DOI: 10.6526/ICJ.202212_32(6).0006

專 欄

開放伴侶動物使用人用抗生素與人類健康的關係與因應措施

郭書辰1 楊雅頌2,3 王復德4,5

1國家衛生研究院 感染症與疫苗研究所 2三軍總醫院 內科部感染科 3國防醫學院 醫學系內科學科 4臺北榮民總醫院 內科部感染科 5陽明交通大學 醫學系內科學科

前言

近來「開放人用抗生素給伴侶動物」的議題引發熱議,有人基於動物福祉贊成開放。也有人憂心延伸使用將造成抗藥性並進一步影響人類的健康。本文將回顧文獻,探討伴侶動物使用抗生素與人類健康的關係與因應措施。

抗生素使用所造成的抗藥性乃極為重要的健康議題,在對抗抗藥性的全盤考量下,動物微生物抗藥性亦不能忽略。基於「防疫一體/健康一體」(one health) 的架構,我們已知過去有許多抗藥性的案例在動物與人類微生物間傳播,雖然多為食用動物,但也多有伴侶動物的案例。因此,伴

侶動物使用抗生素造成之抗藥性有進 一步影響人類健康的可能,理當有適 當的監管,然而實施的強度需要考量 造成抗藥性的風險高低以及實務上的 可行性。

本文整理歐盟開放抗生素給動物 使用的原則與建議,也提供人醫面對 抗藥性之相關案例與策略,作為開放 伴侶動物使用人用抗生素時,訂定相 關管制措施的參考。

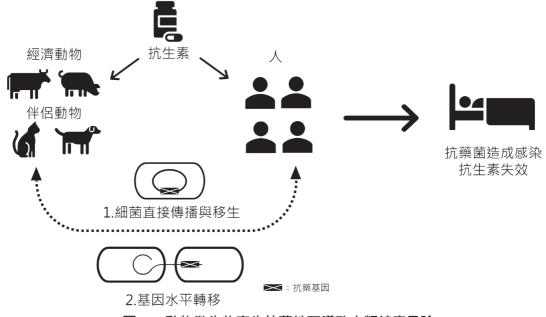
抗生素使用所造成的抗藥性為 各國重視之健康議題

抗生素濫用最嚴重的後果是抗藥性,進而導致治療失敗,延長病人 住院,甚至死亡。而且,微生物可以

對抗抗藥性,須同時考量動物 微生物產生的抗藥性,在「防疫 一體/健康一體」架構下進行

過去對微生物抗藥性的監測與 防治政策多聚焦於人類,各國政府投 注的資源以鼓勵相關控制與研究,例 如醫院感染管制、抗藥性監測、抗生 素管控、與鼓勵新藥研發等。近十年 動物致病菌的抗藥性逐漸成為焦點, 過去曾多次發生人畜共通抗藥性病原 體以及基因的傳播,特別是 2015 年 mcr 抗藥基因的發現,以及 mcr 在 人、動物、與環境之間的全球傳播 [5],更讓各國體認到人、動物、與 環境之健康,實為不可分的防疫一體 /健康一體 (one health)。抗藥性危害 的不僅限於人類,同時也會造成經濟 動物死亡、環境污染等跨物種、跨疆 界的影響。因此各國在對抗抗藥性的 策略中,不僅僅只有人類醫療體系與 主管機關參與,皆會納入其他不同的 領域,包括農業機關及獸醫。在防 疫一體/健康一體的架構下,共同合 作,共擬策略。

