醫院內寄生蠗傳播與感染控制（II）：

前 言
與這類有關的重要寄生蟲是所有的原蟲。當院内感染發生時，可以先不必考慮其傳播病媒（如節肢動物）和生活史，畢竟這些寄生蟲感染是非腸道的（parenter－ al transmission）。大部份是經過開放性的傷口或受損的黏膜接觸所致。此外，遭受污染的針頭，血液製品或器官，均可能造成感染。由於其診斷可能被耽閵，甚至被誤診，以及需要輸血和器官移植的病人又屬低抵抗力宿主，一旦得到感染，很容易造成嚴重的機緣性感染或是死亡，因此，更需要格外謹慎。

先天性的原蟲感染，如瘧疾，美洲錐蟲症，非洲錐蟲症，弓漿蟲症，和内臟利什曼症等，都曾有報告。其感染途徑可能經由分娩，但最常發生的是經由胎盤。由於其甚少為院内感染，在此不詳加説明。

本篇針對血液內寄生蟲與院內感染的關係，一一詳加説明，希望有利相關人員參考。

血液寄生蟲

1．㡼疾（Malaria）

與輸血有關的原蟲感染，最常見的是瘧疾。它也是重要的院内寄生蟲感染。自

血液内奇生蟲

林金絲
三軍總醫院院内感染管制委員會

從1911年第一個個案被報導，至今已超過二千個。其中包括歷史上有趣的一個個案：在一個直接人對人輸血的方式中，在輸血過程由於血液的逆流而造成受血者傳染給捐血者。

在美國，甚少發生因輸血而導致疟疾感染，平均每年每一百萬單位輸血中有 0 。 25 個個案。但是在熱带的瘧疾疫區，則發生的機會很大。例如在奈及利亞的健康捐血者内找到惡性疟原蟲者，佔 7.8% ，而所有捐血者之血清症原蟲抗體呈陽性反應者則高達 86% 。在熱带地區，造成輸血後瘧疾感染的常見瘧原蟲是惡性痉及間日疟，但根據一項調查統計顯示，在非流行區，原本造成輸血後瘧疾感染的瘧原蟲—四日瘧，已逐漸被以上兩種瘧原蟲取代，這是否意謂著境外移入或旅遊等因素均已扮演重要角色。在美國由於間日㾼所造成的輸血感染個案增加，使得他們不得不懷疑是否為自越南回來的軍人所造成。

除了紅血球外，輸白血球，新鮮血漿或血小板後而得到瘧疾感染的個案也曾被報導。大部份的輸血後感染瘧原蟲大約有一至四個星期的潛伏期，也正是因為其潛伏期長，常導致感染時無法被懷疑及診斷，特別是在最近没有出國旅遊，且本身已具有其他重要的潛在性疾病的病人，這

些病人，一旦得到輸血後癉疾感染，很可能造成嚴重的罹患率，偶而導致死亡。例如在脾臓切除的病人，若感染四日疪，則病情將恶化。一般與輸血後有關的瘧疾感染個案，大部份均屬散發性。但是 1971年，在西班牙曾發生過一次由間日痉原蝫所造成的群突發，有 54 個病人遭受感染，其中有 43 個個案曾接受輸血，有 11 個個案則進行血漿減除術。

由污染的针頭所造成的瘧疾感染，在 60 年前已被報導過，主要是在薬物濫用之瘄君子群，也常發生群突發。在過去20年，至少有 12 個個案是因釬頭扎傷或開放性傷口接觸而造成院内病人與工作人員之間的瘧疾傳染，大部份報告説明了此意外事件乃㢣於護士或醫師在替病人抽血或拉血液抹片時所致。除此之外這些個案並没有其他的危險感染因素存在。這個個案的潛伏期從四天至十七天，平均十二天。一旦被意外扎傷或割傷，很少人會想到瘧疾。雖然它不至於會造成死亡，但其可能導致嚴重的罹患率及高寄生蟲血症（ 22% ），曾經有位護士感染後 22 天仍然維持高寄生蟲血症。

