

Original Article

An analysis of Taiwan's vaccination services in public health centers and contracted medical institutions and applications for vaccine injury compensations

Yu-Chen Hsu¹, Hsun-Yin Huang¹, Yu-ling Chen¹, Shin-Yi Wang², Shu-Fang Chen³, Shih-Yan Yang⁴

- 1. Division of Planning and Coordination, Centers for Disease Control, Ministry of Health and Welfare, Taiwan
- 2. Division of HIV/AIDS and TB, Centers for Disease Control, Ministry of Health and Welfare, Taiwan
- 3. Division of Acute Infectious Diseases, Centers for Disease Control, Ministry of Health and Welfare, Taiwan
- 4. Taipei Regional Center, Centers for Disease Control, Ministry of Health and Welfare, Taiwan

Abstract

Vaccination is the most cost-effective weapon against vaccine-preventable diseases. Taiwan's earliest implementation of vaccination was vaccinia against smallpox. In 1948, diphtheria toxoid was introduced in Taiwan. Since then, DTP (diphtheria, tetanus, and pertussis) combination vaccines, BCG (Bacille Calmette-Guérin vaccine), OPV (oral polio vaccine), Japanese encephalitis vaccine, MMR (measles, mumps and rubella vaccine), influenza vaccine, and varicella vaccine have been implemented progressively. In 1988, local governments of cities and counties started to contract with local hospitals and clinics to assist in vaccination. Up to now, the contracted vaccination services have increased from the original 369 public health centers to the current 1,733 contracted medical institutions, enabling the coverage rate of each routine vaccine in Taiwan to reach 90%-95% or above. Data on annual routine vaccination services conducted by public health centers and contracted medical institutions countrywide showed that the share of vaccination services provided by public health centers had decreased from 87.5% in 1996 to 22% in 2012, while the share from contracted medical institutions had increased services from 12.5% to 78% in the same period, which meant the providers of the majority of vaccination services nowadays have shifted from public health centers to contracted medical institutions. In addition, the "Vaccine Injury Compensation Fund" was established in June, 1988. And in 1992, the "Vaccine Injury Compensation Program

Working Group (VICPWG)" was organized by the Department of Health for independent deliberation. Whenever people suffered from deaths, disabilities, critical illnesses and adverse reactions induced by any vaccination, they could quickly get fair compensation after professional assessments. This helped eliminate their doubts about the possible side effects of vaccination. As of March 20, 2013, a total of 108 "Review Meetings of VICPWG " had been held to assess 1,285 applications. Among them, 498 applications were approved for compensation with the compensation rate of 38.75%. Cumulative compensation was NT \$ 63,533,637 with an average of NT \$ 127,578 for each application. To date, the applications for injuries from the vaccine against the 2009 H1N1 influenza virus accounted for the largest number of applications. However, BCG was the vaccine with the largest number of both approved applications and compensations for vaccine injuries, followed by the seasonal flu vaccine and DTP vaccine.

Keywords: public health center, contracted medical institutions, vaccination, vaccine injury compensation

Foreword

Vaccination is the most cost-effective weapon against vaccine-preventable diseases, and also the primary strategy of WHO (World Health Organization) for global disease prevention, control, elimination, and even eradication. Vaccine development is also the mutual goal for countries and pharmaceutical companies, which make long-term investments in human and financial capital to constantly achieve breakthroughs. The experiences from the advanced countries also proved that to establish a vaccine injury compensation system was helpful for governments in promoting vaccination policies successfully [1].

Taiwan has launched vaccination as a disease prevention and control measure. The earliest implementation of vaccination was vaccinia against smallpox. In 1948, diphtheria toxoid was introduced in Taiwan. Since then, Diphtheria-Tetanus-Pertussis vaccine (DTP), Bacillus Calmette–Guérin vaccine (BCG), oral polio vaccine (OPV), Japanese encephalitis vaccine (JE), Measles vaccine, Measles-Mumps-Rubella vaccine (MMR), influenza vaccine, and varicella vaccine have been introduced progressively [2,3]. In order to facilitate citizens' access to vaccination in their neighborhoods and to improve vaccination coverage rates, the "Vaccination Practice Guideline for Hospitals and Clinics" [2] was drawn up in July 1988 to encourage city and county governments to contract with local hospitals and clinics to assist in vaccination. Up to now, the contracted vaccination service providers have increased from the original 369 public health centers to the current 1,733 contracted medical institutions to offer routine vaccination services, enabling the coverage rate of each routine vaccine in Taiwan to reach 90%-95% or above. Therefore, several infectious diseases have been effectively controlled, vanished, eliminated, or even eradicated. For example, polio was eradicated in Taiwan; diphtheria was vanished; measles, congenital rubella, and neonatal tetanus also met the standards of elimination.

