的標準也一再降低,依美國職業安全衞生局(NIOSH,National Institute for Occupational Safety and Health)原訂 暴露標準為1ppm,在1992年更修訂為 0.75ppm,更需提醒工作人員在使用此消 毒劑時多加注意,不只注意自己安全,處 理過器械用物亦要沖洗或排氣完全才可給

參考文獻

1.Favero MS: Dialysis associated disease and their control. In:Benett JV d Brochman, PS(eds):Hospital Infection,
2nd ed. Boston, Little Brown,
1986:267-282

2.Rutala WA: APIC Guideline for selection and use of disinfectants. Am J

-

- :

Infect Control 1990;18:99-117 3.盧光舜:消毒學(再版)台北南山堂出 版社,1985:37-88

次序間的差異,探討這二個條件間是否有 關聯存在,又稱關聯檢定或獨立性檢定, 在臨床上常用的統計方法有 1.卡方檢定 [Chi-square(x²)test] 2.Yate's correct test 3.費歇恰當檢定Fisher's exact test) 4. McNemar test 5.波以松檢定(Poisson test)。

料非連續的,例如在臨床上我們在紀錄有
多少人使用呼吸器,資料只會有7人使用
呼吸器,而不會有7.8人使用呼吸器。而
類別變項的統計方法就如探討住院病人有
無使用導尿管、與得到院內泌尿道感染是
否有關係,此時使用導尿管屬於類別變
項,其資料只有『有』或『没有』二類,

中華民國82年6月第3卷第2期

壹、卡方檢定(x ² -t	est)
卡方檢定 (x ² -test,	或稱為Chi-
-square "Chi"讀音與中文『	開』同)是
最常被廣泛應用的統計方法之	一,卻也是
最常被誤用與濫用的統計方法	, 其目的在

1) $X^2 = \Sigma((0-E)/E)^2$ 或 2)自由度=1時,

$$X^{2} = \frac{N (ad - bd)^{2}}{(a + b)(c + d)(a + c)(b + d)}$$

五、範例:某一研究者,欲探討有無使用 導尿管與院內泌尿道感染是否有關

於檢定在A變項的分類中屬某一項,是否
在B變項的分類中較易屬於某一項,即說
A,B二個類別變項有關聯性,或此二個
類別變項的檢定具有統計上的意義,反
之,則此二個變項没有關聯性,或不具統
計學上的意義。
一、適用條件:
1.類別變項—類別變項
2.兩組資料互相獨立
3. 樣本是從母群體中隨機抽樣
4. 類別變項, A 變項可區分為c
組(c>=2),B變項可分為r
組(r>=2)
$\operatorname{AL}(1) = 27$
5.其資料可安排成r x c的表格
5.其資料可安排成r x c的表格
5.其資料可安排成r x c的表格 二、假設檢定:有無曝露於某危險因子的
5.其資料可安排成r x c的表格 二、假設檢定:有無曝露於某危險因子的 得病機率相同
5.其資料可安排成r x c的表格 二、假設檢定:有無曝露於某危險因子的 得病機率相同 三、檢定程序:
 5.其資料可安排成r x c的表格 二、假設檢定:有無曝露於某危險因子的 得病機率相同 三、檢定程序: 1.檢定每一細格之期望值是否過小

聯,其資料如下:

	使月	月導尿管		
	是	否	一 合計	
得泌尿 是	3	16	19	
得泌尿 是道感染 否	40	58	98	
合	計 '43	74	117	
計算過程				

1)Ho: 有無使用导体官與待淡体理感采無 關 H1:使用導尿管與泌尿道感染有關

.**#**

P1=P2,P1=使用者生病的機率,P2=未 使用者生病的機率 2)計算每個格子的期望值 $E11 = \frac{19}{117} \times \frac{43}{17} \times \frac{117}{17} = 6.98$ $E12 = \frac{19}{117} \times \frac{74}{17} \times \frac{117}{117} = 12.02$ $E21 = 98/1.17 \times 43/17 \times 117 = 36.02$ $E22 = 98/117 \times 74/17 \times 117 = 61.98$ E11: 代表使用導尿管並得到泌尿道感 染。 E12: 没有使用導尿管並得到泌尿道感

