計畫編號: MOHW110-CDC-C-315-114409

衛生福利部疾病管制署 110 年署內科技研究計畫

監測新興人畜共通蟲媒傳染病之病原基因序列 及抗原特異性變化之分析研究

年度研究報告

執行單位:檢驗及疫苗研製中心

計畫主持人:舒佩芸

協同主持人:楊素鈴

研究人員: 陳湘妃、張梅君、楊正芬、薛友琳

執行期間:110年1月1日至110年12月31日

目錄

		頁碼
封面		
中文摘要		(3)
英文摘要		(4)
本文		
- \	前言	(5-9)
二、	材料與方法	(10-13)
三、	結果	(14-15)
四、	討論	(16)
五、	結論與建議	(17)
六、	計畫重要研究成果及具體建議	(18)
七、	參考文獻	(19-23)
八、	表圖	(24-32)
		共 (32)頁

中文摘要

發熱伴血小板減少綜合症(severe fever with thrombocytopenia syndrome, SFTS) 是藉由感染新型布尼亞病毒(SFTSV)的蜱蟲叮咬而致病。SFTS 是 一種新興傳染病,最早在2009年中國大陸的河北與河南省被報導,近 年在韓國、日本與越南也陸續發現 SFTS 病例。台灣在 2019 年 11 月底 首次發現本土首例。2020-2021 年則未發現 SFTS 病例。斑點熱(spotted fever) 是斑點熱立克次體(spotted fever group rickettsiae; SFGR) 感染所引 起的疾病。SFGR 可感染許多種類的節肢動物,再經由節肢動物叮咬傳 至人或哺乳動物。台灣在 2005 年首次發現人的斑點熱病例。2021 年 未發現斑點熱病例。無形體病(human granulocytic anaplasmosis; HGA) 是由嗜吞噬球無形體(Anaplasma phagocytophilum)感染引起的疾 病。2021 年偵測出 7 例 anaplasmosis 病例。人類單核球艾利希氏體症 (human monocytic ehrlichiosis; HME) 是由查非艾利希氏體 (Ehrlichia chaffeensis) 感染引起的疾病。2021 年偵測出 31 例 ehrlichiosis 病例。 恙蟲病為 Orientia tsutsugamushi 感染引起的疾病,由恙蟲幼蟲傳播。 恙蟲病為台灣最主要的立克次體疾病,每年約有 300-500 個確定病 例。2021年1月至10月監測結果共檢驗出247例恙蟲病陽性病例。 由基因序列分析顯示,2021年恙蟲病立克次體以TW-1(17例)、TW-19(6 例)及 TW-22 (4 例) sequence types 為主,與泰國株親緣關係最 近。

關鍵詞:發熱伴血小板減少綜合症、斑點熱、無形體病、人類單核球 艾利希氏體症、恙蟲病

英文摘要

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease. SFTS caused by the bite of ticks infected with SFTSV (a new bunyavirus). SFTS was initially reported in Henan and Hebei in mainland China in 2009. Subsequently, SFTS cases were reported by South Korea and Japan. Taiwan is located near mainland China, Japan and South Korea, surveillance and molecular characterization of SFTSV are crucial for disease prevention and control. In 2019, we found a patient with SFTSV infection. No SFTSV cases were found during 2020-2021. Spotted fever group rickettsiae (SFGR) are zoonotic pathogens which cause spotted fever in human and animals. Spotted fever disease is found throughout the world. No SFGR cases were found in 2021. Human granulocytic anaplasmosis (HGA) and Human monocytic ehrlichiosis (HME) are tick-borne diseases caused by *Anaplasma phagocytophilum* and *Ehrlichia chaffeensis*, respectively. Anaplasmosis had been found in Kinmen island and mainisland of Taiwan. In 2021, we found 7 suspected anaplsmosis cases and 31 suspected ehrlichiosis cases.

Scrub typhus is the most important rickettsial disease in Taiwan with approximately 300-500 confirmed cases each year. During Jan-Oct in 2021, a total of 247 confirmed scrub typhus cases were identified. Phylogenetic analysis of TSA gene revealed that most of these strains belonged to TW-1, TW-19 and TW-22 sequence types and are closely related to strains from Thailand, Japan and South Korea.

Key words: Severe fever with thrombocytopenia syndrome virus, Spotted fever group rickettsiae, *Anaplasma phagocytophilum, Ehrlichia spp., Orientia tsutsugamushi*

(一)、發熱伴血小板減少綜合症 (severe fever with thrombocytopenia syndrome, SFTS):

發熱伴血小板減少綜合症(SFTS)是被 severe fever with thrombocytopenia syndrome virus (SFTSV) 感染的蜱蟲所叮咬而引起一種新興傳染病, SFTS 最 早在 2009 年中國大陸河北與河南省被報導,2010 年中國大陸 CDC 對 6 個省份進行 SFTVS 監測,共發現了 12 株不同 SFTSV strains,後續中國大 陸從南到北的 16 個省份也陸續監測到 SFTSV 的蹤跡(1-6)。由於 SFTSV 的 臨床症狀為發熱和腸道不適症,並伴有血小板和白血球減少,故於 2010 年將此疾病命名為 SFTS。近年在韓國、日本與越南也陸續發現 SFTS(7-12)。 台灣在 2019 年首次發現 SFTS 病例(13)。動物血清流行病學調查發現,病 例居住地附近的牛、羊、狗、豬、雞皆可測到 SFTSV 抗體,顯示這些動物 都可被 SFTSV 感染(14-15)。故一般認為蜱與這些動物都可能是 SFTSV 的宿 主,另外人與人之間也可能藉由血液或體液接觸而感染。SFTS 早期的臨 床症狀包括發熱和腸道不適症,並伴有血小板和白血球減少,晚期會發展 成漸進式的多重器官衰竭至死,死亡率達 12-30%,其中以中老年人居多。 值得注意的是,近年在日本及南韓陸續發現 SFTS 病患及死亡病例,其中 在日本個案的死亡率高達 55%,已明顯高於中國大陸。依據近年文獻報 導,SFTSV 病原體能在感染蜱內及動物宿主進行基因變異重組,重新 reassortment 進行快速演化。目前尚無有效藥物治療及疫苗可以預防 SFTS。 台灣鄰近國家包括中、日、韓陸續發現 SFTSV,台灣與這些國家往來十分 密切,因此監測 SFTSV 的基因序列與抗原性變異,對流行病學與防疫扮演 重要的角色。本計畫將對機場發燒篩檢、醫師通報或不明發燒病患的血液 檢體進行 SFTSV 檢測,陽性病例將作基因定序及分析。

