均勻 (1：16 稀釋)。
10.4.3 取出 10 µL，點於 Slides 上，置於潮濕盒中，於 37 °C 烘箱內反應 3 hr。
10.4.4 Slide 以 0.01 M Phosphate buffered saline (PBS) (pH 7.4) 浸泡 10 min，再以 ddH2O 將 PBS 洗盡，於 37 °C 烘箱中烘乾。
10.4.5 將 Anti-human- IgM-FITC-conjugate 點在對應的 Slides 上，於 37 °C 烘箱內反應 30 min。
10.4.6 Slide 以 0.01 M Phosphate buffered saline (PBS) (pH 7.4) 浸泡 10 min，再以 ddH2O 將 PBS 洗除，於 37 °C 烘箱中烘乾。
10.4.7 於 Slides 上點 3 滴 Mounting fluid，再取蓋玻片進行密封。
10.4.8 以螢光顯微鏡使用藍光觀測。

10.5 IgG 檢驗

10.5.1 取檢體血清 5 µL，加入血清稀釋液 (diluents) 155 µL 於 96 孔盤中以八爪微量分注器混合均勻 (1：32 稀釋)。
10.5.2 再自 1：32 的血清稀釋液中取 25 µL，加入 Diluents 75 µL 混合均勻 (1：128 稀釋)。
10.5.3 自 1：128 的血清稀釋液中取 25 µL，加入 Diluents 75 µL 混合均勻 (1：512 稀釋)。
10.5.4 將不同倍數的血清稀釋液取出 10 µL，點於 Slides 上，置於潮濕盒中，37 °C 烘箱內反應 30 min。
10.5.5 Slide 以 0.01 M Phosphate buffered saline (PBS) (pH 7.4) 浸泡 10 min，再以 ddH2O 將 PBS 洗除，於 37 °C 烘箱中烘乾。
10.5.6 將 Anti-human-IgM-FITC-conjugate 點在對應的 Slides 上，於 37 °C 烘箱內反應 30 min。
10.5.7 以 PBS 浸泡 10 min，再以 ddH2O 將 PBS 洗除，於 37 °C 烘箱中烘乾。
10.5.8 於 Slides 上點 3 滴 Mounting fluid，再取蓋玻片進行密封。
10.5.9 以螢光顯微鏡使用藍光觀測。

11 結果判定

11.1 判讀標準：

在螢光顯微鏡下以 200 X 或 400 X 的倍數觀察，將檢體血清與 Positive control 做比較，以螢光亮度強弱與亮點數分佈均勻與否做觀察。亮度強弱與亮點數分佈須與 Positive control 相仿始判為陽性（見 16.5）。11.1.1 IgG 螢光亮度與亮點數分佈於 1：512 仍有表現時，判定檢體為 IgG 陽性。
11.1.2 IgM 螢光亮度與亮點數分佈於 1:16 有表現時，判定檢體為 IgM 陽性。

11.1.3 檢體最終以 IgG 與 IgM 做綜合判斷，只要 IgG 或 IgM 為陽性者，即判斷檢體患者有肺炎披衣菌感染的現象。

11.1.4 如果第一次採檢，IgG 或 IgM 為陽性者，即正在感染中；若為陰性，則發病日後四週做第二次採檢，其結果需 IgM 大於等於 1:16，或 IgG 有四倍上升的趨勢，始判為陽性。

11.2 報告核發
肺炎披衣菌抗體陽性，肺炎披衣菌抗體陰性，肺炎披衣菌抗體未確定。

11.3 結果登錄
完成檢驗後，將檢驗結果登錄於「肺炎披衣菌抗體試驗紀錄表（QR-M-02-01）及「檢體送驗單」並加蓋檢驗者印章，送實驗室主管審核及蓋章，並登錄於網路報告系統。

12 品質管制
12.1 Control: C. pneumoniae IgG positive control (human)、C. pneumoniae IgM positive control (human)、C. pneumoniaen negative control (human)。

12.2 每次試驗應執行品管測試。

12.3 品管測試結果 Positive control 應呈現中等到強烈蘋果綠螢光，Negative control 應無蘋果綠螢光。

12.4 品管測試結果若有違背品管允收標準，應依矯正及預防措施作業程序，加以矯正，必要時採取預防措施。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
ANI Labsystems Chlamydia pneumoniae IgG / IgM Micro-IF Test kit 試劑說明書。

15 附錄
15.1 肺炎披衣菌 IgM 抗體試驗（微量免疫螢光法）流程圖。
15.2 肺炎披衣菌 IgG 抗體試驗（微量免疫螢光法）流程圖。
15.3 肺炎血清學檢驗及結果判定流程圖。
15.4 肺炎披衣菌 IgM 及 IgG 抗體試驗紀錄表。
15.5 肺炎披衣菌 IgM 及 IgG 抗體試驗結果判定圖例。
附錄 15.1 肺炎披衣菌 IgG 抗體試驗（微量免疫螢光法）流程圖

檢體 1:32、1:128、1:512 稀釋

取 10 μL 血清稀釋液點在 slide 上

37°C，30 分鐘

PBS 浸泡 10 分鐘，再以 ddH₂O 將 PBS 洗盡，烘乾，
加 Anti-human-IgG-FITC-Conjugate 10 μL

37°C，30 分鐘

PBS 浸泡 10 分鐘，再以 ddH₂O 將 PBS 洗盡，烘乾

於 Slides 上點 3 滴 Mounting fluid，取蓋玻片密封，以螢光顯微鏡使用藍光觀測
附錄 15.2 肺炎披衣菌 IgM 抗體試驗（微量免疫熒光法）流程圖

1. 檢體血清 2 μL，與 IgG blocking reagent 14 μL 混合均勻（1：8 稀釋）
2. 室溫反應 15 分鐘
3. 加入血清稀釋液（Diluents）16 μL 混合均勻（1：16 稀釋），取 10 μL 點於 Slides
 - 37 ℃，3 小時
4. PBS 浸泡 10 分鐘，再以 ddH₂O 將 PBS 洗盡，吹乾，加 Anti-human-IgM-FITC-Conjugate 10 μL
 - 37 ℃，30 分鐘
5. PBS 浸泡 10 分鐘，再以 ddH₂O 將 PBS 洗盡，吹乾
6. 於 Slides 上點 3 滴 Mounting fluid，取蓋玻片密封，以熒光顯微鏡使用藍光觀測
附錄 15.3 肺炎披衣菌血清學檢驗之結果判定流程圖

血清

IgM \geq 1:16 或 IgG \geq 1:512

阳性，現正感染中

IgM < 1:16 且 IgG < 1:512

未確定，間隔四週後再採檢

IgM \geq 1:16 或 IgG 4 倍上升

阳性

IgM < 1:16 且 IgG 無 4 倍上升

阴性
附錄 15.4 肺炎披衣菌 IgM及IgG抗體試驗紀錄表

衛生福利部疾病管制署疾病管理標準檢驗方法

試劑批號：______________________
有效期：______________________
檢驗日期：____年____月____日
玻片編號：______________________

<table>
<thead>
<tr>
<th>檢體編號</th>
<th>抗體種類</th>
<th>稀釋倍數</th>
<th>C. pneumonia結果</th>
<th>C. trachomatis結果</th>
<th>C. psittaci結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

檢驗者：______________________
核驗者：______________________
實驗室 PI：______________________
附錄 15.5 肺炎衣原體 IgM 及 IgG 抗體試驗結果判定圖例

Chlamydia pneumoniae
Interpretation chart

Figure 1. Positive IgG
Figure 2. Positive IgM

Figure 3. Positive IgA
Figure 4. Positive LpS

Figure 5. Negative
Figure 6. Negative
1 目的
利用微量免疫萤光法(micro-immunofluorescence, MIF)检测人体是否有鹦鹉热衣原体的抗体。

2 適用検体種
血清(serum)或血漿(plasma)。

3 名詞解釋
3.1 血清(serum)：血液凝固後，除去固態成份後的清亮液體，不懸繊維蛋白原。
3.2 血漿(plasma)：血液的液體部分，含有血清及纖維蛋白原，後者在凝血上具有一定作用。

