國內外新知

黴菌命名法的變革與管理

【國家衛生研究院 感染症與疫苗研究所台灣黴菌實驗中心 陳盈之/林巧梅/謝禮雲/陳玉蓮/羅秀容 摘評】

黴菌物種正經歷重大的命名 改革,主要是因放棄源自於2013 年的有性型(teleomorph)/無性 型 (anamorph) 雙物種命名法 (dual nomenclature) 改用一黴菌一學名 (one fungus one name) 之命名方法,加上 分子技術在分類學的推波助瀾,終於 得以更新長期以來分類的混淆。命名 變革影響了醫學上許多重要物種的名 稱變化,然而基於臨床醫師對舊名的 熟悉度與直覺性考量,因此截至目前 為止微生物學實驗室尚未統一發佈更 名指南,此篇參考文獻概述臨床上主 要黴菌名稱變更的基本原理,此分享 文章是針對酵母菌型黴菌的更名清單 做統整。

命名變革的發生歸功於分子 技術應用在分類學、診斷學和鑑單 病學、含數菌物種的定義所鑑 方式。分子技術鑑定法可整清菌 間 (interspecies) 和種內 (intraspecies) 的系統發育演化關係,並更新產生的 到態分類和過去鑑定方法所菌 型態分類的混淆。例如多個 具有相同的型態或表型特徵而歸類 在同一類群,藉由分子技術鑑定法可提供數據並明確判斷該分類群(taxonomic group)是否確實共享相同祖先之單系群(monophyletic)或者該分類群是否具有混合祖先的多系群(polyphyletic)。若經分生鑑定發現該分類群為多系群,則有必要將不具共同祖先的菌種轉移並命名到更合適的屬中。

過去十年間,黴菌物種名稱的變 化速度快又頻繁,為了保有原來名字 的特性,通常名稱更改屬名而保留種 名(例如,Scedosporium prolificans 變為 Lomentospora prolificans),但, 有些狀況,仍有屬名與種名同時更動 的情況發生,例如,Candida krusci 變為 Pichia kudriavzevii。黴菌命名的 更動必須嚴格遵循藻類、黴菌和植物 的植物命名規約 (International Code of Nomenclature) 來執行,由雙命名法 造成的重複命名則依照屬名建立的優 先順序決定。此篇文章回顧過去20 年來臨床重要黴菌的命名變化,將命 名變化納入實驗室報告並對臨床醫療 提出建議(表一)。

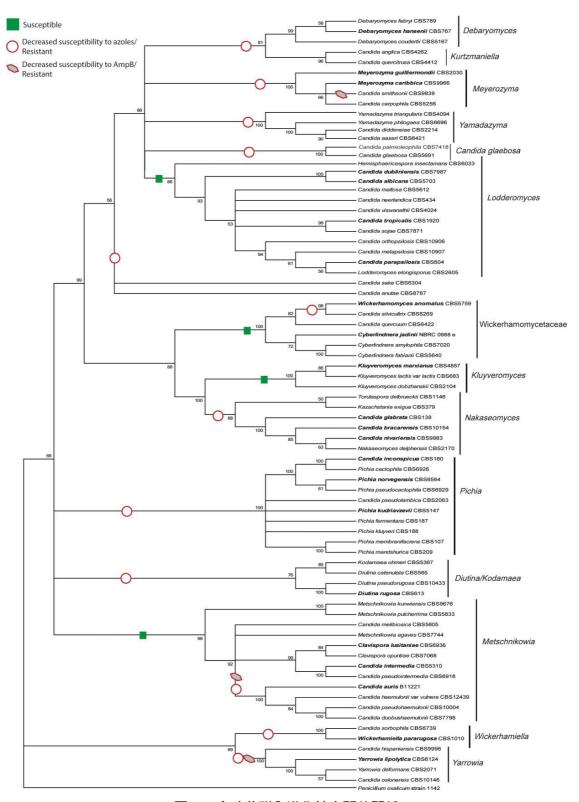
念珠菌屬(Candida):念珠菌屬 是世界各地公認造成侵襲性和淺表感 染最常見的人類致病菌屬,近年來 是經歷最多重新分類並引起臨床 野大質的關注。念珠菌命名 的問題在於最初根據相似的型態 的問題在於最初根據相似的型態 可確的有性型態而被分組在一起 因此並不符合「屬」的3個普遍接受 標準:(1)單系性(monophyly),即該屬內的所有物種都從共同的祖先進化而來;(2)屬內包含的物種數量合理緊湊;(3)該屬的成員皆具有進化而來的特徵。以念珠菌屬系統發育的研究而得到的進化枝(clade)具有較充分的佐證支持,更符合「屬」的定義。圖一概述了念珠菌群內進化枝之

表一 酵母菌型黴菌更名清單[1]