(二) 、斑點熱 (Spotted fever)

斑點熱是斑點熱立克次體(spotted fever group rickettsiae; SFGR)感染引起的疾病。SFGR為革蘭氏陰性、絕對細胞內寄生的立克次體。當人類受到寄生在齧齒類及狗貓牛羊等動物身上的蜱、跳蚤、蝨子等節肢動物叮咬後,如果節肢動物帶有致病性的立克次體,就會因此被感染。斑點熱的潛伏期約 1-2 周,通常為 12 天,臨床症狀為頭痛、發燒、腹痛、出疹、肌肉痠痛等。目前主要的病例分佈在地中海周圍國家、印度、中東、非洲、歐洲、美洲及東亞等地。引起人類斑點熱之立克次體有十幾種,包括 R. conorii引起 Boutonneus fever 及 Marseilles fever; R. sibirica 引起 North Asian tick typhus; R. australis 引起 Queensland tick typhus; R. japonica 引起 Japanese spotted fever; R. rickettsia 引起 Rocky Mountain spotted fever 等。

最早發現的斑點熱是美國的洛磯山斑點熱(Rocky mountain spotted fever), 隨後陸續有地中海斑點熱(Mediterranean spotted fever)、北亞蜱媒介斑 疹傷寒(North Asian ticktyphus)、日本紅斑熱等(Japanese spotted fever)。 目前全世界已知斑點熱立克次體疾病大都由蜱所媒介(15)。我們曾在 2008 年發現 Rickettsia felis 感染人的病例,但對斑點熱立克次體感染情形與流 行病學仍有待監測與研究(17-19)。

本計畫將對醫師通報或不明發燒病患的血液進行檢測是否具有 Spotted fever Rickettsiae 感染,進一步進行 Spotted fever Rickettsiae 的培養與建立 完整基因庫資料。分析不同流行期間、地點及型別之 SFGR,對主要抗原 outer membrane protein A (ompA), and outer membrane protein B (ompB)及 highly conserved housekeeping gene16S rRNA, citrate synthase, I7-kD lipoprotein 進行基因定序分析及親緣性分析。並研究這些基因的變異性是 否與病原體毒力相關,並進行防疫措施,這對立克次體傳染病之防治工作極為重要。

- (三) 、人類無形體病(human granulocytic anaplasmosis, 簡稱 HGA) 嗜吞噬細胞無形體(Anaplasma phagocytophilum)是一種絕對細胞內寄生 的立克次體,人受感染嗜吞噬細胞無形體的蜱所叮咬,會引起人類無形體 病(HGA)。A. phagocytophilum 不只會感染人,也會感染家畜 (馬、狗、牛、 羊等),是一種人畜共通傳染病,後續也發現 HGA 也能經由病人的血液或 呼吸懸浮液造成院內感染。美國在 1994 年最早報告 HGA 病例,其後陸續 在歐洲及亞洲(China, Japan and South Korea)也發現病例。Li H, Zhou Y 等人 曾於 2011 年發表研究指出 HGA 在大陸河北與湖南省的致死率高達 26.5%。 A.phagocytophilum 感染所引起的臨床症狀與一般細菌或病毒感染的症狀 極為類似,會出現發燒、頭痛、肌肉痛、冷顫、腹痛、咳嗽、皮膚紅疹、 白血球減少症 (Leukopenia) 或血小板減少症 thrombocytopenia 等。其他 疾病如 leptospirosis, murine typhus, dengue fever 也會引起相類似的症狀, 難於區別(20-27)。因此常因誤診而延誤了正確治療時機,導致患者死亡。 我們曾在金門及台灣本島篩檢出 anaplasmosis 病人 (28)。本計畫將對醫 師通報或不明發燒病患的血液檢體進行檢測是否被 Anaplasmae 感染,陽 性檢體進一步進行 Anaplasma 培養與建立基因庫,分析不同流行期間、 地點及型別之 Anaplasma 病原體,培養分離病原體,對主要抗原 msp2 及 highly conserved housekeeping gene 及 16S rRNA gene 進行基因定序及親 緣性分析,並研究這些基因的變異性是否與病原體毒力相關,並進行防疫 措施。
- (四)、人類單核球艾利希氏體症(human monocytic ehrlichiosis;簡稱 HME) 艾利希氏體 (Ehrlichia spp.)是一種絕對細胞內寄生的立克次體,不僅會感 染人也會感染家畜(狗、牛、羊等),是一種人畜共通傳染病。最早在 1986 年發現查非艾利希氏體 (Ehrlichia chaffeensis) 可引起 HME,主要是由被 感染的蜱所叮咬而致病。Ehrlichia spp.可感染單核球(monocyte)、多形核白

血球(polymorphonuclear granulocyte; PMN)、紅血球及血小板等。大部份受感染的人無症狀或症狀輕微,主要症狀是發燒、頭痛、肌肉關節疼痛、腸胃道不適、肝脾腫大、淋巴結腫大、偶有出現皮膚斑疹。少數會發展成呼吸衰竭、腎衰竭、中樞神經症狀(29)。我們在 2018 年首次發現一ehrlichiosis 病人(30)。本計畫將對醫師通報或不明發燒病患的血液進行檢測是否具有 Ehrlichia,陽性檢體進一步培養病原體並建立完整基因庫資料。分析不同流行期間、地點及型別之 Ehrlichia 病原體,培養分離病原體,對highly conserved housekeeping gene16S rRNA, heat shock protein, major outer membrane gene (omp-1)作基因定序分析及親緣性分析,並研究這些基因的變異性是否與病原體毒力相關,並進行防疫措施,這對傳染病之防治工作是極為重要。

(五) 、恙蟲病

恙蟲病(又稱叢林型斑疹傷寒),為患者遭帶有病原 Orientia tsutsugamushi 之恙蟲幼蟲叮咬,所引起的急性傳染性疾病。恙蟲病的潛伏期約 1-2 週,通常為 9-12 天,特徵為在螯口處形成特有的無痛性洞穿式潰瘍性焦痂 (eschar),主要臨床症狀包括發熱、頭痛、肌肉酸痛、紅疹與淋巴結病變等症狀。恙蟲病之地理分佈,北由日本北部與俄羅斯東部,南至澳洲北部與西太平洋群島,西至巴基斯坦與阿富汗,均有病例發生(31,32)。台灣在 1955 年將此病列為通報傳染病,現歸類為第四類傳染病。台灣地區的恙蟲病近年來每年約有 300-500 個確定病例 (在韓國 2001~2005 年已累計 17450 確定病例;在日本自 1999 年後每年約有 313-791 個確定病例),在台灣各縣市均有病例報告,主要是在金門縣、台東縣、花蓮縣、高雄縣市及南投縣,發生月份以每年 5 月至 10 月較多。 Orientia tsutsugamushi依據膜蛋白質 TSA56 抗原特異性,目前可歸類為 20 多種不同的血清型別,其中 prototype Karp、Kato 及 Gilliam 為 highly virulence strains,韓國主要