4 原理概述
利用微量免疫萤光法(micro-immunofluorescence, MIF)，检测血清中鹦鹉热衣原体的抗体的存在。

5 試劑耗材
5.1 試劑
5.1.1 SeroFIA™ Chlamydia IgM（Savyon Diagnostics, Cat. No.512-01）
5.1.1.1 Reaction Slides (3x7 wells/unit)：Slides coated with C. pneumoniae, C. trachomatis, and C. psittaci antigens，each in a different row. Each slide is packed in an aluminum pouch containing silica gel packet，15 units。
5.1.1.2 Concentrated Wash Buffer (20X)：A PBS-Tween buffer，(pH 7.4-7.6) which contains NaCl, Na₂HPO₄, KH₂PO₄ and Tween 20，100 mL/Bottle。
5.1.1.3 Serum Diluent：A PBS buffer。Contains gelatin，bovine serum albumin，MgCl₂ and <0.1% sodium Azide，80 mL/Bottle。
5.1.1.4 Negative Control：Human serum negative for IgG，IgA，and IgM antibodies to C. pneumoniae，C. trachomatis，C. psittaci. Contains <0.1% sodium azide。Ready to use，0.5 mL/vial。
5.1.1.5 C. psittaci Positive Control：Human serum positive for IgM antibodies to C. psittaci. Contains <0.1% sodium azide。Ready to use，0.2 mL/vial。
5.1.1.6 IgG Inactivation Reagent：anti-human IgG containing <0.1% sodium azide。4 mL/bottle。
5.1.1.7 FITC-Conjugate：Fluorescein-labelled rabbit antihuman IgM（- chain specific). Ready to use，3.3
5.1.1 Mounting fluid: Contains <0.1% sodium azide. 1 dropper bottle, 1.5 mL.

5.1.2 Cover slips: 1 x 15 units.

5.1.2.1 Reaction Slides (3x7 wells/unit): Slides coated with C. pneumoniae, C. trachomatis, and C. psittaci antigens, each in a different row. Each slide is packed in an aluminum pouch containing silica gel packet, 15 units.

5.1.2.2 Concentrated Wash Buffer (20X): A PBS-Tween buffer, (pH 7.4-7.6) which contains NaCl, Na2HPO4, KH2PO4 and Tween 20, 100 mL/Bottle.

5.1.2.3 Serum Diluent: A PBS buffer. Contains gelatin, bovine serum albumin, MgCl2 and <0.1% sodium Azide, 80 mL/Bottle.

5.1.2.4 Negative Control: Human serum negative for IgG, IgA, and IgM antibodies to C. pneumoniae, C. trachomatis, C. psittaci. Contains <0.1% sodium azide. Ready to use, 0.5 mL/vial.

5.1.2.5 C. psittaci Positive Control: Human serum positive for IgG antibodies to C. psittaci. Contains <0.1% sodium azide. Ready to use, 0.2 mL/vial.

5.1.2.6 FITC-Conjugate: Fluorescein-labelled rabbit antihuman IgG (λ-chain specific). Ready to use, 3.3 mL/vial.

5.1.2.7 Mounting fluid: Contains <0.1% sodium azide. 1 dropper bottle, 1.5 mL.

5.1.3 Cover slips: 1 x 15 units.

5.1.4 試劑更換批號，需執行平行測試，以確保新批號試試劑符合檢驗需求。

5.2 耗材

5.2.1 96 well

5.2.2 10 μL、200 μL, 1000 μL Tip。

5.2.3 1.5 mL eppendorff。

5.2.4 4 mL tube。

6 儀器設備

6.1 10 μL、200 μL, 1000 μL 單爪 pipettement。

6.2 50 μL、300 μL 八爪 pipettement。

6.3 螢光顯微鏡。

6.4 潮濕盒。
6.5 離心機。
6.6 水浴槽。

7 環境與設施安全
於生物安全第二級（BSL-2）實驗室之設施內操作。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

10 檢驗步驟
10.1 檢體編號
核對檢驗單之個案與檢體是否相符，給予疾病編號。

10.2 檢驗前處理
10.2.1 血液（不含抗凝劑-紫頭管/含抗凝劑-紅頭管）完全凝固後，離心 3000 轉、五分鐘後，取血清/血漿至 2 mL 檢體保存管，標示號碼。
10.2.2 血清檢體則直接分裝至標示號碼的檢體保存管中。
10.2.3 取出實驗所需用量後，將檢體移放-80℃冰箱永久保存。
10.2.4 血清檢體 56℃，30 分鐘不活化。

10.3 試劑準備
10.3.1 所有試藥（FITC-Conjugate 除外）在使用前請放置於室溫（20 ℃~30℃）1 小時方可使用，不同批號的試藥不可混在一起使用。
10.3.2 依當日檢體數多寡計算所需取出的玻片數，其餘玻片則儘速密封後放回 4℃保存。

10.4 IgM 檢驗
10.4.1 取檢體血清 5 µL，與 IgG blocking reagent 45 µL 混合均勻(1：10)，於室溫反應 15 分鐘。
10.4.2 再加入血清稀釋液(Diluents) 50 µL 混合均勻(1：20)。
10.4.3 取出 10 µL，點於 Slides 上。
10.4.4 將 Slides 置於潮濕盒中，於 37℃烘箱內反應 1.5 小時。
10.4.5 以 PBS 浸泡 10 分鐘，再以 ddH2O 將 PBS 洗盡，於 37℃烘箱中烘乾。
10.4.6 取 10 µL Anti-human-IgM-FITC-Conjugate 點在 Slides 上，於 37 ℃烘箱內反應 30 分鐘。
10.4.7 以 PBS 浸泡 10 分鐘，再以 ddH2O 將 PBS 洗淨，於 37℃烘箱中烘乾。

10.4.8 於 Slides 上點 3 滴 Mounting fluid，再取蓋玻片進行密封。

10.4.9 以螢光顯微鏡使用藍光觀測。

10.5 IgG 檢驗步驟

10.5.1 取檢體血清 5 µL，加入血清稀釋液(Serum Diluents)155 µL 於微量離心管中以微量吸管混合均勻。(1：32)。

10.5.2 再自 1：32 的血清稀釋液中取 50µL，加入 Diluents 50 µL 混合均勻 (1：64)。

10.5.3 將不同倍數（1：32，1：64）的血清稀釋液取出 10 µL，點於 Slides 上。

10.5.4 將 Slides 置於潮濕盒中，於 37℃烘箱內反應 30 分鐘。

10.5.5 以 PBS 浸泡 10 分鐘，再以 ddH2O 將 PBS 洗盡，於 37℃烘箱中烘乾。

10.5.6 取 10 µL Anti-human-IgG-FITC-Conjugate 點在 Slides 上，於 37℃烘箱內反應 30 分鐘。

10.5.7 以 PBS 浸泡 10 分鐘，再以 ddH2O 將 PBS 洗盡，於 37℃烘箱中烘乾。

10.5.8 於 Slides 上點 3 滴 Mounting fluid，再取蓋玻片進行密封。

10.5.9 以螢光顯微鏡使用藍光觀測。

11 結果判定

11.1 判定標準：

在螢光顯微鏡下以 200X 或 400X 的倍數觀察，將檢體血清與 positive control 做比較，以螢光亮度強弱與亮點數分佈均勻與否做觀察。亮度強弱與亮點數分佈須與 positive control 相仿始判為陽性。

11.1.1 IgG 螢光亮度與亮點數分佈於 1：64 仍有表現時，判定檢體為 IgG 陽性。

11.1.2 IgM 螢光亮度與亮點數分佈於 1：20 有表現時，判定檢體為 IgM 陽性。

11.1.3 檢體最終以 IgG 與 IgM 做綜合判斷，只要 IgG 或 IgM 為陽性者，即判斷檢體患者有鸚鵡熱披衣菌感染的現象。如果第一次採檢，IgG 或 IgM 為陽性者，即正在感染中；若為陰性，則發病日後四週做第二次採檢，其結果需 IgM 大於等於 1：20，或 IgG 有四倍上升的趨勢，始判為陽性。

