計畫編號: DOH93-DC-2019

行政院衛生署疾病管制局九十三年度科技研究計畫

台灣地區十五歲以上年齡層日本腦炎中和抗體盛行率調查研究

研究報告

執行機構:行政院衛生署疾病管制局資源管理組

計畫主持人:楊世仰

研究人員:陳豪勇、許麗卿、徐鳳光

執行期間:93年1月1日至93年12月31日

為了解國人日本腦炎中和抗體的盛行率,本研究以國健局提供之「台 灣地區高血糖、高血脂、高血壓盛行率調查」計劃檢體,進行台灣地區十 五歲以上年齡層日本腦炎中和抗體盛行率研究,作為疫苗接種政策之參 考。研究結果顯示全國 15-90 歲人口平均日本腦炎中抗體的陽性率為 71%(4681/6594),日本腦炎中和抗體的陽性率隨著年齡的增加抗體陽性率 逐漸的下降,以 24-40 歲(1961-1977 年出生)年齡層,中和抗體陽性率為 最低介於 47-61%之間,顯示青、壯年人口有一半的人對日本腦炎病毒不 具保護力,為最易受感染之危險族群,51-69 歲(1932-1950 年出生)年齡 層逐漸上升,以70歲以上(1931年以前出生)年層最高,中和抗體陽性率 達 90%以上,後者為自然感染的結果。在性別方面,男性日本腦炎中和抗 體的陽性率為 73.3%(2318/3163), 高於女性的 68.9%(2363/3431), 且達 統計顯著差異(p<0.001),由於台灣早期為農業社會,男性為主要勞動人 口,在男主外,女主內的社會型態下,男性於戶外停留的時間多於女性。 在地理差異方面,日本腦炎中和抗體的陽性率受都市化的影響,以大台北 都會區最低,顯著低於其他地區,由研究結果顯示都市化程度會影響日本 腦炎中和抗體的分布,因自然環境的改變,使得都會地區日本腦炎病毒自 然感染率下降,突顯疫苗接種的重要性,在高接種率的現在,如何維持接

種後中和抗體效價,應為未來疫苗接種政策訂定的重要參考依據。進一步 由邏輯式迴歸分析的結果顯示,性別、年齡及居住地為影響日本腦炎中和 抗體的重要因素。在假設接種率為 100%的情況下,相較 2000-2004 年確 定病例分佈,由研究結果顯示 50%以上的日本腦炎確定病例均未接種疫 苗,其中37-47歲(1954-1964年出生)年齡層佔25%;另一半的病例為可 能接種過二劑或二劑以上的疫苗,可能抗體已不足以保護個體,其中接種 2-3 劑者仍佔 25%,以 25-36 歲(1965-1976 年出生)年齡層主,接種 4 劑 者約佔 23%,以 18-24 歲年(1977-1983 年出生)齡層為主,本研究結果與 2000-2004 年確定病例的分佈相近,當抗體陽性率低時,確定病例數就多。 由以上結果建議(一)、在經費充足的情況下,建議優先針對 37-47 歲 (1954-1964 年出生) 未接者實施疫苗接種,以期能有效減少日本腦炎確 定病例數。(二)、29-36 歲(1965-1972 年出生)年齡層佔確定病例的 17.8%,由於僅接種二劑,且距接種時間已達 20-30 年之久,在安全考量 下,建議仍可補接種二劑,應可減少確定病例數,達預防之效果。(三)、 25-28 歲(1973-1976 年出生)年齡為接種過三劑疫苗者,由於接種後日本 腦炎中和抗體保護力僅能維持三年左右,或許追加接種一劑,亦有減少確 定病例的效果。(四)、18-24 歲年(1977-1983 年出生)齡層,理論上應完 成四劑疫苗接種,該年齡層佔 2000-2004 年確定病例的 17%, 這是比較嚴 重的問題,究竟是接種的劑不夠(多於四劑)?或是疫苗效益不夠好(病毒株不好)?或是病例均未接種過疫苗?此為接種十年以上之個案,雖然日本及韓國也有接種5-8劑的政策,若要追加接種應做多方面的研究。

前言

1870年代日本首次証實有日本腦炎的爆發流行,但直到 1924年才首次分離出日本腦炎病毒,而 1935年所分離到的中山株(Nakayama strain)則被用於製造不活化的日本腦鼠腦疫苗,直到 1970年代才了解日本腦炎主要流行於亞洲熱帶地區,近三十年來則主要流行於亞洲南部及東南部(MIYAKE 等, 1964)。

在熱帶地區日本腦炎是引起小孩及成人急性腦炎的主因,全世界每年約有35,000-50,000 人受感染,其中約有10,000-15,000 人因而死亡(TIROUMOUROUGANE等,2002,TOM等,2003),主要流行於亞洲國家,包括高棉、中國、印尼、印度、日本、馬來西亞、尼泊爾、巴基斯坦、泰國、菲律賓、韓國、斯里蘭卡、越南、台灣及蘇俄東部等國,是亞洲地區嚴重的公共衛生問題,尤其會使得兒童及老人的死亡率明顯的增加,在呈地方性流行的地區,每年日本腦炎的發生率每十萬人口介於10-100之間,尤其在熱帶地區整年都有散發性的病例發生,在亞洲溫帶或較北地區,日本腦炎的流行呈季節性的變化,可能是因為低溫的環境會降低病毒的傳染力,另一方面,一般也認為日本腦炎流行的爆發可能跟雨季、水災或水稻田的面積有關。

日本腦炎病毒為黃病毒屬(Flavivirus)的一員,屬於黃病毒科 (Flaviviridae)。日本腦炎主要是藉著蚊子為媒介傳染的病毒性疾病, 是一種人畜共通傳染病,豬及許多動物被帶有日本腦炎病毒的病媒蚊叮 咬而感染,三斑家蚊(Culex tritaeniorhynchus)是主要的病媒蚊。在呈 地方性流行的地區日本腦炎病毒主要是感染 15 歲以下小孩,每年易感受 性人口(susceptible population)的感染率約 10%左右,不顯性感染的比 例相當高,而各國在相關的研究上,其不顯性感染的比例介於 25:1 至 1000:1 之間,相差非常的大(HALSTEAD 等,1936, THONGCHAROEN 等 1989),日本腦炎病毒感染的潛伏期約1~2週,初期症狀伴有類似感冒, 包括有發燒、頭痛、疲倦、咳嗽、噁心、嘔吐、食慾不振、腹痛與感覺 異常等非特異性症狀,好發於幼童與老年人。感染後,一旦出現臨床症 狀,約有 25%的病例很快的死亡,50%的人可能會有永久性的神經性症狀 或精神性異常等後遺症, 瘉後不良(BURKE 等, 1988), 對個人及家庭造成 衝擊,同時增加社會的成本及負擔,因此疫苗的接種是目前預防日本腦 炎感染最有效的方式。

