的標準也一再降低，依美國職業安全衛生局（NIOSH，National Institute for Occupational Safety and Health ）原訂暴露標準為 1 ppm ，在 1992 年更修訂為 0.75 ppm ，更需提醒工作人員在使用此消毒劑時多加注意，不只注意自己安全，處理過器械用物亦要沖洗或排氣完全才可給病人使用。

參考文獻

1．Favero MS：Dialysis associated disease and their control．In：Benett JV d Brochman，PS（eds）：Hospital Infection， 2nd ed．Boston，Little Brown， 1986：267－282

2．Rutala WA：APIC Guideline for selec－ tion and use of disinfectants．Am J Infect Control 1990；18：99－117

3．盧光舜：消毒學（再版）台北南山堂出版社，1985：37－88

（IID流行病學暨生物統計專闌（九）

前 言

本期介紹的統計方法為二個類別變項間的統計方法，簡單的説類別變項就是資料非連續的，例如在臨床上我們在紀錄有多少人使用呼吸器，資料只會有 7 人使用呼吸器，而不會有 7.8 人使用呼吸器。而類別變項的統計方法就如探討住院病人有無使用導尿管，與得到院内泌尿道感染是否有關係，此時使用導尿管屬於類別變項，其資料只有『有』或『没有』二類，

而院内泌尿道感染也屬於類別變項，其資料是『已經得到院内泌尿道感染』或『没有得到院内泌尿道感染』，即變項的分類不同，只代表兩者不一様，且彼此間没有次序間的差異，探討這二個條件間是否有關聯存在，又稱關聯檢定或獨立性檢定，在臨床上常用的統計方法有 1 。卡方檢定 ［Chi－square（x²）test］2．Yate＇s correct test 3．費歇恰當檢定Fisher＇s exact test） 4. McNemar test 5．波以松檢定（Poisson test ）。

壹，卡方檢定（ $\mathrm{x}^{2}-$ test $)$

卡方檢定（ $\mathrm{x}^{2}-$ test ，或稱為Chi－ －square＂ $\mathrm{Chi}^{\prime \prime}$ 讀音與中文『開』同）是最常被廣泛應用的統計方法之一，卻也是最常被誤用與濫用的統計方法，其目的在於檢定在A變項的分類中屬某一項，是否在 B 變項的分類中較易屬於某一項，即説 A，B二個類別變項有關聯性，或此二個類別變項的檢定具有統計上的意義，反之，則此二個變項没有關聯性，或不具統計學上的意義。
一，適用條件：

1．類別變項一類別變項

2．兩組資料互相獨立
3．樣本是從母群體中随機抽樣
4．類別變項，A 變 項可區分為 c組（ $\mathrm{c}>=2$ ）， B 變項可分為 r組（r＞＝2）
5．其資料可安排成 r x 的表格
二，假設檢定：有無曝露於某危險因子的得病機率相同

三，檢定程序：
1．檢定每一細格之期望值是否過小 $(<5) ?$
2．檢定有無曝露於某危險因子的得病機率是否相同？
四，檢定統計量：

a, b, c, d 為 4 個細格的数值 N 為總様本數

1）$X^{2}=\Sigma((0-E) / E)^{2}$ 或
2）自由度 $=1$ 時，

$$
X^{2}=\frac{N(a d-b d)^{2}}{(a+b)(c+d)(a+c)(b+d)}
$$

五，範例：某一研究者，欲探討有無使用導尿管與院内泌尿道感染是否有關聯，其資料如下：

		使用導尿管		合 計
		是	否	
得泌尿	是	3	16	19
道感染	否	40	58	98
合	計	43	74	117

計算過程

1） Ho ：有無使用導尿管與得泌尿道感染無關
H1：使用導尿管與泌尿道感染有關
$\mathrm{P} 1=\mathrm{P} 2, \mathrm{P} 1=$ 使用者生病的機率， $\mathrm{P} 2=$ 末使用者生病的機率
2）計算每個格子的期望值
$\mathrm{E} 11=19 / 117 \times 43 / 17 \times 117=6.98$
$\mathrm{E} 12=19 / 117 \times 74 / 17 \times 117=12.02$
$\mathrm{E} 21=98 / 117 \times 43 / 17 \times 117=36.02$
$\mathrm{E} 22=98 / 117 \times 74 / 17 \times 117=61.98$
E11：代表使用導尿管並得到泌尿道感染。
E12：没有使用導尿管並得到泌尿道感染。
E21：使用導尿管且没有得到泌尿道感染。
E22：没有使用導尿管且没有得到泌尿道感染。
是否使用導尿管與得到泌尿道感染觀察值與預期值。

		是否使用導尿管		合 計
		是	否	
患 病	是	3（6．98）	16（12．02）	19
	否	40（36．02）	58（61．98）	98
合	計	43	74	117

3）計算 X^{2} 值 $\left[\mathrm{X}^{2}=\Sigma((0-\mathrm{E}) \mathrm{E})^{2}\right]$

$$
\begin{aligned}
X^{2}= & \frac{(3-6.98)^{2}}{6.98}+\frac{(16-12.02)^{2}}{12.02}+ \\
& \frac{(40-36.02)^{2}}{36.02}+\frac{(58-61.98)^{2}}{61.98} \\
& =4.28
\end{aligned}
$$

六，檢定結果

$$
X^{2} 95(1)=3.84, X^{2} 99(1)=6.63 \text { 因此 }
$$當 $\mathrm{X}^{2}=4.28$ 時， P 在 0.05 與 0.01 之間，即 $0.01<\mathrm{P}<0.05$ ，如果選擇 $\alpha=0.05$ ，就是拒絶Ho，而相信使用導尿管與泌尿道感染有關聯；若選擇 $\alpha=0.01$ ，則接受無差異之假設，就認為使用導尿管與泌尿道感染無關。