11.2 報告核發

鸚鵡熱披衣菌抗體陽性，鸚鵡熱披衣菌抗體陰性，鸚鵡熱披衣菌抗體未確定。

11.3 結果登錄

完成檢驗後，將檢驗結果登錄於「鸚鵡熱披衣菌抗體試驗紀錄表」及「檢體送驗單」並加蓋檢驗者印章，送實驗室主管審核及蓋章，並登錄於實驗室資訊管理系統。
12 品質管制
12.1 Control
12.1.1 Positive Control：C. psittaci IgM positive human serum，C. psittaci IgG positive human serum。
12.1.2 Negative Control：Human serum negative for IgG，IgA，and IgM antibodies to C. pneumoniae，C. trachomatis，C. psittaci。
12.2 每次試驗應執行品管測試。
12.3 品管測試結果 Positive Control 應呈現中度到強烈蘋果綠螢光，Negative Control 應無蘋果綠螢光。
12.4 品管測試結果若有違背品管允收標準應依矯正及預防措施作業程序，加以矯正，必要時採取預防措施。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121°C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
14.1 Savyon Diagnostics Chlamydia SeroFIA™ IgM 試藥說明書。
14.2 Savyon Diagnostics Chlamydia SeroFIA™ IgM 試藥說明書。

15 附件
15.1 鴨鵝熱病菌 IgM 抗體試驗（微量免疫螢光法）流程圖。
15.2 鴨鵝熱病菌 IgG 抗體試驗（微量免疫螢光法）流程圖。
15.3 鴨鵝熱病菌血清學檢驗及結果判定流程圖。
15.4 鴨鵝熱病菌 IgM 及 IgG 抗體試驗紀錄表。
附件 15.1 鴨鵝熱披衣菌 IgM 抗體試驗（微量免疫螢光法）流程圖

1. 檢體
2. 檢體 1:20 稀釋
3. 取 10 μl 血清稀釋液點在 slide 上
4. 37°C，30 分鐘
5. PBS wash 10 分鐘，烘乾，加 Anti-human-IgG-FITC-Conjugate 10 μl
6. 37°C，30 分鐘
7. PBS wash 10 分鐘，烘乾
8. 於 Slides 上點 3 滴 Mounting fluid，取蓋玻片密封，以螢光顯微鏡使用藍光觀測
附件 15.2 鴉鵡熱披衣菌 IgG 抗體試驗（微量免疫熒光法）流程圖

檢體

檢體 1:32，1:64 稀釋

取 10 μl 血清稀釋液點於 Slides 上

37℃，30 分鐘

PBS wash 10 分鐘，烘乾，加 Anti-human-IgG-FITC-Conjugate 10 μl

37℃，30 分鐘

PBS wash 10 分鐘，烘乾

於 Slides 上點 3 滴 Mounting fluid，取蓋玻片密封，以螢光顯微鏡使用藍光觀測
附件 15.3 鴨鵝熱披衣菌血清學檢驗之結果判定流程圖

血清

IgM≥1:20 或 IgG≥1:64

陽性，現正感染中

IgM<1:20 且 IgG<1:64

未確定，間隔四週後再採檢

IgM≥1:20 或 IgG 4 倍上升

陽性

IgM<1:20 且 IgG 無 4 倍上升

陰性
附件 15.4 鴨鵝熱病原菌 IgM 及 IgG 抗體試驗紀錄表

鴨鵝熱病原菌 IgM 及 IgG 抗體試驗紀錄表

試劑批號：
有效期限：
檢驗日期：____年____月____日
玻片編號：

<table>
<thead>
<tr>
<th>C. pneumoniae</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. trachomatis</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>C. psittaci</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>檢體編號</th>
<th>抗體種類</th>
<th>稀釋倍數</th>
<th>C. pneumonia 結果</th>
<th>C. trachomatis結果</th>
<th>C. psittaci結果</th>
</tr>
</thead>
</table>

檢驗者： 核驗者： 實驗室 PI：
目的
利用血清學的方式鑑定檢體是否存在新型隱球菌抗原，藉此判定是否受到新型隱球菌感染。

適用檢體種類
血清及腦脊髓液檢體。

名詞解釋
血清 (serum)：血液凝固後，除去固態成份後的清亮液體，不含纖維蛋白原。

原理概述
利用外層包覆新型隱球菌抗體之乳膠顆粒與含有莢膜多醣抗原之檢體產生凝集反應。

試劑耗材
5.1 檢測試劑
5.1.1 10X Specimen Diluent：10ml / 1 bottle。
5.1.2 Cryptococcal Latex：3.5ml / 1 bottle。
5.1.3 Cryptococcal Antigen Positive Control：1ml / 1 bottle。
5.1.4 Cryptococcal Antigen Negative Control：1 ml / 1 bottle。
5.1.5 Pronase：1.75 ml / 1 bottle。
5.1.6 Pronase inhibitor：6 ml / 1 bottle。
5.1.7 試劑更換批號，需執行平行測試，以確保新批號試劑符合檢驗需求。

5.2 耗材
測試紙卡（試劑組已附）。

儀器設備
6.1 水浴槽 BF-T20, TIT
6.2 乾浴器 Dry bath incubator, Violet, BioSciences, Inc.
6.3 振盪器 Orbital Shaker, Model: S-101, FIRSTTEK
7 環境與設施安全
於生物安全第二級（BSL-2）實驗室之設施內操作。

8 檢體採集
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

9 檢體運送及保存
參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

10 檢驗步驟
10.1 試劑前處理
10.1.1 Pronase 加 1.75ml 蒸餾水或 RO 逆滲水溶解後，分裝成每管 0.1ml，置於-20℃保存。
10.1.2 10X 的 Specimen Diluent 使用前稀釋 10 倍。
10.1.3 Negative Control：第一次使用前必需置於水浴槽中 56℃，30mins 去活化。
10.2 檢體前處理
10.2.1 血清檢體：取 60ul 血清加 10ul Pronase 混合後，置於水浴槽中以 56℃，30mins 去活化後，加 10ul Pronase inhibitor 使 Pronase 停止反應。
10.2.2 腦脊髓液檢體：取 60ul 腦脊髓液檢體置於乾浴器 100℃，5mins 加熱去活化。
10.3 步驟
10.3.1 加 50ul 稀釋液至 6 個 tube 中，第 1~6 管的蓋上依序標示 1:2、1:4、1:8、1:16、1:32 及 1:64。
10.3.2 加 50ul 血清檢體或腦脊髓液檢體至第 1 管並混合均勻，自第 1 管取 50ul 加至第 2 管並混合均勻，依序稀釋的步驟至第 6 管。
10.3.3 加 25ul 的 Positive Control、Negative Control 以及每一稀釋濃度的檢體至測試紙卡之個別圓圈中。
10.3.4 加 25ul 的 Cryptococcal Latex 至每個圓圈中。
10.3.5 將測試紙片置於振盪器以 100rpm，5mins 之條件反應並讀取結果。

11 結果判定
11.1 判讀標準
11.1.1 黑色背景之試片依據檢體凝集的程度區分為 Negative、1+、2+、3+及 4+等。經比較之結果，Negative Control 要低於 1+，
衛生福利部疾病管制署傳染病標準檢驗方法

<table>
<thead>
<tr>
<th>編號：</th>
<th>新型隱球菌抗原檢測 (latex agglutination test)</th>
<th>核準日期：年月日</th>
</tr>
</thead>
<tbody>
<tr>
<td>頁次：第1086頁/共1104頁</td>
<td></td>
<td>修訂日期：年月日</td>
</tr>
</tbody>
</table>

Positive Control 要高於 2+。

11.1.2 依據等級之區分如以下之描述：
- **Negative**：與起始狀況一樣，沒有細小顆粒產生
 - 1+：細小粒狀且有乳白色之背景
 - 2+：小量的聚集其背景有輕微之霧狀
 - 3+：聚集成大團及小團相對應有透明之背景
 - 4+：聚集成大團相對應有非常透明之背景

11.1.3 讀取該稀釋倍數其判讀值大於 2+以上，則此稀釋倍數可判定為陽性反應。

11.1.4 新型隱球菌乳膠凝集抗原試驗結果圖例如下

11.2 報告核發
- 陽性（效價：1:2~1:64），陰性。

11.3 結果登錄
完成檢驗後，將檢驗結果登錄於「隱球菌抗原檢測（latex agglutination test）試驗紀錄表」及檢體送驗單並加蓋檢驗者印章，經核驗者確認及蓋章後，送實驗室主管審核及蓋章，並登錄於網路報告系統。