抗藥性在動物與人類微生物間 傳播之往例


Levy 的團隊在 1974 年的前瞻、 介入性研究證實了動物使用抗生素如 何導致抗藥性出現在人類微生物之中 [6]。研究人員選擇的區域中一家未 曾使用抗生素的農場,在雞隻飼料中 添加 tetracycline,之後定期檢驗雞隻 與人類的糞便是否有抗藥細菌。接受 觀察的人類包括飼養者、其家人、以 及與受試農場距離八公里內的五戶 農人鄰居。給予 tetracycline 前,雞 隻糞便中的 tetracycline 抗藥比率大 多在 0.1% 以下,而給予 tetracycline 的一兩天後就發現雞隻糞便中抗 tetracycline 細菌比率快速增加,兩 週內,90% 雞隻糞便中都是抗藥細 菌。飼養者家庭成員的腸道菌的改 變雖然緩慢但仍然顯著,五到六個 月後,送檢的糞便中三成有高濃度 的抗藥細菌,再遠一點的鄰人,影 響則較小。另外,研究顯示,細菌 不僅僅對於 tetracycline 抗藥,更造 成其他抗生素的抗藥 (如 penicillin 或 carbenicillin),推測這些多重抗藥性 可能是抗藥基因於質體中傳播。因 此,使用一種抗生素,亦可造成其他

的抗藥性增加。Levy 後續進行諸多類似研究,提供動物使用抗生素而導致抗藥微生物傳播至人類的充分證據。

許多動物腸內菌種與人類相同, 如大腸桿菌 ST131 分型是人類常見 的感染菌種,但也曾自動物腸道中分離出[10]。而腸內菌的抗藥基因,例如廣效性乙內醯胺酶 (extendedspectrum β -lactamases)、碳青黴烯酶 (carbapenemases) [10],皆曾出現在伴侶動物、食用動物與人類之間傳播的例子。攜帶 mcr 基因的質體,也曾在許多國家的人類與動物腸內菌中同時被檢驗出[11]。

伴侶動物使用人用抗生素造成之 抗藥性如何影響人類健康

於伴侶動物 (貓、狗等) 使用抗生素最大的疑慮是會造成動物身上微生物產生抗藥性,並進而傳播到人類[注釋1],如果微生物能在人體中長期存活,或是抗藥基因能轉移到中長期存活,或是抗藥基因能轉敵一般抗藥性將導致一般抗生素、造些抗藥性將導致一般抗生素、失效(圖一)。抗藥性的傳播分為抗藥

圖一 動物微生物產生抗藥性而導致人類健康風險

微生物本身的傳播 (clonal spread),或者是抗藥基因的傳遞 (horizontal transfer)。如果是靠微生物本身身 播抗藥性,則需要微生物形成體 (colonization)以持續存留在人體 時間,進而同機形成感染,如金蘭 時間,進而同機形成菌,如金蘭 所有許多共通的常在菌。如reus) 屬球菌 (Staphylococcus aureus) (Enterobacterales),皆有機藥基人 質體、跳耀子等)的形式傳遞,長 動物身上共存等)的形式傳遞,長 質體接或間接的基因體內 作人體 行在人體。

動物微生物的抗藥性出現後,不一定立即傳播給人類,但若不妥善控制,在動物身上的微生物會形同抗藥基因的儲存庫 (reservoir),儲存許多抗藥基因或細菌,類似水庫若不妥善監測與維護,終將潰堤 (spillover),嚴重影響人類。

歐盟開放人用抗生素給動物的原 則與使用建議

歐盟藥物管理局之專家小組 (antimicrobial advice ad hoc expert group, AMEG),已於 2014 針對人用抗生素是否能用於動物使用給予相關分類與建議,並進而在 2019 年更新 [12]。本文整理最新版本之重點,包括分類理由、分類項目與建議使用方式。

一、分類理由

分類的最重要考量為「於動物使 用抗生素所造成的抗藥性是否會造成 人類健康重大影響」,考量面向十分 廣泛,總結如下:

- 1. 與抗生素本身相關: 化學結構、藥理特性、抗菌範圍、抗藥機轉。
- 2. 與使用情況相關:對動物與人類的重要性(WHO [13]與(Office International des Epizooties, OIE) [14]皆有其分類) [注釋2]、動物或人類是否有其他替代抗生素、使用的動物種類(體重與數量)、適應症(治療、預防、接觸疾病動物後預防給予)、對局量、時間、途徑、藥物動力學、對腸胃道菌叢影響(濃度、抗藥性產生與持續排出機率)。
- 3. 與抗藥性相關:是否為病原體、是否可在人體存活或僅在動物身上存活、抗藥性盛行率、傳播能力。
- 4. 與環境傳播相關: 抗生素是否 在污水中維持作用、抗藥性是否能存 在於堆肥中、可否藉由環境傳播。

二、分類項目與建議使用方式

AMEG 將抗生素分成四類 (表一):

Category A: 包括對人類極重要的抗生素,於歐盟不核准於動物使用。歐盟建議避免使用 (avoid) 於動物,特別不可在經濟動物使用。但在伴侶動物有嚴重感染時,且無其他抗生素有效,僅剩此類藥物是有效的抗

歐盟對於人用抗生素使用於動物上的四種分類與建議 (節錄自歐盟 https://bit.ly/30ZEuRi) [12]

表一

				:
⋖	Amainopenicilins		Drugs used solely to treat tuberculosis or	Glycopeptides
(AVOID)	necillinam	Meropenem	otner	vancomycin
	Ketolides		mycobacterial diseases	Glycylcyclings
	relithromycin	dantomycin	isoniazid	tigecycline
	Monobactams	Oxazolidinones	pvrazinamide	Phosphonic acid derivates
	aztreonam	linezolid	ethionamide	fosfomycin
	Rifamycins (except rifaximin)	Riminofenazines	Other cephalosporins and penems (ATC	Pseudomonic acids
	rifampicin	clofazimine	code J01DI), including combinations of	mupirocin
	Carboxypenicillin and ureidopenicillin,	Sulfones	3rd-generation cephalosporins with beta	Substances newly authorized in human
	including combinations with B-lactamase	9	lactamase inhibitors	medicine following publication of the
	inhibitors	Streptogramins	ceffobiarole	AMEG categorisation
	nineracillin-tazobactam	pristinamycin	ceffaroline	to be determined
	Piperacimin cazonaciami	virginiamycin	ceftolozane-tazobactam	
			faropenem	
Ω	Cephalosporins, 3rd- and 4th-generation,	ns	: fluoroc	uinolones
(TOIGTS19)	with the exception of combinations with β -	colistin		
(NESTRICT)	lactamase inhibitors	polymyxin B	ii.	
	cefoperazone		difloxacin orbifloxacin	
	cefovecin cefaunome		= 1.	
	ceftiofur		ibafloxacin	
U	Aminoglycosides (except spectinomycin)	combination with β-	Amphenicols	Macrolides
(CALITION)	amikacin	lactamase inhibitors	Chloramphenicol	erythromycin
(NOLION)	apramycin	amoxicillin + clavulanic acid	florfenicol	gamithromycin
	dihydrostreptomycin	ampicillin + sulbactam	thiamphenicol	oleandomycin
	framycetin	Cephalosporins, 1st- and 2nd-generation, and Lincosamides	Lincosamides	spiramycin
	gentamicin	cephamycins	Clindamycin	tilaipirosin
	Kalidillýcili neomycin	cefacetrile	lincomycin	tulathromycin
	paromomycin	cefadroxil	pirlimycin	tylosin
	streptomycin	cefalexin		tylvalosin
	tobramycin		Pleuromutilins	Rifamycins: rifaximin only
			tiamulin	rifaximin
		cetapirin cefazolin	valnemulin	
٥	Aminopenicillins, without β-lactamase	osides:spectinomycin only	Sulfonamides, dihydrofolate reductase inhibitors and combinations	bitors and combinations
٥	inhibitors		formosulfathiazole sulfalene	
(PRUDENCE)	amoxicillin		le	
	ampicillin			
	metampicillin		Sulfactiorpyridazine sulfamethoxazore sulfactozine	azine
	letracyclines	Anti-staphylococcal penicinins (p-lactamase-		ine
	chlortetracycline doxycycline	resistant penicillins)	ine	
	oxytetracycline	dicloxacillin	е	
	tetracycline	nafcillin	Sulfadoxine sulfaquinoxaline Sulfafurazole sulfathiazole	
	Natural, narrow-spectrum penicillins (β-lactamase-sensitive penicillins)		Cyclic polypeptides	Nitroimidazoles
	benzathine benzylpenicillin		bacitracin	metronidazole
	benzatiline prierioxymetriyipemeni benzylpenicillin			
	penethamate hydriodide			:
	pheneticillin		Steroid antibacterials	Nitrofuran derivatives
	phenoxymethylpenicillin		Tusidic acid	Turaitadone furazolidone
	procaine benzyipenicillin			