流行菌株為 Boryong 屬於 lower virulence strain。 TSA56 為恙蟲病立克 次體最主要的膜蛋白質,也是最主要為人類免疫系統所辨識的病原體蛋白,TSA56 可做為血清學診斷的主要標的抗原(33-37)。本計畫將分析不同流行期間、地點及型別之 Orientia tsutsugamushi 病原體,培養分離病原體,基因定序及演化分析,除了比較 TSA56 基因序列與抗原性差異外,我們也同時對 GroEL 或 16S ribosomal RNA (rRNA)基因定序及親緣性分析,並研究這些基因的變異性是否與病原體毒力相關,並對研究結果進行防疫措施,這對恙蟲病傳染病之防治工作是極為重要。

二、 材料與方法

主要的實施方法及進行步驟

- 一、檢體及細菌株:血液檢體來源為通報自疾病管制署之新興人畜共通傳染病原體(SFTSV, SFGR 及 O.tsutsugamushi)傳染病之疑似病例血液。全部檢體(含 Heparin 或 EDTA 之全血 5~10c.c.及血清 3c.c.)皆由各地區衛生所或醫院之醫護人員使用無菌空針採取血樣,並分別注入符合標準之特製無菌真空採血管內,以保持低溫之國內快捷郵件寄送或由專人親送方式送達實驗室。而實驗室於收到檢體後立即置於 4°C冰箱內靜置保存,隨後進行後續之檢驗分析事項。病人血清及血液檢體包括急性期(症狀出現後 0-7 天)、早恢復期(症狀出現後 8-13 天)、晚恢復期(症狀出現後 14-30 天)之檢體。病人檢體收集後,將進行病原分離、血清學及分子生物學之實驗室診斷,以確認感染源。不同期血清,將用以分析病人對各種抗原之抗體反應,如抗體之效價、種類、特異性及動力學變化,建立免疫保護力及免疫病理機轉之相關性。經實驗室確診為陽性反應之檢體將加以分裝,储存於 -80°C冷凍櫃長久保存。
- 二、建立最適化培養新興人畜共通傳染病原體(SFTSV, SFGR, Anaplasma spp., Ehrlichia spp., O.tsutsugamushi) 技術: 陽性檢體以 Vero, L929或HL-60細胞株培養 7-28 天後分離出細菌或病毒,對所添加 FBS 濃度、抗生素濃度、細胞生長曲線、病原體純化技術調至最適化條件,以建立最優化的新興人畜共通傳染病原體(SFTSV, spotted fever group rickettsia, Anaplasma spp, Ehrlichia spp, O.tsutsugamushi)培養技術。
- 三、血液標本及細胞培養製備新興人畜共通傳染病原體(SFTS,SFGR, Anaplasma spp., Ehrlichia spp., O.tsutsugamushi)核酸: RNA以QIAamp Viral RNA Kit (QIAGEN)抽取病毒 RNA,主要原理為利用裝有矽土-膠膜的離心圓柱,可以選擇性的與核酸結合,再經過數次清洗步驟,進而

達到純化的目的。取 140µL 的病人血清,根據製造商的說明使用 QIAamp viral RNA mini kit (cat. no. 52,906, Qiagen, Hilden, Germany) 萃 取病毒 RNA, 最後將 RNA 溶於 70 µL 純水(Water, containing 0.02% sodium azide)。DNA 以 ROCHE High Pure PCR Template Preparation Kit (Cat. No. 11 796 828 001) 萃取病人檢體全血或細胞培養之 SFGR, Anaplasma spp., Ehrlichia spp., O.tsutsugamushi 核酸。首先取加抗凝血 劑之全血 200 μL, 與 200 μL 之 Binding Buffer 均匀混合後, 再加入 40 μL Proteinase K,以震盪器混合均匀,置於70℃水浴槽加熱10分鐘。 再加入 isopopanal 100 μL 均勻混合後,加到 High Pure Filter Tube 以 8,000 x g 離心 1 分鐘。置換 High Pure Filter Tube 至新的 Collection Tube 後,加入 500 μL 之 Inhibitor Removal Buffer,以 8,000 xg 離心 1 分鐘。 再置换 High Pure Filter Tube 至新的 Collection Tube 後,加入 500 μL 之 Wash Buffer,以 8,000 x g 離心 1 分鐘,重複此步驟再 wash 一次。置 換 High Pure Filter Tube 至新的 Collection Tube 後,以 13,000 x g 離心 1 分鐘,將 High Pure Filter Tube 上殘留的廢液甩乾淨。最後將 High Pure Filter Tube 放至新的 eppendorf, 加入 50 μL 預熱 70℃的 Elution Buffer, 靜置 10 分鐘,以 8,000 x g 離心 1 分鐘, eppendrof 中的液體 即為欲萃取之 DNA。

四、引子(Primer)的設計與合成與聚合酶鏈鎖反應(Polymerase Chain Reaction, PCR):引子的設計可依不同的需要而定,其功能是在有效 地擴增模版 RNA 或 DNA 序列,引子(Primer)的設計與合成將依不同 抗原選定進行 PCR。以新興人畜共通傳染病原體(SFTSV, SFGR, Anaplasma spp, Ehrlichia spp, O.tsutsugamushi)核酸為 template,設計 不同的 primers 加入反應試劑內,進行 PCR 反應。利用 One-step

