計畫編號: DOH96-DC-2023

行政院衛生署疾病管制局九十六年度科技研究發展計畫

霍亂弧菌分子基因型別鑑定監測系統之建立

研究報告

執行機構:衛生署疾病管制局

計畫主持人: 慕蓉蓉

研究人員:曾士展、林穎君

執行期間:96年1月1日至96年12月31日

本研究報告僅供參考,不代表衛生署疾病管制局意見

目錄

目錄	頁次
中文摘要	3
英文摘要	4
前言	6
材料與方法	9
結果	12
結論與建議	14
計畫重要研究成果及具體建議	15
參考文獻	17
<u>圖</u>	20
表	22

摘要

關鍵詞:霍亂弧菌,分型,資料庫

「霍亂」是我國傳染病防治法規範的第二類傳染病,感染未治療嚴重患者可在數小時內死亡。全世界每年霍亂病例數皆有下降趨勢,整體而言其死亡率亦逐漸下降,但在非洲、亞洲等部分衛生條件不良的國家,仍是一大威脅。由於霍亂屬於國際疫病,個案需通報到世界衛生組織(WHO);如果造成流行或擴散,將對我農產畜牧及水產品出口,影響至極。因此本計劃將 54 株霍亂弧菌利用 DNA based 的方法建立 PFGE (pulse-field gel electrophoresis) 及 MLVA (multiple-locus VNTR analysis)分子分型技術,並對菌株進行親緣性樹狀圖演化分析(phylogenetic analysis)。研究結果顯示,MLVA 分型效力高於 PFGE,寄望基因資料庫的建構,能強化食因性傳染病與其它細菌性傳染病的監測工作,有效提供分子流行病學的分析,有效降低食因性傳染病之威脅。

Abstract

Keywords: Vibrio cholerae, typing, database

Genome-based bacterial typing is essential for determining and epidemiological phylogenetic relationship and forensic investigation. In this study, we employed two methods for molecular typing of Vibrio cholerae: PFGE (pulse field gel electrophoresis) and MLVA (multilocus variable number tandem repeat analysis).

A total of 54 Vibrio cholerae clinical isolates (23 of O1 serogroup, 27 of O139 serogroup, and 4 of non O1/non O139) were analyzed by PFGE and partitioned into 4 clades with 85% similarity, O139 could not be separated from O1 within this similarity, clustered in the same clade.

A total of 9 VNTR loci were used for fine typing of 54 Vibrio cholerae clinical isolates. This MLVA enables the partitioning to 5 clades with p<0.01 and p<0.05. MLVA could discriminate not only O139 from O1 but also all ctxA (+) isolates from ctxA (-). Our data indicated that MLVA has higher degree of resolution than PFGE in discriminating of Vibrio cholerae isolates.

4

前言

霍亂是由霍亂弧菌引起的一種急性腸道傳染病,依其膜外的 多醣體抗原可區分 200 種以上的不同血清型,其中主要致病株為產 生毒素之 O1 及 O139 血清型霍亂弧菌,而其餘統稱不產毒的非 O1 非 O139 群 1,2。O1 群依其溶血特性,有二種生物型別(Biotypes): O1 典型 (cholera classical) 及 O1 埃爾托型 (El Tor)。十九世紀世 界性大流行主要是 O1 典型,1961 年以後流行多為 E1 Tor 型為主, 如 1991 年中南美洲大流行亦為 El Tor 型 3。另一種能產生毒素之 霍亂弧菌 O139 血清型,在 1992-1993 年印度及孟加拉曾爆發流行 ²。民國八十六年高雄美濃爆發甲魚池遭霍亂弧菌汙染,即為 O139 血清型。國內隨著生活條件改善、自來水供給普及,醫療水準提升, 近年來僅有零星散發霍亂發生,多為個案或境外旅遊受到感染而移 入的案件。近雨次為民國九十四年 6 月台南市北區爆發二例小川型 霍亂弧菌(Vibrio Cholera O1 El Tor Ogawa)感染個案;以及民國 九十五年 5 月亦為台南市爆發之 O139 型霍亂弧菌感染。

本疾病管制局於 95 年 10 月 3 日成立 Taiwan PulseNet,以期建立細菌傳染病實驗室監測網,並建構病原 PFGE 及 MLVA 基因資料庫,以強化食因性傳染病與其它細菌性傳染病的監測工作 4-6。因