生素,方可考慮使用。

Category B: 為人類用以治療嚴重感染,且使用頻率高、容易產生抗藥性者,大致符合 WHO 定義的 Highest Priority Critically Important Antimicrobials,包含 quinolones、三四代頭孢菌素 (Cephalosporins) 等抗生素,歐盟建議限制 (Restrict) 使用。動物感染時,若 Category C 與 D 的抗生素皆無效時,方可使用,並且建議進行敏感性試驗後再使用。

Category C: 為在人類尚有其他替代抗生素,但在動物較少其他替代抗生素,或是容易間接導致 Category A 的抗藥性產生 (co-selection)。建議謹慎使用 (Caution)。動物感染時,若Category D 的抗生素皆無效,方可使用。

Category D: 為在人類與動物都有其他替代藥物的抗生素,也不會間接造成 Category A 的抗藥性產生。建議第一線且適當使用 (Prudence)。

人類對抗抗藥性之策略與案例

2000 年後,抗生素新藥研發停滯,抗藥性逐年上升,「無藥可用」的危機迫在眉睫,因此 WHO 與各國紛紛制定行動方案與對策,希望能延緩抗藥性的產生,並讓新藥研發與上市的速度趕上抗生素失效的速度,WHO 提供的行動方案[15]策略包括:

1. 藉由風險溝通、教育、訓練等

方式,增加對抗藥性議題的警覺與了 解。

- 2. 藉由調查與研究,增進抗藥性 證據與知識。
- 3. 藉由增進公共衛生、個人衛 生、感管措施來減少感染密度。
 - 4. 促進抗生素的適當使用。
- 5. 促進抗藥性相關的新診斷工具 與治療 (如藥物與疫苗等)。

以下僅以 WHO 的框架,分項舉出幾個台灣對抗抗藥性的措施:

- 1. 藉由風險溝通、教育、訓練等方式,增加對抗藥性議題的警覺與瞭解。
- ●政府與醫療各單位都有專責 抗藥性的部門,並有責任與行政之管署中有感染管署中有感染管制 負責相關事宜。疾管署中有感染管制 及生物安全組,醫院則有感染管制委 員會與感染管制小組。感管委員會務 員會稱為院長或副院長,以利事務 主席須為院下設置感染管制工作小組 負責相關事宜。
- ●政府與醫療部門定期舉辦教育 訓練或演講,並規定醫療人員需接受 一定時數的感染管制專題教育才能換 發執照。
- 2. 藉由調查與研究增進抗藥性證 據與知識。
- ●台灣有國家型監測與各醫院的 定期自我監測。
- ●台灣疾管署的THAS (Taiwan Healthcare-Associated Infection and Antimicrobial Resistance Surveillance