早期台灣每年均有所謂「夏季腦炎」的流行,至 1938 年分離出日本腦炎病毒後,証實該病毒確實為引起台灣「夏季腦炎」流行的主因(KOBAYASHI 等,1938-1940, HSIEH 等,1960-1961, GRAYSTON 等,1962),

每年夏天 5-9 月為流行季節,流行地區極為廣泛,遍佈全島,尤以鄉間 為其(吳盈昌等,1989),而三斑家蚊(Culex tritaeniorhynchus)及環紋 家蚊(C. annulus)是主要的病媒蚊(HU 等, 1962, WANG 等, 1962, DTELES 等 1968-1970,REON 等 1989,OKUNO 等,1973),豬是最重要的增幅 (Amplifier)動物(WANG 等, 1962),因此每年例行性的針對豬隻日本腦炎 抗體的陽轉率進行監控,以了解當年日本腦炎的流行期,同時呼籲民眾 注意防範。過去每年針對豬隻日本腦炎抗體的陽轉的調查發現,豬隻抗 體的陽轉率超過 50%後的二至三週即為病例數的高峰期,期間約可維持一 個月左右,顯示豬為日本腦炎病毒傳染重要的中間宿主。而三斑家蚊及 環紋家蚊可能是日本腦炎感染人類與家畜的媒介,病媒蚊受感染並無病 徵呈現,但終其一生均具有傳染力,依據前預防醫學研究所 1990-1992 年所做調查顯示台灣北部三斑家蚊之密度由四月份開始至七-九月份為 最高峰,中部之高峰為七月份,南部之高峰為六月份,這也正是日本腦 炎病毒活躍的季節,因此病媒蚊密度的調查也是防治日本腦炎病毒感染 的重要工作之一。

由 1950-60 年代每年均有數百名的報告病例,尤以 1966-67 年最多,約有 1,791 名日本腦炎報告病例,1971 年以後則輔以實驗室的結果 做為確定病例確認的參考依據,自 1968 年政府全面實施日本腦炎疫苗接 種,確定病例數逐年下降,1976-1985 年每年確定病例數則降為29-62人之間,1985 年以後約介於6-38 人之間,但自2000-2004 年的五年間確定病例數為135 例,相較以往似乎略有上升的跡象(附圖一)。但由於日本腦炎病毒感染後,一旦出現臨床症狀,會有嚴重的後遺症,痛後不良,對個人、家庭以及社會造成極大的影響與負擔,早年病例主要發生於十歲以下小孩,近年來雖然確定病例數下降,但年齡層却有上升的現象。在日本腦炎的發生率方面,以1967 年最高,其確定病例的發生率為每十萬人口2.05 人,疫苗介入後發生率逐年下降,至1997 年每十萬人口的發生率降至0.03 人(Wu等,1999),顯示疫苗確實能有效降低日本腦炎的發生率,在確定病例下降的同時,死亡率當然也跟著下降,感染率下降的原因包括預防接種的實施、居住環境改善、農村型態改變等有關。

在流行季節方面,流行的高峰有逐年往前移的趨勢,1960年代八月份為流行的高峰期,1970年代則為七月份,1980年代則更往前移一個月為六月份(Wu等,1999),由2000-2004年的資料顯示,以六-七月為流行尖峰(附圖二),顯示日本腦炎病毒的流行型態已有些許的改變,可能跟居住環境的改變、農村耕作型態改變、殺蟲劑的大量使用等因素有關,因應這樣的改變,同時也會衝擊日本腦炎的防治策略。

在年齡層方面,早期主要病例為十歲以下兒童,依次為 10-19 歲青

少年,但至1985年以後,主要的病例逐漸轉移至20-29歲成年人,近年更以30歲人口為主要侵襲對象(Wu等,1999),由於缺乏確定病例的疫苗接種資料,假設接種率為100%情況下,分析2000-2004年135名日本腦炎的確定病例發現,1964年以前出生未接種疫苗者約佔52%,1965-1972年出生曾接種二劑者約佔18%,1973-1976年出生曾接種三劑者約佔7%,1977年以後出生曾接種四劑者約佔23%(附表一),顯示日本腦炎主要的病例,50%以上仍為未接種疫苗者,其次為接種2-3劑者約佔25%,再次為接種4劑者約佔23%,其中有一半的病例可能接種過二劑或二劑以上的疫苗,但因抗體已不足以保護個體,其中有23%的人可能曾接種過4劑疫苗,這是值得深入探討的問題,由於目前日本腦炎疫苗的接種政策主要是以兒童為主,因此未來如何預防高年齡層個案的發生就顯得格外的重要。

我國自1967年開始生產日本腦炎疫苗,1968年針對全國2-4歲兒童實施二劑日本腦炎疫苗接種政策,1974年接種劑數增加為三劑,近年的日本腦炎疫苗預防接種策略是在每年三至六月進行接種工作,第一次接種是滿十五個月大幼兒,第二次接種則必須和第一次接種間隔兩個星期,一年以後接種第三劑,及至小學一年級再追加接種第四劑疫苗,根據研究結果顯示,預防日本腦炎最有效的方法是接種疫苗,兒童按時程接種四劑疫苗的

保護效果最佳,相關方面的研究也都証實,完成四劑疫苗接種的抗體陽轉 率較高(HSU 等 1971; OKUNO 等 1968-1971; HOKE 等, 1988; 許等, 1997), 但由於近年來成人確定病例有逐漸上升的趨勢,加上日本腦炎患者的齎後 不良,對個人、家庭及社會產生極大影響,造成嚴重的公共衛生問題,究 竟國人不同年齡層日本腦炎抗體盛行率為何?是否應針對1968年以前出生 世代進行疫苗接種?或對1968年以後出生世代追加接種?國內在相關的研 究上,1998年前預研所曾針對台北市中山、大同二區及台北縣金山鄉進行 各年齡層日本腦炎中和抗體盛行率調查(樂等,1998),2003年 Tseng 等針 對高雄縣及屏東縣二縣不同年齡層本腦炎中和抗體進行調查(Tseng 等 2003),但僅屬局部地理區域之結果,並沒有全國性的研究結果供參考,因 此本計畫擬以台灣地區 15-90 歲人口為研究對象,以溶斑減少試驗法 (Plague Reduction Neutralization Test: PRNT)進行日本腦炎中和抗體 檢測,以了解台灣地區 15-90 歲人口日本腦炎中和抗體的盛行率,作為疫 苗接種政策訂定之參考依據。