病機率是否相同?		染。
四、檢定統計量:		E21:使用導尿管且没有得到泌尿道感
		染。
a b $\begin{vmatrix} a+b \end{vmatrix}$		E22:没有使用導尿管且没有得到泌尿
$\begin{array}{cccc} a & b & a+b \\ c & d & c+d \end{array}$	a,b,c,d為4個	道感染。
a+c b+d n	細格的數值	是否使用導尿管與得到泌尿道感染觀察
	N為總樣本數	值與預期值。

院內感染控制通訊

			是否使月	利導尿管	
			是	否	合計
患	病	是	3(6.98)	16(12.02)	19
	7PJ	否	40(36.02)	58(61.98)	98
<u>合</u>		計	43	74	117

3)計算X²值 [X²= $\Sigma((0-E)E)^2$]

£7

*

ન્

二項類別變項相同,只是自由度會因變 項增加而增大。 4.計算自由度=(A變項之項數-1)x(B變項之項數—1)。X²表中最左邊之 一縱列代表自由度,最上一横列代表面 積或機率,二者之交叉點即代表臨界值。 卡方分佈表

自由度\臨界值	95%	99%
1	3.84	6.63
2	5.99	9.21
3	7.82	11.35
4	9.49	13.28
5	11.07	15.09
6	12.59	16.81
7.	14.07	18.47
8	15.51 [.]	10.09
9	16.92	21.67
5. 卡方檢定本身是在掛	采究二個類	別類項間
是否『相關』。如身	果檢定結果	『顯著』
或『推翻無差異的化	叚設』,則	到底是A
變項引起B變項或]	B變項引起	A 變項,

拒絶Ho,向相信使用導尿管與泌尿道感	或互為因果,或只是具統計上的關連但
染有關聯;若選擇α=0.01,則接受無差	完全没有因果關係,則需由研究者依研
異之假設,就認為使用導尿管與泌尿道感	究法上的邏輯加以推定。亦即卡方檢定
染無關。	本身不假設因果關係的方向。
七、決策原則:	6.X ² 值受總樣本數影響甚大,當每個格次
1.統計學家曾建議,當N<20,或20 <n< td=""><td>的百分比保持恆定, 而增大總樣本數</td></n<>	的百分比保持恆定, 而增大總樣本數
<40而其中有超過20%的期望次數小於	時,檢定結果可能就從不顯著轉變為顯
5時,不要使用X2檢定。	著。因此如何決定適當的樣本數是卡方
2. 當我們計算X ² 值以後,並不需由研究者	檢定中最難的課題。
去計算其機率,只要查由數理統計家所	八、卡方檢定的濫用
計算X ² 的機率表即可。在查表之前先要	卡方檢定計算方便,瞭解容易,是檢
計算自由度,如範例X2值大於3.84	定二個類別變項間關係的好方法,但也
,P<0.05,小於6.63,p>0.01。X²值	常遭到不當的濫用。最常見的濫用是任
愈大,表示觀察值與預期值相差愈大,	意將等距或等比變項化為類別變項,然
兩者可能從同一母全體中抽出之機率也	後以卡方檢定處理之。甚至也有將二個
愈小。	等距/等比變項均化為類別變項,做卡
3. 多項類別變項的卡方檢定其計算方法與	方檢定。此種做法犯了二個錯誤:一是

