行政院衛生署疾病管制局九十三年度自行研究計畫

成果年報(期末報告)

(自 93 年1月至 93 年12月止)

計畫名稱: 痢疾桿菌抗藥基因變異位與膜蛋白 Efflux

Pump 序列分析

- 計畫編號:<u>DOH93-DC-2001</u>
- 研究起訖: <u>93年1月1日至93年12月31日</u>
- 申請機構: 研究檢驗組
- 主持人: 陳光爐
- 職 稱: 技士
- 聯絡電話: 27850513 # 421
- 電子郵件:_ckl@cdc.gov.tw
- 聯 絡 人: 陳光爐_____
- 傳 真: 27<u>864367</u>_____

填表日期: 93年12月30日

目 錄

	頁	碼
封面		
(1) 摘要	(1)
(2) 前言	(2)
(3) 材料與方法	(3)
(4) 結果與討論	(5)
(5) 結論	(7)
(6) 參考文獻	(8)
	共 (16	5)頁

志賀氏痢疾第一型(Shigella dysentery type 1)為腸道重要法定傳染病菌,常造成聚集性嚴重腹瀉感染。本研究嘗試以 ciprofloxacin 藥物誘導方式,產生實驗室抗藥性菌株(Laboratory-Grown Fluoroquinolones-Resistant,編號 450 菌株),分析藥物濃度與抗藥基因變異情形;並利用等電點梯度膠條(immobilized pH gradient, IPG)之二維電泳(two-dimensional electrophoresis, 2D)與飛行質譜儀(eletrospray ionization quadrupole-time of flight mass, ESI-Q-TOF MS)之蛋白質體技術,廣泛分析膜外蛋白(outer membrane protein)濃度變化與分布差異。

抗藥基因 gyrA(648bp)、gyrB(153bp)、parC(531bp)與 parE(265bp) 序列分析顯示,低藥物濃度 E-test=0.008 µ g/MI 到 0.25 µ g/mL,基因均無 變異,在0.5µg/mL濃度,gyrA(由Ser ^{TCG}→Ala ^{TTG}與Asp ^{GAC}→Gly ^{GGC} 與 parC(由 Ser→Arg)首先產生變異,2 µ g/mL 濃度時 parE 基因(Glu →Lys) 出現突變點。二維蛋白質譜分析 pH 4-7, 10-25 kDa 明顯差異 24 個可見蛋白 點,主要有四大類包括:OMP 部分有 OmpX、OmpW,壓力誘導蛋白為 Dps(global regulator protein), 生長及代謝相關蛋白如 Hypothetical protein、 Ribosome-binding factor A v iron storage homoprotein (bacterioferrin) v 50s ribosomal subunit protein L9 . 6,7-dimethyl-8-ribityllumazine synthase (Riboflavin synthase) • thioredoxin • Transcription antitermination protein • ATP-dependent Clp protease proteolytic subunit 與未知蛋白 (unknown proteins)。實驗室抗藥菌株中 OmpX 與 Riboflavin synthase、50s ribosomal subunit protein L9 等蛋白, 隨誘導濃度增加而明顯上升, OmpW、Dps 壓力 蛋白與未知蛋白則減少或逐漸消失;其他如 Hypothetical protein、 thioredoxin Transcription antitermination protein ATP-dependent Clp protease proteolytic subunit 與 iron storage homoprotein 蛋白,則對藥物誘導無明顯變 化或輕微反應。

研究顯示 ciprofloxacin 藥物可能經由 OmpX 蛋白β-sheet 雙酯質通道 或其他未知蛋白通道進入,基因變異起始藥物濃度為 0.5μg/mL,隨誘導 濃度,變異位置有先後次序,低濃度是 gyrA 與 parC 基因變異,高濃度是 parE 基因改變。基因序列差異在脈衝電泳圖譜是無法區分,主要因變異位 置無法被限制酶所辨識。其他 OmpW 與生長代謝相關或壓力蛋白,因受藥 物外在因子影響,致使環境不利生長,導致蛋白的促進或抑制表現。本研 究利用蛋白質體分析技術,建立志賀氏痢疾第一型菌致病蛋白參考圖譜,對 日後致病機制、疫苗研發與新型抗藥機轉,提供進一步研究參考價值。

關鍵字: 痢疾桿菌、膜蛋白(outer membrane protein)、二維電泳 (two-dimensional electrophoresis, 2D) 飛行質譜儀 (eletrospray ionization quadrupole-time of flight mass, ESI-Q-TOF MS) 技術。 痢疾志賀氏第一型菌為我國第二類乙種法定傳染病,須要通報及隔離 治療,常造成聚集性嚴重腹瀉感染,國內以往案件只有在1964年(民國55年,個 案)及2002境外移入個案報告。主要致病因子為一種稱為shiga毒素,是一種 對熱不穩定之腸毒素,由染色體stx位置所製造的shiga-like toxins(SLT) 基因所轉錄、轉譯而來。shiga 毒素會破壞腸基底粘膜下層的細胞血管層 而侵入循環系統。以往研究資料顯示,其與溶血性尿毒症(hemolytic uremic syndrome, HUS)、巨結腸炎等有關^(1,2),但其真正作用機制未明。