材料與方法

一、研究設計

本計畫採用 2002 年本局生物材料科收集國民健康局提供之「台灣地區高血糖、高血脂、高血壓盛行率調查」計劃檢體,進行台灣地區十五歲以上年齡層日本腦炎中和抗體盛行率研究,作為疫苗接種政策之參考。

二、研究對象

以15歲以上居民為收案對象,將大台北都會區、台北縣與基隆市、桃竹苗、中彰投、雲嘉南、高屏澎及宜花東分成七個單獨的抽樣層,從中抽出88個鄉、鎮、市、區,再從這88個樣本區依每個地區人口數的多寡,各抽出32個到176個不等的家戶,台灣地區合計共抽出6600個樣本家戶。台灣本島與離島採不同的抽樣方式,在台灣地區:採多層、多階段、PPS(Probability Proportional to Size,抽取率與單位大小成比率)等機率抽樣設計,第一階段抽出「鄉鎮市區」,第二階段自中選的鄉鎮市區中抽出「鄰」,第三階段再自中選的鄰抽出「戶」,中選的戶全查,樣本數6600戶;離島及山地地區:採分層、多階段、PPS等機率抽樣設計第一階段抽出「鄰」,第二階段

再自中選的鄰抽出「戶」,中選的戶全查樣本數分別 400 及 600 戶, 為問卷調查對象,相關個個案採血則以台灣本島為主,不含離島住 民,相關樣本經統計檢定顯示具全國代表性。

三、樣本估計

以「台灣地區高血糖、高血脂、高血壓盛行率調查」15-90歲個 案檢體為研究對象,計樣本數為 6,594件檢體,研究對象人口特質及 地理分佈如附表。

四、日本腦炎病毒株

以 Nakayama-NIH strain 為主要病毒株,進行中和抗體反應試驗。

五、檢驗方法

溶斑減少試驗法(Plaque Reduction Neutralization Test; PRNT)

- 1、將 BHK-21 細胞分注於 24 孔盤,濃度為 0.75×10^5 個細胞/孔,放 入 $37^{\circ}\mathrm{C}$,5% CO_2 培養 48 小時。
- 2、血清檢體以血清稀釋液 (0.01MPBS+5% FCS) 作 10 倍稀釋後,於

56℃水浴30分鐘作不活化處理。

- 3、將日本腦炎中山株(Nakayama strain)以 BHA growth medium with 6%GPS 調整濃度至約 100pfu/100ul。
- 4、去活化的稀釋血清 75ul 與等體積的稀釋病毒混合均勻,放入 4℃ 冰箱中 18-21 小時進行中和反應。
- 5、取出己培養於24孔盤中兩天的BHK-21細胞,掉上層培養液,每孔加入50UL病毒血清混合液,每個檢體放兩孔(duplicate),搖晃均勻後37°C,5%CO2培養箱內感染1時。
- 6、取出 24 盤,每孔加 0.5CC 含 1% Methylcellulose 的 BHK-21 growth medium,放入 37°C,5%CO2 培養箱內培養 3 天。
- 7、3天後取出培養盤,用Amido Black 固定染色 30 分鐘。
- 8、洗掉殘餘染料,計算溶斑數。
- 9、平均溶斑數少於病毒控制組50%者為中和抗體陽性檢體。

六、分析方法

本研究使用 SAS 8.2 版統計軟體進行資料處理與統計分析,再利用 Microsoft Office 2000 軟體進行文書處理與圖表建構。統計方法包括:

(一)、描述性統計

使用次數分配、百分比、卡方檢定,分析不同年齡、性別、居住 地日本腦炎中和抗體陽性率的差異。

(二)、推論統計

針對是否具有日本腦炎中和抗體,與年齡、性別、居住地的關係。以 邏輯式迴歸分析(logistic regression),分析影響日本腦炎中和抗體的因 素,以RR值及其 95% 信賴區間呈現;統計顯著水準 $\alpha=0.05$ 。

結果

(一)、不同年齡層日本腦炎中和抗體的陽性率

全國 15-90 歲人口平均日本腦炎中抗體的陽性率為 71%(4681/6594)(表一),15 歲(1986 年出生)年齡層日本腦炎中和抗體的陽性率為 87%(34/39),隨著年齡的增加抗體陽性率逐漸的下降,以 32 歲(1969 年出生)年齡層最低為 48%(54/113),51-69 歲(1932-1950 年出生)年齡層逐漸上升中和抗體陽性率則介於 80-90%之間,其中以 70 歲以上(1931 年以前出生)年層最高,中和抗體陽性率在 90%以上(圖一)。

其中24-40歲(1961-1977年出生)年齡層,其中和抗體陽性率介於47-61%之間,為所有年齡層中抗體陽性率最低者,顯示青、壯年人口有一半的人對日本腦炎病毒不具保護力,為最易受感染之危險族群;依次為18-23歲(1978-1983年出生)年齡層中和抗體陽性率介於62-71%之間,再者為41-47歲(1954-1962年出生)年齡層中和抗體陽性率介於61-75%之間,顯示青少年及中年二族群,為次一危險族群。

由上述數據顯示 18-47 歲(1954-1983 年出生)年齡層為易受感染日本腦 炎病毒感染之危險族群,此一族群活動力及生產力最旺盛的族群,雖然日 本腦炎病毒的不顯性感染率相當的高,感染後一旦出現臨床症狀,約有 25% 的病例很快的死亡,50%的人可能會有永久性的神經性症狀或精神性異常等 後遺症, 痛後不良(BURKE 等, 1988), 對個人及家庭造成衝擊, 降低生產力, 同時將增加社會的成本及負擔。

