$$
P i=\frac{(a+b)!(c+d)!(a+c)!(b+d)!}{N!a!b!c!d!}
$$

其原理相當簡單，即將直行與横列的和當做常數或固定值，正確的（exactly）來計算各細格（cell）之排列組合會達到所觀察到的那種極端或更極端的機率。
一，適用條件：1． 2×2 卡方檢定，若 $\mathrm{N}<20$ 且其中超過 20% 的細格小於 5時。

二，假設檢定：有無曝露於某危險因子的得病機率相同
三，檢定程序：
1）檢定每一細格之期望值是否過小 $(<5) ?$
2）檢定有無曝露於某危險因子的得病機率是否相同？
四，檢定統計量：

a，b，c，d為4個細格的數值 N 為總様本數

五，範例：某研究者研究17位呼吸窘迫的患者，其使用吸呼器與肺炎的關係，其資料如下：
（設 $\alpha=0.05$ ）

		使用呼器		合
		是	否	
得肺炎	是	4	1	5
	否	6	6	12
合		計	10	7

計算過程：在計算時，先找數目最小之細格，計算其Pi值，再將最小細格減 1，重新調整其他三個細格的數目，（亦即分佈更為極端），再計算 Pi ，反覆為之，直至最小細格數為 0 為止。將各 Pi值相加，即為 P 值。

1） Pi 即為該特定排列組合之機率

$$
\mathrm{Pi}=\frac{5!\times 12!\times 7!\times 10!}{17!\times 1!\times 4!\times 6!\times 6!}=0.238
$$

$$
(* 5!=5 \times 4 \times 3 \times 2 \times 1)
$$

2）比上述更極端的排列組合則為

5	0	5
5	7	12
10	7	17

此特定排列組合發生之機率則為

$$
\begin{aligned}
& \mathrm{Pi}=\frac{5!\times 12!\times 7!\times 10!}{17!\times 0!\times 5!\times 7!\times 5!}=0.041 \\
& \quad\left({ }^{*} 0!=1\right)
\end{aligned}
$$

3） $\mathrm{P}=.238+.041=.279>0.05$
六，檢定結果： $\mathrm{P}>0.05$ ，則接受無差異之假設，即使用呼吸器與肺炎無關。七，決策原則：

1．檢測預期值是否小於或等於5，最簡單的試探方法是從行與列之邊緣總數（marginal totals）中各選較小者，然後再兩者相乘，再除以（總數），所得的值是否小於或等於5。
2．預期值小於或等於5，不宜用一般的卡方檢定其理由有二：一為様本數可能過小，因此無法使每個細格的預期值大於 5 。第二種情形雖然様本數不小，但p（某事件發生的機率，如發生院内感染），或（1 -p ）（某件事不發生的機率，如不發生院内感染），兩者之一太小，如 p 很小，則（ $\mathrm{a}+\mathrm{c}$ ）$\times \mathrm{p}$或（ $\mathrm{b}+\mathrm{d}$ ）$\times \mathrm{p}$ 就不易達到 5 以上。因預期值很小而達不到5，則因機會引起差別的可能性增大（不是真正的差別機會增大）。

肆，McNemar＇s test for paired sample

McNemar氏考驗又稱為非獨立様本比率數的卡方考驗（ Chi －square test for independent sample proportions），或稱為相依樣本的卡方檢定。主要探討惯驗前後由『是』變為『否』與由『否』變為『是』的個數是否相等，因此被稱為『改變的顯著檢定』。
一，適用條件：

1．類別變項一類別變項

2．兩相依様本（即相同人，在不同時間做測量或配對资料）
3．僅適用於 2×2 的表格
4．様本是從母群體中隨機抽様
二，假設檢定：惯驗前後，選擇『是』的百分比没有改變
三，檢定程序：檢定惯驗前後，選擇『是』的百分比是否没有改變？
四，檢定統計量：此時直行與横行不再分別代表2個變數，而是表示同一變數在不同時間（情况）下，先後『重複測驗』的結果。其資料形式可排成如下格式：