System) 針對感染部位與重要病原體 進行感染密度與抗藥性的監測。

- ●國衛院的TSAR (Taiwan Surveillance of Antimicrobial Resistance) 搜集重要菌株,進行抗藥性與機轉的監測。
- ●各醫院的感管小組也會針對院 內單位之抗藥性與抗生素使用進行監 測與改善。
- 3. 藉由增進公共衛生、個人衛 生、感管措施來減少感染密度。
- ●政府宣導手部衛生、呼吸道 禮節、鼓勵疫苗施打、提供公費疫苗 等。
- ●醫療院所落實消毒、滅菌、 洗手等,實施各種組合式措施 (care bundle) 以減少感染,並且對於重點 單位 (如加護中心) 感染密度進行監 測、回饋、諮詢或提供改善方案。
- 社 區 與 醫 院 有 群 突 發 (outbreak) 時,相關單位 (衛生單位或 感管小組) 必須介入調查與處理。
 - 4. 促進抗生素的妥善使用。
- ●關注的面向極廣,包括製造、 適應症、抗藥性檢查、處方核准等。
- ●抗生素需製造符合藥品優良製 造規範。
- ●學會推出各式感染症指引,以 增進抗生素妥善使用。
- ●嚴重感染時,建議在不影響病 人病況下先取得檢體培養後再給予抗 生素。
- ●在醫院端,微生物實驗室皆 有基本檢測藥物敏感性與抗藥性的能

力,使醫師能使用有效抗生素。

- ●後線抗生素的使用與持續使用需經過專業醫師審核,並有資訊單位配合以系統提醒醫療人員。定期統計抗生素不當使用頻次,以回饋醫療端。
- ●政府單位亦有相關措施,如 疾管署推行抗生素管理卓越計畫。健 保署規範門診抗生素使用時機與時間 (如:三天)並抽審病歷以落實管控。

因地制宜的重要性

台灣開放伴侶動物使用抗生素的同時,建議需有相對應的措施,藥性產生。對抗抗本藥性產生的抗抗本藥。對抗抗本藥性產生相應之,「效益」對人類健康風險」、「殊性」可能對人與「該領域的特殊」等種類,對人與當的措施,而非全盤移動,而非全盤的做法。國外的動物指引也不應人醫的做法。國外的動物指引也不應

全盤接受,因為目前國外官方指引多 將經濟動物與伴侶動物一併討論,但 經濟動物與伴侶動物使用抗生素造成 人類健康威脅的風險不同,主要因 為經濟動物使用抗生素的方式 (整群 投予、預防投予、用量大、無法確定 個別動物接受的劑量) 與伴侶動物的 方式 (可以單一投予、確定劑量與動 向、可檢視個別治療效果)不同。因 此農方與獸醫等主要關係者或可與衛 福部、藥師、醫檢師、感染症專科醫 師等不同專業共同合作, 尋求適合台 灣伴侶動物的抗生素管控方法。例如 監測相關抗生素之用量與抗藥性、教 育宣導 (飼主與獸醫師) 等皆為有效 且可行之正面措施。其他措施如:鼓 勵疫苗、增進動物福祉(減少感染)、 替代性治療(益生菌等)等也建議持 續進行。

結 語

注釋1:另一種健康影響則為抗藥性細菌直接感染,導致常用抗生素治療失效,例如部分寵物 (爬蟲類、兩棲類等)帶的沙門氏菌。因貓狗身上細菌較少直接造成人類感染,因此本文並無著墨於此種機轉。

注釋2:歐盟考量 WHO 與 OIE 所訂出的人類與動物重要抗生素名單 (The WHO List of Critically Important Antimicrobials for Human Medicine and OIE List of Antimicrobials of Veterinary Importance),其分級規則 如下:

- (一) WHO 人類重要抗生素名單 與分類條件,分為 Critically Important Antimicrobials (CIA), Highly Important Antimicrobials (HIA) and Important Antimicrobials (IA),以 CIA 為最重 要。符合以下兩種條件,則為 CIA。
- Criterion 1. 在治療人類的嚴重 細菌感染時,此類抗生素是唯一或少 數的選擇之一。
- Criterion 2. 當 (1) 致病菌來自 於動物或 (2) 抗藥性來自動物,此抗 生素可以用來治療相關感染。