(二)、不同性別日本腦炎中和抗體的陽性率

在性别方面,男性日本腦炎中和抗體的陽性率為 73.3%(2318/3163),高於女性的 68.9%(2363/3431),且達統計顯著差異 (p<0,001)(表二);另依不同年齡層結果發現,15-36歲(1965-1986年出 生)年齡層中和抗體陽性率男、女間並沒有太大差異,且女性抗體似乎略 高於男性,但不顯著,而 37 歲(1964 年出生)以上年齡層則明顯的呈現男 性抗體陽性率高於女性(圖二),由於台灣早期為農業社會,男性為主要 勞動人口,在男主外,女主內的社會型態下,男性於戶外停留的時間多 於女性,因此曝露於病蚊的危險性高於女性,因此高年齡層人口,男性 抗體陽性率高於女性;反之在15-36歲(1965-1986年出生)年齡層,近年 台灣經濟模式急遽變化,由傳統的農業經濟轉變為工商業經濟,加上預 防接種的實施、居住環境改善、農村型態改變等,以致在年齡上看不出 有差異的存在,由於自然感染率的降低,其主要的影響應來自疫苗接種 的效益。

(三)、不同地理區域日本腦炎抗體陽性率

以大台北都會區日本腦炎抗體的陽性率低為64.3%(1240/1927),依 次分別為台北縣與基隆為 66.1%(216/327)、高屏澎為 67.3%(761/1130)、 桃竹苗為 73.5% (568/776)、中彰投為 76.6%(899/1173)、宜花東為 78.5%(223/284), 雲嘉南最高為 79.0%(774/980), 達統計顯著差異 (p<0.0001)(圖三),顯示都會區因高度都市化且水稻田少,三斑家蚊不 易孳生,因此大大的降低其曝露的危險性,使得自然感染率下降,反之 雲嘉南為台灣水稻主要耕作的地區,而宜花東則屬人口密度較低的鄉村 地區,適合三斑家蚊孳生,於戶外活動時易受蚊蟲叮咬,大大的提高其 曝露的危險性,使得自然感染率較都會區高,由研究結果顯示都市化程 度會影響日本腦炎中和抗體的分布,因自然環境的改變,使得都會地區 日本腦炎病毒自然感染率下降,突顯疫苗接種的重要性,在高接種率的 現在,如何維持接種後中和抗體效價,應為未來疫苗接種政策訂定的重 要參考依據。

(四)、不同縣市別日本腦炎抗體陽性率

若依縣市別來看,在北區,以基隆及台北市的日本腦炎抗體陽性率最低為 63%,桃園及宜蘭縣最高介於 76-77%之間,台北縣及新竹縣市居中,介於 68-70%之間;在中區,以雲林縣日本腦炎抗體陽性率最高為 89%,其次彰化縣為 81%,台中縣市、苗栗縣及南投縣則介於 72-70%之間;在南區,以台南縣日本腦炎抗體陽性率最高為 86%,依次為嘉義縣及高雄縣分別為 82%及 74%,屏東縣、台南市、高雄市日本腦炎抗體陽性率最低,介於 63-65% 之間;在東區,台東及花蓮縣日本腦炎抗體陽性率均為 80%(圖四),雖然在 抽樣上,依縣市別的樣本分析並不具代表性,但相關數據仍顯示,都市化程度是影響日本腦炎中和抗體陽性率分布的重要因素,亦即是否有適當的環境供病媒蚊生長是重要的因素,病媒蚊指數高則自然感染率高,為高年 齡層人口日本腦炎抗體陽性率高的主要因素。

(五)、以邏輯式迴歸(logistic regression)分析影響日本腦炎中和抗體的因素

在影響日本腦炎中和抗體的因素方面,依邏輯式迴歸分析結果顯示,在 控制了年齡及居住地後,男性日本腦炎中和抗體陽性率顯著的高於女性, Odd 值為 1. 23(95%CI 為 1. 10-1. 38; P<0. 01),顯示男性較女性具有保護力; 在控制了性別及居住地後,相對於 15-19 歲年齡層(1982-1985 年出生), 20-54 歲(1947-1981 年出生)為中和抗體陽性率較低的年齡層,尤其 20-44 歲(1957-1981 年出生)年齡層 Odd 值均小於 1,且統計上達顯著差異 (P<0.0001), 反之, 55 歲(1946 年以前出生)以上年齡層 Odd 值均顯著的大 於 1(P<0.001), 且隨著年齡的增加, Odd 值逐漸上升。顯示年齡是影響日 本腦炎中和抗體的重要因素;在控制了性別及年齡後,相較於大台北都會 區,其餘六個地理區日本腦炎中和抗體的陽性率均較前者高,其中台北縣 與基隆市之 Odd 值為 1.14(95%CI 為 0.88-1.47), 桃竹苗之 Odd 值為 1.71(95%CI 為 1.41-2.08; P<0.0001), 達統計顯著差異,中彰投之 0dd 值 為 2. 00(95%CI 為 1. 68-2. 37; P<0. 0001),達統計顯著差異,雲嘉南之 0dd 值為 2.03(95%CI 為 1.69-2.45; P<0.0001), 達統計顯著差異, 高屏澎之 Odd 值為 1.15(95%CI 為 0.98-1.36), 宜花東之 Odd 值為 1.81(95%CI 為 1.34-2.49; P<0.01), 達統計顯著差異(附表三), 顯示城鄉的差異是影響 日本腦炎中和抗體的重要因素。

(六)、由疫苗的接種史看不同出生世代日本腦炎抗體的分布

台灣於1968年始針對三歲以下兒童接種二劑日本腦炎疫苗,1974年則於接種第二劑後一年追加接種一劑,計接種三劑,1983年於小學一年級再追加接種一劑,計接種四劑,至1992年開始檢查疫苗接種紀錄卡,針對第

三劑漏打者補接種。由於無法取得研究個案的疫苗接種史,因此假設接種率為 100%,且不考慮有可能自費接種的情況下,依此推算所研究樣本年齡在 37 歲以上者(1964 年以前出生),應未接種過日本腦炎疫苗;年齡介於 29-36 歲(1965-1972 年出生),應接種過二劑日本腦炎疫苗;年齡介於 25-28 歲(1973-1976 年出生),應接種過三劑日本腦炎疫苗;年齡 24 歲以下者(1977年以後出生),應接種過四劑日本腦炎疫苗。