12 品質管制

12.1 內部品管

12.1.1 品管頻率：依實驗室品管政策所定頻率及新開試劑組或更改檢驗程序時。

12.1.2 品管物質：Positive control，Negative control。

12.1.3 品管操作步驟：與檢體相同。

12.1.4 品管測試結果必須符合下列標準

12.1.4.1 Positive control（陽性對照抗原）：出現凝集現象。
12.1.4.2 Negative control（陰性對照抗原）：無凝集現象。

12.1.5 品管測試結果若有違背品管允收標準應依矯正及預防措施作業程序，加以矯正，必要時採取預防措施。

12.2 室外品管

12.2.1 參加外部能力測試機構舉辦之能力測試或實驗室間比對。
12.2.2 於每年底提出下一年度之參加計畫。
12.2.3 接獲能力測試檢體時，應立即打開包裝，檢視檢體是否完整，若有洩漏或破損，應立即通知代理廠商處理。
12.2.4 每支能力測試檢體應照檢體的操作步驟測定，不應特別處理。用剩之品管檢體應於-20℃保存，以供日後必要時之複驗。
12.2.5 能力測試結果，應於規定時間內寄出，同時影印副本保存。
12.2.6 能力測試結果，應作為重要品管參考依據若有偏離允許範圍之情形發生，應依矯正及預防措施作業程序，加以矯正及採取預防措施。
12.2.7 每次能力測試處理過程登記於「能力試驗摘要紀錄表」。
13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121℃，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
IMMY 試劑說明書。

15 附錄
新型隱球菌乳膠凝集抗原試驗流程圖。
附錄 新型隱球菌乳膠凝集抗原試驗流程圖。

血清檢體 60 ul 加 10 ul Pronase 混合後，以 56℃、30 mins 條件去活化後，加 10 ul Pronase inhibitor 使 Pronase 停止反應

取 60 ul 腦脊髓液檢體置於乾浴器 100℃、5 mins 加熱去活

檢體稀釋 1:2、1:4、1:8、1:16、1:32 及 1:64

依序加 25 ul 的 Positive Control、Negative Control 以及每一稀釋濃度的檢體至測試紙卡之個別圓圈中

加 25 ul 的 Cryptococcal Latex 至每個圓圈中

將測試紙卡置於振盪器以 100 rpm、5 mins 之條件混合

依據 5.7 的標準判讀凝集試驗之結果
1 目的
食品中毒案件人體檢體中之仙人掌桿菌的分離與鑑定。

2 適用檢體種類
適用於人體糞便、嘔吐物、直腸拭子（rectal swab）。

3 名詞解釋
無。

4 原理概述
以特定培養基分離仙人掌桿菌，並利用生化代謝特性鑑定。

5 試劑耗材
5.1 培養基
5.1.1 MYP（mannitol-egg york-polymyxin agar）plate。
5.1.2 Nutrient agar plate。
5.1.3 TSA：CMP，臺灣。
5.2 革蘭氏染色液（Gram stain solution）：Difco，美國。
5.3 API 50 CH 及 API 20 E 生化鑑定套組：BioMérieux，法國。
5.4 VITEK 2 BCL 鑑定卡（VITEK 2 BCL）：BioMerieux，法國。
5.5 標準菌株：Bacillus cereus ATCC11778 及 E. coli ATCC25922。
5.6 無菌微量吸管尖（tip）：1,000 μL、200 μL。
5.7 無菌滴管（dropper）：1 mL。
5.8 接種針（環）。
5.9 載玻片。
5.10 無菌塑膠手套。

6 儀器設備
6.1 37 °C 培養箱。
6.2 微量吸管（Pipetman）。
6.3 光學顯微鏡：能放大至 1,000 X 油鏡。

7 環境設施安全
於生物安全第二等級（BSL-2）實驗室之設施內操作。

8 檢體採集
人體糞便、嘔吐物、直腸拭子，參照本署出版之「傳染病檢體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A
滅體運送及保存
低溫運送及保存，參照本署出版之「傳染病滅體採檢手冊」第二版。
http://www.cdc.gov.tw/professional/list.aspx?treeid=4C19A0252BBEF869&nowtreeid=6C7C52E7A7D5621A

10 檢驗步驟
10.1 分離培養
10.1.1 檢體接種:
10.1.1.1 糞便、嘔吐物：以無菌棉花棒沾取或以無菌滴管吸取
少許接種於 MYP 培養基上。
10.1.1.2 直腸拭子：將輸送培養基內之直腸拭子接種於 MYP
培養基上。
10.1.2 培養：37°C 培養箱培養。
10.1.3 觀察：18 - 24 hr 後，開始觀察有無可疑菌落，如有則進行鑑定，
如無則繼續培養及隔日觀察，至少需培養 48 hr。

10.2 鑑定
10.2.1 菌落型態及染色：挑選淡粉紅色，且有大沉澱環之獨立可疑菌
落，進行革蘭氏染色，符合革蘭氏陽性產芽孢桿菌，再次接種
於 Nutrient agar plate 或 TSA，37°C 培養箱培養 18 - 24 hr 後作
生化鑑定。
10.2.2 生化鑑定
10.2.2.1 Catalase test（觸酶試驗）：挑選 TSA 培養基上菌落進
行試驗，仙人掌桿菌反應為陽性。
10.2.2.2 API 50CH 及 API 20E 生化鑑定套組試驗：依照原廠
API 50CH+CHB（腸內菌鑑定組）及 API 20 E（腸內
菌鑑定組）操作步驟執行。
10.2.2.3 VITEK 2 BCL 鑑定卡（VITEK 2 BCL）：依照原廠全
自動微生物分析儀 VITEK 2 標準操作流程執行。

11 結果判定
11.1 陽性判定標準：符合革蘭氏陽性產芽孢桿菌，Catalase test 陽性，及 API
50CH、API 20E 生化鑑定套組或 VITEK 2 BCL 鑑定卡反應結果為仙人
掌桿菌者，即判定為仙人掌桿菌陽性；若其中有一不符合者，即判定
為仙人掌桿菌陰性。
11.2 報告核發：仙人掌桿菌陽性，仙人掌桿菌陰性。
11.3 結果登錄：將檢體之檢驗結果登錄於實驗室資訊系統，經 PI 核准報告
後發佈。

12 品質管制
12.1 MYP plate 之品質管制：
12.1.1 測試時間：每一批號由廠商提供品質管制文件，實驗室每季進
行一次品質測試。
12.1.2 测试菌株：B. cereus ATCC11778。
12.1.3 测试方法：使用新鲜的测试菌，生長在固体营养培養基一天的菌，挑菌懸浮於 2 mL 無菌水中，調菌液濁度 0.5 McFarland，以 1 μL 的 Loop 取菌液依四區畫線接種於測試培養基上，35 °C 培養箱培養。
12.1.4 观察结果纪录：预期结果 3 - 4 天後，可見 3 - 8 mm 菌落，菌落至少生長至第三區。

12.2 Nutrient agar plate 之品質管制：
12.2.1 测试時間：每一批號由廠商提供品質管制文件，實驗室每季進行一次品管測試。
12.2.2 测试菌株：E. coli ATCC25922。
12.2.3 测试方法：使用新鲜的测试菌，生長在固体营养培養基一天的菌，挑菌懸浮於 2 mL 無菌水中，調菌液濁度 0.5 McFarland，以 1 μL 的 Loop 取菌液依四區畫線接種於測試培養基上，35 °C 培養箱培養。
12.2.4 观察结果纪录：预期结果 3 - 4 天後，可見 0.5 - 1 mm 菌落，菌落至少生長至第三區。

13 廢棄物處理
檢驗過程之物品、廢液及剩餘檢體等感染性事業廢棄物，應先以滅菌袋裝妥密封，再以 121 °C，30 min 高壓滅菌後，依本署廢棄物處理作業程序處理。

14 參考資料
14.1 蔡文城。2000。實用臨床微生物診斷學，第九版。九州圖書文化有限公司，臺灣。

15 附錄
15.1 仙人掌桿菌分離與鑑定流程圖。
15.2 仙人掌桿菌分離與鑑定紀錄表。
附錄 15.1 仙人掌桿菌分離與鑑定流程圖

仙人掌桿菌分離與鑑定流程圖

臍便、直腸拭子、嘔吐物

接種MYP agar plate

37℃，18~48 hr

粉紅色，且有大沉澱環之可疑菌落

無可疑菌落

革蘭氏染色

陽性產胞菌

陰性

接種Nutrient agar 或TSA

37℃，18~24 hr

Catalase test

陽性

陰性

API CHB+20E 或
VITEK 2 BCL 判讀

仙人掌桿菌陽性判定

仙人掌桿菌分離與鑑定流程圖
衛生福利部疾病管制署傳染病標準檢驗方法

附錄 15.2 仙人掌桿菌分離與鑑定紀錄表

衛生福利部疾病管制署研究檢驗及疫苗研製中心

仙人掌桿菌分離與鑑定紀錄表

<table>
<thead>
<tr>
<th>檢體編號</th>
<th>收件日期</th>
<th>檢驗日期</th>
<th>檢體採檢運送狀況適當</th>
<th>培養/觀察</th>
<th>培養/観察</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>是</td>
<td>否</td>
<td>是</td>
</tr>
</tbody>
</table>