Fluoroquinolones為一種合成廣效性抗生素,自1980年開始應用於腸 道、呼吸道與尿路系統感染如Enterobacteriaceae,Haemophilius spp, Moraxella spp、Neisseria spp等重要病原菌治療。Ciprofloxacin為FQs類第二 代藥物,其結構式如圖一,為第一代Nalidixic acid、Oxolinic acid藥物構造 中第C₆位置加上氟原子(fluorine atom),以增加其活性;此藥物會抑制細 菌複製過程中扮演解纏繞(effect supercoiling of DNA)與修飾功能 (Topology of dsDNA)角色之DNA gyrase與topoisomerase作用,導致細菌 無法進行複製 (8,13,14)。

DNA gyrase與topoisomerase IV是含有4個次蛋白(2α,2β)的結構體, 由gyrA、gyrB基因、parC與parE基因所製造。由酵母菌中DNA gyrase結晶 構造為92-kDa 大小含有GyrA、GyrB二個次單位,59-kDa之GyrA包含有 DNA結合與切割位及重要抗藥區域QRDR(quinolone resistance-determining region; residues 67-106 aa),N端部分43-kDa之GyrB,則有ATP水解及捕捉 DNA功能二部分。quinolones藥物係針對gyrase –DNA complex進行結合, 當QRDR特定區域基因序列改變,如GyrA Ser 83^{TTG}的活化位改變,無法 結合DNA與磷酸化tyrosine,導致無法對其複合物作用(8,13,14)。

膜蛋白抗藥機制研究,始於1980年對四環素(tetracycline)研究(8,13,14)。 至今有許多細菌抗藥機轉是經由efflux transporter system報告出現,包括有 *E.coli*(Acr A、Acr B)($_{17}$ 、*P. aeroginsa*(Mex A、Mex B)、*S. enterica* serovar Typhimurium (Acr A、Acr B)($_{11,12}$)等等,而*S. dysenteriae* 則未知。這些對 膜蛋白論證係經由一種efflux pump抑制劑CCCP(carbonyl cyanide m-chlorophenylhydrazone)($_{3}$,當CCCP與藥物同時誘導細菌,CCCP會阻斷 膜蛋白部分pump-out功能(阻斷ATP能量供給),加速對FQ藥物劑量的累積 ($_{18,19}$)。另外,CCCP亦導致無相關藥物產生抗藥性(crosis-resistance)。

本研究嘗試以 ciprofloxacin 藥物誘導處理志賀氏痢疾第一型菌,產生實驗室抗藥性菌株 (Laboratory-Grown Fluoroquinolones-Resistant),以不同抗藥濃度對應於抗藥基因序列變異情形,並以蛋白質體技術分析膜外蛋白與藥物濃度關聯性,藉以討論 Fluoroquinolones 抗藥機轉。

菌株來源與培養條件

志賀氏痢疾第一型由 2000 年境外移入病人分離之臨床菌株(編號 TA-1), 為 ciprofloxacin 抗藥型態 (R-type, 抗藥濃度 4 μ g/mL),另一株為 1956 年 分離臨床菌株(編號 450)為 ciprofloxacin 敏感型態(S-type, 抗藥濃度 0.008 μ g/mL)。將兩者培養於 Tryptic soy broth (TSB, Difico Laboratories, Detroit MI,USA), 37℃條件下 16-18 小時。

藥物誘導與 CCCP 抑制實驗

ciprofloxacin 藥物依 E-test 濃度梯度(AB BIODISK, USA)劑量為基 準,由0.008µg/mL 低藥物濃度逐漸誘導 450 菌株至 16µg/mL 高抗藥濃 度,單一藥物劑量處理 10 繼代為主,誘導處理過程中以 50 及 100µM/mL CCCP 膜蛋白抑制劑一併處理,E-test 與 MIC 值進行抗藥濃度評估,TA-1 為對照菌株,誘導產生的實驗室抗藥菌株,抽取 DNA 及膜外蛋白,並予 -80℃下保存。

抗藥基因變異 PCR 試驗

將不同藥物濃度菌株, 抽取 DNA 進行抗藥基因變異位檢測,使用引 子如下 (20,21) gyrA:5'-TAC ACC GGT CAA CAT TGA GG-3',5'-TTA ATG ATT GCC GCC GTC GG-3'; gyrB:5'-CAG ACT GCC AGG AAC GCG AT-3',5'-AGC CAA GTG CGG TGA TAA GA-3'; parC:5'-GTA CGT GAT CAT GGA CCG TG-3',5'-TTC GGC TGG TCG ATT ATT GC-3'; parE:5'-TAC CGA GCT GTT CCT TGT GG-3',5'-GGC AAT GTG CAG ACC ATC AG-3'。PCR 反應條件,10X PCR buffer 5 μ 1, dNTP 4 μ 1, primer(10uM) 0.5 μ 1, Tag enzyme 0.5u, DNA template 2 μ 1,反應時間 94°C 1 分鐘,60°C 1 分鐘,72°C 2 分鐘,跑 30 個循環,以 1.5% agarose gel 分析 PCR 產物,將抗藥基因送 DNA 定序, 再以 DNA star 軟體進行比對。

脈衝式電泳(Pulsed-Field Gel Electrophoresis, PFGE)實驗

以 Xba-1 與 Sfi-1 限制酶進行染色體 DNA 切割作用,以不同變換時間 方式 (Xba-1:5-35 秒,24 小時; Sfi-1:3-10 秒,24 小時與 10-40 秒,6 小時),使用 1.2% SK Gold agarose 及 0.5×TBE 電泳液,進行 DNA 片段差 異分析,依片段產生不同的脈衝圖譜。