此,本計畫建立霍亂分子圖譜及基因體資料庫,以利日後發生案例 時比對,藉以釐清感染源彼此相關性,以及提供分子流行病學的分析,提升防疫通報作業 7-9。

材料與方法

霍亂弧菌菌株

本實驗使用來自本局生物材料科取得之 54 株霍亂弧菌菌株。以生化特性確定菌株並以抗血清作 serotyping 之後,進行進一步研究。

PFGE 電泳分析:

使用 NotI 限制酶進行菌株分型實驗,以脈衝電泳儀 CHEF-MAPPER (BIO-RAD, USA),變換時間: 2-10 秒 13 小時與 20-25 秒 6 小時,電場值為 6V/cm²,200V 電壓值,使用 1 % SeaKem Gold agarose (BMA, Rockland, ME, USA)及 0.5×TBE 電泳液,以 H9812 菌株 (XbaI 限制酶切割)當作片段大小指標。

使用限制酶之脈衝圖譜,利用電腦將圖片掃描儲存成圖片檔,接著以套裝軟體 Phoretix 1D gel analysis advanced version 5.01 (Nonlinear Dynamics, UK)對菌株進行親緣性樹狀圖分析,其原理是利用不同 DNA 片段電泳圖譜進行分析,以 UPGMA(unweighted pair group method using arithmetic averages) 的方式畫出樹狀圖 (dendrogram),由樹狀圖對應出相似指數,分析菌株間分子關聯性。

核酸處理

採用 QIAamp DNA Mini Kit (QIAGEN, USA) 抽取霍亂弧菌之 chromosome DNA。以溶解酶 (lysozyme) 及蛋白酶 (proteinase K) 脫去細菌外層,通過特有之管柱吸附 DNA,清洗之後即可析出 DNA。純化後的 DNA 則冰存於-20℃待用。

核酸增幅偵測法

抽取之霍亂弧菌 DNA 針對不同 loci 來進行基因型別鑑定,PCR 增幅所使用之引子對 (primer pair) 及 repeated core motif 如下:

基因名稱		引子對(5′-3′)	Core motif
VC0147	F:	GGATACTCAAACGCAGGATGA	AACAGA
	R:	CTTTCGGTCGGTTTCTCTTGT	
VC0437	F:	CGAGGTTAAAGGTCCTAACAA	GACCCTA
	R:	ATCAGGCTACATTCAGGTCTA	
VC0500	F:	TTGCTCTGGTGTCATAGGTG	TTGTCGA
	R:	CAGTGCGGAATTTAGACTCG	
VC1418	F:	CAGTATGGATGAACACAGATG	TGA
	R:	TTTGGGTGTCAGTAAGACTTG	
VC1457	F:	TCAGGAGGTCTAGAATCTGCC	AAATCAA
	R:	CTGTGGGTAGAAGTGAAACGG	
VC1650	F:	GTCAAATTACTGGGTGAACGC	GATAATCCA
	R:	TTCTGGGTTAGGCTGTTCTG	
VCA0171	F:	TGCTGATGAGTCTTCTTGCG	TGCTGT
	R:	TTAGACGTGGTCAAAGCTGC	
VCA0283	F:	AAATATCTGTAGCCTCCTCAG	ACCAGA
	R:	TTTCTTCCGATGAACTCTCTG	

VCA1082	F:	GGATGATTGCGGTGTTTATTC	AAC
	R:	TCTTTCTCCAGATAAGGC	

PCR反應試劑內含1X PCR緩衝溶液,0.25 mM dNTP, 0.2μ M引子各一,1 U Taq 與核酸檢體,總反應體積為 50μ L。反應條件依primer不同而有異:

VC0147 · VCA0171:

Activation \rightarrow 95°C for 5min Denature \rightarrow 94°C for 1min Anneal \rightarrow 62°C for 1min Extend \rightarrow 72°C for 1min

VC0437 · VC0500 · VC1418 · VC1650 · VCA0283 · VCA1082 :

Activation \rightarrow 95°C for 5min Denature \rightarrow 94°C for 1min Anneal \rightarrow 60°C for 1min Extend \rightarrow 72°C for 1min

VC1457:

Activation \rightarrow 95°C for 5min Denature \rightarrow 94°C for 1min Anneal \rightarrow 65°C for 1min Extend \rightarrow 72°C for 1min

進行35個循環,最後以72℃做聚合延長反應10分鐘,最後降溫至4℃。

1. 以 PFGE 技術建立 DNA 指紋圖譜資料庫:

本研究參考美國疾病管制局1996年用來建置PulseNet National Datadase之PFGE技術^{4,6},將台灣霍亂弧菌作基礎的初步分型;配合 套裝軟體BioNumeric (Applied Maths, USA) 對菌株進行親緣性樹 狀圖之分析,以UPGMA (unweighted pair group method using arithmetic averages)的方式畫出樹狀圖,由樹狀圖對應出相似指 數,分析菌株間分子關聯性。23株O1型及27株O139型霍亂弧菌以 及4株非O1非O139型霍亂弧菌以 NotI 酵素切割後作PFGE基因分 型(圖一,編號最後有P者為O139型,編號最後有N者為非O1非O139 型)。以85% 相似度(similarity)劃分54株霍亂弧菌親緣性,可分為 四個單系群(clade): 單系群A包含兩株非O1非O139型(2002-002N及 2003-389N)。單系群B包含兩株無毒素基因的O1型霍亂弧菌 (2003-499(-)及2003-520(-))。 單系群C包含27株O139型霍亂弧菌中 之24株(2003-94P至2003-105P,相似度高達90%)以及一部份O1型霍 亂弧菌。單系群D為另一群O1型霍亂弧菌型別。

3 株型 別 差 異 性 大 的 O139 型 菌 株 (2003-30P 、 2002-008P 及 2007-001P) 並 不 隸 屬 任 一 clade , 而 經 PCR 分 析 得 知 2002-008P 及

2007-001P無毒素基因,並非會造成大規模流行之霍亂弧菌,其基因型別與產毒素之O139型菌株差異很大。

27株O139型以PFGE可分為11種不同型別,24株O1型則包含19種型別。

2. 以 VNTR 建立 MLVA 基因資料庫:

PFGE 被美國疾病管制局運用為食因性致病細菌次分型 (subtype) 與流行病學關聯性判斷之準則,但其敏感度與型別之區分會依限制酶的選擇而產生變異,基因上細微的變化亦不易探測 ⁹。為解決 PFGE 技術層面的問題,利用多位址變異重覆序列 (VNTR, variable number of tandem repeats)分析基因高變異 VNTR loci,以 PCR 與基因定序的方式,結合生物資訊平台,建立重複性高且無實驗室間差異之 MLVA 基因資料庫,此技術已被發展應用在數個細菌之分型 ¹⁰⁻¹²。

經過 PFGE 分型之 54 株霍亂弧菌(23 株 O1 型、27 株 O139 型及 4 株非 O1 非 O139 型霍亂弧菌),再以 MLVA 基因分型技術分析比較 ¹⁰。以 Danin-Poleg *et al*.選用之 9 個 VNTR loci,經 PCR 及基因定序後,應用 Maximum Likelihood 演算法,建構 54 株霍亂弧菌間之 MLVA 種源關係樹(圖二及表一)。從樹狀圖中將具有統計意義

(p<0.05 或 p<0.01)群組定為單系群,可將 54 株霍亂弧菌分為 5 個單系群。其中 24 個 O139 型與 PFGE 分型一致,同屬單系群 I,顯示 MLVA 分析,可將 O139 型霍亂弧菌與 O1 型霍亂弧菌成功區分。

霍亂弧菌單系群 II 中包含7株不產毒之霍亂弧菌(虛線方框部分),其中 2007-001P(-)及 2002-008P(-)為 O139 型,2003-112(-)為 O1型,而 2002-009N(-) 2002-002N(-)、2002-004N(-)及 2003-389N(-)4 株非 O1 非 O139 型,可推論霍亂弧菌之產毒與否較血清型別有更緊密之種緣關係。

27株 O139 型以 MLVA 可分為 23 種不同基因型別, 23 株 O1型則包含 22 種型別。顯示 MLVA 不僅在同種源之單系群區分比PFGE 具有較高的區分效力,更在基因型別的分型上展現更高的分型效力。