在委内瑞拉首都加拉卡斯的一家醫院，曾經發生一次惡性瘟感染之群突發事件，該地區為非㾹疾疫區。在三個星期内，共計有六個住院病人得到對chloro－ quine具有抗藥性的恶性疽感染。這些感染個案都曾接受過静脈注射或抗生素治療，流行病拲調查結果顯示抗凝劑玻璃瓶可能為共同感染來源，並且推測這些抗凝剤玻璃瓶可能已遭腸道外薬物濫用者之血液污染，因為此人不但有悪性瘧血症且亦

曾使用過雨天的静脈注射治療。更重要的是這六個接受静脈注射治療的個案稍後都得到瘧疾，且潛伏期皆涵蕰以上感染源静脈注射治療期間。

另外，有三篇報告疑似腎藏移植後痖疾傳染。這三個個案，所接受的血液不是血清呈强烈陽性反應，就是血液抹片找到瘧原蟲。當然他們也屬於痤疾疫區的居民，其中兩位在移植前血清即已呈陽性反應，輸血後因手術㭫力或免疫抑制結果而導致㾗疾再行復發。

2．巴貝斯蟲病（Babesiosis）

這是經過動物傳染人類的原蟲感染症，媒介為蟲，主要是感染人類紅血球。大部份的個案侷限在美國東北沿海一带及北歐。此症可能完全没有臨床症狀，或可能類似䡛微自限性㾗疾個案。致病性疾病曾出現於脾臟切除之病人。

院内巴貝斯蟲病感染可能是經由無症狀带原者所捐之血液，也有若干報導解涷之血液和血小板可以傳染巴貝斯蟲症。雖然並没有明顕證據針頭扎傷或開放性傷口之接觸可以傳染，但這種傳染方式可能性相當大，例如在脾臓切除宿主其週蝣紅血球寄生蟲带原率達 85% ，在正常宿主亦達 30% 。
3．非洲錐蟲症（African trypanosomia－ sis）

這是一種急性原蟲感染症，主要是侵犯血流及中樞神經系統。在流行區如非洲撒哈拉，其傳染媒介為采采蝘。被感染的病人多半會出現症狀，因此不可當捐血者。有少部份的病人在感染初期並無任何症狀，且出現寄生蟲血症也需數週至數月

之久，這類健康的带原者可能是造成輸血後感染非洲錐蟲症的主要感染源。

被污染的針頭扎傷和開放性傷口的接觸必須被視為具潛在性的院内感染方式，特別是傳染給醫療人員。在看克蘭曾有一篇報導研究人員遭受非洲錐蟲症之感染。
4．美洲錐蟲症（American trypanosomia－ sis）

此感染症也稱為卻格司氏病（Cha－ gas＇disease），是一種急性和慢性感染症，主要是侵犯血流，心臟和腸胃道。致病原是枯西氏錐蟲（Trypanosoma cru－ zi），傳染媒介為錐鼻蟲（Triatomid bug）。此症主要流行於中美洲和南美洲一带。輸血感染是另一重要途径，在拉丁美洲，捐血者血清枯西氏雓蟲抗體陽性率達 62% 。另一項研究發現超過 50% 之捐血者可能已出現全身性寄生蟲症，同時證實輸血後感染率達 47.6% 。在美國華盛頓，一項針對尼加拉瓜和薩爾瓦多移民的血清學調查，結果發現血清抗體陽性率為 4.9% ，在這之前已有許多移民有關卻格司氏症之臨床報告。在美國西部和南部，錐鼻蟲是常見的傳染媒介。

利用間接螢光抗體測試法，結果發現洛山磯市 1027 個捐血者當中，血清枯西氏錐蟲抗體陽性率為 2.4% 。因此，隨後在北美有二篇報導兩名免疫低抵抗力宿主因輸血而得到枯西氏雓蟲症，已不足為奇。在美國也證實此寄生蟲可以經由針頭扎傷，開放性偒口接解，以及暴露於感染性檢體或物體而遭受感染。在拉丁美洲更超過 50 個個案。這些個案主要是在研究䁇駗室，原因大部份為針頭扎傷，至少已造成