SYBR Green I-based real-time RT-PCR 篩檢 SFTS 病人,詳細的檢驗方 法如下:(1)使用 QuantiTect SYBR Green RT-PCR Kit, QIAGEN 為反應試 劑。依序加入以下試劑:25 μL 的 2x QuantiTect SYBR Green RT-PCR Master Mix,RNase-free Water,核酸引子,0.5μLQuantiTect RT Mix, 最後加入 10μL 檢體 RNA,反應最終體積為 50μl。再進行 SYBR Green one-step RT-PCR 反應:50℃ RT 作用 30 分鐘,PCR 作用 95℃ 15 分鐘,45 次循環之94℃15 秒、55℃30 秒、72℃20 秒、77℃30 秒。以 real-time PCR 篩檢 SFGR, Anaplasmaspp, Ehrlichiaspp, O.tsutsugamushi 取 5 LRNA 或 DNA 加入含有 2X buffer Mix(50mM) KCI \ 10mM Tris-HCl \ 1.5mM MgCl2 \ 0.1\% Triton-X 100 \ dNTP mixture 1mM)、5 units Tag polymerase 共 50 L,於 94℃變性(denature)10 分鐘後,以94℃:30秒、60℃:30秒、72℃:1分鐘,進行30次 反應 (上述反應依不同 primer 特性而有不同的温度及反應設定),最 後在 72℃作用 10 分鐘。經 PCR 增幅放大之產物片段,須以 DNA 電 泳確認產物大小。以 DNA sequencing 確認基因正確。

五、新興人畜共通傳染病原體(SFTSV, SFGR, Anaplasma spp, Ehrlichia spp, O.tsutsugamushi)的分離與鑑定:RT-PCR 或 PCR 陽性檢體將進一步進行病毒或細菌分離與基因定序。病毒或細菌的分離與鑑定,係將病人血清或全血以 Vero, L929 及 HL-60 等細胞株培養 7-28 天,再以細菌或病毒專一性單株抗體 specific mAb 等做免疫螢光染色,或 Real-time RT-PCR 或 PCR 鑑定分離之病原體型別。由於從病患檢體分離 SFTSV, SFGR, Anaplasma spp, Ehrlichia spp, O.tsutsugamushi 非常困難,為避免細菌或病毒株產生變異,分離出後立刻於 T-25 培養瓶擴大培養後即分裝、冷凍於液態氮中。

六、新興人畜共通傳染病原體(SFTSV, spotted fever group rickettsia, Anaplasma spp, Ehrlichia spp, O. tsutsugamushi)核酸定序:對於分離的細菌與病毒株,抽取核酸,進行特定基因定序及親緣性分析,可利用MEGA 7(http://www.megasoftware.net/)分析方法及工具進行。

三、 結果

- SFTSV 之監測:2021 年 1/1-10/31,來自醫師通報及機場發燒篩檢主動監測檢體共 896 件,以 real-time RT-PCR 篩檢 SFTSV,未發現 SFTS 病例。
- 2. Spotted fever group Rickettsia (SFGR)之監測: 2021 年 1/1~10/31,以 realtime PCR 方法,共檢測 2,930 件通報立克次體傳染病全血檢體,未發現 陽性病例。
- 3. Anaplasma spp.之監測: 2021 年 1/1~10/31 共檢測 2,071 件通報立克次體傳染病全血檢體,發現 7 個疑似 Anaplasmosis 病例,居住於新北市(3例)、高雄市(2例)及花蓮縣(2例)(Fig.1-3)。病患之年齡分布以 20-39 歲最多,以男性較多(Fig. 4)。
- 4. Ehrlichia spp.之監測: 2021 年 1/1~10/31 共檢測 2,071 件通報立克次體傳染病全血檢體,發現 31 個疑似病例,分布於全國,以高雄市(6 例)、花蓮縣及台東縣各 4 例較多(Fig. 1-3)。病患之年齡分布以 60 歲以上較多,以男性較多(Fig. 7)。
- 5. Orientia tsutsugamushi 之監測: 2021 年 1/1~10/31, 共檢驗出 247 例恙蟲病確定病例,主要分布於台東縣(72 例)、花蓮縣(45 例)、澎湖縣(33 例)、高雄市(15 例)與金門縣(11 例) (Fig. 5-6)。病患之年齡分布以 50-69 歲最多,以男性較多(Fig. 7)。以 real-time PCR 方法,共檢驗 2,930 件檢體,其中有 149 例為 PCR 陽性(Fig. 1)。Type-specific antigen (TSA)gene 序列分析結果顯示台灣菌株之 TSA gene 序列變異大,可區分為 30 多種 sequence types (TW-1~TW-30),台灣株的序列與泰國、中國、韓國及日本等國家相似,但也有 TSA 序列為台灣所特有,如 TW-12 與 TW-22 (Fig. 8)。2021 年的分離株分屬於 12 類 sequence types (Fig. 8-9),包括 TW-1 有 17 株,來自台東縣、花蓮縣、高雄市、澎湖縣、金門縣、台

北市等; TW-19 有 6 株,來自花蓮縣、台東縣及連江縣; TW-22 有 4 株,來自台東縣及金門縣。演化親緣性分析顯示, TW-1、TW-19 及 TW-22 與泰國株較為相似。

四、討論

2021 年 1-10 月,以 real-time RT-PCR 方法,共檢測 896 支醫師通報 及機場發燒篩檢檢體,未發現 SFTS 病例。未來仍將加強 SFTS 監測。斑 點熱監測方面,共檢測 2930 件通報疑似立克次體傳染病檢體,未發現 斑點熱病例。Anaplasmosis 及 Ehrlichiosis 監測方面,共檢測 2071 件通 報疑似立克次體傳染病檢體,檢測出7例 Anaplasma spp. PCR 陽性及31 例 Ehrlichia spp. PCR 陽性案例。Anaplasmosis 及 Ehrlichiosis 為蜱蟲傳播 的疾病,2021年病例有增加趨勢,應加強防治措施。恙蟲病監測方 面,近年來羔蟲病病例數每年在300-500例之間,有逐漸增加的趨勢。 2021 年 1-10 月,以 real-time qPCR 共檢測 2930 支檢體,測得 149 支 PCR 陽性檢體,在所有 247 個確定病例中,PCR 陽性占 60%,為一良好 的篩檢方法。分離出 40 株恙蟲病立克次體,主要屬於 TW-1, TW-19, TW-22, TW-16, TW-28, 與泰國菌株最相似。由基因序列及演化親緣分析 顯示,台灣恙蟲病立克次體具有多種基因型別,病人感染其中一種基因 型別後,可能只對該型別具有免疫力,若再感染其他型別時,可能無免 疫力,會再次感染發病。故恙蟲病有多次感染的可能,疫苗的開發較為 困難,至今仍無有效的疫苗。有效的預防疾病的發生極為重要,一旦受 感染,早期診斷及治療對病患的健康極為重要。