拒絶Ho,而相信使用導尿管與泌尿道感	或互為因果,或只是具統計上的關連但
染有關聯;若選擇α=0.01,則接受無差	完全没有因果關係,則需由研究者依研
異之假設,就認為使用導尿管與泌尿道感	究法上的邏輯加以推定。亦即卡方檢定
染無關。	本身不假設因果關係的方向。
七、決策原則:	6.X ² 值受總樣本數影響甚大,當每個格次
1.統計學家曾建議,當N<20,或20 <n< td=""><td>的百分比保持恆定,而增大總樣本數</td></n<>	的百分比保持恆定,而增大總樣本數
<40而其中有超過20%的期望次數小於	時,檢定結果可能就從不顯著轉變為顯
5時,不要使用X2檢定。	著。因此如何決定適當的樣本數是卡方
2. 當我們計算X ² 值以後,並不需由研究者	檢定中最難的課題。
去計算其機率,只要查由數理統計家所	八、卡方檢定的濫用
計算X ² 的機率表即可。在查表之前先要	卡方檢定計算方便,瞭解容易,是檢
計算自由度,如範例X2值大於3.84	定二個類別變項間關係的好方法,但也
,P<0.05,小於6.63,p>0.01。X²值	常遭到不當的濫用。最常見的濫用是任
愈大,表示觀察值與預期值相差愈大,	意將等距或等比變項化為類別變項,然
兩者可能從同一母全體中抽出之機率也	後以卡方檢定處理之。甚至也有將二個
愈小。	等距/等比變項均化為類別變項,做卡
3. 多項類別變項的卡方檢定其計算方法與	方檢定。此種做法犯了二個錯誤:一是

中華民國82年6月第3卷第2期

34

如果是等距/等比資料,因其資料含有 的訊息最豐富,將其分為若干組,則丢 棄了很多資料,迫使利用敏感度較低的 統計方法,易趨向於接受無效的假設。 分組不同,卡方檢定的結果就不相同, 可能在一種分組方法下是接受假設而另 一種分組法卻是推翻假設。

2) 當自由度為1時,

$$X^{2} = \frac{N(|ad - bd| - N/2)^{2}}{(a + b)(c + d)(a + c)(b + d)}$$

五、範例:某研究者研究26位男性冠狀心 臟病患者,其插心導管與院內心內膜 炎的關係,其資料如下

貳、Yate's corrected X² test 一、適用條件:1.在2x2的卡方檢定 中(亦即d.f.=1),最小的期望 值小於5時,X²值分佈與X²值機率 分佈表並不完全符合,而有稍微 的誤差,對誤差的修正稱為Yate's correction。亦即自由度為1時, $X^2 = \frac{(|0 - E| - 0.5)^2}{E}$ 做了修正X²值比

	· · · · · · · · · · · · · · · · · · ·	使用心導管		- 슴 計
		是	否	合 計
得心內	是	13	1	14
膜炎	否	5	7	12
<u>人</u>		18	8	26
		10		20
	程(代入 6x(13x7- 14x]		26/2) ²	

. -

不修正小了一點, 使之更接近自由 度=1的X²分佈。

2. 在多項類別的卡方檢定, 若總數界於20 至40之間時,且有超過20%的期望值小 於5時,一定要使用Yate's correction。 二、假設檢定:有無曝露於某危險因子的 得病機率相同 三、檢定程序:

35

1. 檢定每一細格之期望值是否過小

六、檢定結果

X²95(1)=3.84,X²99(1)=6.63因此當 X²=5.73時,P在0.05與0.01之間,即0.01 <P<0.05,如果研究者選擇a=0.05,就 是拒絶Ho,而相信使用心導管與心內膜 炎有關聯;若選擇 $\alpha = 0.01$,則接受無差 異之假設,即使心導管與心內膜炎無關。 七、決策原則: 1. 校正後的值將比未校正的值小,亦 即較不容易拒絶Ho,是比較保守的做法

的結論;一般X²值若在

(<5) ?	但卻能得到較可靠的結論;一般X2值若在
2. 檢定有無曝露於某危險因子的得	推翻與接受的臨界邊緣上,修正後則
病機率是否相同?	為『接受無效假設』。
四、檢定統計量:	2. 理論上說, 自由度為1時應一律做
	Yate's修正,但如O-E的絶對值很大,
$1)X^{2} = \frac{(0 - E - 0.5)^{2}}{E}$	則減或不減0.5對X²並不產生影響。
	(待續)

院內感染控制通訊