膜蛋白抽取實驗

將不同抗藥濃度菌株接種於 50 ml TSB 36℃16-18 小時,隔夜培養, 以 50mM Tris-HCl 清洗二次後,加入 10 cc 50mM Tris-HCl 懸浮液,置入 超音波 (Sonicator) 6℃水浴破碎 30 分鐘。離心 7500 轉,15 分鐘,取上 清液,加 6ml 0.2M NaHCO3⁻於 4℃下,隔夜旋轉混合,再以 Backman L-8 超高速離心 (使用 T-70.1 Rotor) 135000g,2.5 小時,去除上清液,以 0.8 cc lysis buffer(8M urea,2M thiourea,4% CHAPS, DTT)回溶,置於-80℃保 存。

IEF 電泳

取 350 λ蛋白液緩慢加入復水盤中,蓋上 IPG strip (Amersham Biosciences),並蓋上礦物油,於 30V 低電壓下,復水作用 16 小時後,進行一維等電點電泳,條件設為 500 伏特 2 小時→1000 伏特 2 小時→2000 伏特 4 小時→8000 伏特 20 小時。

二維蛋白電泳實驗

IPG 膠條從托盤中取出,加入 20 ml 平衡緩衝液 I (50 mM Tris-Cl,pH 8.8, 6M Urea, 30% Glycerol, 2% SDS, 100 mg per 10 ml DTT), 搖動 15 分鐘, 倒掉再加入 20 ml 平衡緩衝液 II (50 mM Tris-Hcl,pH 8.8, 6M Urea, 30% Glycerol, 2% SDS, 250 mg per 10 ml Iodoacetamide), 搖動 15 分鐘, 倒掉後 將 IPG strip 垂直放至 12%SDS-PAGE,以 170 V,400mA,電泳時間 7 小時,再以銀染色法或 Coomassie blue 進行染色,照相後乾膠保存。

Mass spectrometry 分析

將欲分析蛋白質點以 tip 挖出後,放到矽化的微量離心管中,加入 30 μ l destain 溶液(50 mM NH₄HCO₃; 50% acetoniatrile)室溫混合 10 分鐘後, 去除溶液,再加入 50 μ l acetoniatrile,至 gel 脫水變白後,去除溶液,將 gel 真空烘乾。加入 5% trypsin 溶液反應 30 分鐘,將多餘的 trypsin 取出, 再加入 10 μ l 的 digestion buffer(25 mM NH₄HCO₃) 37°C 反應 6~8 小時。 超音波震盪 5-10 分鐘,取出溶液至新的矽化的微量離心管中,原來的 gel 再加入 extraction buffer(5% Trifluoroacetic acid; 50% acetonitrile)超音波震 盪 5-10 分鐘,取出溶液至矽化的微量離心管,重覆此步驟 2-5 次,將收集 溶液抽空烘乾,回溶於 10 μ l 0.1% Trifluoroacetic acid(此稱為 peptide solution)做飛行質譜儀分析(委託陽明大學蛋白質體學中心操作)。

膜蛋白序列比對分析

將質譜實驗分析數據,於 MASCOT 之 NCBI BLAST 與 Swiss Port 線 上細菌蛋白資料庫搜尋比對(Matrix science, www.matrixscience.com, U.K.),將 Mass tolerance 設定為 1.5Da 與 Masses 離子片段(fragment ions) 設為 0.8Da ;依片段 peptides 氨基酸序列交互比對,相似積分最高為主。

結果與討論

痢疾志賀氏第一型菌是我國重要法定傳染病,具有 shiga 毒素,為腸道重要 致病菌,常造成聚集性嚴重腹瀉感染。本研究以藥物誘導的方式,成功產生各 種不同濃度實驗室抗藥菌株,分析其抗藥基因序列變異情形,並使用等電 點梯度膠條二維電泳與飛行質譜儀技術,討論在不同抗藥濃度菌株的膜外 蛋白濃度與分布上差異,嘗試建立標準二維蛋白參考圖譜。

藥物誘導與 CCCP 抑制試驗

Ciprofloxacin 為 FQs 類第二代藥物之一,會辨識並結合 DNA gyrase 與 topoisomerase IV,阻斷細菌生長複製。藥物由低濃度處理逐漸至高濃 度,成功地誘導 450 菌株,成為不同藥物濃度(0.008 µg/mL 到 16 µg/mL) 之實驗室抗藥菌株,在誘導過程中加入 50 及 100µM濃度 CCCP 化合物, CCCP 是一種可以阻斷膜蛋白 pumping-out 的 ATP 能量供給。抑制實驗也 顯示,膜蛋白因無法有效將藥物打出菌體外,加速藥物劑量的累積,並縮 短藥物誘導時間,相較於未處理 CCCP 菌株,有 2-4 倍增加現象(表三), 這些結果在另一株 TA-1 抗藥菌株有相同結果。

抗藥基因突變點位置分析

DNA gyrase 與 topoisomerase IV是含有 4 個次蛋白(2α, 2β)的結構 體,分別由 gyrA、gyrB、parC 與 parE 基因所製造。在細菌複製過程中扮 演解纏繞與修飾的重要角色(8,13,14)。quinolones 藥物係針對 gyrase –DNA complex 進行結合,當 QRDR 特定區域基因序列改變,如 GyrA Ser 83^{TTG}的 活化位改變,無法結合 DNA 與磷酸化 tyrosine,導致無法對其複合物作用。