若以疫苗之接種情形看不同年齡層日本腦炎中和抗體之分佈發現,15-24歲(1977-1986年出生)年齡層為接種四劑疫苗者,日本腦炎抗體隨著年齡增加而呈下降的趨勢,介於54-87%之間,其中18-24歲年齡層更降至54-71%之間;25-28歲(1973-1976年出生)年齡為接種過三劑疫苗者,其抗體介於49-61%之間,抗體陽性率較接種四劑者為低;29-36歲(1965-1972年出生)年齡為僅接種二劑疫苗者,抗體介於47-61%之間,抗體陽性率又較前二者為低;37歲以上年齡層(1964年以前出生),為未接種疫苗者,以37-47歲(1954-1964年出生)年齡層抗體陽性率最低,介於51-75%之間,隨著年齡的增加而有上升的趨勢,70歲以上(1931年以前出生)族群抗體陽性率更高達90%以上(圖五),由研究結果顯示,日本腦炎中和抗體會受疫苗接種時間的長短、接種劑數及自然感染率的影響,其中25-36歲年齡層雖曾接種2-3劑日本腦炎疫苗,但其抗體為所有年齡中最低,為日本腦炎病毒感染的高

危險群,另外37歲以上人口為未接種疫苗族群,因自然感染率使得50歲(1951以前年出生)以上年齡層抗體陽性率高達80-90%,但37-50歲之間抗體陽性率仍相當的低,亦為日本腦炎病毒感染的高危險群,且此一族群(25-50歲)為就業市場的主要族群,雖然日本腦炎不顯性感染的比例為1:300,但一旦出現中樞神經症狀,會造成工作的損失及醫療成本的增加,對個人、家庭及社會造成影響,因此針對此一族群應審查慎評估其接種或追加接種的可能性。

討論與結論

本研究結果顯示日本腦炎中和抗體的陽性率,會隨著年齡的增加抗體陽性率逐漸的下降,以24-40歲(1961-1977年出生)年齡層中抗體陽性率最低,顯示青、壯年人口有一半的人對日本腦炎病毒不具保護力,為最易受感染之危險族群;依次為18-23歲(1978-1983年出生)年齡層,再次為41-47歲(1954-1962年出生)年齡層,亦顯示青少年及中年二族群,為次一危險族群,至51-69歲(1932-1950年出生)年齡層中和抗體逐漸上升,其中以70歲以上(1931年以前出生)年層最高,中和抗體陽性率在90%以上。前預研所於1998年在台北縣市的研究顯示,以24-44歲(1957-1977年出生)年齡層日本腦炎中和抗體陽性率最低(吳等,1998),另外曾等於1998年研究也顯示1960-1981年出生世代的抗體陽性率最低(Tseng等,2003),與本研究有相同的結果。

在性別方面,男性日本腦炎中和抗體的陽性率顯著的高於女性,此 與大多數的研究結果相似;另依不同年齡層結果發現,15-36歲 (1965-1986年出生)年齡層中和抗體陽性率男、女間並沒有太大差異,且 女性抗體似乎略高於男性,但不顯著,而37歲(1964年出生)以上年齡層 則明顯的呈現男性抗體陽性率高於女性,由於台灣早期為農業社會,男 性為主要勞動人口,在男主外,女主內的社會型態下,男性於戶外停留 的時間多於女性,因此曝露於病蚊的危險性高於女性,因此高年齡層人口,男性抗體陽性率高於女性;反之在15-36歲(1965-1986年出生)年齡層,近年台灣經濟模式急遽變化,由傳統的農業經濟轉變為工商業經濟,加上預防接種的實施、居住環境改善、農村型態改變等,以致在年齡上看不出有差異的存在,由於自然感染率的降低,其主要的影響應來自疫苗接種的效益。

在地理差異方面,日本腦炎中和抗體的陽性率受都市化的影響,以 大台北都會區最低,顯著低於其他地區,顯示都會區因高度都市化且水 稻田少,三斑家蚊不易孳生,因此大大的降低其曝露的危險性,使得自 然感染率下降,反之雲嘉南為台灣水稻主要耕作的地區,而宜花東則屬 人口密度較低的鄉村地區,適合三斑家蚊孳生,於戶外活動時易受蚊蟲 叮咬,大大的提高其曝露的危險性,使得自然感染率較都會區高,由研 究結果顯示都市化程度會影響日本腦炎中和抗體的分布,因自然環境的 改變,使得都會地區日本腦炎病毒自然感染率下降,突顯疫苗接種的重 要性,在高接種率的現在,如何維持接種後中和抗體效價,應為未來疫 苗接種政策訂定的重要議題。另由其他相關數據顯示,都市化程度是影 響日本腦炎中和抗體陽性率分布的重要因素,亦即是否有適當的環境供 病媒蚊生長是重要的因素,病媒蚊指數高則自然感染率高,為高年齡層 人口日本腦炎抗體陽性率高的主要因素。

進一步由邏輯式迴歸分析的結果顯示,性別、年齡及居住地為影響 日本腦炎中和抗體的重要因素,男性日本腦炎中和抗體陽性率顯著的高 於女性,顯示男性較女性具有保護力;在年齡方面,15-19 歲年齡層 (1982-1985 年出生),20-44 歲(1957-1981 年出生)年齡層抗體陽性率顯 著的低於其他年齡層,但55歲(1946 年以前出生)以上年齡層隨著年齡的 增加,抗體陽性率逐漸上升,顯示年齡是影響日本腦炎中和抗體的因素; 在城鄉比較方面,相較於大台北都會區,其餘六個地理區日本腦炎中和 抗體的陽性率均顯著的高於前者,顯示城鄉的差異是影響日本腦炎中和 抗體的陽性率均顯著的高於前者,顯示城鄉的差異是影響日本腦炎中和 抗體的因素,綜合以上因素,不論是性別、年齡或城鄉的差異,主要還 是受自然感染率的影響。

在假設接種率為 100%的情況下,將本研究結果與 2000-2004 年確定病例相較,15-24歲(1977-1986年出生)年齡層為接種四劑疫苗者,日本腦炎抗體隨著年齡增加而呈下降的趨勢,尤以 18-24歲年(1977-1983年出生)齡層最低,該年齡層佔 2000-2004年確定病例的 17%(23/135);25-28歲(1973-1976年出生)年齡為接種過三劑疫苗者,抗體陽性率較接種四劑者為低,該年齡層佔 2000-2004年確定病例的 7.4%(10/135); 29-36歲(1965-1972年出生)年齡為僅接種二劑疫苗者,抗體陽性率又較前二者為