In response to an unfortunate event of vaccine-derived poliovirus-c (VDPV) in 1986, Taiwan established the "Vaccine Injury Compensation Fund" in June 1988. And in 1992, the "Vaccine Injury Compensation Program Working Group (VICPWG)" was organized by the Department of Health for independent deliberation. With this mechanism, we hoped that whenever people suffered from deaths, disabilities, critical illnesses and adverse reactions induced by any vaccination could quickly get fair compensation after professional assessments. This helped eliminate public doubts about the possible side effects of vaccination, to keep high vaccine completion rates and herd immunity, and to guarantee the effectiveness of vaccination. Nevertheless, with contracted medical institutions increasing and changes in the healthcare system in recent years, the vaccination rates in contracted medical institutions had shown an obvious upward trend. As diverse vaccines were developed and new vaccines continued to become publicly available, and given an increasing attention to vaccination safety, the applications for compensation for vaccine-related adverse reactions had also increased from one deliberation in 1989 to 607 deliberations in 2010, with the majority of the applications for vaccine-related adverse reaction compensations caused by the vaccine against the 2009 H1N1 influenza virus during 2009 to 2010 [4].

Taiwan promotes vaccination services for public convenience, ensuring vaccine safety, and enhancing completion rates. In order to strengthen the interaction and cooperation between health authorities and contracted medical institutions in response to public demands for enhancement of vaccination quality, this study analyzed the annual applications in public health centers and contracted medical institutions for compensation for vaccine-related adverse reactions as a reference for reviewing Taiwan's vaccination program and vaccine injury compensation policies.

Materials and Methods

1. Data sources:

- (1) National Immunization Information Management System (1996~2012)
- (2) Vaccine Injury Compensation Database (1988~March 20, 2013)

2. Definitions:

The vaccine injury compensations in Taiwan cover the Expanded Programme on Immunization (EPI), seasonal influenza vaccine, and 2009 H1N1 influenza vaccine. This study analyzed vaccines as follows:

(1) The Expanded Programme on Immunization (EPI): Tetanus, diphtheria toxoids and acellular pertussis vaccine (Tdap); tetanus, diphtheria toxoids, acellular pertussis and inactivated polio vaccine (Tdap-IPV); diphtheria and tetanus toxoid with acellular pertussis, inactivated polio and haemophilus influenzae type b vaccine (DTaP-Hib-IPV, abbreviation as 5 in 1); Bacille Calmette-Guérin vaccine (BCG); diphtheria, tetanus, and pertussis vaccine (DTP); hepatitis B vaccine (HepB); Japanese encephalitis vaccine (JE); measles vaccine; rubella vaccine; measles, mumps and rubella vaccine

(MMR); oral polio vaccine (OPV); tetanus and diphtheria toxoid for older children/adults (Td); tetanus toxoid (TT); and varicella vaccine.

- (2) Seasonal influenza vaccine and 2009 H1N1 influenza vaccine: Since 1998, the seasonal influenza vaccine has been publicly funded first for the high-risk group of elderly above 65 years old and subsequently more groups year after year. On the other hand, the 2009 H1N1 influenza vaccine was rolled out in response to the 2009 H1N1 influenza pandemic. These two vaccines were mass vaccination administered over a short term, which made them different from the routine vaccination implementation of the Expanded Programme on Immunization.
- (3) Optional vaccines: Diphtheria and tetanus toxoid with acellular pertussis vaccine (DTaP); haemophilus influenzae type b vaccine (Hib); hepatitis A and hepatitis B vaccine (HepA-HepB); inactivated polio vaccine (IPV); measles, mumps, rubella and varicella vaccine (MMRV); rotavirus vaccine; and human papillomavirus vaccine (HPV).