抗藥基因 gyrA(648bp)、gyrB(153bp)、parC(531bp)與 parE(265bp) (圖二)DNA 序列分析顯示,低藥物誘導菌株(E-test=0.008 μ g/mL 到 0.25 μ g/mL 濃度), DNA gyrase 與 topoisomerase IV基因序列並無變異,此時, Disk susceptible test 結果為 susceptible (S=18-20 mm);當藥物濃度在 0.5 μ g/mL 濃度, Disk susceptible test 為 Intermediate (I=15-17 mm)時, gyrA 第 83 與 87 位置(由 Ser 83 ^{TCG}→Leu ^{TTG}與 Asp 87 ^{GAC}→Gly ^{GGC}與 parC(由 Ser→Arg)首先產生變異(圖三),在以往文獻報告裡,gyrA 第 83 與 87 位置與 parC 第 113 位置 (6-10),也是最常見抗藥變異位。而誘導濃度升至 2 μ g/mL 濃度時 (R type=13 mm),則 parE 基因(Glu→Lys)出現新突變點。 最後,完全抗藥濃度 (R type=0 mm)則為 E-test 值 4 μ g/mL。

抗藥基因序列結果顯示,基因變異起始濃度為 0.5 µ g/mL,完全抗藥 則在 4 µ g/mL;不同抗藥濃度有特定基因序列變異,變異位置也隨藥物誘 導濃度變化有其先後次序;在低劑量(0.25-2 µ g/mL)誘導是 α 次單位之 gyrA 與 parC 基因位置變異,當菌株受到高濃度(4-64 µ g/mL)藥物刺激, β次單位之 parE 基因才會改變。這原因可能是 ciprofloxacin 藥物會先攻擊 結構相似α次單位,當 gyrA、parC 基因變異,使藥物無法與 gyrA 結合, 進而與β次單位 parE 進行結合。然而,這些基因序列上的差異,使用 Xba-1 與 Sfi-1 二種限制酶脈衝電泳圖譜分析,分子型態並無差異(圖四),可能是 抗藥基因變異位置無法被限制酶所辨識。

二維蛋白圖譜與離子飛行質譜分析

二維蛋白電泳與離子飛行質譜儀技術,可全面性廣泛的分析各種蛋白 質,是研究蛋白質體學重要方法。本研究使用超音波破碎細胞方式,與鹼 性 NaHCO₃⁻結合經由超高速離心,抽取疏水性膜外蛋白(6-10),以未處理 藥物 450(初濃度 0.008 µ g/mL)及 TA-1(初濃度 4 µ g/mL)菌株,做為 二維蛋白電泳參考圖譜材料,並利用等電點梯度膠條二維蛋白電泳與離子 飛行質譜技術,分析比對抗藥濃度與膜外蛋白濃度及分布上差異。

以 pH 3-10 等電點膠條進行二維蛋白電泳圖譜分析, 膜外蛋白約有 130 個蛋白點, 分布於 10-50kDa 大小與 pH 5.0-7.5 之間(圖五), 再以 pH 4-7 梯度膠條放大局部區域, 選擇有較明顯差異 10-25kDa 大小蛋白點為主要 分析目標。我們成功分析, 未進行藥物誘導 450 菌株 24 個可見蛋白點, 質譜序列比對顯示,主要有四大類包括:OMP部分有 OmpX(點;34)、OmpW (點;45,48,52); 壓力誘導蛋白為 Dps (global regulator protein) (點;36,37,38,50), 生長及代謝相關蛋白如 Hypothetical protein (點;8,21,29)、 Ribosome-binding factor A (點;20)、 iron storage homoprotein (bacterioferrin)(點;44)、 50s ribosomal subunit protein L9 (點;23,27)、 6,7-dimethyl-8-ribityllumazine synthase (Riboflavin synthase)(點;28,31,33)、 thioredoxin(點;9)、Transcription antitermination protein(點;49)、ATP-dependent Clp protease proteolytic subunit(點;46)等蛋白與未知蛋白(unknown proteins: 點;17,25,26)等(圖六)。

OmpX 與生長及代謝相關蛋白 6,7-dimethyl-8-ribityllumazine synthase (Riboflavin synthase)、50s ribosomal subunit protein L9,隨藥物誘導增加而明 顯地上升;OmpW、Dps 與未知蛋白則逐漸減少或消失;其他如 Hypothetical protein、thioredoxin、Transcription antitermination protein、ATP-dependent Clp protease proteolytic subunit 與 iron storage homoprotein 對藥物誘導無明顯變 化或輕微反應(表二)。

