Jakob Disease，Infection Control． 1982
；3：3，p222－3
2．William RJ：Precautions for Creutzfeldt－Jakob Disease 1982；3：3，p23 8－9

3．Wolfgangk，Toklik：Zinesser Micro－ biology／Edited，Appleton \＆Lange Norwalk，conn．1988，p876－7
4．Robert B．B．：Textbook of Human Vi－ rology 1991 p．1001－1011．

## Pseudomonas pickettii 院內感染之鑑定及分型

潘惠如 ${ }^{1}$ 鄧麗珍 ${ }^{2}$ 曾瑪珊 ${ }^{3}$ 張上淳 ${ }^{4}$ 何憲武 ${ }^{2}$ 陸坤泰 ${ }^{1}$ 謝維銓 ${ }^{4}$台大醫院實驗診斷科 ${ }^{1}$ 護理科 ${ }^{3}$ 内科 ${ }^{4}$ 台大醫學院醫技系 ${ }^{2}$Pseudomonas pickettii為葡萄糖非醱酵性革蘭氏陰性桿菌，根據文獻很少自臨床檢體分離，但有報告曾引起菌血症，敗血症及腦膜炎等。1989年3月於臺灣北部某—教學醫院發生此菌的院内感染突發流行，共有 16 個院内感染病例，以及 8 個假性感染個案，經過對此流行事件的調查發現係使用自製的生理食鹽水，蒸餾水被此菌污染表一 Pseudomonas picketti菌株之來源

| 檢 體 來 源 | 菌 株 數 |
| :--- | :---: |
| 臨床檢體 | 28 |
| 血液 | 14 |
| 腦脊髓液 | 5 |
| 膽汁 | 2 |
| 膿 | 2 |
| 尿 | 2 |
| 引流管 | 1 |
| 胸水 | 1 |
| 移植物 | 1 |
| 污染水源 | 11 |
| $0.9 \%$ 食鹽水 | 4 |
| 蒸餾水 | 7 |
| 總 |  |

所致。此菌通常由幾個生物型所組成，而此次流行不論從臨床檢體或污染之食鹽水 ，蒸餾水均發現有多種生物型混雜其中，為正確鑑定此菌，並了解生物型，抗藥型分佈，我們使用四種方法測定：（1）傳統生物鑑定方法（2）Vitek AutoMicrobic System Vitek AMS（3）菌體脂肪酸分析（4）最低抑菌濃度測定。

結果共收集 39 株菌株，其中 28 株來自 16 個院内感染及 8 個假性感染之病人檢體， 11株來自污染之食鹽水及蒸餾水（見表— ）。用傳統生化鑑定方法發現39株菌種中可區分為兩種， 16 株 P．pickettii biovar 1,2 3株P．pickettiibiovar3。自病人之檢體及污染水源均有此兩型分離出來（表二）。以 Vitek AutoMicrobic System（Vitek AMS）可準確鑑定P．pickettii，而其分型結果與傳統生化鑑定略有差異（表三）， 16 株 biovar 1菌株中有 15 株由Vitek AMS鑑定為 biovar 1；1株鑑定為biovar2，準確率達9 $4 \%$ 。而 23 株傳統生化鑑定為biovar 3之菌株中有 17 株由Vitek AMS鑑定為biovar 3；另外 6 株鑑定為biovar 1 ，準確度為 $74 \%$ 。

表二 39株P．pickettii經傳統生化鑑定所得之不同生物型分佈

| P．pickettii | 病人檢體 | 污染水源 | 總數 |
| :--- | :---: | :---: | :---: |
| Biovar 1 | 8 | 8 | 16 |
| Biovar 3 | 20 | 3 | 23 |
| 總 計 | 28 | 11 | 39 |

表三 Vitek AutoMicrobic System與傳統生化試驗鑑定結果

| P．pickettii | 傳統生化方法 | Vitek AMS |
| :--- | :---: | :---: |
| Biovar $1(\mathrm{n}=16)$ | 16 | 15 |
| Biovar $3(\mathrm{n}=23)$ | 23 | 17 |

不一致的結果均曾經過多次重覆證實，所以Vitek AMS可準確鑑定P．pickettii，而 biovar的結果則可供參考。以菌體脂肪酸分析發現P．pickettii具有 $2-\mathrm{OH}$ C14：0及3－ OH C14：0與 Alcaligenes xylosoxidans類似 ，但後者在大約5，6分鐘的地方有 $2-\mathrm{OH}$ C12：0，而P．pickettii則無。用此點亦可與其他葡萄糖非醱酵性革蘭氏陰性桿菌區分 ，但3種biovar 菌體脂肪酸相同，所以無法以此方法分出生物型。最低抑菌濃度測定係以 10 種抗生素測試對P．pickettii之最低抑菌濃度。biovar 1菌株之抗藥型可再分為 2 種，病人檢體及污染來源均有此二種抗藥型。而biovar 3菌株則有七種不同的所分離的抗藥型，污染水源只分離到其中 2 種 ，於病人檢體菌株中則 7 種均有。

根據文獻報告P．pickettii至少有 3 種不同之生物型，要迅速而正確的鑑定出此菌及其不同的生物型並不容易，由本研究結果得知Vitek AMS及菌體脂肪分析簡單快速，當有流行發生時可用以快速的鑑定此

菌。但要正確的分出不同的生物型，則使用傳統生物鑑定法是較好的方法。
註：原文刊載於中華微免雜誌1992；25： 115－123

## 參考文獻

1．FUJITA S，YOSHIDA T，MATSUB ARA F：Pseudomonas pickettii bacteremia．J Clin Microbiol 1981；13：78 1－2．

2．FAPP H，GRAEVENITX A，WUST J， GILARDIGL：Septicemia caused by Pseudomonas VA－1．Clin Microbiol Newsletter 1981；3：124．

3．FASS RJ，BARNISHAN J：Acute menin－ gitis due to a Pseudomonas－like Group Va －1 Bacillus．Ann Int Med 1976；84：51－2．
4．GILARDI GL：Pseudomonas．In： Lennette EH，Balows A，HarslerWJ Jr， Shadomy HJ，eds．Manual of Clinical Microbiology．4th ed．Washington，D C： American Society for Microbiology， 19 85：358－63．

5．GILARDI GL：Pseudomonas and re－ lated genera．In：Balows A，Hausler Jr， Herrmann KL，Isenberg HD，Shadomy HJ，eds．Manual of Clinical Micro－ biology．5th ed．Washington，DC：
American Society for Microbiology， 19 91：429－41．

6．GARDNER S，SHULMAN ST：A noso－ comial common source outbreak caused by Pseudomonas pickettii．Pediatr Inf Dis 1984；3：420－2．