MYP 平板上生長型態：淡粉紅色，且有大沉澱環之獨立可疑菌落

<table>
<thead>
<tr>
<th>第 2 天</th>
<th>第 3 天</th>
<th>第 4 天</th>
<th>第 5 天</th>
</tr>
</thead>
<tbody>
<tr>
<td>是</td>
<td>否</td>
<td>是</td>
<td>否</td>
</tr>
</tbody>
</table>

革蘭氏染色：陽性或陰性，產孢桿菌或不產孢桿菌

<table>
<thead>
<tr>
<th>陽性</th>
<th>陰性</th>
<th>陽性</th>
<th>陰性</th>
<th>陽性</th>
<th>陰性</th>
<th>陽性</th>
<th>陰性</th>
</tr>
</thead>
<tbody>
<tr>
<td>產孢桿菌</td>
<td>不產孢桿菌</td>
<td>產孢桿菌</td>
<td>不產孢桿菌</td>
<td>產孢桿菌</td>
<td>不產孢桿菌</td>
<td>產孢桿菌</td>
<td>不產孢桿菌</td>
</tr>
</tbody>
</table>

Catalase test：陽性起泡，陰性不起泡

<table>
<thead>
<tr>
<th>陽性</th>
<th>陰性</th>
<th>陽性</th>
<th>陰性</th>
<th>陽性</th>
<th>陰性</th>
<th>陽性</th>
<th>陰性</th>
</tr>
</thead>
<tbody>
<tr>
<td>API 50CH +API20E 或 VITEK 2 BCL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

附註

綜合結果

報告日期

檢驗者：

實驗室主管：
A 群鏈球菌侵襲性感染或毒性休克症候群 1052
A 群鏈球菌菌種分離、鑑定 1052
CRE 抗藥性檢測 1040
H5N1 流感 44, 46
H5N1 流感病毒分離、鑑定 44
H5N1 流感病毒熒光定量聚合酶連鎖反應(real-time PCR) 46
H7N9 流感 988
H7N9 流感病毒核酸檢測(real time RT-PCR) 988
Q 熱 765, 771
貝氏考克斯菌核酸檢測(STN-RT PCR) 765
Q 熱病原體血清學抗體檢測(IgM 與 IgG, IFA) 771
VISA/VRSA 抗藥性檢測 1045
VISA/VRSA 菌種鑑定及抗藥性基因檢測 1045
人類免疫缺乏病毒感染與後天免疫缺陷症候群(AIDS) 688, 695, 703
人類免疫缺乏病毒抗體檢測(WB) 695
人類免疫缺乏病毒抗體檢測(粒子凝集法) 688
人類免疫缺乏病毒核酸檢測(real-time RT-PCR) 703
水痘併發症 823, 832, 838, 847
水痘病毒 IgG 抗體檢測(Indirect ELISA) 847
水痘病毒 IgM 抗體檢測(Indirect ELISA) 838
水痘病毒核酸檢測 832
仙人掌菌 1089
仙人掌桿菌分離與鑑定 1089
布氏桿菌病 900, 905
布氏桿菌分離與鑑定 900
布氏桿菌抗體檢測(RBT 及 CFT) 905
白喉 66, 74, 78
白喉桿菌分離與鑑定 66
白喉桿菌毒素測定(Elek's plate virulence test) 78
白喉桿菌核酸檢測(PCR) 74
<table>
<thead>
<tr>
<th>六劃</th>
<th>六劃</th>
</tr>
</thead>
<tbody>
<tr>
<td>伊波拉病毒出血熱 952, 956, 962</td>
<td>八劃</td>
</tr>
<tr>
<td>伊波拉病毒核酸檢測（Real-time RT-PCR） 962</td>
<td>八劃</td>
</tr>
<tr>
<td>伊波拉病毒分離與鑑定 952</td>
<td>八熱病 815, 818</td>
</tr>
<tr>
<td>伊波拉病毒抗體檢測（ELISA） 956</td>
<td>八熱病病原菌抗體檢測（IHA） 818</td>
</tr>
<tr>
<td>先天性德國麻疹症候群 253, 263, 269, 278</td>
<td>八熱病病原菌抗體檢測（微量平板法） 815</td>
</tr>
<tr>
<td>多重抗藥性結核病 318, 327, 334, 344, 351</td>
<td>屈公病 287, 291, 295</td>
</tr>
<tr>
<td>多重抗藥性結核菌 FLQ 及針劑藥物抗藥基因檢測 344</td>
<td>屈公病毒 IgM 及 IgG 抗體檢測（ELISA） 295</td>
</tr>
<tr>
<td>多重抗藥性結核菌 RMP 及 INH 抗藥基因檢測 334</td>
<td>屈公病毒分離與鑑定 287</td>
</tr>
<tr>
<td>結核菌群抗藥基因定序 351</td>
<td>屈公病毒核酸檢測（Real-time RT-PCR） 291</td>
</tr>
<tr>
<td>結核菌群間接藥物感受性試驗(液態快速培養系統) 327</td>
<td>拉薩熱 966, 970, 976</td>
</tr>
<tr>
<td>結核菌群間接藥物感受性試驗（瓊脂平板法） 318</td>
<td>拉薩病毒分離與鑑定 966</td>
</tr>
<tr>
<td>百日咳 385, 392, 399, 406</td>
<td>拉薩病毒抗體檢測（ELISA） 976</td>
</tr>
<tr>
<td>百日咳核酸檢測（PCR LAMP 法） 399</td>
<td>拉薩病毒核酸檢測（Real-time RT-PCR） 970</td>
</tr>
<tr>
<td>百日咳抗體檢測 385</td>
<td>肺炎衣菌 1058, 1066</td>
</tr>
<tr>
<td>百日咳核酸抗體抗原分析 406</td>
<td>肺炎衣菌 IgM 及 IgG 抗體檢測（MIF） 1066</td>
</tr>
<tr>
<td>百日咳核酸檢測（PCR） 392</td>
<td>肺炎衣菌核酸檢測（PCR） 1058</td>
</tr>
<tr>
<td>肉毒桿菌中毒 746, 750, 754</td>
<td>金黃色葡萄球菌食品中毒 992, 998, 1005</td>
</tr>
<tr>
<td>肉毒桿菌中毒試驗 750</td>
<td>金黃色葡萄球菌分離與鑑定 992</td>
</tr>
<tr>
<td>肉毒桿菌中毒試驗 746</td>
<td>金黃色葡萄球菌毒素測定(聚合酶連鎖反應法) 1005</td>
</tr>
<tr>
<td>肉毒桿菌毒素檢測 754</td>
<td>金黃色葡萄球菌腸毒素檢測（RPLA） 998</td>
</tr>
<tr>
<td>西尼羅熱 364, 368</td>
<td>阿米巴性痢疾 124, 132, 139, 143</td>
</tr>
<tr>
<td>西尼羅病毒 IgM 及 IgG 抗體檢測（ELISA） 368</td>
<td>痢疾阿米巴分子生物學確認檢驗(real time PCR 法) 143</td>
</tr>
<tr>
<td>西尼羅病毒核酸檢測（Real-time RT-PCR） 364</td>
<td>痢疾阿米巴檢測（鏡検法） 124</td>
</tr>
<tr>
<td>九劃</td>
<td>痢疾阿米巴抗原（酵素免疫試驗） 139</td>
</tr>
<tr>
<td>侵襲性 B 型嗜血桿菌感染症 611</td>
<td>痢疾阿米巴抗原（鏡検法） 139</td>
</tr>
<tr>
<td>侵襲性 B 型嗜血桿菌分離與鑑定 611</td>
<td>痢疾阿米巴抗原（鏡検法） 139</td>
</tr>
</tbody>
</table>
衛生福利部疾病管制署傳染病標準檢驗方法