低,該年齡層佔 2000-2004 年確定病例的 17.8%(24/135);37 歲以上年齡層(1964年以前出生),為未接種疫苗者,以37-47歲(1954-1964年出生)年齡層抗體陽性率最低,該年齡層佔 2000-2004 年確定病例的 25.2%(34/135),48 歲以上族群佔 2000-2004 年確定病例的 26.7%(36/135),由研究結果顯示日本腦炎主要的病例,50%以上仍為未接種疫苗者,且以37-47歲(1954-1964年出生)年齡層為主;另一半的病例為可能接種過二劑或二劑以上的疫苗,可能抗體已不足以保護個體,因此接種2-3劑者仍佔25%,以25-36歲(1965-1976年出生)年齡層主,接種4劑者約佔23%,以18-24歲年(1977-1983年出生)齡層為主,本研究結果與2000-2004年確定病例的分佈相近,當抗體陽性率低時,確定病例數就多。

雖然日本腦炎確定病例主要仍以高年齡層未接種者為主,但接種過二劑或二劑以上的疫苗亦約佔50%,其中有23%的人可能曾接種過4劑疫苗,究竟是接種的劑數不夠(多於四劑)?或是疫苗效益不夠好(疫苗株抗原性差)?或是23%的人都是未接種的人?這是值得深入探討的問題,由於日本腦炎感染一旦出現中樞神經症狀,會造成工作的損失及醫療成本的增加,對個人、家庭及社會造成影響,因此針對此一族群應審查慎評估其接種或追加接種的可能性。

建議

- (一)、未接者中以 37-47 歲(1954-1964 年出生)年齡層抗體陽性率最低, 該年齡層佔 2000-2004 年確定病例的 25.2%(34/135)為最多,由於 大環境的變遷及都市化,影響自然感染率,加上日本腦炎感染,可 能會造成工作的損失及醫療成本的增加,對個人、家庭及社會造成 影響,在經費充足的情況下,建議優先考慮針對此一族群進行實施 疫苗接種,可有效減少確定病例數。
- (二)、29-36 歲(1965-1972 年出生)年齡為僅接種二劑疫苗者,抗體陽性率所有年齡層中最低者,該年齡層佔 2000-2004 年確定病例的17.8%(24/135),由於僅接種二劑,且距接種時間已達 20-30 年之久,在安全考量下,建議仍可補接種二劑,應可減少確定病例數,達預防之效果。
- (三)、25-28 歲(1973-1976 年出生)年齡為接種過三劑疫苗者,該年齡層 佔 2000-2004 年確定病例的 7.4%(10/135),由於接種後日本腦炎 中和抗體保護力僅能維持三年左右,或許追加接種一劑,亦可減少 確定病例數。
- (四)、18-24 歲年(1977-1983 年出生)齡層,理論上應完成四劑疫苗接種,

該年齡層佔 2000-2004 年確定病例的 17%(23/135),這是比較嚴重的問題,究竟是接種的劑數不夠(多於四劑)?或是疫苗效益不夠好(疫苗株不好)?或者 17%均為未接種者?值得深入探討,且此為接種十年以上之個案,雖然日本及韓國也有接種 5-8 劑的政策,若要追加接種應做多方面的研究。

(五)、都市化程度會影響日本腦炎中和抗體的分布,因自然環境的改變, 使得都會地區日本腦炎病毒自然感染率下降,突顯疫苗接種的重要 性,在高接種率的現在,如何維持接種後中和抗體效價,應為未來 疫苗接種政策訂定的重要議題。

(六)、研究限制

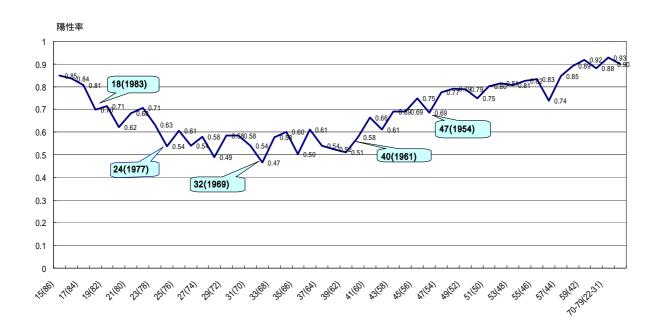
由於早期疫苗接種資料並未予以電腦化,無法取得有效的疫苗接種資料供參考,單憑個人記憶,容易產生 recall bias,降低資料的可信度,未來 NIIS 的建置應可解決部分問題。

參考文獻

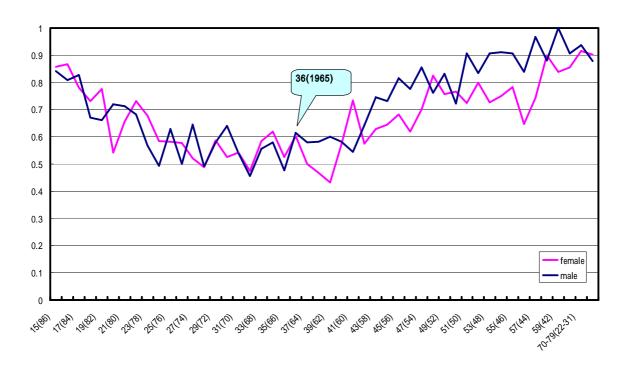
- 1. S V TIROUMOUROUGANE, P RAGHAVA, S SRINIVASAN Japanese viral encephalitis. *Postgrad Med J.* 2002; 78:205-215.
- 2. TOM SOLOMON Recent advances in Japanese encephalitis. *Journal of Neurovirology*. 2003;9:274-283.
- 3. BURKE DS, LEAKE CJ. Japanese encephalitis, in Monath TP ed. The Arboviruses: Epidemiology and Ecology. *Vol III.Boca Raton FL:CRC Press*. 1988;63-92.
- 4. KOBAYASHI H. On the virus of Japanese encephalitis isolated in Taihoku and Sintiku provinces in the summer. *Acta Jap Med Trap.* 1940; 2:55-62.
- 5. HSIEH WC, WANG SP, PASMUSSEN AF. Epidemiology of Japanese encephalitis (JE) on Taiwan. In 1960. *J Formosan Med Assoc*. 1961; 60:825-30.
- 6. GRAYSTON JT, WANG SP, YEN CH. Encephalitis on Taiwan. I. Introduction and epidemiology. *Am J Trop Med Hyg.* 1962; 11: 126-30.
- 7. 吳盈昌 連日清 郭兆溪:揮不去的夏日訪客------日本腦炎.*科學月刊* 1989; 20:750-7.