3. Methods of Analysis:

This study used Microsoft Office Excel 2003 and 2010 as the statistical software. We collected information from the Vaccine Injury Compensation Database, debugged, and excluded "inadmissible" and "self-withdrawal" applications. Due to rare applications for vaccine injury compensation before 1989, the cases vaccinated before 1989 were merged with cases in 1989 shown in the following charts. We used EXCEL to run descriptive statistics on data from the deliberations of Vaccine Injury Compensation Database recorded from 1988 to March 20, 2013. We also preformed pivot analysis and comparison using year and other important independent variables. Our analysis included descriptive statistics with the caseload of deliberations, approved applications, and the compensation from each vaccine recorded in the Vaccine Injury Compensation Database; statistics with annual applications for compensation from vaccination data of The Expanded Programme on Immunization; identification of the EPI vaccines with abnormally high vaccine injury compensation rates; analysis based on vaccination localities which were classified as contracted medical institutions, vaccination stations, public health centers, schools and others (with incomplete records); as well as the data of the EPI vaccines, 2009 H1N1 influenza vaccine, and seasonal influenza vaccines in the Vaccine Injury Compensation Database. Of note, we excluded the compensation applications induced by two or more vaccines in our study, in order to clarify the injury of each vaccine.

Results

1. The evolvement of routine vaccination services in public health centers and medical institutions

Since Taiwan encouraged city and county governments to contract with local hospitals and clinics for vaccination services in July 1988, the routine vaccination service providers had increased from the original 369 public health centers to 1,733 contracted medical institutions along with 342 public health centers in January 2013 (Table 1). The 12 district health stations in the Department of Health under the Taipei City Government were restructured into 12 district health centers in 2005. The eleven public health centers in the Department of Health under the former Kaohsiung City Government no longer offer vaccination services.

		Vaccination localities		_	Administrative
County / City	2012 births	No. of contracted	No. of public	Total	regions
		medical institutions	health centers		(District)
New Taipei City	40,847	351	28	379	29
Taipei City	29,498	190	0	190	12
Taichung City*	28,324	262	30	292	29
Tainan City	17,752	135	37	172	37
Kaohsiung City*	24,963	189	27	216	38
Yilan County	3,930	24	12	36	12
Taoyuan County	19,866	167	13	180	13
Hsinchu County	6,204	29	13	42	13
Miaoli County	6,207	32	18	50	18
Changhua County*	13,658	98	28	126	26
Nantou County	4,056	26	8	34	13
Yunlin County	6,167	42	20	62	20
Chiayi County	3,889	15	18	33	18
Pingtung County	6,285	44	33	77	33
Taitung County	1,858	11	16	27	16
Hualien County	2,782	8	13	21	13
Penghu County*	978	3	7	10	6
Keelung City	2,399	31	7	38	7
Hsinchu City	6,161	42	3	45	3
Chiayi City	2,072	30	2	32	2
Kinmen County	1,431	3	5	8	6
Lienchiang County	154	1	4	5	4
Total	229,481	1,733	342	2,075	368

 Table 1. Geographical distribution of routine vaccination services in public health centers and medical institutions (As of January, 2013)

Note 1: Twenty three public health centers in 12 districts of Taipei City and 11 districts of former Kaohsiung City did not provide vaccination services.

Note 2: * Part of township has two public health centers.

Note 3: The 2012 births data were from the statistics website of the Ministry of the Interior.

(http://statis.moi.gov.tw/micst/stmain.jsp?sys=100)

According to the data from Interior Ministry, the annual births in Taiwan had decreased gradually since 1996 (325,545 births), and the lowest record of 166,886 births was in 2010. Although in 2012, the dragon year, the births slightly increased to 229,481, the overall trend was generally downward. The annual share of routine vaccinations conducted by public health centers and contracted medical institutions countrywide is shown in Figure 1. The public health centers providing vaccination services had obviously decreased from 87.5% in 1996 to 22% in 2012, while the contracted medical institutions had increased services from 12.5% to 78% in the same period. This result revealed that the providers of the majority of vaccination providers nowadays have shifted from public health centers to contracted medical institutions.

Figure 1. The share of routine vaccinations conducted by public health centers and contracted medical institutions

Note 1: Data was collected as of January 1, 2013, not including influenza vaccines and optional vaccines. Note 2: The routine vaccines recorded in the dataset included a few self-funded doses.