討論與建議

本研究利用 PFGE 及 MLVA 不同方法分型霍亂弧菌。在 PFGE 分型中,單系群 C 無法將 O1、O139 型做明顯的區分,而 MLVA 可將霍亂弧菌分成較多的單系群,且可將 O139 型與 O1 型成功區分。 O139 型霍亂弧菌在 1992 年被分離發現,也許因年代接近,尚無顯著的演化上的變異,因此屬同一種源。而 O1 型霍亂弧菌,因長時間的演化,則有不同種源的區分。

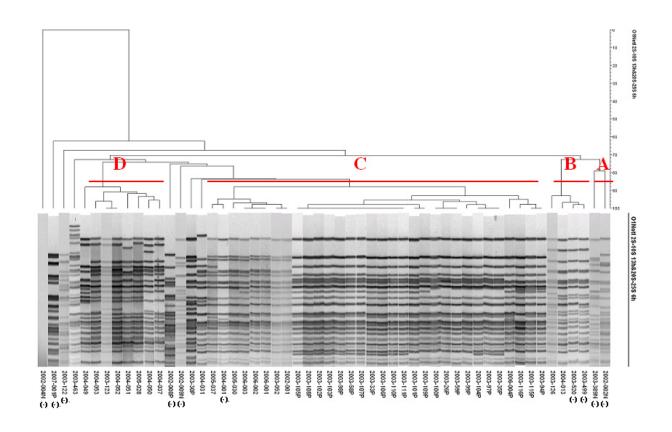
霍亂弧菌毒素基因 ctxAB 位於嗜菌體 CTX 中上,當 CTX 中 DNA 鑲嵌在霍亂弧菌染色體中,配合其他致毒基因 (virulence gene,例如:TCP,toxin coregulated pilus pathogenicity island,VPI cluster等),造成宿主致病的主要因素 1,2,9,13。因此毒素基因的鑲嵌亦成為演化的一部份。這個推論可從 MLVA 單系群 II 及單系群 V 中霍 亂弧菌(虛線方框部分)產毒與否較血清型別有更緊密之種緣關係得到應證。另外,本次實驗中 2002-004N(-)在 PFGE 的分型中因 smearing 而無法分型(圖一最左邊之 lane),這情形在其他文獻亦曾報導過 10,雖仍無法得知原因為何,至少以 MLVA 分型時,是成功的。

以 PFGE 分析 54 株全部霍亂菌株,其分型能力為 0.958 (分為

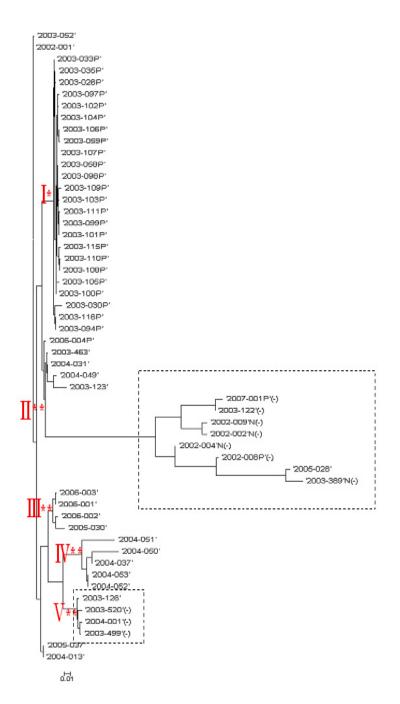
34 種型別,表二),而 MLVA 分型能力為 0.996 (可分為 44 種型別,表二)。兩種分型法雖均可分析菌株間之關聯性,但本研究結果顯示, MLVA 之分型能力優於 PFGE,在 O139 型霍亂菌株的分型上,MLVA 0.986 之分型能力更勝於 PFGE 的 0.820。

以 2006 年發生在台南的兩起霍亂案件(2006-001,2006-002) 為例,由於地緣相近,發生時間只相隔兩星期,且以 PFGE 分型時, 型别一致(圖一),當時無法釐清是否為同一感染源。由於 MLVA 的 高分型力,成功顯示此兩菌株為不同型別(表一)。反之,雖然 MLVA 在同種源之單系群區分比 PFGE 具有較高的區分效力,更在基因型 別的分型上展現更高的分型效力,但也有 MLVA 無法區分,而 PFGE 可區分出不同型別的情形,2003-026P 與 2003-033P 就是一個例子。