侵襲性肺炎鏈球菌感染症 758
侵襲性肺炎鏈球菌分離與血清型別鑑定 758
急性病毒性肝炎（除 A 型外） 488, 495, 502, 508, 516, 522
B 型肝炎病毒核心 IgM 抗體檢測（化學冷光微粒免疫分析法） 488
C 型肝炎病毒抗體檢測（化學冷光微粒免疫分析法） 495
C 型肝炎病毒核酸檢測（Real-time RT-PCR） 502
D 型肝炎病毒 IgM 抗體檢測（ELISA） 508
E 型肝炎病毒抗體西方黑點法檢測（IgM/IgG） 522
E 型肝炎病毒抗體檢測（IgM/IgG） 516
急性病毒性 A 型肝炎 220
A 型肝炎病毒 IgM 抗體檢測（化學冷光微粒免疫分析法） 220
流行性斑疹傷寒 373, 379
流行性斑疹傷寒抗體檢測 379
恙蟲病及地方性斑疹傷寒 777, 782, 789, 795
恙蟲病及斑疹傷寒病原體分離與鑑定 777
恙蟲病及斑疹傷寒病原體核酸檢測（Real-time PCR） 782
流行性腮腺炎（群聚感染） 533, 543, 549, 558
腮腺炎病毒 IgG 抗體檢測（Indirect ELISA） 558
腮腺炎病毒 IgM 抗體檢測（Indirect ELISA） 549
腮腺炎病毒分離與鑑定 533
腮腺炎病毒核酸檢測 543
流行性腦脊髓炎 108
奈氏氏腦膜炎雙球菌分離與鑑定 108
流行性腮腺炎（群聚感染） 533, 543, 549, 558
腮腺炎病毒 IgG 抗體檢測（Indirect ELISA） 558
腮腺炎病毒 IgM 抗體檢測（Indirect ELISA） 549
腮腺炎病毒分離與鑑定 533
腮腺炎病毒核酸檢測 543
退伍軍人病 567, 576, 583, 587, 594, 598, 602
水中退伍軍人菌分離與鑑定 602
退伍軍人病病原菌分離與鑑定 567
嗜肺退伍軍人菌抗原檢測（EIA） 576
嗜肺退伍軍人菌抗原檢測（RIMA） 583
嗜肺退伍軍人菌抗體檢測（IFA） 587
退伍軍人菌抗原檢測（LATEX） 594

炭疽病 50, 56, 61
炭疽桿菌分子生物學核酸檢測（即時定量聚合酶鏈鎖反應） 56
炭疽桿菌分離與鑑定 50
炭疽桿菌血清學抗體檢測 61
食物中毒及腹瀉群聚 1017, 1024, 1029, 1036
輪狀病毒分子生物學檢測 1036
諾羅病毒抗原檢測（ELISA） 1029
諾羅病毒分子生物學檢測 1024
諾羅病毒抗原檢測（ELISA） 1017

十劃
庫賈氏病 888, 896
庫賈氏病 PRNP 基因型別分析 896
庫賈氏病標示蛋白檢測（WB） 888
恙蟲病、地方性斑疹傷寒 777, 782, 789, 795
恙蟲病及斑疹傷寒病原體分離與鑑定 777
恙蟲病及斑疹傷寒病原體核酸檢測（Real-time PCR） 782
地方性斑疹傷寒抗體檢測 789
恙蟲病抗體檢測（間接免疫蛻光抗體法） 795
疱疹 B 病毒感染症 711, 715, 721
疱疹 B 病毒分離與鑑定 711
疱疹 B 病毒抗體檢測 721
疱疹 B 病毒核酸檢測（Real-time PCR） 715

退伍軍人病 567, 576, 583, 587, 594, 598, 602
水中退伍軍人菌分離與鑑定 602
退伍軍人病病原菌分離與鑑定 567
嗜肺退伍軍人菌抗原檢測（EIA） 576
嗜肺退伍軍人菌抗原檢測（RIMA） 583
嗜肺退伍軍人菌抗體檢測（IFA） 587
退伍軍人菌抗原檢測（LATEX） 594
衛生福利部疾病管制署傳染病標準檢驗方法

退伍軍人菌抗體檢測（DFA） 5987
馬堡病毒出血熱 925, 929, 935
馬堡病毒分離與鑑定 925
馬堡病毒抗體檢測（ELISA） 935
馬堡病毒核酸檢測（Real-time
RT-PCR） 929

十一劃
桿菌性痢疾 116
痢疾桿菌分離與鑑定 116
梅毒 618, 623, 629, 637
RPR（Rapid Plasma Reagin）快速血
漿反應素試驗標準檢驗方法 618
TPHA（Treponema Pallidium
Hemagglutination Agglutination）
標準檢驗方法 637
TPPA（Treponema Pallidium Particle
Agglutination）標準檢驗方法 629
VDRL（Venereal Disease Research
laboratory）標準檢驗方法 623
淋病 646, 651, 655
奈氏淋病雙球菌分離與鑑定 646
奈氏淋病雙球菌及砂眼衣原菌分
子生物學檢測（Real-Time-PCR） 655
奈氏淋病雙球菌染色鏡檢（革蘭氏
染色法） 651
麻疹 184, 194, 201, 210
麻疹病毒 IgG 抗體檢測（Indirect
ELISA） 210
麻疹病毒 IgM 抗體檢測（Indirect
ELISA） 201
麻疹病毒分離與鑑定 184
麻疹病毒核酸檢測 194
登革熱 91, 97, 101, 103
登革病毒、日本腦炎病毒 IgM 及 IgG
抗體檢測（ELISA） 103
登革病毒 NS1 抗原檢測（Dengue virus
NSantigen rapid test） 101
登革病毒分離與鑑定 91
登革病毒核酸檢測（Real-time
RT-PCR） 97

十二劃
結核病（除多重抗藥性結核病外）
423, 430, 438, 444, 448, 454, 463,
471, 481
抗酸性抹片鏡檢法 438
非結核分枝桿菌核酸菌種鑑定 454
病理檢體卡介苗牛型結核菌核酸檢
測 481
結核菌群去活化操作驗證程序與查
核機制 430
結核菌群核酸菌種鑑定 448
結核菌群培養 423
結核菌群最佳化散置重複單元分子
分型法 471
結核菌群回復鋼核酸分子分型法
463
結核菌群與利福平抗藥基因核酸檢
測（Xpert MTB/RIF Assay） 444
萊姆病 801, 805, 807
萊姆病病原菌分離與鑑定 801
萊姆病病原菌抗體檢測（ELISA） 805
萊姆病病原菌抗體檢測（WB） 807
裂谷熱 912, 916, 921
裂谷熱病毒分離與鑑定 912
裂谷熱病毒抗體檢測（ELISA） 921
裂谷熱病毒核酸檢測（Real-time
RT-PCR） 916
黃熱病 939, 943, 947
黃熱病毒 IgM 及 IgG 抗體檢測
（ELISA） 947
黃熱病毒分離與鑑定 939
黃熱病毒核酸檢測（Real-time
RT-PCR） 943
十三劃
傷寒、副傷寒 83
腸炎弧菌食品中毒 1010
腸炎弧菌分離與鑑定 1010
腸病毒感染併發重症 662, 672, 675, 681
腸病毒七十一型 IgM 抗體檢測 672
腸病毒七十一型核酸檢測(反轉錄酶
－聚合酶鏈鎖反應法) 675
腸病毒分離與鑑定 662
腸病毒－巢式聚合酶鏈鎖反應法
(CODEHOP) 681
腸道出血性大腸桿菌感染症 235, 243, 248
出血性大腸桿菌分離與鑑定 235
出血性大腸桿菌毒素基因鑑定(PCR)
248
出血性大腸桿菌毒素檢測(RPLA)
243
鈣端螺旋體病 725, 730, 737
鈣端螺旋體分離與鑑定 725
鈣端螺旋體抗體檢測(ELISA) 737
鈣端螺旋體抗體檢測(顯微凝集法)
730
鼠疫 11, 17
鼠疫桿菌 F 抗體檢測(酶免免疫分析
法) 17
鼠疫桿菌分離與鑑定 11