Note 3: The public health centers in Taipei City no longer perform vaccination services. The volume of vaccinations in Taipei City included vaccination services in policlinics at public health centers operated by Taipei City Hospital.

Note 4: The vaccinations performed at elementary schools were not included in the statistics.

2. Deliberations and compensations of vaccine injury in Taiwan

Taiwan established the "Vaccine Injury Compensation Fund" in 1988. As of March 20, 2013, a total of 108 "Review Meetings of VICPWG" had been held to assess 1,285 applications. Among them, 498 applications were approved for compensation, with the compensation rate being 38.75%. Cumulative compensation was NT \$ 63,533,637, with an average of NT \$ 127,578 for each application.

For further analysis by vaccine (Figures 2 3), the vaccine against the 2009 H1N1 influenza virus accounted for the largest number of applications, followed by the seasonal flu vaccine, BCG, DTP, JE, PPV and 5 in 1 vaccine. However, for approved applications, BCG, 2009 H1N1 influenza vaccine, seasonal flu vaccine, DTP, and PPV were the top five. As for compensation, BCG had the highest amount of compensation in total, followed by DTP, seasonal flu vaccine, 2009 H1N1 influenza vaccine, and OPV.

- MMR: Measles, mumps and rubella vaccine; HepB: Hepatitis B vaccine;
- Tdap: Tetanus, diphtheria toxoids and acellular pertussis vaccine;

PCV: Pneumococcal conjugate vaccine.

3. Analysis of vaccines with injury compensations in Taiwan annually

From 1989 to 2012, a total of 465 applications for vaccine injury compensation were deliberated in Taiwan (Figure 4). Among them, 295 applications were approved for compensation. We analyzed the annual compensation caseload of each vaccine and found that the compensation caseload of 5 in 1, BCG, DTP, JE, MMR, OPV, Tdap, and Tdap-IPV vaccines showed unusual upward trends in some years. A further analysis of these eight vaccines (Figure 5) revealed that the compensation caseload of 5 in 1 vaccine in 2010; BCG vaccine in 2008, 2009 and 2011; DTP vaccine in 1992; JE vaccine between 2008 and 2010; MMR vaccine in 2010; OPV in 1999; and Tdap vaccine in 2009 were more than other years.

Figure 4. Annual applications for vaccine injury compensation (from 1989 to 2012)

Figure 5. Annual injury compensations of eight vaccines (from 1989 to 2012)

4. Vaccination localities of annual cases who applied for vaccine injury compensations in Taiwan

To explore the evolution of vaccination services in public health centers and contracted medical institutions, we classified the vaccination localities as "public health centers", "contracted medical institutions", "schools", and "vaccination stations" for further analysis of vaccine injury compensation cases from 1989 to 2012. The results (Figure 6) showed that the annual compensation caseload occurring at contracted medical institutions had been higher than the caseload occurring at public health centers since 2007, except in 1997.

Figure 6. Vaccination localities of annual applications for vaccine injury compensations (from1989 to 2012)

5. Adverse reactions induced by seasonal influenza vaccine and 2009 H1N1 influenza vaccine

In response to the 2009 H1N1 influenza pandemic, Taiwan launched an immunization program against H1N1 influenza in 2009. The caseload of applications for vaccine injury compensations due to the 2009 H1N1 influenza vaccine in that year hit a highest record of 504 applications [5]. After deliberations, only 67 applications were approved since causal relations could not be ruled out based on the timing of their occurrence. However, the adverse reaction rate of this event at that time had a serious impact on citizens' willingness to take seasonal influenza vaccine or EPI vaccines. Public awareness and concerns about vaccine safety increased significantly. The analysis in this study (Figure 7) indicated that the compensation caseload of seasonal influenza vaccine and EPI vaccines both peaked during 2009 and 2010, and started to subside after 2010.

Figure 7. Annual compensation caseload of EPI vaccines, seasonal influenza vaccine and 2009 H1N1 influenza vaccine

Note: EPI: Tetanus, diphtheria toxoids, acellular pertussis and inactivated polio vaccine (Tdap-IPV); diphtheria and tetanus toxoid with acellular pertussis, inactivated polio and haemophilus influenzae type b vaccine (DTaP-Hib-IPV); Bacille Calmette-Guérin vaccine (BCG); diphtheria, tetanus, and pertussis vaccine (DTP); hepatitis B vaccine (HepB); Japanese encephalitis vaccine (JE); measles vaccine; rubella vaccine; measles, mumps and rubella vaccine (MMR); oral polio vaccine (OPV); tetanus and diphtheria toxoid for older children/adults (Td); Tetanus, diphtheria toxoids, and acellular pertussis vaccine (Tdap); tetanus toxoid (TT); varicella vaccine; Flu: seasonal influenza vaccine; H1N1: 2009 H1N1 influenza vaccine.