OmpW 位於 20-kDa 大小, pH 5.9-6.3 三個蛋白點(點;45,48,52), 當 藥物誘導濃度增加時,蛋白表現負向調節(down-regulation)而明顯減少。 在以往文獻報告中 *E. coli*, *Aeromonas* spp, *V. cholerae* 的 OmpW 是與 colicin receptor 的黏附作用有關(12); 在 *Vibrio. Parahaemolyticus*,則是一種 osmoregulation-sensitive Omps,對環境中 Nacl 濃度有自我調節作用(12)。 另一膜蛋白 OmpX 結晶構造顯示,在細胞表面屬於 four-strand β -sheet 結 構,與外界蛋白或小分子結合,通常與細胞黏附作用有關(12)。在 Enterobacter 會黏附宿主細胞而侵入,但其機制目前並不清楚(13);另一文 獻指出 Enterobacter aerogenes 臨床多重抗藥菌株 77-kDa 包含 OmpX 與 LamB 蛋白表現量相較於敏感菌株有明顯增加(15)。當實驗室抗藥菌株濃度 上升,OmpX 蛋白有明顯增加,這種正向調節(up-regulation)可能經由藥 物誘導刺激所產生,但須進一步確認。

生長與代謝相關蛋白如 6,7-dimethyl-8-ribityllumazine synthase (Riboflavin synthase)、50s ribosomal subunit protein L9 等,由於環境因子(藥物誘導)促進蛋白調節表現。而多種壓力蛋白 Dps (global regulator protein)與未知蛋白則可能受藥物壓力因子影響,致使生長不易或遲緩,導致蛋白自我抑制表現,而逐漸減少或消失;其他如 Hypothetical protein、thioredoxin、Transcription antitermination protein、ATP-dependent Clp protease proteolytic subunit 與 iron storage homoprotein (bacterioferrin)等蛋白,則不受藥物濃度影響,蛋白表現無明顯變化或輕微反應。

未知蛋白其功能及角色仍未明,在藥物誘導過程中,蛋白濃度明顯下降,這些蛋白在痢疾志賀氏第一型菌中是扮演何種角色?與藥物運送過程 或抗藥機制中是否有關聯,須進一步釐清與探討。

結論

研究顯示 ciprofloxacin 藥物可能經由 OmpX 蛋白β-sheet 雙酯質通道 或其他未知蛋白通道進入,基因變異起始藥物濃度為 0.5μg/mL,隨誘導 濃度,變異位置有先後次序,低濃度是 gyrA 與 parC 基因變異,高濃度是 parE 基因改變。基因序列差異在脈衝電泳圖譜是無法區分,主要因變異位 置無法被限制酶所辨識。其他 OmpW 與生長代謝相關或壓力蛋白,因受藥 物外在因子影響,致使環境不利生長,導致蛋白的促進或抑制表現。本研 究利用蛋白質體分析技術,建立志賀氏痢疾第一型菌致病蛋白參考圖譜,對 日後致病機制、疫苗研發與新型抗藥機轉,提供進一步研究參考價值。

- 1. Heisig P. 1996. Genetic evidence for a role of parC mutations in development of highlevelfluoroquinolone resistance in Escherichia coli. AAC; 40: 879-85
- 2 Yerushalmi, H., Lebender, M., Schuldiner, S., J. Biol. Chem. 1995, 270.
- Hopfer, U., A. L. Lehninger, and T. E. Thompson. 1968. Protonic conductance across phospholipid bilayer membranes induced by c490 effect of cccp on intestinal cl2-h1 symport uncoupling agents for oxidative phosphorylation. *Proc. Natl.Acad. Sci. USA* 59: 484–490.
- National Committee for Clinical Laboratory Standards. 2001. Approved standard M7-A3. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 3rd ed. National Committee for Clinical Laboratory Standards, Villanova, Pa.
- Working Party Report of the British Society for Antimicrobial Chemotherapy.1991. A guide to sensitivity test. J. Antimicrob. Chemother. 27(Suppl.D) 22–30.
- Rahman, M., G. Mauff, J. Levy, M. Couturier, G. Pulverer, N. Glasdorff, and J. P. Butzler. 1994. Detection of 4-quinolone resistance mutation in *gyrAgene of Shigella dysenteriae* type 1 by PCR. Antimicrob. Agents Chemother.38:2488–2491.
- Vila, J., J. Ruiz, F. Marco, A. Balcelo, P. Gon[•]i, E. Giralt, and T. Jimenez DeAnta. 1994. Association between double mutation in *gyrA* gene of ciprofloxacin-resistant clinical isolates of *Escherichia coli* and MICs. Antimicrob.Agents Chemother. 38:2477–2479.
- 8. Drlica, K., and X. L. Zhao. 1997. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol. Rev. 61:377–392.
- Everett, M. J., and L. J. V. Piddock. 1998. Mechanisms of resistance to fluoroquinolones. p. 259–297. *In J. Kuhlmann, A. Dahlhoff, and H. J. Zeiler*
- Hooper, D. C. 1998. Bacterial topoisomerases, anti-topoisomerases and anti-topoisomerase resistance. Clin. Infect. Dis. 27:54–63.
- Alekshun, M. N., and S. B. Levy. 1997. Regulation of chromosomally mediated multiple antibiotic resistance: the *mar* regulon. Antimicrob. Agents Chemother. 41:2067–2075.
- Okusu, H., D. Ma, and H. Nikaido. 1996. AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of *Escherichia coli* multiple antibiotic resistance (Mar) mutants. J. Bacteriol. 178:306–308.
- Hooper, D. C. 1999. Mechanisms of fluoroquinolone resistance. Drug Resist. Updates 2:38–55.
- 14. Kumagai, Y., J. Kato, K. Hoshino, T. Akasaka, K. Sato, and H. Ikeda.

1996.Quinolone-resistant mutants of *Escherichia coli* DNA topoisomerase IV *parC* gene. Antimicrob. Agents Chemother. 40:710–714.