十五劃
德國麻疹 253, 263, 269, 278
德國麻疹病毒 IgG 抗體檢測(Indirect
ELISA) 278
德國麻疹病毒 IgM 抗體檢測(Indirect
ELISA) 269
德國麻疹病毒分離與鑑定 253
德國麻疹病毒核酸檢測 263

十六劃
霍亂 300, 308, 313
霍亂弧菌分離與鑑定 300
霍亂弧菌毒素基因鑑定(PCR) 308
霍亂弧菌毒素檢測(RPLA) 313
隱球菌症 1084
新型隱球菌抗原檢測(latex
agglutination test) 1084

十九劃
類鼻疽 741
類鼻疽伯克氏菌分離與鑑定 741

二十劃
嚴重急性呼吸道症候群(SARS) 21, 24
SARS 病毒核酸檢測(real-time PCR) 24
SARS 病毒病原體分離、鑑定 21

二十八劃
鸚鵡熱 1075
鸚鵡熱披衣菌 IgM 及 IgG 抗體試驗 1075
Acute viral hepatitis (except type A) 488, 495, 502, 508, 516, 522
Hepatitis B virus core IgM antibody test (CMIA) 488
Hepatitis C nucleic acid detection (real-time RT-PCR) 502
Hepatitis C virus antibody detection (CMIA) 495
Hepatitis D virus IgM antibody detection (ELISA) 487
Hepatitis E virus antibody detection (IgM/IgG) 516
Hepatitis E virus antibody Western blot detection (IgM/IgG) 522

Acute viral hepatitis A 220
Hepatitis A virus IgM antibody test (CMIA) 220

Amoebiasis 124, 132, 139, 143
Amoebiasis stool examination screening method 124
Entamoeba histolytica antigen detection (ELISA screening method) 139
Entamoeba histolytica nucleic acid detection (real-time PCR) 143
Entamoeba histolytica nucleic acid detection (two-step nested PCR) 132

Anthrax 50, 56, 61
Bacillus anthracis antibody detection 61
Bacillus anthracis isolation and identification 50
Bacillus anthracis nucleic acid detection (real-time PCR) 56

Bacillus cereus 1089
Bacillus cereus isolation and identification 1089

Botulism 746, 750, 754
Clostridium botulinum isolation and identification 756
Clostridium botulinum neutralization test 750
Clostridium botulinum toxic detection 754

Brucellosis 900, 905
Brucella antibody detection (RBT & CFT) 905
Brucella isolation and identification 900

Chikungunya 287, 291, 295
Chikungunya virus IgM & IgG antibody detection (ELISA) 295
Chikungunya virus isolation and identification 287
Chikungunya virus nucleic acid detection (real-time RT-PCR) 291
Chlamydia pneumoniae 1058, 1066
Chlamydia pneumoniae IgM & IgG antibody detection (MIF) 1066
Chlamydia pneumoniae nucleic acid detection (PCR) 1058

Cholera 300, 308, 313
Vibrio cholerae isolation and identification 300
Vibrio cholerae toxic detection (RPLA) 313
Vibrio cholerae toxic genotyping (PCR) 308

Complications of Varicella 823, 832, 838, 847
Varicella virus IgG antibody detection (indirect ELISA) 847
Varicella virus IgM antibody detection (indirect ELISA) 838
Varicella virus isolation and identification 823
Varicella virus nucleic acid detection 832

Congenital rubella syndrome 253, 263, 269, 278
CRE resistance detection 1040
CRE resistance detection 1040
Creutzfeldt-Jakob disease 888, 896
Creutzfeldt-Jakob disease marked protein detection (WB) 888
Creutzfeldt-Jakob disease PRNP genotype analysis 896

Cryptococcosis 1084
Cryptococcus neoformans antigen detection 1084

Dengue fever 91, 97, 101, 103
Dengue virus isolation and identification 91
Dengue virus NS1 antigen rapid test 101
Dengue virus nucleic acid detection (real-time RT-PCR) 97
IgM & IgG antibody detection of dengue virus and Japanese virus (ELISA) 103

Diphtheria 66, 74, 78
Corynebacterium diphtheriae isolation and identification 66
Corynebacterium diphtheriae nucleic acid detection (PCR) 74
Corynebacterium diphtheriae toxic detection (Elek’s plate virulence test) 78

Ebola hemorrhagic fever 952, 956, 962
Ebola virus antibody detection (ELISA) 962
Ebola virus isolation and identification 952
Ebola virus nucleic acid detection (real-time RT-PCR) 956

Enteroviruses infection complicated severe case 662, 672, 675, 681
Enteroviruses - nested polymerase chain reaction (CODEHOP) 681
Enteroviruses isolation and identification 662
EV71 type IgM antibody detection 672
EV71 type of nucleic acid testing (RT-PCR) 672

Epidemic typhus 373, 379
Epidemic typhus antibody detection 379
Orientalts tsutsugamushi, Rickettsia typhi & Rickettsia prowazekii nucleic acid detection 373

Food poisoning and diarrhea outbreak 1017, 1024, 1029, 1036
Norovirus antigen detection (ELISA) 1017
Norovirus nucleic acid detection 1024
Rotavirus antigen detection (ELISA) 1029
Rotavirus nucleic acid detection 1036

Gonorrhea 646, 651, 655
Neisseria gonorrhoeae and Chlamydia trachomatis nucleic acid detection (real-time-PCR) 655
Neisseria gonorrhoeae isolation and identification 646
Neisseria gonorrhoeae staining (Gram stain) 651

Group A streptococcus invasive infection or toxic shock syndrome 1052
Scarlet fever pathogen (Group A Streptococcus) isolation and identification 1047

H5N1 influenza 44, 46
H5N1 influenza virus fluorescence quantitative polymerase chain reaction(real-time PCR) 46
H5N1 influenza virus isolation and identification 44

H7N9 influenza 988
H7N9 influenza virus nucleic acid detection (real time RT-PCR) 988

Haemophilus influenzae type b infection 611
Haemophilus influenzae type b isolation and identification 611

Hantavirus syndrome 227, 231
Hantavirus IgM & IgG antibody detection (ELISA) 231
Hantavirus nucleic acid detection (real-time RT-PCR) 227

Herpesvirus B infection 711, 715, 721
Herpesvirus B antibody detection 721
Herpesvirus B isolation and identification 711
Herpesvirus B nucleic acid detection (real-time PCR) 715

Human immunodeficiency virus infection (AIDS) 688, 695, 703
HIV antibody test (western blot) 695
HIV virus antibody detection (Particle agglutination) 688
HIV virus nucleic acid detection (real-time RT-PCR) 703

Influenza complications 872, 882
Influenza virus isolation and identification (Influenza complications) 872
Influenza virus nucleic acid detection (real-time PCR) 882

Invasive pneumococcal disease 758
Streptococcus pneumoniae isolation & serotyping 758

Japanese encephalitis 410, 414, 418
Japanese encephalitis virus isolation and identification 418
Japanese encephalitis virus nucleic acid detection (real-time RT-PCR) 414
IgM & IgG antibody detection of dengue virus and Japanese virus (ELISA) 410

Lassa fever 966, 970, 976
Lassa virus antibody detection (ELISA) 976
Lassa virus nucleic acid detection (real-time RT-PCR) 970
Lassa virus isolation and identification 966

Legionellosis 567, 576, 583, 587, 594, 598, 602
Isolation and identification of Legionella in water 602
Legionella antibody detection (DFA) 598
Legionella antigen detection (LATEX) 594
Legionella isolation and identification 567
Legionella pneumophila antibody detection (IFA) 587
Legionella pneumophila antigen test (EIA) 576
Legionella pneumophila antigen test (RIMA) 583

Leptospirosis 725, 730, 737
Antibody detection of Leptospira spp. (ELISA) 737
Isolation and identification of Leptospira species 725
Leptospirosis antibody test (microscopic agglutination) 730