五、結論與建議

由於國際間交通便捷及氣候變遷等因素,各種新興及再浮現病媒性傳染病在世界各地散佈情形正急速增加,對人類健康所造成的威脅 日益嚴重,實施完整的病媒性傳染病監測及防治是十分重要的。實驗 室應時時精進傳染病的檢驗方法,提升檢驗的靈敏度與專一性並建立 對未知病原體快速偵測的能力。

統計近五年恙蟲病共 4 個感染個案死亡,分別在 2018 年有 2 位,2020 年與 2021 年各有 1 位感染恙蟲病個案。其中 2018 年的 2 位感染個案與 2021 年的 1 位個案皆在衛生局收案 1 天後即死亡,另 1 名 2020 年的個案則是收案後近 28 天死亡。這 4 位個案臨床症狀主要為發燒、焦痂、淋巴腺腫大、肺炎、肝功能異常與敗血症。由於死亡個案通報恙蟲病通常只有一支檢體送驗,除非 PCR 陽性,否則無法確診,但因 PCR 陽性率低 (只在急性期能檢驗到陽性,且恙蟲病原體在血中濃度極低不易偵測到),故血清學結果只靠一採血清,無法確認。這 4 位死亡個案僅有 1 例是經由血清學檢驗為陽性,其他 3 例為 PCR 陽性,病人是否因感染恙蟲病而死亡,需根據臨床及實驗室檢測結果,最終由醫師依臨床診治經驗判定。恙蟲病的臨床症狀常與一般感冒或其他疾病類似,不易判別與診斷,若延誤診治其致死率很高,因此病人若不適應盡速就醫,透過檢驗確認,及時正確治療可避免不幸事件發生。

建立病原體基因資料庫,應用於演化親緣性分析,以瞭解本土流行病原體之來源、擴散及分布情形,以及新的病原體之引進情形,可以對流行疫情的現況與防治工作提供重要的資訊與對策。未來仍應加強機場發燒篩檢,減少病原體的境外移入,監測國內的病原體,及早發現指標病例及病原體來源,實施及時的防疫措施。

六、計畫重要研究成果及具體建議

1. 計畫之新發現或新發明

2021年1-10月,Anaplasmosis 及 Ehrlichiosis 監測方面,共檢測出7例 Anaplasma spp.及 31 例 Ehrlichia spp. PCR 陽性案例。Anaplasmosis 及 Ehrlichiosis 為蜱蟲傳播的疾病,2021年病例有增加趨勢,應加強防治措施。恙蟲病為台灣地方性疾病,每年病例數約為 300-500 例,有逐漸增加的趨勢。由基因序列及演化親緣分析顯示,台灣恙蟲病立克次體具有多種基因型別,病人感染其中一種基因型別後,只對該型別具有免疫力,若再感染其他型別時,可能無免疫力,會再次感染發病。故恙蟲病有多次感染的可能,也因此,恙蟲病疫苗的開發較為困難,至今仍無有效的疫苗。故有效的預防疾病的發生極為重要,一旦受感染,早期診斷及治療對病患的健康也極為重要。

2.計畫對民眾具教育宣導之成果

相關單位在舉辦研討會及教育訓練時,應加強 SFTS 及立克次體感染之 臨床特徵及防治方法納入宣導及教育內容。有效的預防疾病的發生,一 旦受感染,早期診斷及治療對病患的健康也極為重要。

3.計畫對醫藥衛生政策之具體建議

因應交通便捷及氣候變遷等因素,台灣地區可能發生已知及新興病媒 性傳染病的流行。應加強監測,配合實驗室為基礎的檢驗系統,有系統 的進行各種病媒性傳染病的監測、檢驗與流行病學研究。

七、參考文獻

- 1. Yu XJ, Liang MF, Zhang SY, et al. Fever with thrombocytopenia associated with a novel bunyavirus in China. N Engl J Med. 2011;364:1523–32.
- 2. Liu Q, He B, Huang SY, Wei F, Zhu XQ. Severe fever with thrombocytopeniasyndrome, an emerging tick-borne zoonosis. Lancet Infect Dis. 2014;14:763–72.
- 3. Fu Y, Li S, Zhang Z, Man S, Li X, Zhang W, Zhang C, Cheng X.Phylogeographic analysis of severe fever with thrombocytopenia syndrome virus from Zhoushan Islands, China: implication for transmission across the ocean.Sci Rep. 2016 Jan 25;6:19563. doi: 10.1038/srep19563.
- 4. Xing X, Guan X, Liu L, Zhan J, Jiang H, Liu L, Li G, Xiong J, Tan L, Xu J, Jiang Y, Yao X, Zhan F, Nie S Natural Transmission Model for Severe Fever With Thrombocytopenia Syndrome Bunyavirus in Villages of Hubei Province, China. Medicine (Baltimore). 2016 Jan;95(4):e2533.
- 5. Li Z, Hu J, Bao C, et al. Seroprevalence of antibodies against SFTS virus infection in farmers and animals, Jiangsu, China. J ClinVirol. 2014;60:185–9.
- 6. Liu JW, Zhao L, Luo LM, Liu MM, Sun Y, Su X, Yu XJ.Molecular Evolution and Spatial Transmission of Severe Fever with Thrombocytopenia Syndrome Virus Based on Complete Genome Sequences. PLoS One. 2016 Mar 21;11(3):e0151677.
- 7. Takahashi T, Maeda K, Suzuki T, et al. The first identification and retrospective study of severe fever with thrombocytopenia syndrome in Japan. J Infect Dis. 2014;209:816–27.
- 8. Hayasaka D, Fuxun Y, Yoshikawa A, Posadas-Herrera G, Shimada S,