容验後（或惯验組）			
	是	否	
惯 摈 是	A	B	A + B
前笡否	C	D	C＋D
	A＋C	B＋D	N

A，B，C，D為4個細格的數值 N 為總様本數

$\mathrm{X}^{2}=\frac{(|\mathrm{B}-\mathrm{C}|-1)^{2}}{\mathrm{~B}+\mathrm{C}}$
$\mathrm{H}_{0}: \mathrm{P} 1=\mathrm{P} 2$ 或 $\mathrm{B}=\mathrm{C}$
$\mathrm{H}_{1}: \mathrm{P} 1 \neq \mathrm{P} 2$ 或 $\mathrm{B} \neq \mathrm{C}$

五，範例：某研究者想了解 80 名新進人員職前教育，對肺結核患者是否需採取『耐酸性桿菌隔䧸』的認知，採用在授課前後兩次測量其資料如下

	上課後			
		是	否	
	是	11	2	13
$\begin{aligned} & \text { 㸕 } \\ & \text { 前 } \end{aligned}$	否	47	20	67
		58	22	80

計算過程（代入公式）

$$
\mathrm{X}^{2}=\frac{(|47-2|-1)^{2}}{47+2}=39.51
$$

六，檢定結果： $39.51>X^{2} 99(1)=6.63 \Rightarrow P$, $\mathrm{P}<0.01$ 達統計顯著拒絶 H_{0} ，即職前教育改變了新進人員的隔離技術觀念。
七，決策原則
如果是重複測量，總様本數 N ，即代表擁有 N 個人（樣本）參興研究。若是配對資料（即實験組與控制組配對），則總様本數 N 代表有 N 様本參與研究，實際上是 2 N 個人。

伍，波以松檢定（Poisson test）

一，適用條件：某事件，發生的機率很小，亦即 p 值很小，通常在 0.01 以下，而q很大，通常在 0.99 以上，而且此機率為已知或沍定，因此即使抽取相當大的様本數， $\mathrm{n} \times \mathrm{p}$ 仍然小於 5 。
二，假設檢定：兩組資料之發生率相等。
三，檢定程序：檢定兩組資料之發生率是否相等？
四，檢定統計量：

波以松分佈的公式 $\mathrm{P}(\mathrm{x})=\frac{\mathrm{e}^{-\lambda} \times \lambda^{\mathrm{a}}}{\mathrm{X}!}$
$\mathrm{P}(\mathrm{a})$ ：為様本中，某事件正好發生a次的機率
e ：為自然對數，即2．7183
λ ：為様本中之預期發生數，即 n x p 。此處之 p 亦為某事件之惯常發生率或已知母全䯏之發生率。 a ：為樣本中之惯際發生數，亦即觀察值。
五，範例：假設台灣地區近斯年來，地區䜿院的院内感染發生率為千分之 7 ，若甲䜿院79年度住院總人數達 1000次，而只有二例院内感染，則是否可宣稱此醫院的院内感染率比全國低？

$$
\begin{aligned}
& \mathrm{H}_{0}: \mathrm{P}_{1}=\mathrm{P}_{0}, \mathrm{H}_{1}: \mathrm{P}_{1}<\mathrm{P}_{0} \\
& \text { 設 } \alpha=0.05
\end{aligned}
$$

計算過程：先計算 0 次的機率（代入公式），再計算 1 次的機率，再計算 Pi ，反覆為之，直至實際發生次數。將各Pi值相加，即為P值。
$\lambda=\mathrm{n} \times \mathrm{p}=1000 \times 0.007=7$
$P(0)=\frac{\mathrm{e}^{-7} \times 7^{0}}{0!}=0.0009$
$P(1)=\frac{e^{-7} \times 7}{1!}=0.0064$
$P(2)=\frac{\mathrm{e}^{-7} \times 7^{2}}{2!}=0.0223$
＊ 0 ！$=1,1!=1,2!=2 \times 1$
發生 2 次（包括 2 次）以下之機率為
$0.0009+0.0064+0.0223=0.0296$
$\mathrm{P}<\alpha$ ，甲覧院之院内感染率較全國為低。
＊本文箞例之數字為假設資料。