Lyme disease 801, 805, 807
Borrelia burgdorferi antibody detection (ELISA) 805
<table>
<thead>
<tr>
<th>Disease</th>
<th>Page Numbers</th>
<th>Methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borrelia burgdorferi antibody detection (WB)</td>
<td>807</td>
<td></td>
</tr>
<tr>
<td>Borrelia burgdorferi isolation and identification</td>
<td>801</td>
<td></td>
</tr>
<tr>
<td>Malaria</td>
<td>169, 173</td>
<td>Malaria diagnosis (Microscopic examination) 169</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nucleic acid detection of Plasmodia human parasite (two step nested PCR) 173</td>
</tr>
<tr>
<td>Marburg virus hemorrhagic fever</td>
<td>925, 929, 935</td>
<td>Marburg virus antibody test (ELISA) 935</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Marburg virus isolation and identification 925</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Marburg virus nucleic acid detection (real-time RT-PCR) 929</td>
</tr>
<tr>
<td>Measles</td>
<td>184, 194, 201, 210</td>
<td>Measles virus IgG antibody test 210</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Measles virus IgM antibody test 201</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Measles virus isolation and identification 184</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Measles virus nucleic acid detection 194</td>
</tr>
<tr>
<td>Melioidosis</td>
<td>741</td>
<td>Burkholderia pseudomallei isolation and identification 741</td>
</tr>
<tr>
<td>Meningococcal meningitis</td>
<td>108</td>
<td>Neisseria meningitidis isolation and identification 108</td>
</tr>
<tr>
<td>Middle East respiratory syndrome coronavirus infection</td>
<td>980, 983</td>
<td>Middle East respiratory syndrome coronavirus isolation and identification 980</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Middle East respiratory syndrome coronavirus nucleic acid detection (real-time RT-PCR) 983</td>
</tr>
<tr>
<td>Multidrug-resistant tuberculosis</td>
<td>318</td>
<td>Mycobacteria indirect drug susceptibility tests (Agar plate method) 318</td>
</tr>
<tr>
<td>Mumps (Cluster infection)</td>
<td>533, 543, 549, 558</td>
<td>Mump virus IgG antibody detection (Indirect ELISA) 558</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mumps virus IgM antibody detection (Indirect ELISA) 549</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mumps virus isolation and identification 533</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mumps virus nucleic acid detection 543</td>
</tr>
<tr>
<td>Pertussis</td>
<td>385, 392, 399, 406</td>
<td>Bordetella pertussis isolation and identification 385</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bordetella pertussis nucleic acid antigen typing 406</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bordetella pertussis nucleic acid detection (PCR LAMP) 399</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bordetella pertussis nucleic acid detection (PCR) 392</td>
</tr>
<tr>
<td>Plague</td>
<td>11, 17</td>
<td>Yersinia pestis F1 antibody detection (ELISA) 17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yersinia pestis isolation and identification 11</td>
</tr>
<tr>
<td>Poliomyelitis</td>
<td>150</td>
<td>Poliovirus isolation and identification 150</td>
</tr>
<tr>
<td>Psittacosis</td>
<td>1075</td>
<td>Chlamydia psittaci IgM & IgG antibody detection 1075</td>
</tr>
<tr>
<td>Q fever</td>
<td>765, 771</td>
<td>Q fever pathogen antibody detection (IgM & IgG, IFA) 771</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coxiella burnetii nucleic acid detection (STN-RT PCR) 765</td>
</tr>
<tr>
<td>散热福利部疾病管制署传染病標準检验方法</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>疾病名称</td>
<td>页次</td>
<td></td>
</tr>
<tr>
<td>Rabies</td>
<td>30, 33, 39</td>
<td></td>
</tr>
<tr>
<td>Rabies virus antibody detection (ELISA)</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Rabies virus isolation and identification</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Rabies virus nucleic acid detection (RT-PCR)</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Rift valley fever</td>
<td>912, 916, 921</td>
<td></td>
</tr>
<tr>
<td>Rift Valley virus antibody detection (ELISA)</td>
<td>921</td>
<td></td>
</tr>
<tr>
<td>Rift Valley virus isolation and identification</td>
<td>912</td>
<td></td>
</tr>
<tr>
<td>Rift Valley virus nucleic acid detection (real-time RT-PCR)</td>
<td>916</td>
<td></td>
</tr>
<tr>
<td>Rubella</td>
<td>253, 263, 269, 278</td>
<td></td>
</tr>
<tr>
<td>Rubella virus IgG antibody detection (indirect ELISA)</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>Rubella virus IgM antibody detection (indirect ELISA)</td>
<td>263</td>
<td></td>
</tr>
<tr>
<td>Rubella virus isolation and identification</td>
<td>253</td>
<td></td>
</tr>
<tr>
<td>Rubella virus nucleic acid detection</td>
<td>263</td>
<td></td>
</tr>
<tr>
<td>Scrub typhus、Endemic typhus</td>
<td>777, 782, 789, 795</td>
<td></td>
</tr>
<tr>
<td>Scrub typhus antibody detection (IFA)</td>
<td>789</td>
<td></td>
</tr>
<tr>
<td>Endemic typhus antibody detection</td>
<td>795</td>
<td></td>
</tr>
<tr>
<td>Orientia tsutsugamushi & Rickettsia species isolation and identification</td>
<td>777</td>
<td></td>
</tr>
<tr>
<td>Orientia tsutsugamushi & Rickettsia species nucleic acid detection (real-time PCR)</td>
<td>782</td>
<td></td>
</tr>
<tr>
<td>Severe acute respiratory syndrome (SARS)</td>
<td>21, 24</td>
<td></td>
</tr>
<tr>
<td>SARS virus isolation and identification</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>SARS virus nucleic acid detection (real-time PCR)</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Shigellosis</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>Shigella isolation and identification</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>Smallpox</td>
<td>1, 5</td>
<td></td>
</tr>
<tr>
<td>Orthopoxvirus variola isolation and identification</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Orthopoxvirus variola nucleic acid detection (Real-time PCR)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Staphylococcus aureus food poisoning</td>
<td>992, 998, 1005</td>
<td></td>
</tr>
<tr>
<td>Staphylococcus aureus Enterotoxin detection (RPLA)</td>
<td>998</td>
<td></td>
</tr>
<tr>
<td>Staphylococcus aureus isolation and identification</td>
<td>992</td>
<td></td>
</tr>
<tr>
<td>Staphylococcus aureus toxic detection (PCR)</td>
<td>1005</td>
<td></td>
</tr>
<tr>
<td>Syphilis</td>
<td>618, 623, 629, 637</td>
<td></td>
</tr>
<tr>
<td>Rapid Plasma Reagin (RPR)</td>
<td>618</td>
<td></td>
</tr>
<tr>
<td>Treponema Pallidium Hemagglutination (TPHA)</td>
<td>637</td>
<td></td>
</tr>
<tr>
<td>Treponema Pallidium Particle Agglutination (TPPA)</td>
<td>629</td>
<td></td>
</tr>
<tr>
<td>Venereal Disease Research laboratory (VDRL)</td>
<td>623</td>
<td></td>
</tr>
<tr>
<td>Toxoplasma gondii infection</td>
<td>858, 861, 867</td>
<td></td>
</tr>
<tr>
<td>Toxoplasma gondii IgM & IgG antibody detection (EIA & ELFA)</td>
<td>861</td>
<td></td>
</tr>
<tr>
<td>Toxoplasma gondii nucleic acid detection</td>
<td>858</td>
<td></td>
</tr>
<tr>
<td>Toxoplasma IgG avidity test</td>
<td>867</td>
<td></td>
</tr>
<tr>
<td>Tuberculosis (except MDR-TB)</td>
<td>423, 438</td>
<td></td>
</tr>
<tr>
<td>Isolation of Mycobacteria</td>
<td>438</td>
<td></td>
</tr>
<tr>
<td>Acid-fast smear microscopy method</td>
<td>423</td>
<td></td>
</tr>
</tbody>
</table>
Tularemia 815, 818
Francisella tularensis antibody
detection (IHA) 818
Francisella tularensis antibody
detection (Micro-plate method) 815

Typhoid fever 、Paratyphoid fever
83
Isolation and identification of
Salmonella typhi, Salmonella
paratyphi A & Salmonella species
83

Vibrio parahaemolyticus food
poisoning 1010
Vibrio parahaemolyticus isolation and
identification 1010

VISA/VRSA resistance detection
1045
VISA/VRSA strain identification and
detection of drug resistance genes
1045

West Nile fever 364 368
West Nile virus IgM & IgG antibody
detection (ELISA) 368
West Nile virus nucleic acid detection
(real-time RT-PCR) 364

Yellow fever 939, 943, 947
Yellow fever virus IgM and IgG
antibody detection (ELISA) 947
Yellow fever virus isolation and
identification 939
Yellow fever virus nucleic acid
detection (Real-time RT-PCR) 943