Previous Name(s)	Current Name	Commonly Associated Infections
Acremonium kiliense	Sarocladium kiliense	Fungemia, subcutaneous infections
Acremonium roseogriseum	Gliomastix roseogrisea	Not associated with infection
Acremonium strictum	Sarocladium strictum	Cutaneous, invasive infections
Arthroderma benhamiae	Trichophyton benhamiae	Cutaneous infections
Cerinosterus cyanescens, Sporothrix cyanescens	Quambalaria cyanescens	Peritonitis, pneumonia, postsurgical complications
Fusarium dimerum	Bisifusarium dimerum	Keratitis, invasive infections
Fusarium falciforme, Acremonium falciforme	Neocosmospora falciformis	Keratitis, invasive infections
Fusarium keratoplasticum	Neocosmospora keratoplastica	Keratitis, invasive infections
Fusarium lichenicola	Neocosmospora lichenicola	Keratitis, invasive infections
Fusarium petroliphilum	Neocosmospora petroliphila	Keratitis, invasive infections
Fusarium solani	Neocosmospora solani	Keratitis, invasive infections
Geosmithia argillacea, Penicillium argillaceum	Rasamsonia argillacea	Respiratory infections, especially in cystic fibrosis
Gibberella fujikuroi	Fusarium fujikuroi	Keratitis, invasive infections
Lecythophora hoffmannii, Phialophora hoffmannii	Coniochaeta hoffmannii	Subcutaneous infections
Microsporum cookei	Paraphyton cookei	Cutaneo(s infections
Microsporum fulvum	Nannizzia fulva	Cutaneous infections
Microsporum gallinae	Lophophyton gallinae	Cutaneous infections
Microsporum gypseum	Nannizzia gypsea	Cutaneous infections
Microsporum nanum	Nannizzia nana	Cutaneous infections
Microsporum persicolor	Nannizzia persicolor	Cutaneous infections
Neosartorya fischeri, Neosartorya pseudofischeri, Aspergillus thermomutatus	Aspergillus fischeri	Respiratory, invasive infections, allergic conditions
Veosartorya udagawae	Aspergillus udagawae	Respiratory, invasive infections, allergic conditions
Paecilomyces lilacinus	Purpureocillium lilacinum	Keratitis, cutaneous infections
Paecilomyces marquandii	Marquandomyces marquandii	Cutaneous infections (rare)
Penicillium marneffei	Talaromyces marneffei	Systemic infections
Penicillium purpureogenum	Talaromyces purpureogenus	Pulmonary infections (rare)
Trichophyton terrestre	Arthroderma terrestre	Doubtful pathogenicity
Trichophyton ajelloi	Arthroderma uncinatum	Cutaneous infections
Trichophyton mentagrophytes		
var interdigitale	Trichophyton interdigitale	Cutaneous infections
var mentagrophytes	Trichophyton mentagrophytes	Cutaneous infections
genotype VIII	Trichophyton indotineae	Cutaneous infections

間的關係。

三種常見的念珠菌病原體是 Candida albicans、Candida parapsilosis 和 Candida tropicalis,它們屬於 Lodderomyces 分枝·作為最大且具有單系性的進化枝之一,該進化枝保留了念珠菌這個名稱關的 Candida glabrata 與密切相關的 Candida bracarensis 和 Candida nivariensis 一起構成了 Nakaseomyces 分支的一部分,因此被轉移到一個新的屬—Nakaseomyces,更新後的名字分別為 Nakaseomyces glabrata、Nakaseomyces bracarensis和 Nakaseomyces nivariensis,儘管對該屬的正式描述仍有待確定。


Candida krusei 一度也被稱為 Issatchenckia orientalis、Candida gearinogenes 和 Pichia kudriavzevii,屬於 Pichia 分支,由於該屬名在命名時間上優先於其他名稱,因此被正式命名為 Pichia kudriavzevii。 Candida norvegensis 也同為構成 Pichia 分支的一部分,並已轉移到 Pichia norvegensis。Nakaseomyces 和 Pichia 分支均包含對唑類抗黴菌藥物 敏感性低或具內生性耐藥性 (intrinsic resistance) 的物種,因此這些重新分類的屬擁有特定的進化特徵,符合屬的第三個分類標準(圖一)。

藉由分析核糖體 18S 和內轉錄間隔核醣體 DNA (internal transcribed spacer ribosomal DNA, rDNA) 序列可完整區分 Candida rugosa 複合菌

群中的菌種,包括 Candida rugosa、Candida pararugosa、Candida neorugosa 和 Candida pseudorugosa;這些菌種與 Candida catenulata 和 Candida scorzettiae 共同合併到一個新屬— Diutina。另外尚有其他含有前念珠菌屬的新屬包括 Debaryomyces、Clavispora、Kluyveromyces、Meyerozyma、Wickerhamomyces和 Yarrowia。表一總結了迄今為止臨床重要酵母的命名變化。

近10年來在全球大規模流行的耳念珠菌 (Candida auris)目前與Candida duobhaemulonii 以及Candida vulturna 共同歸納為 Candida haemulonii 複合體 (Candida haemulonii 夜合體 (Candida haemulonii complex),然而事實上這些物種都屬於Clavispora分支,代表這些物種後續可能需要進行更名。另外在1968 才被提出的新興菌種— Candida blankii,根據最近的研究顯示其為多重抗藥性人類病原體,經鑑定後顯示目前並不屬於任何念珠菌分支。