因此,PFGE為目前國際認可之共同比對工具,而 MLVA 的高分型能力亦為日後國際發展主力。在此雙重優勢下,期望霍亂弧菌 PFGE 指紋圖譜及 MLVA 基因資料庫的建構,能強化食因性傳染病與其它細菌性傳染病的監測工作,有效提供分子流行病學的分析,有效降低食因性傳染病之威脅。


計畫重要研究成果及具體建議

本疾病管制局於 95 年 10 月 3 日成立 Taiwan PulseNet,期望霍 亂弧菌 PFGE 指紋圖譜及 MLVA 基因資料庫的建構,能強化食因性傳染病與其它細菌性傳染病的監測工作。本計畫建構完成霍亂弧菌 PFGE 及 MLVA 基因資料庫,研究結果顯示 MLVA 比 PFGE 在基因型別的分型上展現較高的分型效力,能有效提供分子流行病學的分析,有效降低食因性傳染病之威脅。


參考文獻

- 1. Kaper JB, Morris JG, Jr., Levine MM. Cholera. Clin Microbiol Rev. Jan 1995;8(1):48-86.
- 2. Thompson FL, Iida T, Swings J. Biodiversity of vibrios. *Microbiol Mol Biol Rev.* Sep 2004;68(3):403-431, table of contents.
- **3.** Guerrant RL. Cholera--still teaching hard lessons. *N Engl J Med.* Jun 8 2006;354(23):2500-2502.
- 4. Hunter SB, Vauterin P, Lambert-Fair MA, et al. Establishment of a universal size standard strain for use with the PulseNet standardized pulsed-field gel electrophoresis protocols: converting the national databases to the new size standard. *J Clin Microbiol*. Mar 2005;43(3):1045-1050.
- 5. Urwin R, Maiden MC. Multi-locus sequence typing: a tool for global epidemiology. *Trends Microbiol*. Oct 2003;11(10):479-487.
- 6. Swaminathan B, Barrett TJ, Hunter SB, Tauxe RV. PulseNet: the molecular subtyping network for foodborne bacterial disease surveillance, United States. *Emerg Infect Dis.* May-Jun 2001;7(3):382-389.
- 7. Byun R, Elbourne LD, Lan R, Reeves PR. Evolutionary relationships of pathogenic clones of Vibrio cholerae by sequence analysis of four housekeeping genes. *Infect Immun*. Mar 1999;67(3):1116-1124.
- **8.** Faruque SM, Albert MJ, Mekalanos JJ. Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae. *Microbiol Mol Biol Rev.* Dec 1998;62(4):1301-1314.
- 9. Kotetishvili M, Stine OC, Chen Y, et al. Multilocus sequence typing has better discriminatory ability for typing Vibrio cholerae than does pulsed-field gel electrophoresis and provides a measure of phylogenetic relatedness. *J Clin Microbiol*. May 2003;41(5):2191-2196.
- 10. Danin-Poleg Y, Cohen LA, Gancz H, et al. Vibrio cholerae strain typing and phylogeny study based on simple sequence repeats. J Clin Microbiol. Mar 2007;45(3):736-746.
- 11. Danin-Poleg Y, Somer L, Cohen LA, Diamant E, Palti Y, Kashi Y. Towards the definition of pathogenic microbe. *Int J Food Microbiol*. Dec 1 2006;112(3):236-243.
- 12. Ravi Kumar A, Sathish V, Balakrish Nair G, Nagaraju J. Genetic characterization of Vibrio cholerae strains by inter simple sequence repeat-PCR. *FEMS Microbiol Lett.* Jul 2007;272(2):251-258.

13. Faruque SM, Nair GB, Mekalanos JJ. Genetics of stress adaptation and virulence in toxigenic Vibrio cholerae. *DNA Cell Biol*. Nov 2004;23(11):723-741.