Discussion and recommendations

Taiwan has involved contracted medical institutions in providing vaccination services since 1988. As Taiwan's healthcare system evolved, services improved, and public health awareness rose, the vaccination rates for both EPI vaccines and other publicly funded vaccines for adults in contracted medical institutions have increased gradually, resulting in a declining share of the vaccination services conducted by public health centers year after year. To maintain Taiwan's high completion rates of routine vaccination, it is important to find ways to operate and promote the vaccination system effectively in the future. Health authorities have to adjust its role on the overall management and operation of public health, and strengthen the interaction and cooperation with contracted medical institutions, so that they can respond effectively to the public requirements for vaccination quality and increase public recognition and confidence in vaccination. In Taiwan, BCG vaccine accounts for the largest number of approved applications and compensations of vaccine injuries. In Japan, MMR vaccine had the largest number of applications for publicly funded vaccine injury compensations, followed by BCG [4]. As for the United States, most applications for vaccine injury compensations were due to DTP vaccine in the 1990s. However, since the traditional diphtheria, tetanus, and pertussis vaccine (DTP) was replaced by Diphtheria and tetanus toxoid with acellular pertussis vaccine (DTaP), the applications for vaccine injury compensations had significantly declined [6].

The DTaP-Hib-IPV (5 in 1) was introduced into Taiwan as an optional vaccine in 2002, and was adopted as a routine publicly funded vaccine in 2010 [7], resulting in a large rise in the number of people who took the 5 in 1 vaccine in 2010 compared to previous years. That could be a possible factor for the increased caseload of vaccine injury compensations in 2010.

The Mycobacterial Laboratory of the Centers for Disease Control in Taiwan (Taiwan CDC) had developed differential diagnosis methods since 2002, providing bacteriological evidence that demonstrated clear and direct causality during the deliberations of BCG vaccine injury claims. Since 2008, Taiwan CDC has conducted active surveillance for adverse reactions induced by BCG vaccine. Hospitals were required by health authorities to notify culture-positive results of extrapulmonary tuberculosis in children under 5 years old and to increase test rates. Hence, the test rates of extrapulmonary tuberculosis specimens and strains from children under 5 increased from 19% in 2007 to 86% in 2008 and 94% in 2009 [10]. The active surveillance for adverse reactions induced by BCG vaccine was expanded to children under age 15 with extrapulmonary tuberculosis in 2010, and this surveillance was sustained to the end of 2011 [8]. These measures led to a rise in the detection rate of adverse reactions due to BCG vaccine and the number of compensation applications from 2008 to 2011. The approved applications were also increased. That suggested that applications and compensations were likely to be significantly affected by political factors.

There were more applications for compensations due to adverse reactions of DTP vaccine detected in 1992. The database showed that several suspected cases of sudden infant death syndrome after vaccination were reported near the end of 1992. Among them, 18 deaths occurred after DTP vaccination. This triggered public doubts about whether DTP vaccine induced sudden infant death syndrome at that time. Therefore, health authorities had conducted an investigation, but did not find significant causality. Some international literature also published reports about the correlation between DTP vaccine and sudden infant death syndrome with conclusions indicated there was no causally related but temporal coincidence [9-13].

Even though the compensation caseload of Tdap vaccine in 2009, MMR vaccine in 2010, and JE vaccine between 2008 and 2010 were more than previous years, the adverse reactions were limited and the prognosis was good. It was suggested that people were alerted to the adverse reactions related to the 2009 H1N1 influenza vaccine, sensitizing them to adverse reactions from other vaccines and leading to a rise in reported cases. This prompted the "Vaccine Injury Compensation Program" to reconsider the expansion of the compensation

standards. In addition, Taiwan had planned to provide Tdap instead of Td for elementary students at first grade, not only for providing tetanus and diphtheria toxoid vaccines but also for additional immunization to pertussis [14]. However, because of vaccine supply, the implementation was delayed and the Tdap vaccination for both first grade and second grade pupils was not completed till 2009, resulting in an increase in the applications for Tdap vaccine injury compensations in 2009. Among the eleven applications, eight were approved, including six injuries of cellulitis, one for painful swelling, and one for limbs edema, with the majority of adverse reactions being at local sites. That was also a main factor for the higher caseload of adverse reactions related to Tdap vaccine in 2009.