- TunMM, et.al.Seroepidemiological evidence of severe fever with thrombocytopenia syndrome virus infections in wild boars in Nagasaki, Japan.Trop Med Health. 2016 Apr 3;44:6. doi: 10.1186/s41182-016-0009-6. eCollection 2016.
- 9. Hayasaka D, Shimada S, Aoki K, et al. Epidemiological survey of severe fever with thrombocytopenia syndrome virus in ticks in Nagasaki, Japan. Trop Med Health. 2015;43:159–64.
- 10. Kurihara S, Satoh A, Yu F, Hayasaka D, Shimojima M, Tashiro M, et al. The world first two cases of severe fever with thrombocytopenia syndrome: An epidemiological study in Nagasaki, Japan. J Infect Chemother. 2016 Jul;22(7):461-5.
- 11. Fukuma A, Fukushi S, Yoshikawa T, Tani H, Taniguchi S, Kurosu T, et al.Severe Fever with Thrombocytopenia Syndrome Virus Antigen Detection Using Monoclonal Antibodies to the Nucleocapsid Protein.PLoSNegl Trop Dis. 2016 Apr 5;10(4):e0004595
- 12. Kim KH, Yi J, Kim G, et al. Severe fever with thrombocytopenia syndrome, South Korea, 2012. Emerg Infect Dis. 2013;19:1892–4.
- 13. Peng SH, Yang SL, Tang SE, Wang TC, Hsu TC, Su CL, et al.. Human Case of Severe Fever with Thrombocytopenia Syndrome Virus Infection, Taiwan, 2019. Emerg Infect Dis. Vol. 26, No. 7, July 2020, 1612-4.
- 14. Liu S, Chai C, Wang C, et al. Systematic review of severe fever with thrombocytopenia syndrome: virology, epidemiology, and clinical characteristics. Rev Med Virol. 2014;24:90–102.
- 15. Chen H, Hu K, Zou J, Xiao J. A cluster of cases of human-to-human transmission caused by severe fever with thrombocytopenia syndrome bunyavirus. Int J Infect Dis. 2013;17:e206–208.
- 16. Fang R, Blanton LS, Walker DH. Rickettsiae as Emerging Infectious

- Agents. Clin Lab Med. 2017 Jun;37(2):383-400. doi: 10.1016/j.cll.2017.01.009. Review. PMID: 2845735
- 17. Zhang L, et al. 2008. Rickettsialseroepidemiology among farm workers, Tianjin, People's Republic of China. Emerg. Infect. Dis. 14:938 –940.
- 18. Tsai K-H, Lu H-Y, Tsai J-J, Yu S-K, Huang J-H, Shu P-Y. 2008. Human case of Rickettsia felis infection, Taiwan. Emerg Infect Dis 14:1970.
- 19. Tsai K-H, Wang H-C, Chen C-H, Huang J-H, Lu H-Y, Su C-L, Shu P-Y. 2008. Isolation and identification of a novel spotted fever group rickettsia, strain IG-1, from Ixodesgranulatus ticks collected on Orchid Island (Lanyu), Taiwan. Am J Trop Med Hyg 79:256-261.
- 20. Chen SM, Dumler JS, Bakken JS, Walker DH. Identification of a granulocytotropicEhrlichia species as the etiologic agent of human disease. J ClinMicrobiol 1994;32:589–95.
- 21. Bakken JS, et al. 1994. Human granulocytic ehrlichiosis in the upper Midwest United States. A new species emerging? JAMA 272:212–218.
- 22. Brouqui P, Dumler JS, Lienhard R, Brossard M, Raoult D. 1995. Human granulocytic ehrlichiosis in Europe. Lancet 346:782–783.
- 23. Dumler JS, Choi KS, Garcia-Garcia JC, Barat NS, Scorpio DG, Garyu JW, et al. Human granulocytic anaplasmosis and Anaplasmaphagocytophilum. Emerg Infect Dis 2005;11:1828–34.
- 24. Demma LJ, Holman RC, McQuiston JH, Krebs JW, Swerdlow DL.

 Epidemiology of human ehrlichiosis and anaplasmosis in the United States, 2001-2002. Am J Trop Med Hyg 2005;73:400–9.
- 25. Zhang S, Hai R, Li W, Li G, Lin G, He J, et al. Seroprevalence of human granulocytotropicanaplasmosis in central and southeastern China. Am J Trop Med Hyg 2009;81:293–5.
- 26. Dhand A, Nadelman RB, Aguero-Rosenfeld M, Haddad FA, Stokes DP,

- Horowitz HW. Human granulocytic anaplasmosis during pregnancy: case series and literature review. Clin J Infect Dis 2007;45:589–93.
- 27. Zhang L, Liu Y, Ni D, Li Q, Yu Y, Yu XJ, et al. Nosocomial transmission of human granulocytic anaplasmosis in China. JAMA 2008;300:2263–70.
- 28. Tsai KH, Chung LH, Chien CH, Tung YJ, Wei HY, Yen TY, Shu PY, Wang HC.

 Human granulocytic anaplasmosis in Kinmen, an offshore island of Taiwan.

 PLoS Negl Trop Dis. 2019 Sep 20;13(9):e0007728.
- 29. Dunning Hotopp JC, et al. 2006. Comparative genomics of emerging human ehrlichiosis agents. PLoS Genet. 2:e21.
- 30. Peng SH, Yang SL, Ho YN, Chen HF, Shu PY. Human Case of Ehrlichia chaffeensis Infection, Taiwan. Emerg Infect Dis. 2019 Nov;25(11):2141-2143.
- 31. Kelly DJ, Fuerst PA, Ching W-M, Richards AL. 2009. Scrub typhus: the geographic distribution of phenotypic and genotypic variants of Orientiatsutsugamushi. Clin Infect Dis 48:S203-S230.
- 32. Saifudheen K, Kumar KS, Jose J, Veena V, Gafoor VA. 2012. First case of scrub typhus with meningoencephalitis from Kerala: An emerging infectious threat. Ann Indian AcadNeurol 15:141.
- 33. Elisberg B, Campbell J, Bozeman F. 1968. Antigenic diversity of rickettsia tsutsugamushi: epidemiologic and ecologic significance. J HygEpidemiolMicrobiolImmunol 12:18.
- 34. Enatsu T, Urakami H, Tamura A. 1999. Phylogenetic analysis of Orientiatsutsugamushi strains based on the sequence homologies of 56-kDa type-specific antigen genes. FEMS Microbiol Lett 180:163-169.
- 35. Ohashi N, Nashimoto H, Ikeda H, Tamura A. 1992. Diversity of immunodominant 56-kDa type-specific antigen (TSA) of Rickettsia tsutsugamushi. Sequence and comparative analyses of the genes encoding TSA

homologues from four antigenic variants. J BiolChem 267:12728-12735.