- 8. HU SMK, GRAYSTON JT. Encephalitis on Taiwan. II. Mosquito collection and bionomic studies. *Am J Trop Med Hyg.* 1962; 11:131-40.
- 9. WANG SP, GRAYSTON JT, HU SMK. Encephalitis on Taiwan. III.Virus isolations from mosquites. *Am J Trop Med Hyg.* 1962; 11:141-8.
- 10.DTELES R, CATE MD, CROSS JH, IRVING GS, WATTEN RH. Ecology of Japanese encephalitis virus on Taiwan in 1968. *Am J Trop Med Hyg.* 1970; 19:716-23.
- 11.REON L, LIEN JC, LU LC. A longitudinal study of the prevalence of Japanese encephalitis in adult and larval *Culex tritaeniorhynchus* mosquitoes in northern Taiwan. *Am J Trop Med Hyg.* 1989; 40: 557-60.
- 12.OKUNO T, MITCHELL CJ, CHEN PS, WANG JS, LIN SY. Seasonal infection of Culex mosquitoes and swine with Japanese encephalitis virus. *Bull Wld Hlth Org.* 1973; 49: 347-52.
- 13. WANG SP, GRAYSTON JT, CHU IH. Encephalitis on Taiwan. V. Animal and bird serology. *Am J Trop Med Hyg.* 1962; 11:155-8.
- 14.HSU TC, CHOW LP, WEI HY, HSU ST, HUANG CT, KITAOKA M,SUNAGA H. A control field trial for an evaluation of effectiveness of mouse-brain Japanese encephalitis vaccine. *J Formosan Med Assoc.* 1971; 70:55-61.

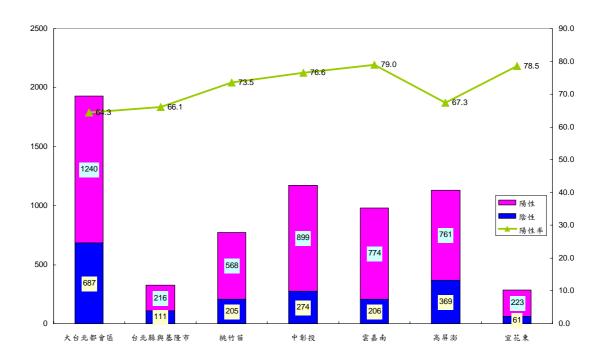
- 15.OKUNO T, TSENG PT, HSU ST, HUANG CT, KUO CC, LIN SY. Japanese encephalitis surveillance in China (province of Taiwan) during 1968-1971. II Age-specific incidence in connection with Japanese encephalitis vaccination program. *Japan J Med Sci Biol.* 1975; 28:255-67.
- 16.HOKE CH, NISALAK A, SANGWHIPA N, JATANASEN S,

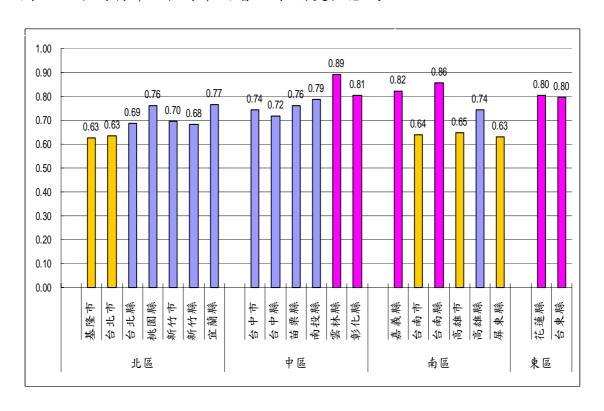

 LAORAKAPONGSE T,INNIS BL, KOTCHASENEE S,GIRNGRICH JB,

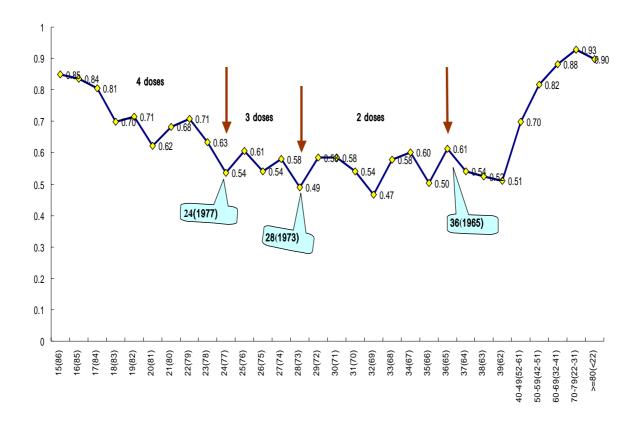
 LATENDRESSE J,FUKAI K, BURKE DS. Protection against Japanese
 encephalitis by inactivated vaccine. *N Engl J Med.* 1988; 319:609-14.
- 17. 許麗卿 吳盈昌 林雪蓉 金傳春 何美鄉 盧志崶 許須美 陳國東 洪其璧:台灣北中南東四區山地和平地鄉 3-6 歲兒童日本腦炎病毒感染的血清流行病學研究 中華微免雜誌 1977; 30: 194-206.
- 18.MIYAKE M. The pathology of Japanese encephalitis. *Bullworld Health Organ*. 1964; 30:153-60.
- 19. HALSTEAD SB, Grosz CR. Subclinical Japanese encephalitis. Infection of Americans with limited residence in Korea. *Am J Hyg.* 1936;75:190-201.
- 20.THONGCHAROEN P. Japanese encephalitis-virus encephalitis: an overview. Southeast Asian Jtrop Med Public Health. 1989;20:59-73.


- 21. YING-CHANG WU, YAW-SHYONG HUANG, LI-JUNG CHIEN, TSUEY-LI LIN, YI-YUNG YUEH, WUU-LUH TSENG, KWO-JIING CHANG, AND GONG-REN WANG. The epidemiology of Japanese encephalitis on Taiwan during 1966-1997. *Am J. Trop.* Med. Hyg.1999, 61(1),pp.78-84.
- 22. Tseng HF, Tan HF, Chang CK, Huang WL, Ho WC. Seroepidemiology study of Japanese encephalitis neutralizing antibodies in southern Taiwan: a comparative study between urban city and country townships. *Am J Infect Control*. 2003;31(7):435-40.