The findings in Figure 6 was consistent with Figure 1, which illustrated the amount of routine vaccinations conducted by public health centers and contracted medical institutions. It reflected that the higher the volume of vaccinations, the more the number of adverse reactions. The results also showed that the vaccine injuries occurred most frequently during 2008 and 2001, no matter in public health centers or in contracted medical institutions. This was not only because Taiwan began to engage in active surveillance for adverse reactions induced by BCG vaccine in 2008 so that the caseload of BCG vaccine injury compensations surged. The results also revealed that the adverse reactions related to 2009 H1N1 influenza vaccine had great impacts on public willingness to take routine vaccination, applications for vaccine injury compensations, and expansion of approved compensations. At that time, several countries faced the same impacts when promoting their 2009 H1N1 vaccination programs in response to the global pandemic [15-19].

Even though the 2009 H1N1 influenza vaccine accounted for the largest number of annual applications for vaccine injury compensations, BCG was the vaccine with both the largest number approved applications and compensations for vaccine injuries. This was because health authorities took active surveillance for adverse reactions induced by the BCG vaccine and improved laboratory identification so that the correlation between adverse reactions and vaccines could be confirmed to approve the compensations. Moreover, the National Vaccine Injury Compensation Program (VICP) and the Advisory Committee on Immunization Practices (ACIP) had discussed the vaccination age, immunization methods, vaccine strains, and inoculation skills several times, and had conducted research on the immunity of cases with adverse reactions. Besides the examination policies that would cause more applications for compensations, they tried to figure out if any other factor could make people be not suitable for the BCG vaccination, in order to avoid adverse reactions in advance. Since vaccination services have largely shifted to be performed in medical institutions, the focus of these services needs to be further reviewed and adjusted in order to find ways to monitor the post-vaccination adverse reactions promptly, to immediately intervene for cases with serious adverse reactions and to clarify the cause, to achieve the original goals of vaccine injury compensation, and to avoid the rumor of suspected vaccine reactions bringing negative impact on vaccination policies.

The review and analysis in this study demonstrated that medical institutions would be dominant in the future of vaccination service provision and post-vaccination interventions to deal with adverse reactions. Health authorities need to communicate and interact with medical institutions in establishing good policies, knowledge transmission, creating operating procedures for the public health business, and event responses. Furthermore, empowering medical institutions to strengthen their knowledge and willingness to participate in public health works, and maintaining the effectiveness of vaccination and disease prevention system in Taiwan, will be the issues we have to face.

The adverse reactions related to the 2009 H1N1 influenza vaccine prompted the public and the health authorities to be more concerned about vaccine injury compensations. Taiwan CDC has held several educational trainings for local health bureaus and distributed leaflets. The vaccination services and cases with post-vaccination adverse reactions have been substantially transferred to the contracted medical institutions. Therefore, it is recommended to enhance the training and education for contracted medical institutions in order to increase knowledge about pre-vaccination and post- vaccination, possible vaccine induced adverse reactions, and proper interventions.

We will conduct further analysis of victims who had approved vaccine injury compensations in the future. It is expected to establish clearer and more objective standards of evidence-base deliberation, in order to reduce the effects of policy change and extraordinary events.

Limitations

This study used descriptive analysis to assess the annual applications for vaccine injury compensations in Taiwan, but not for causes of adverse reactions by each vaccine or further correlation analysis. Also, the knowledge, attitude, behavior, and recommendations surveys of changes in the work regarding vaccine injury compensations for personnel in health authorities and medical institutions may be helpful to catch the overall profile of each role on vaccination services and their opinions, so that we are able to develop respond strategies based on this.