在 CIA 中,針對大量、常用、或者容易產生抗藥性者,再提高警示到 Highest Priority Critically Important Antimicrobials (HPCIA),例如 quinolones, 三代以上的頭孢菌素, macrolides, ketolides, glycopeptides 與 polymyxins 等。

(二) OIE (世界動物衛生組織) 動物重要抗生素名單與分類條件

Criterion 1. 會員國的問卷調查其中,50%以上認為此抗生素重要。

Criterion 2. 在治療動物感染時, 此抗生素為必須,且沒有其他替代藥 物。

符合兩個,稱為 veterinary critically important antimicrobial agent (VCIA)。符合任一個,稱為 veterinary highly important antimicrobial agent (VHIA)。以上皆無,稱為 veterinary important antimicrobial agent (VIA)。

參考文獻

- Public Health England (2015, December 10).
 Health matters: antimicrobial resistance. Available https://www.gov.uk/government/publications/health-matters-antimicrobial-resistance/health-matters-antimicrobial-resistance.
- CDC. 2019 AR threats report. Available https:// www.cdc.gov/drugresistance/biggest-threats.html.
- 3. 郭書辰,石舒嫚,莫文秀等:專欄-感染科醫師對抗藥性議題之問卷調查報告。衛生福利部疾病管制署。感控雜誌 2020;30:129-39。
- Wang YC, Shih SM, Chen YT, et al: Clinical and economic impact of intensive care unit-acquired bloodstream infections in Taiwan: a nationwide population-based retrospective cohort study. BMJ Open 2020;11:e037484.
- Ling Z, Yin W, Shen Z, et al: Epidemiology of mobile colistin resistance genes mcr-1 to mcr-9. J Antimicrob Chemother 2020;11:3087-95.
- Levy SB, FitzGerald GB, and Macone AB: Changes in intestinal flora of farm personnel after introduction of a tetracycline-supplemented feed on a farm. N Engl J Med 1976;11:583-8.

- 7. Witte W, Strommenger B, Stanek C, et al: Methicillin-resistant Staphylococcus aureus ST398 in humans and animals, Central Europe. Emerg Infect Dis 2007;2:255-8.
- Miragaia M: Factors contributing to the evolution of mecA-mediated β-lactam resistance in Staphylococci: update and new insights from whole genome sequencing (WGS). Front Microbiol 2018:2723.
- 9. Paterson GK, Harrison EM, Holmes MA: The emergence of mecC methicillin-resistant Staphylococcus aureus. Trends Microbiol 2014;1:42-7.
- Pomba C, Rantala M, Greko C, et al: Public health risk of antimicrobial resistance transfer from companion animals. J Antimicrob Chemother 2017;4:957-68.
- Bardet L, Rolain JM: Development of new tools to detect colistin-resistance among Enterobacteriaceae Strains. Can J Infect Dis Med Microbiol 2018:3095249.
- 12. European Medicines Agency (2019, December 12). Categorisation of antibiotics in the European Union. Available https://www.ema.europa.eu/en/documents/report/categorisation-antibiotics-european-union-answer-request-european-commission-updating-scientific_en.pdf.
- 13. WHO (2019, March 20). Critically important antimicrobials for human medicine: 6th revision. Available https://www.who.int/publications/i/item/9789241515528.
- 14. OIE (2019, July). OIE list of antimicrobial agents of veterinary importance. Available https://www.oie.int/fileadmin/Home/eng/Our_scientific_expertise/docs/pdf/AMR/A_OIE_List_antimicrobials_July2019.pdf.
- WHO (2016, January 1). Global action plan on antimicrobial resistance. Available https://www. who.int/publications/i/item/9789241509763.
- Hsueh PR, Shyr JM, Wu JJ: Changes in macrolide resistance among respiratory pathogens after decreased erythromycin consumption in Taiwan. Clin Microbiol Infect 2006:3:296-8.