一名感染者死亡。
在巴西，至少有五名腎臟移植的病人已證實被枯西氏錐蟲感染，他們都是接受已遭此寄生蟲感染的腎藏。雖然至目前為止，並没有報告證實心藏移植會傳染此錐蟲，但是很顕然的心肌是枯西氏錐蟲的主要作用器官。
5．䗒蟲（Helminths）
唯一可能經由輸血感染人類的蝡虫是血絲蟲，並造成慢性且無症狀的血流感染。具感染性的幼蟲是微絲蟲。曾有文麅報導從健康的捐血者中找到班氏絲蟲，羅阿絲蟲，Mansonella ozzardi以及Dipe－ talonema perstans等之微絲蟲。而那些接受輸血後的人並没有嚴重的不適，僅出現輕微的過敏反應。在一項研究中，將带有微絲蛀之血液輸到人體中，也只出現輕微的臨床徵狀，如發焼，頭痛或起奖子。如果實騟性輸入带班氏絲蟲或羅阿絲蝴之微絲蟲，則人體免疫系統可在動小時至幾天内將之清除，但是若為Dipetalonema perstans和Mansonella ozzardi，則其微絲蟲可在新宿主之血流中生存幾個月，甚至好幾年。所幸，這些微絲蟲在血流中無法發育，它俳必須在節肢動物媒介體内方能發育成成蟲。

控制措施

適當的控制措施可以降低血液内寄生蟲所造成的院内感染，但需視以下情況而定：（1）地理分佈；即此地區某些寄生蟲之盛行率。（2）此寄生蟲感染後的嚴重程度。（3）捐血者與受血者（病人）之特性。預防輸血後的感染可能需要包括歷史性查

證，寄生蟲學或血清學筛檢。其他的預防方法尚有血製品需經處理後方能輸給病人使用，不論其是預防性或治療性的處理。

歷史性的查證在非流行區是相當有用的，例如在美國即是使用這種方法以降低輸血後疽疾的感染率。目前，一般民眾若到過流行區旅遊或居留過則三年内不准损血，但最近有人建議應減至六個月即可。至於流行區如熱带地區，一旦實施這種節檢方法，可能使得捐血人數立即下降許多，而迅速造成血荒。直接血液抹片檢查結果是不可信任的，特別是無症將寄生蟲患者所捐的血液。有些血液内的原蟲需在體外培養（如恶性疪原蟲），感染節肢動物（如枯西氏錐蟲）或小動物後方能加以證實。至目前為止，並没有一種快速，實用的方法可做為血液之節檢。至於利用聚合酶作用方法以偵測血流中原蟲的抗原和核酸，則可增加其敏感性，特別是針對瘧疾或錐蟲症，已證嘪是最準碓的血液節檢方法，當然所須費用也是最昂貴的。

利用血清學篩檢捐血者之血液内某些寄生蟲的專一性抗體，目前被認為是最敏感的方法，而且可針對以上各種相關的原蟲。但缺點卻是花費相當高，以及捐血者已得到感染但並未出現抗體，甚至出現偽陽性的問題，確實造成許多困擾。因此，有學者建議在流行區才值得推行這種節檢方法，例如在拉丁美洲，一些醫院的血庫則例行筛檢血液中是否有枯西氏錐蟲之抗體。在美國則不需要，除非捐血者曾居留流行區。

至於是否應該例行節檢血液中巴貝斯蟲和微絲蟲之抗體，目前尚有爭議。雖然

捐血者血液内若其抗體為陰性，將有利於脾藏切除之病人。罹患非洲錐蟲症之人，最好希望他能發病，如此則可避免捐血，也可降低簡檢所需之費用。在熱带地區，瘧疾盛行率相當高，如果限制血清呈陽性反應者不可捐血，則又面臨血荒。因此，有瞥者建議接受輸血之患者可以例行服用 chloroquine，如果此地區流行之悪性瘧已對chloroquine産生抗䔞性，則需用其他藥物取代之。