References

- Looker C, Kelly H. No-fault compensation following adverse events attributed to vaccination: a review of international programmes. Bulletin of the World Health Organization 2011(89):371-78. Available at http://www.who.int/bulletin/volumes/89/5/10-081901/en/#
- History of public health development in Taiwan. Volume III, Chapter II Disease Prevention, Section II Prevention of Notifiable Diseases, 435-79. Department of Health Edit.
- Yang CW, Weng PH, Chie WC. The History and Associated Ethical Issues of Vaccination. Taiwan Medical Journal, 2012;16(1):26-33.

- 4. Wang SY, Yang YW, Hsu YC, et al. Comparison Analysis of Taiwan/Japan Vaccine Injury Compensation Program. Taiwan Epidemiol Bull, 2013;29:1-9.
- Press Releases by Centers for Disease Control, Department of Health on January 5, 2010: Centers for Disease Control: Regroup, re-start (Series 155). Available at: http://www. cdc.gov.tw/info.aspx?treeid=45da8e73a81d495d&nowtreeid=1bd193ed6dabaee6&tid=EA 61F1B69232E39D
- 6. Vaccine Fact Book 2012. PhRMA:33-4. Available at http://www.phrma-jp.org/ archives/pdf/vaccine_factbook_2012/en/vaccine_factbook_2012_en.pdf
- Press Releases by Centers for Disease Control, Department of Health on February 7, 2010: the new policy of 5 in1 vaccine for children will be fully implemented on March 1. Available at: http://www.cdc.gov.tw/info.aspx?treeid=45da8e73a81d495d&nowtreeid= 1bd193ed6dabaee6&tid=9F49B822FBF0D47C
- 8. Chan PC, Huang WL, Wang KF, et al. The Active Surveillance of BCG-related Adverse Events. Taiwan Epidemiol Bull, 2012;28:21-7.
- 9. Lee C J, Lee LH, Lu CH, et al. Safety monitoring in vaccine development and immunization. Acta Paediatr Taiwan 2006;47:7-13.
- Chi-Hung Li: The Epidemiology of Infant Sudden Death Syndrome and Case Comparison on Judicial Autopsy in Taiwan. Dissertation at Department and Graduate Institute of Forensic Medicine, College of Medicine, National Taiwan University, Master /2012. Available at http://www.airitilibrary.com/Publication/alDetailPrint?DocID=U0001-0609201216213900
- Chen JH, Chiou NC. Vaccine injury compensations. Infection and vaccination. Centers for Disease Control, Department of Health, 2013;740-61.
- 12. Sivan Y, Shen G, Schonfeld T, et al. Sudden Infant Death Syndrome in the Tel Aviv and Petah Tikva Districs. Israel J of Med Science 1992;28:430-5.
- 13. Carvajal A, Caro-Paton T, Martin D, et al. DTP Vaccine and Infant Sudden Death Syndrome, Meta-analysis. Medicina Clinica 1996;106:649-52.
- Chen JH, Chao YN, Chen SF, et al. The proposal of Tetanus and diphtheria toxoid vaccine (Td) and Tetanus, diphtheria toxoids and acellular pertussis vaccine (Tdap) for adults. Taiwan Epidemiol Bull, 2013;29:75-7.
- 15. Quinn SC, Kumar S, Freimuth VS, et al. Public Willingness to Take a Vaccine or Drug Under Emergency Use Authorization during the 2009 H1N1 Pandemic. Biosecurity and Bioterrorism: Biodefense Strategy, Practice, and Science 2009;7: 275-90.
- Henrich N, Holmes B. What the Public Was Saying about the H1N1 Vaccine: Perceptions and Issues Discussed in On-Line Comments during the 2009 H1N1 Pandemic. PLoS ONE 2011;6:1-12.
- Robert Roos (2010/09/15): Pending injury claims over 2009 H1N1 vaccine increase. CIDRAP News, available at http://www.cidrap.umn.edu/news-perspective/2010/09/ pending-injury-claims-over-2009-h1n1-vaccine-increase

- Robert Roos (2011/03/16): HHS: 386 injury claims filed over H1N1 countermeasures. CIDRAP News, available at http://www.cidrap.umn.edu/news-perspective/2011/03/hhs-386-injury-claims-filed-over-h1n1-countermeasures
- Yin JK, Khandaker G, Rashid H, et al. Immunogenicity and safety of pandemic influenza A (H1N1) 2009 vaccine: systematic review and meta-analysis. Influenza Other Respi Viruses 2011;5:299-305.