圖一、54 株霍亂弧菌株之 PFGE 圖譜(23 株 O1 型、27 株 O139 型及 4 株非 O1 非 O139 型霍亂弧菌),菌株來自疾管局生材科菌株庫。 編號後有 P 者為 O139 型,編號後有 N 者為非 O1 非 O139 型,不 產毒素者以(-)標示。單系群(clade): A、B、C、D 以 85% similarity 劃分。

圖二、54 株霍亂弧菌株之 MLVA 分析圖(23 株 O1 型、27 株 O139 型及 4 株非 O1 非 O139 型霍亂弧菌,編號標示如圖一)。應用 Maximum Likelihood 演算法繪製 MLVA 種源關係樹,p<0.01(*)及 p<0.05(**)具統計意義之系群劃分為同源種單系群(clade):I、II、

III · IV · V ·

	VC0147	VC0437	VC0500	VC1418	VC1457	VC1650	VCA0171	VCA0283	VCA1082
2002-001	10	7	4	9	4	7	17	28	8
2002-002N(-)	11	7	np	np	np	4	13	np	8
2002-004N(-)	9	6	np	np	np	3	np	np	7
2002-009N(-)	14	7	np	np	np	1	12	28	9
2003-052	10	7	4	9	4	6	17	28	7
2003-112(-)	9	8	np	np	np	np	13	np	9
2003-123	8	7	np	9	4	np	7	17	8
2003-126(-)	9	7	np	9	np	7	21	24	8
2003-389N(-)	17	7	np	np	np	8	19	np	9
2003-463	8	7	4	9	4	7	11	15	9
2003-499	10	7	np	9	np	3	22	21	9
2003-520(-)	10	8	np	9	np	7	21	24	8
2004-001(-)	9	8	np	9	np	7	22	20	9
2004-013	9	7	4	9	4	8	17	21	9
2004-031	8	7	4	9	4	7	11	15	10
2004-037	7	7	np	9	6	7	np	21	8
2004-049	9	7	np	9	4	np	10	20	8
2004-050	7	7	np	9	6	7	np	2	8
2004-051	9	9	np	9	4	7	23	14	7
2004-052	8	7	np	9	4	7	np	21	8
2004-053	8	9	np	9	4	7	np	20	7
2005-028	8	7	np	9	5	8	12	np	7
2005-030	10	7	4	9	4	8	18	19	7
2005-037	8	7	4	9	4	6	12	17	8
2006-001	10	7	4	9	4	8	17	27	9
2006-002	10	7	4	9	4	8	18	22	10
2006-003	10	7	4	9	4	8	17	27	9
2002-008P(-)	9	8	np	np	np	5	10	np	7
2003-02 <i>6</i> P	10	7	4	10	3	8	11	18	7
2003-030P	10	6	4	10	3	8	17	11	7
2003-033P	10	7	4	10	3	8	11	18	7
2003-035P	10	7	4	10	3	8	11	16	8
2003-058P	10	7	4	10	3	9	11	19	8
2003-059P	10	7	4	9	3	8	11	17	7
2003-094P	10	7	4	10	3	9	11	17	7
2003-097P	10	7	4	10	3	9	11	15	8
2003-098P	10	7	4	10	3	9	10	15	8
2003-099P	10	7	4	10	3	9	11	18	8
2003-100P	10	7	4	10	3	9	11	19	7
2003-101P	10	7	4	10	3	9	11	18	8
2003-102P	10	7	4	9	3	9	11	16	9
2003-103P	10	7	4	9	3	9	11	16	8
2003-104P	10	7	4	11	3	9	11	17	8
2003-105P	10	7	4	10	3	9	11	14	8
2003-106P	10	7	4	9	3	9	11	18	7
2003-107P	10	6	4	10	3	8	11	18	7
2003-108P	10	7	4	10	3	9	11	17	7
2003-109P	10	7	4	10	3	8	11	18	7
2003-110P	10	5	4	10	3	8	11	16	8
2003-111P	10	7	4	11	3	9	11	17	7
2003-115P	10	7	4	9	3	10	11	15	7
2003-11 <i>6</i> P	10	7	4	10	3	7	11	18	7
2006-004P	10	8	4	10	np	6	np	21	7
2007-001P(-)	8	11	np	np	np	np	14	np	8

表一、54 株霍亂弧菌中分佈於 9 個 VNTR loci 之重覆序列數 (number of repeats)。np = no amplification product

	Total VC		01		O139	
	D	(Type)	D	(Type)	D	(Type)
PFGE	0.95	2(34/54)	0.98	0(19/23)	0.82	0(11/27)
MLVA	0.99	6(44/54)	0.99	6(22/23)	0.98	36(23/27)

D: discriminatory power

表二、PFGE 與 MLVA 的分型能力。(Total VC 指全部 54 株霍亂 弧菌之分型)