- 36. Yang H-H, Huang I-T, Lin C-Chen T-Y, Chen L-K. 2012. New genotypes of Orientiatsutsugamushi isolated from humans in eastern Taiwan. PLoS ONE 7(10): e46997. doi:10.1371/journal.pone.0046997.
 - 37. Giengkam S, Blakes A, Utsahajit P, Chaemchuen S, Atwal S, Blacksell SD et al. 2015. Improved Quantification, Propagation, Purification and Storage of the Obligate Intracellular Human Pathogen Orientiatsutsugamushi. PLOS Neglected Tropical DiseasesDOI:10.1371/journal.pntd.0004009

八、圖表

Figure 1

SYBR Green I-based multiplex real-time PCR

- Rickettisia 16S rRNA + O. tsutsugamushi 56-kDa TSA gene
- TGR 17-kDa gene +SFGR 17-kDa gene
- Anaplasma spp. msp2 gene (903f-1024r; msp2F1-msp2R1)+ Ehrlichia spp. 16S rRNA gene (HE1-HE3)
 - → If PCR(+), DNA sequencing

疾病名稱	PCR檢驗數 2021/1/1-10/31	PCR陽性數(陽性率)
恙蟲病(ST)	2930	149 (5.1%)
斑點熱 (SFG)	2930	0 (0%)
無形體病 (HGA)	2071	7 (0.33%)
艾利希氏症(HME)	2071	31 (1.5%)

.

Figure 2.

Anaplasma and Ehrlichia PCR screening

2021年	1 月	2 月	3 月	4 月	5 月	6 月	7 月	8 月	9 月	10 月	11 月	12 月	Total
檢體數	147	122	163	262	228	195	223	248	262	221			2071
AP陽 性數	1	2	1	2	1	0	0	0	0	0			7
EHR陽 性數	0	0	0	0	0	7	12	12	0	0			31

(統計至 2021/10/31)

Figure 3.

Anaplasmosis及Ehrlichiosis病例 之地理分布

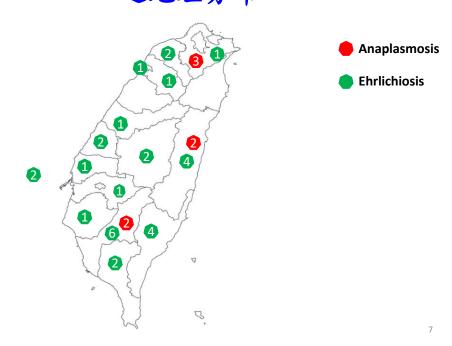
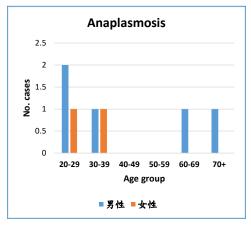



Figure 4.

Anaplasmosis及Ehrlichiosis之年齡 及性別分布

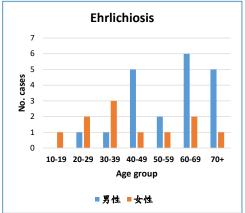
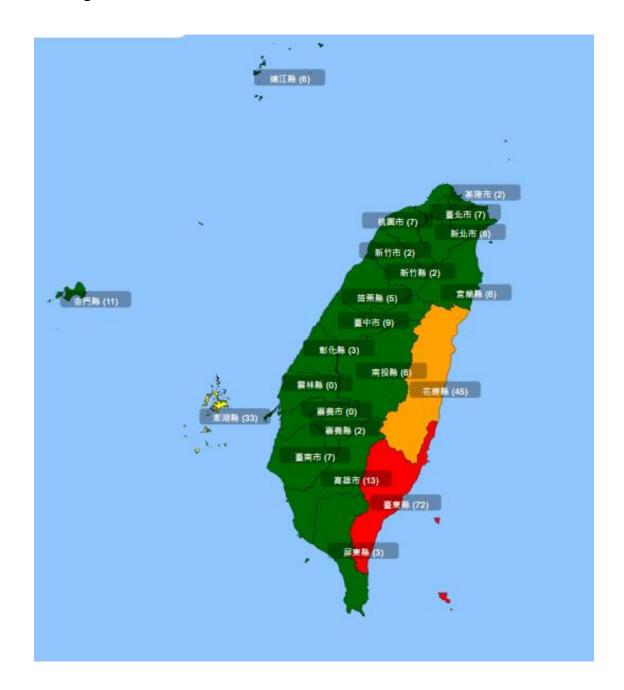



Figure 5

恙蟲病之監測

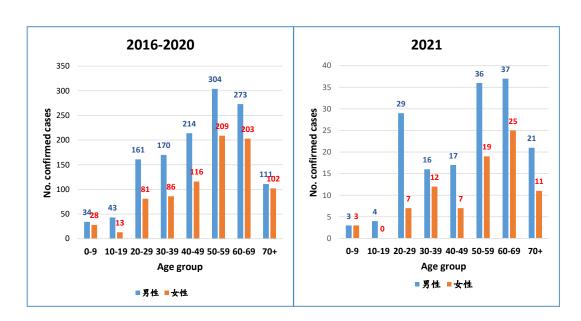
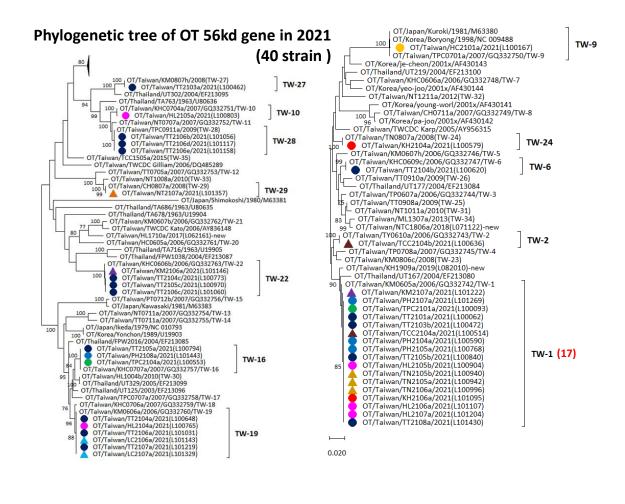


Figure 6.

Figure 7

恙蟲病病例年齡及性別分布


Figure 8.