- 15. Hallet, P., and A. Maxwell. 1991. Novel quinolone resistance mutations in *Escherichia coli* DNA gyrase A protein: enzymatic analysis of the mutant proteins. Antimicrob. Agents Chemother. 35:335–340.
- 16. Oram, M., and L. M. Fisher. 1991. 4-Quinolone resistance mutations in the DNA gyrase of *Escherichia coli* clinical isolates identified by using the polymerasechain reaction. Antimicrob. Agents Chemother. 35:387–389.
- 17 Okusu, H., D. Ma, and H. Nikaido. 1996. AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of *Escherichia coli* multiple-antibiotic-resistance (Mar) mutants. J. Bacteriol. 178:306–308.
- Watanabe, M., Y. Kotera, K. Yosue, M. Inoue, and S. Mitsuhashi. 1990. In vitro emergence of quinolone-resistant mutants of *Escherichia coli*, *Enterobacter cloacae*, and *Serratia marcescens*. Antimicrob. Agents Chemother.34:173–175.
- Heisig, P. 1996. Genetic evidence for a role of *parC* mutations in development of high-level fluoroquinolone resistance in *Escherichia coli*. Antimicrob.Agents Chemother. 40:879–885.
- 20. Yiu-Wai Chu Elizabeth T. S. Houang Augustine F. B. Cheng. 1998 Novel Combination of Mutations in the DNA Gyrase and Topoisomerase IV Genes in Laboratory-Grown Fluoroquinolone-Resistant *Shigella flexneri* Mutants Antimicrob.Agents Chemother. p. 3051–3052
- Rahman, M., G. Mauff, J. Levy, M. Couturier, G. Pulverer, N. Glasdorff, and J. P. Butzler. 1994. Detection of 4-quinolone resistance mutation in *gyrAgene of Shigella dysenteriae* type 1 by PCR. Antimicrob. Agents Chemother.38:2488–2491.
- 22.Tsong-Ming Lee, Lin-Li Chang, Chung-Yu Chang et al.2000.Moleular analysis of *shigella sonneri* isolated from three well-documented outbreaks in school children. J. Med. Microbiol.49 : 335-360
- 23.Martha Vargas, Joaquim gascon, Maria teria Jimez. 1999. Prevalence of shigella enterotoxin 1 and 2 among shigella strain isolated form patient with traveler's dirrhea. J. Clin. Microbiol.37 : 3608-3611.19.

Ciprofloxacin

圖一: Ciprofloxacin 為 FQs 類第二代藥物之一,其結構式如上,為第一代 Nalidixic acid、Oxolinic acid 藥物構造中第 C₆ 位置加上氟原子 (fluorine atom),以增加其活性,會辨識並結合 DNA gyrase 與 topoisomerase IV,阻斷細菌生長複製。

圖二:抗藥基因 gyrA (648bp)、gyrB (153bp)、parC (531bp)與 parE (265bp) DNA; PCR 反應條件, 10X PCR buffer 5µ1, dNTP 4µ1, primer(10uM) 0.5µ1, Tag enzyme 0.5u, DNA template 2µ1,反應時間 94 ℃ 1分鐘, 60℃ 1分鐘, 72℃ 2分鐘, 跑 30 個循環,以 1.5% agarose gel 分析 PCR 產物。

(177)	177	190	2
Control-(450-0.008)-gA-F (173)	CCCATGGTGAC	FCGGCGGTTTAT	G
Ta-1-(16)-gA-F (172)	CCCATGGTGAC	TGGCGGTTTAT	G
TA-1-(4)-gA-F (173)	CCCATGGTGAC	TGGCGGTTTAT	G
Ta-1-(64)-gA-F (176)	CCCATGGTGAC	TGGCGGTTTAT	G
Ta-1-(32)-gA-F (177)	CCCATGGTGAC	TGGCGGTTTAT	0
TA-1-(8)-gA-F (176)	CCCATGGTGAC	TGGCGGTTTAT	G
Consensus (177)	CCCATGGTGAC	TTGGCGGTTTAT	Ģ
(130) 130	140 150	160 172	2
Control-(450-0.008)-parC-F (120) GGCGATA	GCGCCTGTTATGAAGCGA	TGGTCCTGATGGCGCAG	2
TA-1-(4)-parC-F (123) GGCGATA	TCGCCTGTTATGAAGCGA	TGGTCCTGATGGCGCAG	23
TA-1-(32)-parC-F (127) GGCGATA	TCGCCTGTTATGAAGCGA	TGGTCCTGATGGCGCAG	27
TA-1-(16)-parC-F (130) GGCGATA	TCGCCTGTTATGAAGCGA	TGGTCCTGATGGCGCAG	23
TA-1-(64)-parC-F (125) GGCGATA	TCGCCTGTTATGAAGCGA	TGGTCCTGATGGCGCAG	2
TA-1-(8)-parC-F (126) GGCGATA	TCGCCTGTTATGAAGCGA	TGGTCCTGATGGCGCAG	2
Consensus (130) GGCGATA	TCGCCTGTTATGAAGCGA	TGGTCCTGATGGCGCAG	2

圖三:抗藥基因序列分析,gyrA 在 0.5µg/mL 由 Ser ^{TCG}→Ala ^{TTG}與 Asp ^{GAC} →Gly ^{GGC}與 parC 由 Ser→Arg 變異,2µg/mL 濃度時 parE 基因(Glu →Lys)出現突變點。