除了對捐血者進行篩檢或對受血者加以治療，尚可將血液冷藏十天，這可以降低原蟲之感染力，但無法將其完全去除。

論及因針頭扎偒或開放性傷口接觸而感染寄生蟲，其預防方法可比照B型肝炎和愛滋病之防範重點。至目前為止，並没有文獻報導因以上意外事件而遭受血液原蛀之感染。至於暴露後是否需要預防性的治療需視當時被扎或接解情形，感染來源寄生衫的濃度，潛在性的危險，以及預防性䔞物毒性如何而定。

最後，預防因器官移植而遭受血液内原蟲之感染，其方法與以上所述者並没有太大的差異。

結 論

從以上的敘述，確實可以瞭解院内感染有關寄生蟲方面，以往在國内可以被忽視。如今，國人因旅遊，經商，考察等因素出國頻率愈來愈高，加上開放大陸同胞來台定居，以及自寄生蟲疫區引進外籍勞工等，均可能使得寄生蟲在國内所造成的交互感染愈形嚴重，有關單位應速謀對策以保障國民的健康。

參考文獻

1．MacLeod CL：Parasitic infections in pregnancy and the newborn．Oxford， London，Oxford University Press， 1988.

2．Guerrero I，Weniger B，Schultz MG： Transfusion malaria in the United States，1972－1981．Ann Intern Med 1983；99： 221 － 6.
3．Dover AS，Guinee VF：Malaria trans－ mission by leukocyte component the－ rapy．JAMA 1971；217：1701－2．
4．Garfield MD，Ershler WB，Maki DG： Malaria transmission by platelet con－ －centrate transfusion．JAMA 1978； 240：2285－8．

5．Garcia JJG，Arnalich F，Pena JM，et al：An outbreak of Plasmodium vivax malaria among heroin users in Spai－ n．Trans R Soc Trop Med Hyg 1986；80：549－552．
6．Varma AL：Malaria acquired by acci－ dental inoculation．Can Med Assoc J 1982；126：1419－20．
7．Borsch G，Odendahl J，Sabin G，et al： Malaria transmission from patient to nurse．Lancet 1982；2：1212．
8．Kociecka W，Skoryna B：Falciparum malaria probably acquired from in－ fected skin cut．Lancet 1987；2：220．
9．Bruce－Chwatt LJ：Imported mala－ ria：an uninvited guest．Br Med Bull 1982；38：179－85．
10．Jensen JB，Capps TC，Carlin JM： Clinical drug－resistant falciparum malaria acquired from cultured para－ sites．Am J Trop Med Hyg 1981；30：

11．Cruz I，Mody V，Callender C，et al： Malaria infection in transplant recipi－ ent．J Natl Med Assoc 1978；70：105－ 7.

12．Lefavour GS，Pierce JC，Frame JD： Renal transplant－associated malaria． JAMA 1980；244：1820－1．
13．Smith RP，Evans AT，Popovsky M，et al：Transmission－acquired babesiosis and failure of antibiotic treatment．
14．Grabowski EF，Giardina PJV，Gold－ berg D，et al：Babesiosis transmitted by a transfusion of frożen－thawed blood．Ann Intern Med 1982；96：466 － 7 ．
15．Robertson DHH，Pickens S，Lawson JH ，et al：An accidental laboratory infection with African trypanosomes of a defined stock．I．The clinical course of infection．J Infect 1980；2： 105－12．
16．Lorca M，Atias A，Astorga B，et al： Trypanosoma cruzi infections in blood banks of 12 Chilean hospitals． Bull Pan Am Health Organs 1983；17： 269－74．

17．Kirchhoff LV，Neva FA：Chagas＇ disease in Latịn American immigr－ ants．JAMA 1985；254：1058－60．
18．Grant IH，Gold JWM，Wittner F，et al：Transfusion－associated acute Chagas＇disease acquired in the Uni－ ted States．Ann Intern Med 1989；111： 849－51．
19．Kirchhoff LV：Is Trypanosoma cruzi a new threat to our blood supply？ Ann Intern Med 1989；111：773－5．