七，決策原則：
1．統計學家曾建議，當 $\mathrm{N}<20$ ，或 $20<\mathrm{N}$ <40 而其中有超過 20% 的期望次數小於 5 時，不要使用 X^{2} 檢定。
2．當我們計算 X^{2} 值以後，並不需由研究者去計算其機率，只要查由數理統計家所計算 \mathbf{X}^{2} 的機率表即可。在查表之前先要計算自由度，如範例 X^{2} 值大於 3.84 ,$~ \mathrm{P}<0.05$ ，小於 $6.63, ~ \mathrm{p}>0.01 \circ \mathrm{X}^{2}$ 值愈大，表示觀察值與預期值相差愈大，兩者可能從同一母全體中抽出之機率也愈小。
3．多項類別變項的卡方檢定其計算方法與

二項類別變項相同，只是自由度會因變項增加而增大。
4．計算自由度 $=(\mathrm{A}$ 變項之項數 -1 ） x （ B變項之項數 -1 ）。 X^{2} 表中最左邊之一縱列代表自由度，最上一横列代表面積或機率，二者之交叉點即代表臨界值。卡方分佈表

自由度 \backslash 臨界值	95%	99%
1	3.84	6.63
2	5.99	9.21
3	7.82	11.35
4	9.49	13.28
5	11.07	15.09
6	12.59	16.81
7	14.07	18.47
8	15.51	10.09
9	16.92	21.67

5．卡方檢定本身是在探究二個類別類項間是否『相關』。如果檢定結果『顯著』或『推翻無差異的假設』，則到底是 A變項引起 B 變項或B變項引起 A 變項，或互為因果，或只是具統計上的關連但完全没有因果關係，則需由研究者依研究法上的邏輯加以推定。亦即卡方檢定本身不假設因果關係的方向。
6． X^{2} 值受總樣本數影響甚大，當每個格次的百分比保持恆定，而增大總樣本數時，檢定結果可能就從不顯著轉變為顯著。因此如何決定適當的樣本數是卡方檢定中最難的課題。
八，卡方檢定的濫用
卡方檢定計算方便，瞭解容易，是檢定二個類別變項間關係的好方法，但也常遭到不當的濫用。最常見的濫用是任意將等距或等比變項化為類別變項，然後以卡方檢定處理之。甚至也有將二個等距／等比變項均化為類別變項，做卡方檢定。此種做法犯了二個錯誤：一是

如果是等距／等比資料，因其資料含有的訊息最豊富，將其分為若干組，則丢棄了很多資料，迫使利用敏感度較低的統計方法，易赹向於接受無效的假設。分組不同，卡方检定的結果就不相同，可能在一種分組方法下是接受假設而另一種分組法卻是推翻假設。

貳，Yate＇s corrected X^{i} test

一，適用條件：1．在 2×2 的卡方檢定中（亦即d．f．$=1$ ），最小的期望值小於 5 時， X^{2} 值分佈與 X^{2} 值機率分佈表並不完全符合，而有稍微的誤差，對誤差的修正稱為Yate＇s correction。亦即自由度為1時，

$$
\mathrm{X}^{2}=\frac{(|0-\mathrm{E}|-0.5)^{2}}{\mathrm{E}} \text { 做了修正 } \mathrm{X}^{2} \text { 值比 }
$$

不修正小了一點，使之更接近自由度 $=1$ 的 X^{2} 分佈。
2．在多項類別的卡方檢定，若總數界於 20至 40 之間時，且有超過 20% 的期望值小於5時，一定要使用Yate＇s correction。
二，假設檢定：有無曝露於某危險因子的得病機率相同
三，檢定程序：
1．檢定每一細格之期望值是否過小

$$
(<5) ?
$$

2．檢定有無曝露於某危隃因子的得病機率是否相同？
四，檢定統計量 ：

$$
\text { 1) } X^{2}=\frac{(|0-E|-0.5)^{2}}{E}
$$

2）當自由度為1時，

$$
X^{2}=\frac{N(|a d-b d|-N / 2)^{2}}{(a+b)(c+d)(a+c)(b+d)}
$$

五，範例：某研究者研究26位男性冠狀心臓病患者，其插心導管與院内心内膜炎的關係，其資料如下

		使用心導管		合 計
		是	否	
得心內	是	13	1	14
膜炎	否	5	7	12
合	計	18	8	26

計算過程（代入公式）
$\mathrm{X}^{2}=\frac{26 \mathrm{x}(|13 \times 7-5 \times 1|-26 / 2)^{2}}{14 \times 12 \times 18 \times 8}$
$=5.73$
六，檢定結果
$\mathrm{X}^{2} 95(1)=3.84, \mathrm{X}^{2} 99(1)=6.63$ 因此當 $\mathrm{X}^{2}=5.73$ 時， P 在 0.05 興 0.01 之間，即 0.01 $<\mathrm{P}<0.05$ ，如果研究者選擇 $\alpha=0.05$ ，就是拒絶Ho，而相信使用心導管與心内膜炎有關聯；若選擇 $\alpha=0.01$ ，則接受無差異之假設，即使心導管與心内膜炎無關。七，決策原則：

1．校正後的值將比未校正的值小，亦即較不容易拒絶Ho，是比較保守的做法但卻能得到較可靠的結論；一般 X^{2} 值若在推翻與接受的臨界䢟緣上，修正後則為『接受無效假設』。

2．理論上説，自由度為1時應一律做 Yate＇s 修正，但如 $\mathrm{O}-\mathrm{E}$ 的絶對值很大，則減或不減 0.5 對 X^{2} 並不産生影響。 （待續）