Sequence type and phylogenetic closest foreign strains of *O. tsutsugamushi*

Seq	Representati	Length of ORF		Pairwise nucleotide sequence similarity (%) to
type	ve Isolate	of 56kD-TSA	Genotype	phylogenetically closest foreign O. tsutsugamushi strain from
		gene		NCBI
TW-1	KM0605a	1608	Karp	98.3% similarity to UT150 strain, Thailand (EF213086)
TW-2	TY0610a	1605	Karp	97.4% similarity to UT336 strain, Thailand (EF213089)
TW-3	TP0607a	1605	Karp	97.5% similarity to Karp strain, New Guinea (M33004)
TW-4	TP0708a	1608	Karp	96.0% similarity to UT336 strain, Thailand (EF213089)
TW-5	KM0607h	1632	Karp	95.8% similarity to UT176 strain, Thailand (EF213081)
TW-6	КНС0609с	1608	Karp	97.7% similarity to UT176 strain, Thailand (EF213081)
TW-7	KHC0606a	1608	Karp	96.4% similarity to yeo-joo strain, Korea (AF430144)
TW-8	CH0711a	1692	Karp	96.3% similarity to pa-joo strain, Korea (AF430142)
TW-9	TPC0701a	1599	Kuroki	99.7% similarity to Boryong strain, Korea (AM494475)
TW-10	KHC0704a	1566	TA763	93.8% similarity to TA763 strain, Thailand (U80636)
TW-11	NT0707a	1584	TA763	96.7% similarity to TA763 strain, Thailand (U80636)
TW-12	TT0705a	1593	TW-12	86.8% similarity to UT302 strain, Thailand (EF213095)
TW-13	NT0711a	1557	Kawasaki	92.6% similarity to Sxh951 strain, China (AF050669)
TW-14	TT0711a	1551	Kawasaki	92.6% similarity to Ikeda strain, Japan (AP008981)
TW-15	PT0712b	1569	Kawasaki	99.3% similarity to Kawasaki strain, Japan (M63383)
TW-16	KHC0707a	1572	Kawasaki	97.2% similarity to UT329 strain, Thailand (EF213099)
TW-17	TPC0707a	1596	Kawasaki	97.7% similarity to UT125 strain, Thailand (EF213096)
TW-18	KHC0706a	1596	Kawasaki	98.4% similarity to UT125 strain, Thailand (EF213096)
TW-19	KM0606a	1572	Kawasaki	97.2%similarity to UT125 strain, Thailand (EF213096)
TW-20	HC0605a	1572	Kato	99.9% similarity to LF-1 strain, Malaysia (AF173050)
TW-21	KM0607b	1590	Kato	98.6%similarity to Kato strain, Japan (M63382)
TW-22	KHC0606b	1575	TW-22	88.3% similarity to FPW1038 strain, Thailand (EF213087)
TW-23	KM0806c	1611	Karp	97% similarity to S0902151-KH strain, Cambodia (HQ718422)
TW-24	TN0807a	1602	Karp	97% similarity to UT336 strain, Thailand (EF213089)
TW-25	TT0908a	1605	Karp	96% similarity to UT336 strain, Thailand (EF213089)
TW-26	TT0910a	1605	Karp	97% similarity to UT176 strain, Thailand (EF213081)
TW-27	KM0807h	1605	TA763	97% similarity to 45QN-VN strain, Vietnam (HQ817459)
TW-28	TPC0911a	1587	TA763	96% similarity to 02QNg-VN strain, Vietnam (HQ817449)
TW-29	CH0807a	1575	TW-12	87% similarity to UT302 strain, Thailand (EF213095)
TW-30	HL1004b	1572	Kawasaki	98% similarity to UT329 strain, Thailand (EF213099)

2021 40 isolates TW-1 (17) TW-19 (6) TW-22 (4) TW-16 (3) TW-28 (3) TW-2 (1) TW-6 (1) TW-9 (1) TW-10 (1) TW-10 (1) TW-24 (1) TW-27 (1) TW-29 (1)

Figure 9.

110 年度科技研究計畫期末審查意見回復表

計畫名稱:監測新興人畜共通蟲媒傳染病之病原基因序列及抗原特異性變化之分析研究

計畫編號:<u>MOHW110-CDC-C-315-114409</u>

計畫主持人:舒佩芸研究員

*修正處在報告中加底線標示

序號	審查意見	辨理情形說明	修正處頁碼
1	This program is in charge of monitoring <i>rickettsiae</i> infections and SFTS virus in Taiwan, and has been operating for years.	謝謝委員意見。	無
2	Applying both nucleic acid and serological assays to confirm the <i>ricketssiae</i> infections or SFTS virus.	謝謝委員意見。	無
3	They help the diagnosis of 7 Anaplasmosis, 31 Ehrlichiosis and about 300 cases of tsutsugamushi in 2021. However, it is not clear whether their works contributing to treatment of these patients, or to improve their outcomes.	謝謝委員建議,立克次體傳染病之監測資料可提供台灣流行病學及疾病防治之重要依據。目前學族病防治之重要依據。目前雖無法及時提供給醫師給予病室檢測報告,但對於醫師給予病室的醫療及處置將可提供實驗室診斷依據,對未來疾病的診斷及防治有很大的益處。	無
4	是否有抗藥性相關資料?	因立克次體傳染病為蟲媒傳染 病,且人類是疾病的最終宿主, 人與人之間不會互相傳播,故立	無

序號	審查意見	辦理情形說明	修正處頁碼
5		克大體藥性 大體藥性 大體藥性 大體藥性 大體藥性 大學 大學 大學 大學 大學 大學 大學 大學 大學 大學	LEGAL STATE OF THE
5	對 flavivirus 及 rickettsiae 的監視有助國內防疫; Anaplasma 與 Ehrlichia 屬於新興傳染症,應持續 監視。	謝謝委員意見。	無
6	恙蟲病是否有重症或死 亡個案,建議補充說明。	1.統計近五年恙蟲病共4個感染個案死亡,分別在2018年有2位,2020年與2021年各有1位感染恙蟲病個案。 2.其中2018年的2位感染個案與2021年的1位個案皆在衛生局收案1天後即死亡,另1名2020年的個案則是收案後近28天死亡。	P17

序號	審查意見	辨理情形說明	修正處頁碼
		3.這人常陽陽到度結五面為養驗床。 為炎、 通R PCR 陽到度結五面為養驗床。 為炎、 通R PCR 陽到度結五面確是 與大。 為與 PCR 陽到度結五面確是 與大。 為與 PCR 陽到度結五面。 與大。 為與 PCR 陽到度結五面。 與大。 為與 PCR 陽到度結為病病 與大。 為與 PCR 陽到度結為病病 與大。 為與 PCR 陽到度結為病病 是 B B B B B B B B B B B B B B B B B B B	
7	Ehrlichia 等其他病原之	目前正持續對 Anaplasma 及 Ehrlichia 等其他病原之監測結 果整理資料,將整理發表。	無

序號	審查意見	辨理情形說明	修正處頁碼
8	對新興人畜共通蟲媒傳 染病之監測與防治有助 益。	謝謝委員意見。	無

備註:如有修正期末報告內容,請註明頁碼,並<u>務必於109年12月23日</u> 前至GRB系統完成資料抽換。