圖、表


圖一 不同出生世代日本腦炎抗體陽性率


圖二 不同年齡、性別日本腦炎抗體陽性率


圖三 不同地理區域日本腦炎抗體陽性率

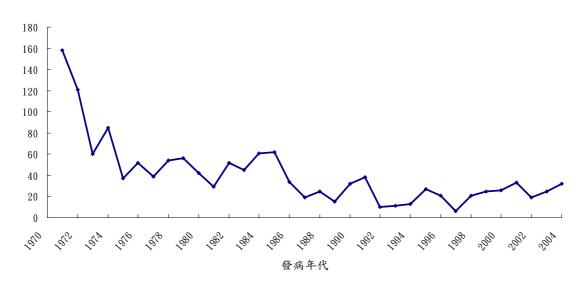
圖四 不同縣市、不同年齡層日本腦炎抗體陽

圖五 不同疫苗接種史日本腦炎抗體陽性率

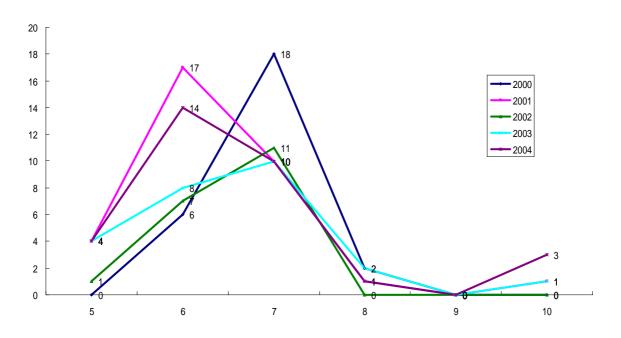
表一 台灣地區日本腦炎中和抗體陽性率

		陽性率	
	陽性數	(%)	總計
女	2363	68.9	3431
男	2318	73.3	3163
總計	4681	71.0	6594

p<0.001


表二 不同性別、年齡及居住區域日本腦炎中和抗體相對陽性率

	Adj Odds	95%C.I.	P Value	
性別				
女	1.00			
男	1.23	1.10 - 1.38	**	
年齡				
15-19	1.00			
20-24	0.54	0.42 - 0.70	***	
25-29	0.40	0.31 - 0.51	***	
30-34	0.40	0.31 - 0.51	***	
35-39	0.37	0.29 - 0.48	***	
40-44	0.58	0.45 - 0.74	***	
45-49	1.01	0.77 - 1.31		
50-54	1.28	0.97 - 1.71		
55-59	1.85	1.32 - 2.63	**	
60-64	1.78	1.26 - 2.54	**	
65-69	3.33	2.18 - 5.24	***	
70-74	3.12	2.00 - 5.05	***	
75-79	6.08	3.14 - 13.01	***	
>=80	3.19	1.66 - 6.77	**	
居住區域				
大台北都會區	1.00			
台北縣與基隆市	1.14	0.88 - 1.47		
桃竹苗	1.71	1.41 - 2.08	***	
中彰投	2.00	1.68 - 2.37	***	
雲嘉南	2.03	1.69 - 2.45	***	
高屏澎	1.15	0.98 - 1.36		
宜花東	1.81	1.34 - 2.49	**	


*p<0.05 **p<0.01 ***p<0.0001

附錄

附圖一 1971-2004年日本腦炎確定病例

附圖二 日本腦炎病例季節分佈,2000-2004年

JE Confirm Cases by Birth Year ,2000-2004

					•		
	unvaccination		2 doses	3 doses	4 doses		
birth year	1914-	1954-	1965-	1973-	1977-	1984-	Total
	1953	1964	1972	1976	1983	2000	
2000	11	3	0	0	8	4	26
2001	5	9	12	3	4	0	33
2002	6	5	2	2	4	0	19
2003	3	7	5	3	5	2	25
2004	11	10	5	2	2	2	32
Total	36	34	24	10	23	8	135
%	26.67	25.19	17.78	7.41	17.04	5.93	
av.of							
Cases/birth	0.90	3.09	3.00	2.50	3.29	0.50	
year							

附表二 個案人口特質

	人數	百分比
性別		
女	3382	0.52
男	3120	0.48
平均年龄	42.6(15-90)	
地理區域		
大台北都會區	1882	0.29
中彰投	1163	0.18
台北縣與基隆	323	0.05
宜花東	284	0.04
桃竹苗	766	0.12
高屏澎	1116	0.17
雲嘉南	968	0.15

附表三

不同抽樣區樣本數

抽樣區	總計	抽樣區	總計	抽樣區	總計
大台北都會區(N=1927)		台北縣與基隆市(N=327)		雲嘉南(N=980)	
台北市士林區	98	台北縣五股鄉	108	雲林縣莿桐鄉	218
台北市大同區	52	台北縣樹林鄉	111	嘉義縣梅山鄉	195
台北市大安區	130	基隆市七堵區	104	台南市安南區	127
台北市中山區	58	桃竹苗(N=773)		台南市西區	128
台北市中正區	71	桃園縣大溪鎮	84	台南縣善化鎮	152
台北市內湖區	92	桃園縣平鎮市	127	台南縣新營市	148
台北市文山區	83	桃園縣桃園市	173	高屏澎(N=1130)	
台北市北投區	89	新竹市北區	109	高雄市三民區	102
台北市松山區	89	新竹縣竹北鄉	110	高雄市前鎮區	99
台北市信義區	121	苗栗縣竹南鎮	163	高雄市楠梓區	107
台北市南港區	45	中彰投(N=1173)		高雄縣大寮鄉	98
台北市萬華區	75	台中市北屯區	94	高雄縣湖內鄉	199
台北縣三重市	98	台中市南區	77	高雄縣鳳山市	164
台北縣中和市	147	台中縣太平市	129	屏東縣內埔鄉	153
台北縣永和市	97	台中縣梧棲鎮	146	屏東縣霧台鄉	194
台北縣汐止市	72	南投縣南投市	180	宜花東(N=284)	
台北縣板橋市	173	彰化縣秀水鄉	183	台東縣卑南鄉	69
台北縣淡水鎮	39	彰化縣員林鎮	200	宜蘭縣冬山鄉	124
台北縣新店市	117	彰化縣彰化市	154	花蓮縣富里鄉	91
台北縣新莊市	136				