隱球菌屬 (Cryptococcus):基於大規模系統發育證據,擔子菌酵母 (basidiomycetous yeasts) 也經歷了實質性的分類學變化。包括將 Cryptococcus neoformans 和 Cryptococcus gattii 兩者的複合體提升為種。其中包含 Cryptococcus neoformans var grubii 更名為 Cryptococcus neoformans sensu stricto; Cryptococcus neoformans var neoformans 更名為 Cryptococcus deneoformans。 Cryptococcus gattii 的

圖一 念珠菌群內進化枝之間的關係

5 個複合體則依照分子類型重新命名 為: Cryptococcus. gattii sensu stricto (基因型 AFLP4/VGI)、Cryptococcus bacillisporus (基 因 型 AFLP5/ VGIII)、Cryptococcus deuterogattii (AFLP6/VGII)、Cryptococcus tetragattii (基 因型 AFLP7/VGIV) 和 Cryptococcus decagattii (基 因型 AFLP10/VGVI)。

流行病學研究顯示不同的隱球 種 (Cryptococcus spp.) 對宿主有 特定偏好,且在抗黴菌藥物感受性 也有顯著差異。然而在菌種鑑定層 面仍存在完整鑑定的困難度,例間 基質輔助雷射脫附游離飛行時間 區分 Cryptococcus neoformans 複合體與 Cryptococcus gattii 複合體內的 各菌種,然而沒有此工具的實驗室 僅能鑑定出該菌株為 Cryptococcus neoformans 複合體或 Cryptococcus gattii 複合體。

另外,其他原本歸類在隱球菌屬但目前轉移到其他屬的菌種包括: Filobasidium magnum (原名為Cryptococcus magnus)、Naganishia adeliensis (原名為Cryptococcus adeliensis)、Naganishia albida (原名為Cryptococcus albidus)、Naganishia diffluens (原名為Cryptococcus diffluens)、Naganishia liquefaciens (原名為Cryptococcus liquefaciens) 和Papiliotrema laurentii (原名為Cryptococcus laurentii)。

假酶 (Pseudozyma): Pseudozyma species (假酵母菌)與 Ustilaginaceae (黑粉菌科)的黑穗菌 (smut fungi)密切相關,逐漸造成人類罹患黴菌血症的原因。雖然報導的病例很少,最常見的感染病原體為 Pseudozyma aphidis,此外還有 Pseudozyma antarctica、 Pseudozyma parantarctica、 Pseudozyma alboarmeniaca、 Pseudozyma churashimaensis、 Pseudozyma crassa、 Pseudozyma siamensis 與 Pseudozyma thailandica.。

該屬已被證明是多系群,許 多物種與黑粉菌科內的其他屬歸 類在一起。Pseudozyma aphidis、 P. antarctica 和 P. parantarctica 與 Moesziomyces bullatus 屬於同個群 體,因此共同轉移到 Moesziomyces, 新命名為Moesziomyces aphidis、 Moesziomyces antarcticus 和 Moesziomyces parantarcticus ° Pseudozyma churashimaensis 歸 類為新屬,現在稱為Dirkmeia churashimaensis • Pseudozyma crassa 被轉移到 Tridioomyces 更名為 Triodiomyces crassus; P. siamensis 被 轉移到 Ustilago (黑粉菌屬),稱為 Ustilago siamensis; 然而, 其中 P. alboarmeniaca 和 P. thailandica 的分 類地位仍有待解決。

毛孢子菌屬 (Trichosporon): 中國劉研究員團隊在2015年發表 關於 Trichosporon 屬的分類學修

訂,其團隊利用7個基因進行分 類,經修訂後仍分類在 Trichosporon 的菌種為: Trichosporon asahii、 Trichosporon asteroides \ Trichosporon coremiiforme \ Trichosporon dohaense \ Trichosporon faecale \ Trichosporon inkin \ Trichosporon japonicum 和 Trichosporon ovoides。 而轉移到其他屬的菌種包含: 1. Trichosporon montevideense 與 Trichosporon mycotoxinivorans 轉移到 Apiotrichum, 分別命名為 Apiotrichum montevideense 和 Apiotrichum mycotoxinivorans ° 2. Trichosporon cutaneum · Trichosporon jirovecii · Trichosporon dermatis \ Trichosporon mucoides、Cryptococcus curvatus 與 Cryptococcus cyanovorans 經分類後納 入新的屬 - Cutaneotrichosporon 全數 保留其物種名稱僅更改屬名。

【譯者評】分子技術鑑定法的蓬勃發展無疑是科學家尋找黴菌真正歸

參考文獻

- 1. Kidd SE, Abdolrasouli A, Hagen F: Fungal nomenclature: Managing change is the name of the game. Open Forum Infect Dis. 2023;10: ofac559.
- 2. 陳羿秀,歐玠皜,陳啟予:命名及鑑定植物病原真菌。2022 作物有害生物分類與鑑定技術在植物防檢疫之應用研討會專刊。2022; 236: 222-40。