圖四: Xba-1 限制酶脈衝電泳圖譜分析不同抗藥濃度菌株,變換時間為 5-35 秒,24 小時,1.2% SK Gold agarose 與 0.5×TBE 電泳液。

圖五: pH 3-10 等電點膠條二維蛋白電泳圖譜, 膜外蛋白約有 130 個蛋白點, 集中分布於 pH 5.0-7.5 與 10-50kDa 大小間。

圖六: pH 4-7 等電點二維蛋白電泳圖譜,質譜分析主要 10-25kDa 大小之 24 個可見膜蛋白點。

表一:質譜序列與 NCBI Swiss port 資料庫(Matrix science, www.matrixscience.com, U.K.)比對結果,分析條件為 Mass tolerance 設定 1.5Da, Masses 離子片段設為 0.8Da;片段 peptides 氨基酸序列交互比對,相似積分最高為主。

檢體編號	分析方法	MW	PI	Score	Cover age	Result	Taxonomy
450 (8)	NCBI	13233	5.73	210	31	Hypothetical protein	Shigella flexneri 2a
	NCBI	12980	5.46	148	32	Hit family protein	Vibrio parahaemolytics
	Swiss Port	13233	5.73	210	31	Hit-like protein	E.coli
450 (9)	NCBI	11886	4.67	139	25	thioredoxin	E.coli
	Swiss Port	11668	4.67	139	25	thioredoxin	Thio-E.coli
450 (17)	NCBI	15922	5.72	412	52	Unknown protein from 2D-PAGE	E.coli
	NCBI	16053	5.71	412	51	Hypothetical protein	E.coli K12
	NCBI	16022	6.12	409	51	Orf, Hypothetical protein	E.coli O157
	NCBI	17265	5.25	284	39	Putative LysM domain	Salmonella
	Swiss Port	15922	5.72	412	52	Unknown protein from 2D-PAGE	E.coli
450 (20)	NCBI	15809	5.56	163	23	Ribosome-binding factor A	E.coli
	NCBI	15145	5.93	163	24	Ribosome-binding factor A	Shigella flexneri 2a
	Swiss Port	15014	5.96	163	25	Ribosome-binding factor A	E.coli
	Swiss Port	15156	5.93	112	13	Ribosome-binding factor A	
450 (21)	NCBI	15926	5.89	470	52	Orf, Hypothetical protein	E.coli O157
	NCBI	15896	5.89	470	52	Hypothetical protein	Shigella flexneri 2a
	NCBI	15925	6.03	402	52	Conserved Hypothetical protein	E.coli K12
	Swiss Port	15926	5.89	470	52	Universal stress protein	E.coli O157
	Swiss Port	15896	5.89	470	52	Universal stress protein	
	Swiss Port	15925	6.03	402	52	Universal stress protein	E.coli
450 (23)	NCBI	15759	6.17	511	67	50s ribosomal subunit protein L9	Shigella flexneri 2a
	Swiss Port	15759		511		50s ribosomal subunit protein L9	E.coli
450 (25)	NCBI	15922	5.72	651	77	Unknown protein from 2D-PAGE	
	NCBI	16022	6.12	645	76	Hypothetical protein	E.coli O157
	Swiss Port	15922	5.72	651	77	Unknown protein from 2D-PAGE	
450 (26)	NCBI	15922		584		Unknown protein from 2D-PAGE	
	Swiss Port	15922	5.72	584	81	Unknown protein from 2D-PAGE	
450 (27)	NCBI	15759	6.17	364	51	50s ribosomal subunit protein L9	Shigella flexneri 2a
	Swiss Port	15759		386		50s ribosomal subunit protein L9	E.coli
450 (28)	NCBI	16147	5.15	248	39	Riboflavin synthase, beta chain	Shigella flexneri 2a
	NCBI	15922	5.72	216	38	Unknown protein from 2D-PAGE	E.coli
	Swiss Port	16147	5.15	248	39	6,7-dimethyl-8-ribityllumazine synthase	E.coli

第13頁

	Swiss Port	15922	5.72	216	38	Unknown protein from 2D-PAGE	E.coli
450 (29)	NCBI	15922	5.72	333	64	Unknown protein from 2D-PAGE	
	NCBI	16053	5.71	333	64	Hypothetical protein	E.coli K12
	NCBI	16022	6.12	331	64	Hypothetical protein	E.coli O157
	Swiss Port	15922	5.72	333	64	Unknown protein from 2D-PAGE	E.coli
450 (31)	NCBI	16147	5.15	392	41	Riboflavin synthase, beta chain	Shigella flexneri 2a
	Swiss Port	16147	5.15	392	41	6,7-dimethyl-8-ribityllumazine synthase	E.coli
450 (33)	NCBI	19798		330		6,7-dimethyl-8-ribityllumazine synthase	E.coli
	NCBI	16147	5.15	330	48	Riboflavin synthase	Shigella flexneri 2a
450 (24)	Swiss Port	16147		330		6,7-dimethyl-8-ribityllumazine synthase	E.coli
450 (34)	NCBI	16390	4.82	626	70	membrane protein ompx in Dhpc micelles	
	Swiss Port	18591		593		Outer membrane protein X	E.coli
450 (36)	NCBI	18684	5.72	838	83	Global regulator protein Dps	Shigella flexneri 2a
	Swiss Port	18553	5.72	838	84	DNA protection during starvation protein	E.coli
450 (37)	NCBI	18684		889		Global regulator protein Dps	Shigella flexneri 2a
	Swiss Port	18553	5.72	889	88	DNA protection during starvation	E.coli
450 (38)	NCBI	22157	5.51	366	43	DNA protection during starvation protein	E.coli
	Swiss Port	18553		366		DNA protection during starvation protein	E.coli
	Swiss Port	16147		74		6,7-dimethyl-8-ribityllumazine synthase	E.coli
450 (44)	NCBI	18326	4.58	199	22	Putative iron storage homoprotein	E.coli O157
	NCBI	18340	4.64	199	22	bacterioferrin	Shigella flexneri 2a
	Swiss Port	18340	4.64	199	22	Splice isoform displayed	E.coli
450 (45)	NCBI	22913	6.03	271	17	Putative outer membrane protein	Shigella flexneri 2a
	NCBI	25861	5.93	271	15	outer membrane protein W precursor	E.coli
	Swiss Port	22913	6.03	271	17	Splice isoform displayed	E.coli
	Swiss Port	22883	6.03	271	17	Splice isoform displayed	E.coli
	Swiss Port	22929	6.03	271	17	Splice isoform displayed	E.coli
450 (46)	NCBI	21549	5.55	179	19	Chain N	
	Swiss Port	23172	5.52	123	12	ATP-dependent Clp protease proteolytic subunit	E.coli
450 (48)	NCBI	25861	5.93	517	62	Outer membrane protein W precursor	E.coli
	Swiss Port	22913		517		Splice isoform displayed	E.coli
450 (49)	NCBI	20532	6.34	381	35	Transcription antitermination protein	Salmonella
	NCBI	20518	6.34	381	35	Component in transcription antitermination	Shigella flexneri 2a

	NCBI	20479	5.99	381	35	Transcription antitermination protein	Salmonella
	Swiss Port	20401	6.33	381	36	Transcription antitermination protein	E.coli
	Swiss Port 20387		6.33	381	36	Transcription antitermination protein	E.coli
450 (50)	NCBI	18684	5.72	457	56	Global regulator protein Dps	Shigella flexneri 2a
	NCBI	18698	5.72	457	56	PexB	
	Swiss Port	18553	5.72	457	56	DNA protection during starvation protein	E.coli
450 (52)	NCBI	25861	5.93	322	35	Outer membrane protein W precursor	E.coli
	NCBI	18698	5.72	285	41	PexB	E.coli
	Swiss Port	22913	6.03	322	39	Splice isoform displayed	E.coli

表二:藥物誘導藥物濃度與菌株 Disk susceptible test 與 E-test 抗藥值關係

		Di	E-test			
	NA	Nor	Cip	Spx	NX	CI
藥物濃度	13,14-18,19	12,13-16,17	15,16-20,21	16,17-19,20	0.016-256	0.016-256
450(0.008)	S(20)	S(38)	S(33)	S(37)	0.125	0.047
450(0.047)	R(-)	S(26)	S(26)	S(23)	0.38	0.125
450(0.125)	R(-)	S(22)	S(24)	S(22)	0.75	0.19
450(0.25)	R(-)	S(24)	S(24)	S(22)	0.5	0.38
450(0.5)	R(-)	S(22)	S(22)	I(18)	1	0.75
450(1)	R(-)	S(20)	I(20)	R(16)	1.5	1
450(2)	R(-)	S(18)	I(18)	R(14)	2	2
450(4)	R(-)	I(15)	R(15)	R(12)	6	4
450(8)	R(-)	R(-)	R(-)	R(-)	R(-)	R(-)
450(16)	R(-)	R(-)	R(-)	R(-)	R(-)	R(-)
TA1(4)	R(-)	R(10)	R(13)	R(10)	12	4
TA1(8)	R(-)	R(-)	R(-)	R(-)	R(-)	R(-)
TA1(16)	R(-)	R(-)	R(-)	R(-)	R(-)	R(-)
TA1(32)	R(-)	R(-)	R(-)	R(-)	R(-)	R(-)
TA1(64)	R(-)	R(-)	R(-)	R(-)	R(-)	R(-)

表三: CCCP 抑制實驗, CCCP 使用濃度為 50 及 100Mm 與藥物一併處理; 膜蛋白因無法有效將藥物打出菌體外,相較於未處理 CCCP 菌株, 有 2-4 倍藥物濃度增加。

		Cip		Nor			SO		
	CCCP(µM)			CCCP(µM)			CCCP(µM)		
藥物濃度	0	50	100	0	50	100	0	50	100
0.008	0.008	0.012	0.012	0.38	0.094	0.094	0.032	0.064	0.064
0.047	0.125	0.19	0.19	0.5	0.5	0.5	0.25	0.5	0.5
0.125	0.25	0.38	0.38	0.75	1	1	0.38	1	1
0.25	0.5	0.5	0.5	1	1	1	0.5	1	1
0.5	0.75	0.75	0.75	2	2	2	1.5	2	2
1	0.75	1	1	2	2	2	4	6	6
2	1	1.5	1.5	3	3	3	4	8	8
4	2	2	2	6	6	3	8	16	16
8	4	8	8	16	16	16	ND	ND	ND